TW201905231A - 原子級薄金屬硫族化合物的合成 - Google Patents

原子級薄金屬硫族化合物的合成 Download PDF

Info

Publication number
TW201905231A
TW201905231A TW107120704A TW107120704A TW201905231A TW 201905231 A TW201905231 A TW 201905231A TW 107120704 A TW107120704 A TW 107120704A TW 107120704 A TW107120704 A TW 107120704A TW 201905231 A TW201905231 A TW 201905231A
Authority
TW
Taiwan
Prior art keywords
metal
group
formula
temperature
alkali metal
Prior art date
Application number
TW107120704A
Other languages
English (en)
Inventor
劉政
周家東
Original Assignee
南洋理工大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南洋理工大學 filed Critical 南洋理工大學
Publication of TW201905231A publication Critical patent/TW201905231A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • C30B25/165Controlling or regulating the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/64Flat crystals, e.g. plates, strips or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明係關於使用鹽類輔助化學氣相沉積法,在一基板上製造多種二維過渡金屬硫族化合物。本發明亦關於具化學式II的過渡金屬硫族化合物: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中A~G、S、Se、Te及a~j的定義皆如本文所述。

Description

原子級薄金屬硫族化合物的合成
本發明係關於一種合成多種二維過渡金屬硫族化合物(transition-metal dichalcogenides,TMD)的方法。
本文中所列舉的公開參考文獻或其相關敘述,皆不應被視為認可公開參考文獻為先前技術的一部分或為通常一般知識。
二維TMD會表現出特別的物理現象,如量子自旋霍爾效應1,2 (quantum spin Hall effect)、谷極化(valley polarization)3,4 及二維超導性質5 ,代表此類化合物具備用於功能裝置6-10 、廣泛調控能帶隙(universal band gap engineering)及異相催化11-14 等應用潛力。雖然二維TMD屬二維晶體中分支最龐大的一族,但實際產製出的種類有限,且通常透過化學氣相沉積法(chemical vapour deposition, CVD)產製。
過去幾年,合成TMD時皆以VI族化合物MX2 (M:鉬(Mo)、鎢(W);X:硫(S)、砷(Se))為主,尚有超過40種TMD有待開發。根據理論預測,其中許多類型的TMD皆具備多元且新穎的性質。舉例而言,理論指出IV族TMD(鈦(Ti)、鋯(Zr)、鉿(Hf))具備高移動率、易相變等性質,而V族TMD則會表現出鐵磁性、超導性及電荷密度波(charge density wave)。理論還指出,VI族碲化物會具備如同第二類外爾費米子(type-II Weyl semimetal)及拓樸絕緣體(topological insulator)的性質。
合成基於Mo及W的TMD時,習知技術會透過將金屬及金屬化合物硫化(sulfrisation)15-19 、硒化(selenisation)20-21 及碲化(tellurisation)22 的方式。至於許多其他種類的TMD,則由於其金屬前驅物(如Ti、Zr、Hf、鈮(Nb)、鉭(Ta)、W、磷(P)及鈀(Pd)等元素之氧化物)熔點高、蒸氣壓低,因此依然無法成功製備。
有鑑於TMD所具備的潛在實用特質及應用方式,目前仍須開發有效的一般合成方法,以製備各式二維TMD。如此一來,即能研究各式二維TMD的性質及潛在應用方式。
在製備目標TMD之前,必須先確定理想的合成方式應具備哪些重要條件。首先,此方法應適用於各式TMD,且應讓使用者能自由控制所使用材料之性質。此方法要能產出高質量(僅含微量瑕疵或無瑕疵)、大尺寸之TMD晶體,以滿足實務應用之強烈需求。
經意外發現,將鹽類與過渡金屬或金屬氧化物組合使用時,可使二維TMD更容易生成。因此,根據本發明之第一方面,提供一種生成具化學式I之二維TMD的方法: MX2 I 其中: M係選自由Ti、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、Zr、Nb、Mo、鎘(Cd)、Hf、Ta、W及錸(Re)組成的群組之其中一或多個;及 X係選自由S、Se及Te組成的群組之其中一或多個,該方法包含利用化學氣相沉積法,使具化學式I的TMD沉積於基板上,其中氣相沉積法的執行方式如下: 將載流氣體經流體通道通入反應爐中,流體通道包含第一溫度區,其中置有一或多個硫元素、硒元素或碲元素;及第二溫度區,其中置有一或多個金屬前驅物與鹼金屬鹵化物之混合物,混合物上方置有基板,該一或多個金屬前驅物與鹼金屬鹵化物的重量比為1:2至15:1,其中: 第一溫度區的溫度係150至500 °C; 第二溫度區的溫度係350至950 °C; 基板係位於一或多個金屬前驅物及鹼金屬鹵化物之混合物上方自0.01至2.0 cm處;及 一或多個金屬前驅物係選自金屬元素、金屬氧化物或金屬鹵化物,各金屬係選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組,其中具化學式I之二維TMD於基板上的成長速率係0.01 µm/s 至10 µm/s。
根據本發明之第一方面,可作為一般應用的具體實施例,包括分別具備以下條件的具體實施例: (a) 載流氣體可包含體積流率為30至200 sccm之惰性氣體,且可選地進一步包含體積流率為1至20 sccm之氫氣,惰性氣體可選地為氬氣及/或氮氣; (b) 鹼金屬鹵化物係可為選自由氯化鈉(NaCl)、氯化鉀(KCl)、氯化鋰(LiCl)、溴化鈉(NaBr)、溴化鉀(KBr)、溴化鋰(LiBr)、碘化鈉(NaI)、碘化鉀(KI)及碘化鋰(LiI)組成之群組的一或多個; (c) 經沉積之TMD的厚度可為1 nm至小於 1 µm(如1 nm至500 nm); (d) 方法可進一步包含將一或多個具化學式I之二維TMD形成的額外疊層疊於經上述沉積法處理的基板之上;其中可選地,沉積於各額外疊層中的具化學式I之二維TMD,與基板表面上的疊層不同; (e) 一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為1.5:1至15:1,如1.5:1至5:1; (f) 在生成平面內異質結構的過程中,載流氣體的體積流率會變動。
根據本發明第一方面,其具體實施例中具化學式I之TMD若為二硫化鎢(WS2 ),則該第二溫度區的溫度係600至670 °C;或者,其中具化學式I之TMD若為二硒化鎢(WSe2 ),則該第二溫度區的溫度係650至670 °C。
在本發明特定具體實施例中,所生成的具化學式I之TMD可為二硫化鉬(MoS2 )或二硒化鉬(MoSe2 )。當該方法係關於生成MoS2 時,第二溫度區的溫度可為350至800 °C(如350至600 °C),且一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為5:1至10:1。當該方法係關於生成MoSe2 時,第二溫度區的溫度可為550至900 °C(如550至650 °C,譬如自550至600 °C),且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為5:1至10:1。
在某些具體實施例中,當所生成的具化學式I之TMD係MoS2 或MoSe2 時: (a) 一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為6:1;及/或 (b) 金屬前驅物可為三氧化鉬(MoO3 );及/或 (c) 鹼金屬鹵化物可為NaCl。
在本發明特定具體實施例中,所生成的具化學式I之TMD,可為選自由二碲化鈀(PdTe2 )、二硒化鈀(PdSe2 )、二硫化鈀(PdS2 )、二碲化鉑(PtTe2 )、二硒化鉑(PtSe2 )及二硫化鉑(PtS2 )組成之群組的其中一化合物,且於生成方法中,該第二溫度區的溫度可為750至860 °C,且一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為8:1至12:1(如10:1)。在這些具體實施例中,鹼金屬鹵化物可為NaCl。在某些具體實施例中,當具化學式I之TMD包含Pd時,金屬前驅物可為二氯化鈀(PdCl2 )。在某些具體實施例中,當具化學式I之TMD包含Pt時,該金屬前驅物可為二氯化鉑(PtCl2 )。
在本發明特定具體實施例中,所生成的具化學式I之TMD,可為選自由二碲化鉿(HfTe2 )、二硒化鉿(HfSe2 )、二硫化鉿(HfS2 )、二碲化釩(VTe2 )、二硒化釩(VSe2 )、二硫化釩(VS2 )、二碲化鈦(TiTe2 )、二硒化鈦(TiSe2 )、二硫化鈦(TiS2 )、二碲化鈮(NbTe2 )、二硒化鈮(NbSe2 )、二硫化鈮(NbS2 )、二碲化鋯(ZrTe2 )、二硒化鋯(ZrSe2 )、二硫化鋯(ZrS2 )、二碲化鉭(TaTe2 )、二硒化鉭(TaSe2 )、二硫化鉭(TaS2 )、二碲化鉬(MoTe2 )及二碲化鎢(WTe2 )組成之群組的其中一化合物,且於生成方法中,第二溫度區的溫度可為600至860 °C,且一或多個金屬前驅物與鹼金屬鹵化物之重量比可為1.6:1至4:1。在這些具體實施例中,鹼金屬鹵化物可為NaCl。在某些具體實施例中,當具化學式I之TMD包含Hf時,金屬前驅物可為Hf。在某些具體實施例中,當具化學式I之TMD包含的金屬係選自V、Ti、Nb、Zr、Ta、Mo、W時,其金屬前驅物可分別為前述各金屬之氧化物。
在本發明特定具體實施例中,所生成的具化學式I之TMD,可為選自二硫化鐵(FeS2 )、二硒化鐵(FeSe2 )或二碲化鐵(FeTe2 )當中之一化合物,且於生成方法中,第二溫度區的溫度可為500至850 °C(如500至600 °C),且一或多個金屬前驅物與鹼金屬鹵化物之重量比可為4:1至6:1,如5:1。在這些具體實施例中,鹼金屬鹵化物可為NaCl及/或LiCl。在某些具體實施例中,當具化學式I之TMD包含Fe時,金屬前驅物可為金屬氧化物(如氧化鐵(Fe2 O3 ))或金屬氯化物(如氯化亞鐵(FeCl2 ))。
在本發明特定具體實施例中,所生成的具化學式I之TMD可為具化學式II之一合金: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中: A至G皆分別為互異之金屬,各選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組其中之一; a至g分別獨立為0至0.99的值,且a+b+c+d+e+f+g之和為1;及 h至j分別獨立為0至2的值,且h+i+j之和為2, 而a至g其中至少兩者大於0,且/或h至j其中至少兩者大於0。在特定具體實施例中,可透過一方法生成該合金,其中第二溫度區的溫度可為600至850 °C,且/或一或多個金屬前驅物與該鹼金屬鹵化物之重量比係5:1至7.5:1,如5:1。可由上述方法生成的具化學式II之合適TMD,可選自由MoSe2x Te2(1-x) 、Mo1-x Rex S2 、MoS2x Te2(1-x) 、Mo1-x Nbx Se2 、Mo1-x Nbx S2 、Mox Nb1-x S2y Se2(1-y) 、WS2x Te2(1-x) 、WSe2x Te2(1-x) 、Mo1-x Wx Te2 、NbS2x Se2(1-x) 、W1-x Nbx S2 、W1-x Nbx Se2 及Vx Wy Mo(1-x-y) S2z Se2(1-z) 組成之群組。應可了解,各合金中之x、y及z值皆大於0且小於1。
根據本發明之第二方面,提供一種具化學式II之TMD合金: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中: A至G皆分別為互異之金屬,分別選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組其中之一; a至g分別獨立為0至0.99的值,且a+b+c+d+e+f+g之和為1;及 h至j分別獨立為0至2的值,且h+i+j之和為2, 而a至g中至少兩者大於0,且/或h至j其中至少兩者大於0。
根據本發明之第二方面,在一具體實施例中,具化學式II之合適TMD可選自由MoSe2x Te2(1-x) 、Mo1-x Rex S2 、MoS2x Te2(1-x) 、Mo1-x Nbx Se2 、Mo1-x Nbx S2 、Mox Nb1-x S2y Se2(1-y) 、WS2x Te2(1-x) 、WSe2x Te2(1-x) 、Mo1-x Wx Te2 、NbS2x Se2(1-x) 、W1-x Nbx S2 、W1-x Nbx Se2 及Vx Wy Mo(1-x-y) S2z Se2(1-z) 組成之群組。應可了解,各合金中之x、y及z值皆大於0且小於1。
如上所述,先前意外發現一種製備各種二維TMD之一般方法,該方法速度快,並可於低溫下完成。此流程可透過控制來源材料的重量,以使單層或數層TMD沉積於基板上,此方法使具備1 nm至小於1 µm厚度之TMD晶體能快速形成。
因此,本文中提供一種生成具化學式I的二維TMD的方法: MX2 I 其中: M係選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成的群組之其中一或多個;及 X係選自由S、Se及Te組成的群組之其中一或多個,該方法包含利用化學氣相沉積法,使具化學式I的TMD沉積於一基板上,其中該氣相沉積法的執行方式如下: 將一載流氣體經一流體通道通入一反應爐中,該流體通道包含一第一溫度區,其中置有一或多個硫元素、硒元素或碲元素;及一第二溫度區,其中置有一或多個金屬前驅物與一鹼金屬鹵化物之混合物,該混合物上方置有一基板,該一或多個金屬前驅物與該鹼金屬鹵化物的重量比為1:2至15:1,其中: 該第一溫度區的溫度係150至500 °C; 該第二溫度區的溫度係350至950 °C; 該基板係位於該一或多個金屬前驅物及該鹼金屬鹵化物之混合物上方自0.01至2.0 cm處;及 該一或多個金屬前驅物係選自一金屬元素、一金屬氧化物或一金屬鹵化物,各金屬係選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組,其中具化學式I之二維TMD於基板上的成長速率係0.01 µm/s 至10 µm/s。
本說明書使用的「包含」一詞,可理解為必須具備所述特徵,但不限制具備其他特徵。或者,「包含」一詞亦可關於僅須具備所詳列的組件/特徵的情形(如「包含」可被「由…所組成」或「實質上由…所組成」等用語取代)。可明確理解的是,無論廣義或狹義的解釋方式皆可適用於本發明的所有方面及所有具體實施例。換言之,本說明書中的「包含」及其同義詞,可使用「由…所組成」或「實質上由…所組成」或其同義詞取代,反之亦然。
應可理解,使用本方法生成的TMD可關於包含單一金屬及單一硫族化合物(如TaS2 )之材料,亦有助於生成任何適當的合金(如TaS0.8 Se0.2 、Hf0.3 Ta0.7 S2 、Fe0.3 V0.3 Pt0.4 S0.5 Se0.2 Te0.3 ),此合金可包含至多六種金屬及多種硫族化合物(即S、Se、Te)。
本說明書使用的「置有」一詞,可指涉直接放置於該流體通道中一特定區域的材料,或可指使用一適當容器/載具,其包含位於該流體通道中一特定區域的目標材料。
如上所述,該方法進行方式為使用反應爐,且其具有流體通道貫穿爐內。可藉由任何適當方式設置該流體通道,如使用具適當直徑的石英/玻璃爐管,並將基板置於其中;包含硫族化合物的第一晶舟可置於基板上游處;第二晶舟可置於基板下方,第二晶舟包含金屬來源及鹼金屬鹵化物。反應爐用於提供兩個獨立的溫度區。第一溫度區位於第二溫度區上游處,且置有包含硫族化合物的第一晶舟;第二溫度區位於第一溫度區下游處,且置有基板與第二晶舟,第二晶舟包含金屬前驅物與鹼金屬鹵化物。將第一溫度區加熱至可使硫族化合物汽化之溫度,並於內部維持此溫度,如可介於150至500 °C之間。將第二溫度區加熱至可使金屬來源汽化的溫度,並於內部維持此溫度,如可介於350至950 °C之間。操作時,使載流氣體通入流體通道,並先與第一晶舟及經汽化的硫族化合物接觸。接著,經汽化的硫族化合物被載流氣體攜往第二溫度區,並於第二溫度區內與汽化金屬相混,以於基板表面上生成沉積TMD。載流氣體自出口排出,且排出時仍可能夾帶硫族化合物、金屬來源/金屬及鹼金屬鹽類。
載流氣體可為任何適用於化學氣相沉積法的氣體。在特定具體實施例中,可僅使用一種載流氣體;而在其他具體實施例中,可使用超過一種載流氣體。僅使用一種載流氣體時,該氣體最好為惰性氣體,如氮氣或氬氣(Ar)。使用超過一種載流氣體時,該氣體可由惰性氣體(如氮氣及/或氬氣)及氫氣(H2 )混合而成。惰性氣體不論單獨使用或與其他氣體組合使用時,體積流率皆為30至200 sccm,譬如60至120 sccm。H2 本身的體積流率獨立為1至20 sccm(譬如5至20 sccm,如10至15 sccm)。應可理解,操作該方法前先去除流體通道中的氧氣,對方法較有利。可透過在通道內通入載流氣體(或至少惰性氣體)一段時間(如5分鐘至1小時)而達成。或可使用真空吸引法清理該流體通道,以清除通道內部所含的氣體,再通入該載流氣體(如惰性氣體),以上步驟可重複進行適當次數(如3至5次)。
如本說明書所述,操作此方法後有機會獲得一平面內異質結構,即該基板上的一單層材料,其由含二或多種晶相(譬如2至5種晶相,如2至4種晶相,例如2至3種晶相)之單一TMD所製成。若要獲得前述異質結構,可在TMD沉積期間改變載流氣體的體積流率,以提供不同相態的材料。此方法之一實例為,先通入體積流率為80 sccm的Ar及20 sccm的H2 以沉積出1T'相之MoTe2 ;接著,在同樣的沉積方法下將Ar及H2 的體積流率各調整為20 sccm及4 sccm,以沉積出2H相之MoTe2 ,最後即可獲得MoTe2 平面內異質結構。
基板可為任何適當基板。常用的基板類型為矽基板(但不限於此)。基板置於包含金屬來源及鹼金屬鹽類的晶舟上方。於基板與第二晶舟(即第二混合物)之間留出0.01至2.0 cm(譬如0.1 cm至2.0 cm,如0.5 cm至1.9 cm,例如0.7 cm至1.5 cm)的空隙,以確保兩者之間存在使載流氣體流過的流體通道。
本說明書使用的「晶舟」一詞,意指任何可乘載硫族化合物、金屬來源/金屬及鹼金屬鹽類的適當載具,其可耐受此方法中使用的不同溫度。
於基板表面上所生成的TMD,其厚度可為1 nm至1 μm(譬如1 nm至500 nm)。換言之,沉積出的TMD材料可為單層結構(如厚度為1 nm)或由同一種TMD相互堆疊而成的多層結構。可調整反應時間及所使用的材料量以控制沉積層的厚度。應可理解,可取已覆上沉積物的基板重新操作上述步驟,此時,第二層TMD可沉積於第一層TMD之上,此一步驟可執行任意次數。進行第二次(及後續)沉積時,所沉積之TMD可與已沉積於該基板表面上的TMD相同(譬如需要堆疊出較厚的TMD覆蓋物時),但亦可偏向形成異質結構,即彼此相鄰之沉積層皆由不同的TMD所組成(如各層的TMD皆相異,或第一及第三層由相同的TMD組成,但夾於中間的第二層則由不同的TMD材料組成(例如以下的堆疊狀態:基板/WS2 /HfSe2 /WS2 ))。
如上所述,當沉積反應開始進行後,所列舉之反應條件可使TMD於該基板表面上的生成速率加快。換言之,其成長速率可為0.01 μm/s至10 μm/s(如0.05 μm/s至10 μm/s,尤其例如1 μm/s至10 μm/s,例如2.5 μm/s至7.5 μm/s),使大小為5 μm至1,000 μm的TMD可於該基板表面上快速成長。實際上,許多TMD所需的成長時間皆不超過30秒,例子包括但不限於MoS2 、MoSe2 、MoTe2 、WS2 、WSe2 、WTe2 、VS2 、VSe2 、ReS2 、ReSe2 、TiS2 、TiSe2 、TaS2 、TaSe2 、NbS2 及NbSe2
一或多個金屬前驅物係選自金屬元素、金屬氧化物或金屬鹵化物。本說明書所述之氧化物及氯化物可為非理想配比,或者本身即為理想配比。本說明書所述之非理想配比化合物可為氧化鐵及氧化鎢。
就本說明書所揭示之方法而言,其中一項優點在於,用來加熱金屬來源所需的溫度可大幅低於先前技術所使用的溫度。因此,在本發明特定具體實施例中,當目標TMD為WS2 ,第二溫度區的溫度可為600至670 °C。另外,當目標TMD為WSe2 ,第二溫度區的溫度可為650至670 °C。針對其他種類的TMD及其關聯合金,其具體實施例如後述。
應可理解,任何適當的鹼金屬鹽類(或其混合物)皆可用於本說明書所揭示的方法當中。適當的鹼金屬鹽類例子包括但不限於NaCl、KCl、LiCl、NaI、KBr、LiBr、NaBr、KI、LiI及其混合物。執行該方法時,一或多個金屬前驅物對鹼金屬鹵化物的重量比可為1:2至15:1,如自1.5:1至15:1、自1.6:1至13:1、自4:1至10:1、自5:1至8:1,如6:1。其他適當比例皆列舉於實驗說明及以下內容。
當上述方法用以生成TMD MoS2 時,第二溫度區的溫度可為350至800 °C(如350至600 °C,例如350至500 °C),且一或多個金屬前驅物對鹼金屬鹵化物的重量比可為5:1至10:1(如6:1)。當上述方法用以生成TMD MoSe2 時,第二溫度區的溫度可為550至900 °C(如550至650 °C,例如550至600 °C),且一或多個金屬前驅物對鹼金屬鹵化物的重量比可為5:1至10:1(如6:1)。
當上述方法用以生成TMD MoS2 或MoSe2 時,金屬前驅物可為鉬之氧化物(如MoO3 )。此外,一般可使用任何適當的鹼金屬鹽類,但前述各方法可特別使用NaCl。
當上述方法用以生成TMD PdTe2 、PdSe2 、PdS2 、PtTe2 、PtSe2 及PtS2 時,第二溫度區的溫度可為750至860 °C,且一或多個金屬前驅物對鹼金屬鹵化物的重量比可為8:1至12:1。在前述各方法中,一或多個金屬前驅物對鹼金屬鹵化物的重量比可為10:1及/或鹼金屬鹵化物可為任何適當鹽類,如NaCl。此外,適用於Pd之金屬前驅物可為PdCl2 ,適用於Pt之金屬前驅物可為PtCl2
本說明書所述之方法可用以生成TMD,其選自由HfTe2 、HfSe2 、HfS2 、VTe2 、VSe2 、VS2 、TiTe2 、TiSe2 、TiS2 、NbTe2 、NbSe2 、NbS2 、ZrTe2 、ZrSe2 、ZrS2 、TaTe2 、TaSe2 、TaS2 、MoTe2 及WTe2 組成的群組,其中第二溫度區的溫度可為600至860 °C,且一或多個金屬前驅物對鹼金屬鹵化物(如NaCl)的重量比可為1.6:1至4:1。在前述各方法之特定具體實施例中,Hf金屬可作為包含Hf的TMD的前驅物,而對於各自包含V、Ti、Nb、Zr、Ta、Mo及W的TMD而言,其金屬前驅物可為前述各金屬之氧化物。
本說明書所述之方法可用以生成TMD,其為FeS2 、FeSe2 或FeTe2 。其中第二溫度區的溫度可為500至850 °C(如自500至600 °C),且一或多個金屬前驅物對鹼金屬鹵化物(如NaCl及/或LiCl)的重量比為4:1至6:1,如5:1。對於包含Fe的TMD而言,其金屬前驅物可為金屬氧化物(如Fe2 O3 或非理想配比氧化物)或金屬氯化物(如FeCl2 )。
如上所述,本說明書揭示之方法可用以製備TMD,其為具化學式II的合金: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中: A至G皆分別為互異之金屬,各選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組其中之一; a至g分別獨立為0至0.99的值,且a+b+c+d+e+f+g之和為1;及 h至j分別獨立為0至2的值,且h+i+j之和為2, 而a至g其中至少兩者大於0,且/或h至j其中至少兩者大於0。在關於合金生成的具體實施例中,一或多個金屬前驅物對鹼金屬鹵化物的重量比可為5:1至7.5:1(如5:1)及/或第二溫度區的溫度可為600至850 °C。如同下述,合金中可包含至多六種金屬及三種硫族化合物。
可使用上述方法製備的合金,包括但不限於選自由MoSe2x Te2(1-x) 、Mo1-x Rex S2 、MoS2x Te2(1-x) 、Mo1-x Nbx Se2 、Mo1-x Nbx S2 、Mox Nb1-x S2y Se2(1-y) 、WS2x Te2(1-x) 、WSe2x Te2(1-x) 、Mo1-x Wx Te2 、NbS2x Se2(1-x) 、W1-x Nbx S2 、W1-x Nbx Se2 及Vx Wy Mo(1-x-y) S2z Se2(1-z) 組成之群組。應可了解,各合金中之x、y及z值皆大於0且小於1。
本說明書亦揭示如上定義之具化學式II的TMD合金本身。相較於其他材料,該些合金可具備更佳的催化性質。
以下將參照非限制性實例進一步描述本發明。實例
第1圖係使用化學氣相沉積法生成TMD的一般方法之流程圖,此製備方法係基於金屬前驅物的質量通量及各晶域成長速率之間的競爭。
參與晶核生成與晶域成長反應中金屬前驅物的反應量取決於質量通量,而初成長出之薄膜的晶粒大小則取決於成長速率。質量通量高、成長速率低時,會生成具小晶粒的單層多晶薄膜(路徑I),而質量通量高、成長速率高時,則會生成具大晶粒的連續單晶薄膜(最大可至毫米等級,路徑II)(Dumcenco, D.et al. ACS Nano , 2015,9 , 4611-4620)。另一方面,當質量通量低、成長速率低時,便會生成小型薄片,在薄片中心經常可見微小晶核(Li, B.et al. Angew. Chem. Int. Edit. , 2016,55 , 10656-10661),顯示於成長過程中,多餘的吸附原子或原子簇會固定附著於既有的晶核或邊緣上(路徑III),而當質量通量低、反應速率高時,則會生成個別的大型二維單層單晶產物(路徑IV)(Gong, Y. J.et al. Adv. Funct. Mater. , 2016,26 , 2009-2015)。
可惜的是,許多TMD,譬如基於Nb、Pt、Ti等類型皆不易製備,因為其金屬態或金屬氧化物的熔點高、蒸氣壓低,導致質量通量極低,反應發生率因此受限。經意外發現,於反應時加入熔鹽混合物可提升質量通量,其原理為降低金屬前驅物的熔點,並透過與某些前驅物金屬/金屬氧化物反應的方式生成氧鹵化物(如氧氯化物),藉此促進目標反應。材料與方法 合成二維 TMD40 的一般方法
反應裝置圖如第2a圖所示,裝置中央部位如第2b圖之放大圖所示。二維化合物及異質結構皆於直徑1 英吋(2.54 cm)、長度約70 cm的石英爐管10 中合成。反應爐長度大約36 cm。使用載流氣體35 (如H2 /Ar混合氣體)進行反應,載流氣體流動方向如第2a及2b圖所示。將一尺寸約8 cm x 1.1 cm x 1.2 cm 之氧化鋁晶舟15 置於該爐管10 正中央,舟內包含前驅物粉末25 及鹽類45 的混合物。晶舟15 上載有覆有285 nm SiO2 頂層的矽基板20 ,其拋光面朝下;來源與基板的距離設定為0.2 cm至1.2 cm。將舟內含S或Se或Te粉末之另一尺寸類似的氧化鋁晶舟30 置於反應爐管上游處(上風處),反應溫度分別為200 °C、300 °C及450 °C。載有S或Se或Te粉末的晶舟30 與前驅物晶舟之間的距離分別約18 cm、16 cm及15 cm。各反應的加熱速率皆為50°C min-1 ,所有反應皆於一大氣壓下進行,最後使反應爐溫度自然降至室溫。
所有反應材料皆購自Alfa Aesar,材料純度大於99%。製備各化合物的合成條件及參數簡述於表1及表2中。
鹽類對金屬前驅物的重量比,或各金屬前驅物之間、(製備合金用的)硫族化合物之間的重量比,皆可根據所需的初始材料及/或最終生成之TMD的目標性質進行調整。以Mo1−x Re x S2 及WS x Te2−x 為例,藉由調整Mo對Re及S對Te的重量比,即可控制x值。光學成像、拉曼光譜及光致發光光譜
使用WITEC alpha 200R共軛焦拉曼光譜儀系統進行拉曼特性分析,激發雷射光波長為532 nm、功率小於1 mW。在對樣品進行拉曼特性分析前,使用拉曼峰中心為 520 cm-1 的矽標準物校正光譜儀系統。雷射光功率皆低於1 mW,以避免樣品過熱。使用同一光譜儀系統進行光致發光特性分析。使用光學顯微鏡取得合成後未經處理之樣品的光學影像。
第3圖顯示47種TMD(包括Ti、Pt等)的光學影像,皆透過上述一般製備方法所合成,由圖可見產物具多種形狀,包括三角形、六角形、緞帶形及薄膜形。經合成之TMD包括32種二元二維晶體、11種三元合金、一種四元合金、一種五元合金、一種1T' MoTe2 – 2H MoTe2 平面內異質結構及一種MoS2 – NbSe2 垂直堆疊異質結構。
所有材料的顏色皆為紫色,因爲材料皆直接成長於285 nm的SiO2 上。在MoS2 、WS2 及WSe2 的例子中,二維TMD的尺寸至多可為1 mm。值得留意的是,過去極少合成出基於Ti、Nb、V、Fe、Zr、Pd、Hf、Ta及Pt的TMD。掃描穿透式電子顯微鏡( STEM )、能量色散 X 射線 光譜( EDS )及電子能量損失光譜( EELS
使用添加聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)的方法,或不添加PMMA改添加異丙醇液滴的方法製備STEM樣品。針對某些對水敏感的材料,本發明使用非水相轉移法(non-aqueous transfer method)。 使用含冷場發射槍(cold-field emission gun)及相差修正器(DELTA corrector)、於60 kV下運作的JEOL 2100 F電子顯微鏡進行STEM成像及EELS分析。使用經調整的低電壓Gatan GIF Quantum光譜儀紀錄EELS光譜。STEM影像的內收斂角及外收斂角(inner and outer collection angles)(β1及β2)分別為62 mrad及129-140 mrad,收斂半角(convergence semi-angle)為35 mrad。進行環形暗場(annular dark field,ADF)成像及EELS化學分析的電子束電流大小約15 pA。使用同樣的儀器進行EDS分析。
可進一步使用以上技術,測定合成後未經處理的二維晶體及化合物的原子結構及化學成分。於金屬硫族化合物中的多數二維晶體會維持具化學理想配比性的化學式MX2 (M為金屬、X為硫族元素),其結構為X-M-X,金屬原子層夾於另兩層硫族元素層間。
多數二維晶體的原子結構可分為四類:(1) 1H 相,三角錐形;(2) 無扭曲1T 相,金屬原子位於八面體中心;(3) 一維扭曲1T 相(稱為1T' 相),其中成對金屬原子沿垂直方向彼此靠近,使晶體形成由扭曲八面體所組成的類一維鏈狀結構;及 (4) 二維扭曲1T 相(稱為1T'' 相),四個鄰近金屬原子彼此靠近且構成一新單位晶胞,並以類鑽石結構重複排列。
如同原子序對比(Z-contrast)STEM成像中的影像強度與受測元素的原子序直接相關,因此各合成材料的結構相位可透過原子序對比STEM成像判定。使用STEM儀器測定合成後未經處理的二維材料,所測得的各種相位綜合列於表3。
值得注意的是,由IV族及X族金屬形成的二維TMD,在環境條件下明顯對水及氧氣高度敏感。因此在經結構特性分析前,該些化合物便容易於轉移過程中氧化。此一狀況會使針對二維TMD(包括降解樣品)特性分析的難度增加,因而導致某些數據點消失。X 射線光電子光譜儀( XPS
使用單色Al Kα激發源(hv = 1486.6 eV)及128通道模式檢測(mode detection)之 Physical Electronics Inc. 原始偵測儀(original detector)進行XPS測定,並於通過能量140 eV及起飛角45°下取得XPS光譜。原子力顯微鏡 AFM
使用Asylum Research的Cypher S系統,針對TMD的厚度進行AFM測定。測定過程中,AFM影像的表面通常會出現一些小點,此為某些TMD氧化所導致。有鑑於此,可使用STEM儀器判定某些TMD的厚度情形。使用AFM測量階差並判定化合物層厚度的方法,可參考Shearer, C. J., et al.,Nanotechnology , 2016,27 , 125704。
針對AFM影像及二維TMD的對應厚度進行測量。其中除PdS2 外,所有硫化物皆具單層結構。相較於硫化物,僅某些硒化物具備單層晶體結構,如MoSe2 、WSe2 、NbSe2 、VSe2 、PtSe2 及ReS2 。就碲化物而言,單層WTe2 及MoTe2 可輕易生成,可由AFM影像及STEM儀器測定結果確認。另可生成基於Ti、V、Nb、Zr及TaTe2 的多層碲化物。
AFM影像中,部分材料表面經常出現小點,顯示某些TMD容易氧化,如TiSe2 、HfSe2 、ZrSe2 及TaSe2 。有鑑於此,AFM影像無法準確顯示產物厚度資訊。幸運的是,厚度資訊可透過STEM儀器測定結果判定,結果顯示單層結構較常出現。
使用AFM儀器測定合成後未經處理的二維材料,所測得的樣品厚度列於表4。合成條件以及產物相位與厚度簡述
表1a顯示自初始實驗中獲得之32種二元化合物(基於Ti、Zr、Hf、V、Nb、Ta、Mo、W、Re、Pt、Pd及Fe等過渡金屬)的合成條件及參數,表1b顯示在執行重複實驗後所得的合成條件及參數。
表2a顯示自初始實驗中獲得之13種合金(包括11種三元合金、一種四元合金及一種五元合金)的合成條件及參數,表2b顯示在執行重複實驗後所得的合成條件及參數。
經高解析度STEM儀器測定之二維TMD樣品的相位彙整如表3,經AFM儀器測定之樣品的厚度彙整如表4。 表3 經高解析度STEM儀器測定之二維TMD樣品的相位 表4 經AFM儀器測定之二維TMD樣品的厚度 實例 1 MoS2 的合成與特性分析
在本實例中,依據上述一般方法合成MoS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的大片MoS2 單晶尺寸可達1.2 mm,對應的光致發光(photoluminescence,PL)光譜所呈現的峰位於675 nm處(見第4a及4c圖)。由單層MoS2 晶體的拉曼光譜可見兩個峰之間距離約為19 nm,顯示了MoS2 晶體的單層性質(見第4b圖)。
第11a圖顯示晶相為1H的單層MoS2 之STEM影像,對應的原子結構模型如圖所示。以快速傅立葉轉換(fast Fourier transform)所獲得的影像圖形進一步顯示該1 H相具有六方(hexagonal)單位晶胞。此外,單層MoS2 的厚度以AFM儀器測量為0.7 nm(見表4)。實例 2 MoSe2 的合成與特性分析
在本實例中,依據上述一般方法合成MoSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的MoSe2 單晶尺寸可達1.0 mm(見第4d圖),其PL光譜如第4f圖所示。該MoSe2 的拉曼光譜顯示249 cm-1 處有一A1g 峰,此與先前研究報告的結果一致(見第4e圖)(Gong, Y. J.et al .,Adv. Funct. Mater. , 2016,26 , 2009-2015)。
合成後未經處理的MoSe2 晶相以STEM儀器判定為1H相,厚度以AFM儀器測量為0.7 nm(分別見表3及表4)。實例 3 MoTe2 的合成與特性分析
在本實例中,依據上述一般方法合成MoTe2 ,其各項成長條件及參數如表1a與表1b所示。與前述實驗例之MoS2 及MoSe2 相較,MoTe2 具有兩種晶相,即2H相與1T’相。先前有研究報告係透過將Mo或MoO3 薄膜碲化達成數層2H與1T相MoTe2 薄膜的合成(Zhou, L.et al. , J. Am. Chem. Soc. , 2015,137 , 11892-11895; Park, J. C.et al. ,ACS Nano , 2015,9 , 6548-6554)。先前亦有研究以類似方法獲得單層1T’相的MoTe2 晶體,其尺寸小於10 μm(Naylor, C. H.et al. ,Nano Lett. , 2016,16 , 4297-4304)。然而,以本申請案揭示的方法合成,獲得了可達150 μm的大尺寸MoTe2 單層薄膜,其拉曼光譜特性分析如圖所示(見第4g與4h圖)。更重要的是,本文所揭示方法可藉由變化Te來源的量,控制2H與1T’相MoTe2 的成長(細節將於實例36進一步描述,該實例與1T’相MoTe2 – 2H相MoTe2 平面內異質結構的合成有關)。
本實例合成後未經處理的MoTe2 薄膜具有1T’ 和2H兩種晶相,其可分別表現出半導體性和半金屬性。第12a圖顯示所合成MoTe2 薄膜的EDS光譜,其中可觀察到由Te和Mo元素引起的訊號十分強烈,因此可確定具有高純度的MoTe2 。金(Au)元素訊號應係來自電子顯微鏡金TEM網格欄,Cu元素訊號可能來自樣品轉移過程中的污染。分析結果確認了合成後未經處理的MoTe2 具有高純度。
第12b及12d圖分別顯示數層2H相及1T’ 相MoTe2 的高解析度原子序對比STEM影像。其中可觀察到2H相MoTe2 的六方晶體結構,確認了其為AA’ 堆疊結構(見第12b圖)。並可明顯看出1T’ 相之數層MoTe2 的原子結構與上述2H相不同(見第12d圖)。
2H相MoTe2 與1T’ 相MoTe2 呈現出不同的EELS光譜,在1T’ 相的光譜中可觀察到在約30 eV處另外多出了一個小型預峰(pre-peak)(見第12c及12e圖)。這可能是由於2H相和1T’ 相的Mo-Te化學鍵結方式相異,其鍵結方式能當作辨別該兩種不同晶相的「指紋」。單層MoTe2 的厚度以AFM儀器測量為0.8 nm(見表4)。實例 4 WS2 的合成與特性分析
在本實例中,依據上述一般方法合成WS2 ,其各項成長條件及參數如表1a與表1b所示。過去有研究報告揭示以CVD方法合成單層WS2 ;然而,習知技術通常需要以900o C至1100o C的高溫,歷經長時間才能成長出大尺寸的WS2 (Rong, Y. M.et al. Nanoscale , 2014,6 , 12096-12103)。使用本申請案揭示的方法合成,則能夠以較低溫度,僅需3分鐘的時間即成長出可達0.5 mm的大尺寸單層WS2 (見第5a圖)。該單層WS2 的拉曼光譜及PL光譜峰(出現在635 nm)如第5b及5c圖所示。
合成後未經處理的WS2 晶相以STEM儀器判定為1H相,厚度以AFM儀器測量為0.8 nm(分別見表3及表4)。實例 5 WSe2 的合成與特性分析
在本實例中,依據上述一般方法合成WSe2 ,其各項成長條件及參數如表1a與表1b所示。本實例合成的大尺寸單層WSe2 晶體如第5d圖所示,該單層晶體對應的拉曼光譜(第5e圖)顯示與先前研究報告結果(Huang, J. K.et al. ,ACS Nano , 2014,8 , 923-930)相符的數值。PL光譜峰出現在大約760 nm處,亦顯示該WSe2 為單層(見第5f圖)。
合成後未經處理的WSe2 晶相以STEM儀器判定為1H相,厚度以AFM儀器測量為0.9 nm(分別見表3及表4)。實例 6 WTe2 的合成與特性分析
在本實例中,依據上述一般方法合成WTe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層及雙層WTe2 尺寸可達600 μm(見第5g圖),第5h圖為該單層WTe2 的拉曼光譜,其與先前研究報告的結果相符。
WTe2 為半金屬,其性質只有在1T’ 相(由於在堆疊時會有些微錯位情形,通常在堆疊為塊材時稱作1Td相)時才會是穩定的。在硫族化合物層體內會沿著單位晶胞的a 軸方向形成鎢鏈,使得該化合物呈現一維結構。第11c圖顯示1T’ 相的單層WTe2 之STEM影像,以及對應的原子結構模型。以快速傅立葉轉換所獲得的影像圖形進一步顯示該1T’ 相形成的單位晶胞呈矩形,其係因一維方向出現金屬元素對扭曲(metal-pair distortion)所致。
此外,第13a圖為成長後未經處理的1T’ 相WTe2 之STEM影像,其中仍可觀察到似鏈狀結構。第13b及13c圖分別顯示的EDS與EELS光譜,則進一步確認了所獲得WTe2 樣品的化學成分及純度。該WTe2 樣品的厚度以AFM儀器測量為0.7 nm(見表4)。實例 7 TiS2 的合成與特性分析
在本實例中,依據上述一般方法合成TiS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層TiS2 尺寸可達50 μm(見第6a圖)。其拉曼光譜的峰出現在230 cm-1 與332 cm-1 處,與先前研究報告的結果相同,確認了薄片的成分為TiS2 (見第6b圖)。
TiS2 為半金屬,其特性是縮減到少層數時能隙較窄,且TiS2 具有1T結構,其屬於P m1 空間群,晶格常數為a= 3.4071 Å,c=5.6953 Å。第14a圖為本實例TiS2 層體的STEM影像,顯示其晶相為1T且具有六方晶結構。第14b及14c圖分別顯示EDS與EELS光譜,則進一步確認了合成後未經處理的TiS2 之化學成分。該TiS2 樣品的厚度以AFM儀器測量為0.9 nm(見表4)。實例 8 TiSe2 的合成與特性分析
在本實例中,依據上述一般方法合成TiSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的數層TiSe2 之尺寸可達30 μm,其拉曼光譜的峰出現在190 cm-1 與250 cm-1 處,分別對應於TiSe2 的A1g 與E1g 振動模式(見第6c、6d圖)。該TiSe2 樣品厚度以AFM儀器測量為2.0 nm(見表4)。實例 9 TiTe2 的合成與特性分析
在本實例中,依據上述一般方法合成TiTe2 ,其各項成長條件及參數如表1a與表1b所示。經由上述方法合成TiTe2 超薄膜(見第6e圖)。其拉曼光譜的峰出現在大約90 cm-1 、120 cm-1 及140 cm-1 處,此與先前研究報告的結果相符,在先前報告中,後兩峰分別對應於A1g 與E1g 振動(見第6f圖)。該TiTe2 樣品厚度以AFM儀器測量為5.0 nm(見表4)。實例 10 ZrS2 的合成與特性分析
在本實例中,依據上述一般方法合成ZrS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層ZrS2 尺寸可達30 μm(見第7a圖)。該ZrS2 的拉曼光譜如第7b圖所示,其拉曼峰出現在305 cm-1 ,對應於A2u 振動。
ZrS2 晶體之性質為半導體,晶格常數為:a = b = 3.66 Å,c = 5.82 Å。單層ZrS2 的原子結構由八面體1T相的S-Zr-S夾層結構所组成。第15a圖為數層ZrS2 晶體的STEM影像。在投射圖中可觀察到原子的六方排列結構,證明其晶相為1T相。我們注意到基於Zr的化合物對於周圍環境的條件高度敏感。此處所呈現的影像為覆蓋有相當數量氧化殘留物的數層ZrS2 薄膜。對應的EDS與EELS光譜(分別見第15b及15c圖)顯示有Zr及S元素訊號,可確認合成後未經處理的ZrS2 薄片之化學成分。此外,單層ZrS2 的厚度以AFM儀器測量為1.0 nm(見表4)。實例 11 ZrSe2 的合成與特性分析
在本實例中,依據上述一般方法合成ZrSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層ZrSe2 如第7c圖所示。第7d圖顯示該單層ZrSe2 對應的拉曼強度,相較於ZrSe2 塊材時是比較弱的。此外,單層ZrSe2 的厚度以AFM儀器測量為2.0 nm(見表4)。實例 12 ZrTe2 的合成與特性分析
在本實例中,依據上述一般方法合成ZrTe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的ZrTe2 之光學影像如第7e圖所示,其拉曼光譜確認了該薄片為ZrTe2 晶體(見第7f圖)。此外,單層ZrTe2 的厚度以AFM儀器測量為2.0 nm(見表4)。實例 13 HfS2 的合成與特性分析
在本實例中,依據上述一般方法合成HfS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的HfS2 之光學影像如第3圖所示。合成後未經處理的HfS2 之拉曼光譜特徵表現出A1g 振動模式,此與先前研究報告的結果一致。
合成後未經處理的HfS2 以STEM儀器觀察其特徵,經確定為八面體1T相的半導體,且在層與層之間存在凡得瓦力(van der Waals)交互作用。HfS2 所表現出的結構與ZrS2 相似,這是因為Zr與Hf都屬於IVB族元素。HfS2 在空氣中的狀態並不穩定,因此使得分析HfS2 原子層的結構特性受到了限制。合成後未經處理的HfS2 薄片之STEM影像顯示其受到嚴重氧化,這使得辨別其精確的原子結構變得極為困難。然而,EDS光譜顯示出強烈的Hf與S元素訊號。同時,對應的EELS光譜也顯示出Hf與S元素的EELS指紋譜,因此可確認該等薄片在氧化之前應是HfS2 晶體。
此外,單層HfS2 的厚度以AFM儀器測量為1.0 nm(見表4)。實例 14 HfSe2 的合成與特性分析
在本實例中,依據上述一般方法合成HfSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層HfSe2 尺寸大約為15 μm,其光學影像請見第3圖。本實例HfSe2 之拉曼光譜儀分析顯示出的光譜特性為A1g 振動模式。此外,單層HfSe2 的厚度以AFM儀器測量為1.0 nm(見表4)。實例 15 HfTe2 的合成與特性分析
在本實例中,依據上述一般方法合成HfTe2 ,其各項成長條件及參數如表1a與表1b所示。本實例合成了數層HfTe2 ,其光學影像請見第3圖。所合成的薄片以拉曼光譜儀分析其特性,拉曼光譜結果確認了該薄片為HfTe2 晶體。實例 16 VS2 的合成與特性分析
在本實例中,依據上述一般方法合成VS2 ,其各項成長條件及參數如表1a與表1b所示。VS2 的光學影像請見第3圖。合成後未經處理的VS2 以拉曼光譜儀分析其特性,拉曼光譜顯示雙光子(2-photon)與A1g 振動,此結果與過去研究報告的值相同。
所合成的VS2 以STEM儀器分析其特性,確定晶相為1T相,該VS2 由VS6 八面體層疊而成,各層之間由凡得瓦間隙隔開,屬於P m1 空間群。在合成的VS2 邊緣觀察到六方的原子排列結構,因此確認該VS2 為1T結構。EDS光譜顯示該區域僅存在S與V原子,沿邊緣取得的EELS光譜則進一步確認了合成後未經處理的VS2 具有極佳品質。
此外,合成後未經處理的VS2 樣品以AFM儀器測量其厚度為0.7 nm(見表4)。實例 17 VSe2 的合成與特性分析
在本實例中,依據上述一般方法合成VSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層VSe2 尺寸為50 µm,其光學影像請見第3圖。合成的VSe2 樣品也以拉曼光譜儀分析其特性。
數層VSe2 的STEM影像顯示原子柱的六方排列結構呈現明暗交錯的圖案,這是以1T結構堆疊數層所致。針對樣品相同區域取得的EDS及EELS光譜,進一步確認了合成後未經處理的VSe2 具有高純度。合成後未經處理的VSe2 樣品以AFM儀器測量其厚度為0.9 nm(見表4)。實例 18 VTe2 的合成與特性分析
在本實例中,依據上述一般方法合成VTe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層VTe2 之光學影像如第3圖所示。合成後未經處理的VTe2 樣品也以拉曼光譜儀分析其特性,拉曼光譜顯示拉曼峰出現在117 cm-1 與137 cm-1 ,與先前研究報告的值相較略有偏移。VTe2 樣品以AFM儀器測量其厚度為3.0 nm(見表4)。實例 19 NbS2 的合成與特性分析
在本實例中,依據上述一般方法合成NbS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層NbS2 尺寸可達80 µm,其光學影像請見第3圖。合成的NbS2 樣品也以拉曼光譜儀分析其特性,確認了合成後未經處理的薄片為NbS2 晶體。
NbS2 晶體通常以2H相的結構存在(或單層時為1H相)。從單層NbS2 的STEM影像中,可藉由不同對比輪廓的Nb與S2 柱體構成的六方體(此與廣為人知的MoS2 原子結構相似),辨別出該NbS2 的晶體結構為2H相。EDS與EELS光譜顯示存在Nb與S元素,因此確認該NbS2 的化學成分。NbS2 樣品以AFM儀器測量其厚度為0.7 nm(見表4)。實例 20 NbSe2 的合成與特性分析
在本實例中,依據上述一般方法合成NbSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層NbSe2 尺寸可達50 μm,其光學影像請見第3圖,拉曼光譜確認了合成後未經處理的樣品為NbSe2
NbSe2 通常具有2H相的晶體結構,其中Nb與Se2 原子柱以六方形式排列。NbSe2 的STEM影像顯示其存在單層與雙層區域。單層具有六方原子結構,該結構與NbS2 中觀察到的類似,確認了單層NbSe2 為1H相。相對來說,雙層NbSe2 的每一原子位置具有一致的強度,顯示了合成後未經處理的NbSe2 為2H堆疊相。針對相同區域取得的EDS與EELS光譜確認了NbSe2 的化學成分。Cu元素訊號來自所使用的銅TEM網格產生的背景訊號。NbSe2 樣品以AFM儀器測量其厚度為0.8 nm(見表4)。實例 21 NbTe2 的合成與特性分析
在本實例中,依據上述一般方法合成NbTe2 ,其各項成長條件及參數如表1a與表1b所示。NbTe2 為層狀結構化合物,且根據先前研究報告,其表現出電荷密度波(CDW)效應及超導性(Nagata, S., et al.,J. Phys. Chem. Solids, 1993,54 , 895-899)。然而,過去並未有研究報告以CVD方法合成NbTe2 薄片。本申請案則使用CVD方法合成了大尺寸的NbTe2 ,其光學影像請見第3圖。合成的樣品以拉曼光譜儀分析其特性,顯示薄片確為NbTe2 晶體。
如同其他基於碲化物的材料,NbTe2 在塊材時的晶體結構為單斜晶,屬於C2/m空間群。已知當溫度下降至轉相點時,NbTe2 會表現出電荷密度波(CDW)相變。單層NbTe2 的STEM影像顯示原子的六方排列結構,而非如同MoTe2 的1T’相,因此表示可推測單層NbTe2 的結構為1T相。其對應的EDS與EELS光譜則進一步確認了所合成的薄片僅由Nb與Te元素構成。NbTe2 樣品以AFM儀器測量其厚度為4.0 nm(見表4)。實例 22 TaS2 的合成與特性分析
在本實例中,依據上述一般方法合成TaS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的TaS2 薄膜尺寸可達70 μm,其光學影像請見第3圖。樣品並以拉曼光譜儀分析其特性。
單層TaS2 在1H相與1T相可具有穩定狀態。TaS2 單層區域及雙層區域的高解析度原子序對比(Z-contrast)STEM影像顯示出六方晶體形態,並可看出Ta(亮點)與S2 的排列方式與MoS2 表現出的排列類似,此結果確認了合成後未經處理的TaS2 結構為1H相。此外,在TaS2 的雙層區域表現出3R堆疊順序,此特徵也與CVD方法長成的MoS2 相似。針對取得TaS2 光學影像的相同區域,亦進行了EDS與EELS光譜分析,兩者的結果確認了樣品的化學成分是由Ta與S組成,並無其他明顯雜質存在。TaS2 樣品以AFM儀器測量其厚度為0.8 nm(見表4)。實例 23 TaSe2 的合成與特性分析
在本實例中,依據上述一般方法合成TaSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的TaSe2 之光學影像請見第3圖,樣品並以拉曼光譜儀分析其特性。TaSe2 樣品以AFM儀器測量其厚度為2.0 nm(見表4)。實例 24 TaTe2 的合成與特性分析
在本實例中,依據上述一般方法合成TaTe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的TaTe2 尺寸可達20 μm,影像請見第3圖。TaTe2 樣品並以拉曼光譜儀分析其特性,其厚度以AFM儀器測量為5.0 nm(見表4)。實例 25 ReS2 的合成與特性分析
在本實例中,依據上述一般方法合成ReS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的單層ReS2 尺寸可達50 μm,其光學影像請見第3圖。樣品並以拉曼光譜儀分析其特性。
ReS2 為一種具有扭曲1T結構(定義為1T’’相)的半導體材料,單層ReS2 的高解析度原子序對比STEM影像顯示Re原子的排列呈鑽石形狀結構,此即由1T相經過二維方向扭曲所造成。影像中通常可清楚觀察到表現為亮點的Re原子,但S原子因為尺寸比Re原子小,通常無法清楚觀察到。EDS與EELS光譜顯示了Re與S的特徵峰,而並無其他明顯雜質,因此可確認材料的化學成分。ReS2 樣品以AFM儀器測量其厚度為0.9 nm(見表4)。實例 26 ReSe2 的合成與特性分析
在本實例中,依據上述一般方法合成ReSe2 ,其各項成長條件及參數如表1a與表1b所示。所合成的ReSe2 之光學影像請見第3圖。樣品並以拉曼光譜儀分析其特性。
第11d圖為1T’’相單層ReSe2 的STEM影像,對應的原子結構模型如圖所示。以快速傅立葉轉換所獲得的影像圖形進一步顯示該1T’’相結構轉變為一更大型的六方晶胞,這是由於四個金屬原子聚集成為一新的單位晶胞所致。針對樣品更大片區域取得的EDS光譜結果,確認了Re與Se元素存在其中。Mo元素訊號可能來自TEM鉬網格,Cu元素訊號可能來自轉移過程中附著於樣品的原子團簇。EELS光譜進一步顯示僅出現Re與S的特徵峰,確認了薄膜的化學成分。此外,ReSe2 樣品以AFM儀器測量其厚度為0.8 nm(見表4)。實例 27 FeSe 的合成與特性分析
在本實例中,依據上述一般方法合成FeSe,其各項成長條件及參數如表1a與表1b所示。所合成的單層薄片之光學影像請見第3圖,樣品的拉曼光譜確認了合成後未經處理的薄片為FeSe晶體。
FeSe有兩種不同的晶相,一是具有PbO結構的正方晶相α-FeSe,另一則是砷化鎳(NiAs)類型的β相,β相具有廣泛的同質性,均顯示其晶相自六方轉換到單斜對稱。具體而言,單晶α-FeSe在溫度T = 91 K 及 Tc = 9.3 K的條件下,可經歷明顯的正方至斜方晶相轉換。此外,已知FeSe可展現超導性。
在本實例中,如成長後未經處理的FeSe樣品其中單層區域的高解析度原子序對比STEM影像所示,合成了具有六方晶相的單層FeSe。有意思的是,沿 [001] 晶軸觀之,該六方晶相仍維持層狀結構,與MoS2 之中觀察到的1H相類似。然而,過去對於FeSe的研究報告並未有此晶相的結果出現。一大尺寸薄片樣品首先經由EDS光譜分析確定其化學成分,光譜僅顯示其中存在Fe與Se。EELS光譜則顯示僅有Fe與Se特徵的核損失峰(core-loss peaks)。此結果進一步確認該FeSe樣品具有高純度,且可能獲致了FeSe的新型態晶相。Mo元素訊號來自鉬TEM網格。FeSe樣品以AFM儀器測量其厚度為1.2 nm(見表4)。實例 28 PtS2 的合成與特性分析
在本實例中,依據上述一般方法合成PtS2 ,其各項成長條件及參數如表1a與表1b所示。所合成的PtS2 光學影像請見第3圖,樣品並以拉曼光譜儀分析其特性。以AFM儀器測量該PtS2 樣品厚度為1.0 nm(見表4)。實例 29 PtSe2 的合成與特性分析
在本實例中,依據上述一般方法合成PtSe2 ,其各項成長條件及參數如表1a與表1b所示。PtSe2 的光學影像請見第3圖,其拉曼光譜則表現出A1g 與 Eg 振動模式。
PtSe2 晶體為新興的層狀二維金屬硫族化合物材料,帶有X族金屬陽離子,晶體結構與碘化鎘(CdI2 )相似,CdI2 屬於P m1 空間群,晶格常數為a = 3.724 Å,c = 5.062 Å。單層的PtSe2 為八面體1T相,並可表現出如同半導體的性質。另一方面,數層PtSe2 則因為有強烈的層間交互作用而表現出金屬特性。
第11b圖為1T相單層PtSe2 的STEM影像,對應的原子結構模型如圖所示。以快速傅立葉轉換所獲得的影像圖形進一步顯示該1T相具有六方單位晶胞。以STEM儀器進行特性分析時在樣本上觀察到的一些洞(源於電子束造成的輻射損傷),進一步確認了其為單層結構。此外,EDS與EELS光譜顯示具有Pt與Se特徵,因此進一步確認了合成後未經處理的PtSe2 薄膜之化學成分。樣品以AFM儀器測量其厚度為0.9 nm(見表4)。實例 30 PdS2 的合成與特性分析
在本實例中,依據上述一般方法合成PdS2 ,其各項成長條件及參數如表1a與表1b所示。呈六方形狀的PdS2 之光學影像請見第3圖。樣品並以拉曼光譜儀分析其特性,而以AFM儀器測量其厚度為1.5 nm(見表4)。實例 31 PdSe2 的合成與特性分析
在本實例中,依據上述一般方法合成PdSe2 ,其各項成長條件及參數如表1a與表1b所示。呈六方形狀的PdSe2 之光學影像請見第3圖。樣品並以拉曼光譜儀分析其特性,而以AFM儀器測量其厚度為3.0 nm(見表4)。實例 32 MoS2x Te2(1−x ) MoSe2x Te2(1−x ) WS2x Te2(1−x ) WSe2x Te2(1−x ) NbS2x Se2(1−x ) 的合成與特性分析
在本實例中,依據上述一般方法合成MoS2x Te2(1−x ) 、MoSe2x Te2(1−x ) 、WS2x Te2(1−x ) 、WSe2x Te2(1−x ) 及 NbS2x Se2(1−x ) ,其各項成長條件及參數如表2a與表2b所示。
具體而言,MoSe0.3 Te1.7 係經由下列方法製備而得: 將氧化鋁晶舟中重量分別為2 mg與10 mg的NaCl與MoO3 混合粉末置於爐管中央。將包含Se與Te混合粉末(Se:Te重量比為3:7)的另一氧化鋁晶舟置於上游處。反應爐以50o C/min的升溫速率加熱至700–800o C的成長溫度並維持於該溫度10-20分鐘,接著再自然冷卻至室溫。本實例使用體積流率為100/5 sccm 之Ar/H2 的混合氣體作為載流氣體。
合成後未經處理的三元化合物樣品之光學影像請見第3圖,樣品並以拉曼光譜儀分析其特性。作為示例,其他MoS2x Te2(1−x ) 、MoSe2x Te2(1−x ) 、WS2x Te2(1−x ) 的代表性影像如第8a至c圖所示,對應的拉曼光譜如第8d-f圖所示。實例 33 Mo1−x Nb x Se2 Mo1−x Re x S2 W1−x Nb x S2 W1−x Nb x Se2 Mo x Nb1−x S2 Mo x W1−x Te2 的合成與特性分析
在本實例中,依據上述一般方法合成Mo1−x Nb x Se2 、Mo1−x Re x S2 、W1−x Nb x S2 、W1−x Nb x Se2 、Mo x Nb1−x S2 及 Mo x W1−x Te2 ,其各項成長條件及參數如表2a與表2b所示。在合成這一組的三元合金時,置於石英爐管中央的氧化鋁晶舟包含兩種金屬前驅物的混合物,其重量比為0.01:1至1:0.01。合成後未經處理的三元化合物樣品之光學影像請見第3圖,樣品並以拉曼光譜儀分析其特性。實例 34 Mo x Nb1−x S2y Se2(1−y ) 的合成與特性分析
在本實例中,依據上述一般方法合成四元過渡金屬硫族化合物Mo x Nb1−x S2y Se2(1−y ) ,其各項成長條件及參數如表2a與表2b所示。具體而言,置於石英爐管中央的氧化鋁晶舟包含Nb2 O5 與MoO3 的混合物,兩者的重量比為0.01:1至1:0.01;包含S與Se粉末的另一氧化鋁晶舟則置於上游處。
合成後未經處理的樣品其光學影像如第9a圖所示,第9b圖則為其對應的拉曼光譜。實例 35 V x W y Mo1−xy S2z Se2(1−z ) 的合成與特性分析
在本實例中,依據上述一般方法合成五元過渡金屬硫族化合物V x W y Mo1−xy S2z Se2(1−z ) ,其各項成長條件及參數如表2a與表2b所示。
具體而言,V0.03 W0.2 Mo0.77 S1.6 Se0.4 可經由下述方法製備而得: 將包含2 mg NaCl 與10 mg V2 O5 、MoO3 、WO3 混合物(比例1:5:3)的混合粉末之氧化鋁晶舟置於石英爐管中央。另一包含S與Se粉末(重量比1:10至10:1)的氧化鋁晶舟置於上游處。反應爐以50 °C min−1 的升溫速率加熱至成長溫度(760–840 °C)並維持於該溫度10-20分鐘,接著再自然冷卻至室溫。本實例使用體積流率為100/5 sccm之Ar/H2 的混合氣體作為載流氣體。
合成後未經處理的五元化合物樣品其光學影像如第9c圖所示,第9d圖為其對應的拉曼光譜。第16a圖顯示單層五元合金Vx Wy Mo1−x−y S2z Se2(1−z) 的STEM影像,EDS光譜(第16b圖)確認了該五元合金的化學成分。不同的化學物種造成了影像中明顯的原子對比。與陽離子、陰離子格位的強度統計圖分析(第17圖)合併觀之,每一原子柱可利用影像對比直接與其化學特性關聯,如第16c圖的代表線強度分布圖所示。透過逐原子成分分析圖也確認了已成功合成本實例所述的單層五元合金。實例 36 1 T’ MoTe2 –2 H MoTe2 平面內異質結構的合成與特性分析
經由下述方法合成1 T’ MoTe2 –2 H MoTe2 平面內異質結構: 將含有4 mg NaCl 與14 mg MoO3 混合粉末的氧化鋁晶舟置於石英爐管中央。將另一含有Te粉末的氧化鋁晶舟置於上游處。反應爐以50 °C min−1 的升溫速率加熱至720 °C的成長溫度並保持於該溫度3分鐘,接著快速冷卻至650 °C的成長溫度並保持於該溫度5分鐘,最後自然冷卻至室溫。先使用體積流率為80/20 sccm的Ar/H2 混合氣體合成1 T’ MoTe2 。接著在已合成未經處理的該1 T’ MoTe2 之上,使用體積流率為20/4 sccm的Ar/H2 混合氣體合成2H MoTe2 ,即可獲得1 T’ MoTe2 –2 H MoTe2 平面內異質結構。
第10a圖顯示所合成的1T’ MoTe2 -2H MoTe2 平面內異質結構之光學影像。2H MoTe2 的形狀呈六方形,而1T’ MoTe2 則呈矩形。異質結構中的1T’ MoTe2 與2H MoTe2 對應的拉曼光譜,也確認其中形成了平面內異質接面(in-plane heterojunction)(見第10b圖)。實例 37 MoS2 –NbSe2 垂直堆疊異質結構的合成與特性分析
在本實例中,首先合成MoS2 。將含有0.5 mg NaCl與3 mg MoO3 混合粉末的氧化鋁晶舟置於石英爐管中央。將另一含有S粉末的氧化鋁晶舟置於上游處。反應爐以50 °C min−1 的升溫速率加熱至成長溫度(600–800 °C),成長時間3分鐘。使用體積流率為80 sccm 的Ar(或80/5 sccm的Ar/H2 混合氣體)作為載流氣體。將所得到的MoS2 快速轉移至另一反應爐進行異質結構成長。針對NbSe2 成長的部分,將含有2 mg NaCl與10 mg Nb2 O5 混合粉末的氧化鋁晶舟置於石英爐管中央。將另一含有Se粉末的氧化鋁晶舟置於上游處。反應爐以50 °C min−1 的升溫速率加熱至700 °C並維持於該溫度10分鐘,接著自然冷卻至室溫。使用體積流率為60/4 sccm的Ar/H2 混合氣體作為載流氣體。
MoS2 -NbSe2 垂直堆疊異質結構的光學影像如第10c圖所示。第10d圖的拉曼光譜確認其具有垂直堆疊的異質接面。實例 38 :合成後未經處理的二維 TMD 與先前研究報告結果比較
本案實驗例展示了超過40種不同類型的二維TMD合成。作為比較,參考許多先前關於VS2 、VSe2 及NbS2 的研究報告可知,利用普通CVD方法可獲得該等材料的厚片(見表5)。先前研究報告亦顯示利用鹽類合成WS2 及WSe2 的結果(見表5),但該研究並未論及成長機制。 5 本案合成後未經處理的二維TMD與先前研究報告結果比較 參考文獻 1 – Li, S.et al. Applied Materials Today ,2015,1 , 60-66. 參考文獻 2 – Boscher, N. D., et al.,Appl. Surf. Sci., 2007,253 , 6041-6046. 參考文獻 3 – Yuan, J. T.et al. Adv. Mater. , 2015,27 , 5605-5609. 參考文獻 4 – Ge, W. Y.,et al. ,Nanoscale , 2013,5 , 5773-5778.
此外,亦將所合成之MoX2 、WX2 及NbX2 的成長條件與合成尺寸與先前研究報告的數據進行比較(見表6)。 6 本案合成後未經處理的二維TMD與先前研究報告結果比較 參考文獻: 1) Gong, Y. J.et al .,Adv. Funct. Mater ., 2016,26 , 2009-2015. 2) Rong, Y. M.et al. ,Nanoscale , 2014,6 , 12096-12103.3) van der Zande, A. M.et al. ,Nat. Mater ., 2013,12, 554-561.4) Zhao, S. H.et al. ,2D Mater ., 2016,3 , 025027.實例 39 :合成後未經處理的單層 MoTe2 NbSe2 的超導性 方法
在配備有15-T超導磁鐵的頂部裝載式氦-3低溫恆溫器(Helium-3 cryostat)之中進行電性傳導實驗。運用標準的低頻鎖相技術(low-frequency lock-in technique)測量縱向電阻Rxx。從源極到閘極施加一30.9 Hz的AC探測電流Iac ,其值為10 nA。接著將一鎖相放大器接於另外兩個電極接點上,以監測縱向電阻Rxx。討論
已有研究指出高質量剝離至單層的NbSe2 以及塊材形式的TaS2 與MoTe2 存在超導性(Xi, X. X.et al .,Nat. Phys ., 2016,12 , 139-143; Navarro-Moratalla, E.et al. ,Nat. Commun . 2016,7 , 11043; Qi, Y. P.et al .,Nat. Commun ., 2016,7 , 11038)。
為檢測所成長後未經處理的二維晶體品質,製作了霍爾條(Hall-bar)設備以量測其傳導特性。合成後未經處理的單層NbSe2 及MoTe2 的傳導測量結果分別如第18a及c圖所示,雙層MoTe2 結果如第19圖所示。有意思的是,這兩種材料表現出相似的傳導特性。在高溫下,兩種材料展現出金屬性質,其dR /dT > 0。當溫度降至1.5 K時,則開始出現超導相變(superconducting transition);單層NbSe2 及MoTe2 分別在T c0 = 0.4 K及T c0 = 0.5 K時達到了零電阻。根據第18b及d圖的縱向電阻Rxx 對溫度及磁場之曲線圖,可繪製上臨界磁場H c2 (T)對溫度的相圖(第20a及b圖),H c2 (T)為一溫度函數。就我們所知,此結果為研究首次發現單層MoTe2 具有超導性。在不同厚度的NbSe2 及MoTe2 層狀樣品中,亦觀察到類似的超導特性。
第20a及b圖顯示上臨界磁場Hc2 Tc 的相圖,其中不同磁場下的超導相變溫度T c ,其定義為電阻降至正常狀態電阻R N 的10%時的溫度。如圖所示,Hc2 Tc (接近Tc )呈現線性關係,一般認為此線性關係為二維超導體的一大特徵。
觀測到合成後未經處理的單層NbSe2 與MoTe2 具備超導性時,即代表已成功使非超高真空成長(non-ultrahigh-vacuum-grown)單層材料具備超導性。若將上述結果與單層MoS2 及ReS2 (見實例40)的高移動率一併考慮,即顯示本申請案所製備的二維TMD具備極高品質。實例 40 :單層 MoS2 ReS2 的傳導測量
本實例執行了單層MoS2 與ReS2 的傳導測量。第21a與b圖分別為單層MoS2 之Id -Vd 及I導電性 -Vg 圖。由第21b圖可計算出MoS2 的移動率(mobility)為大約30 cm2 V-1 s−1 。電流開關比(on/off ratio)則達到108 ,此結果與先前研究報告以CVD方法合成的單層MoS2 結果類似(Najmaei, S.et al .,Nat. Mater. , 2013,12 , 754-759)。
第21c與d圖分別為單層ReS2 之Id -Vd 及Id -Vg 圖。由第21c圖可計算出ReS2 的移動率為大約6.5 cm2 V-1 s−1 ,此結果與先前研究報告以CVD方法合成的單層ReS2 結果類似(Keyshar, K.et al., Adv. Mater., 2015, 27 , 4640-4648)。移動率係以下列等式計算:μ = dIds /dVbg × Lch /(Wch Cox Vds ),其中μ為移動率,W為通道寬度,L為通道長度,Cox (Cox = 1.26 × 10-4 F/m2 )為SiO2 層每單位面積電容。實例 41 :含鹽類及金屬前驅物的混合物之熔點,以熱重 - 示差掃描熱分析( TG-DSC )測定 方法
使用Netzsch STA 449 C同步熱分析儀進行熱重及示差掃描熱分析(TG-DSC)測定。裝載約10 mg的樣品至氧化鋁坩堝中,以10 K min−1 的升溫速率從20 °C加熱至920 °C。使用含95 vol% Ar/5 vol% H2 之載流氣體,其體積流率為40 mL min−1討論
使用TG-DSC熱分析方法獲得本案所有二維二元化合物的熔點測定數據,均落在600 °C至850 °C的溫度範圍內,如第22a圖所示,此結果與所合成材料的成長溫度範圍相符。第22b圖中,熱重對時間的曲線也進一步支持了該結果。在晶體成長過程中,粗化(coarsening)現象形成一穩定的晶核(見第24圖),接著硫族元素和金屬元素的吸附原子與原子團簇則附著在成長後未經處理的二維單層體邊緣,並因具有高移動率而快速成長。此有助於生成毫米等級大小的單晶二維TMD,例如基於W、Nb及Mo的TMD(見第3圖)。實例 42 :使用 X 射線光電子能譜儀( XPS )及 X 光粉末繞射儀( X-ray Powder Diffraction XRD )測定金屬 氧氯化物 中間產物 方法
使用Bruker D8 Advance XRD繞射儀,於電壓40kV、電流40 mA下,以Cu-Kα 射線進行XRD分析。討論
為確認金屬氧氯化物的存在,在合成單層NbX2 、MoX2 及WX2 (X = S, Se, Te)期間,採集中間產物進行XPS分析。Nb 3d 、Mo 3d 與 W 4f 之中來自M–Cl 與M–O (M = W, Nb, Mo)鍵結的訊號確認了氧氯化合物NbO x Cl y 、MoO x Cl y 與 WO x Cl y 的存在(見第23a至c圖)。分析所得數值與先前研究報告的數值相符(Wu, H.-M., et al.,Synth. Met ., 1987,20 , 169–183; Alov, N. V.,Phys. Stat. Solidi C , 2015,12 , 263–266; McGuire, G. E., et al.,Inorg. Chem ., 1973,12 , 2450–2453)。在NbX2 (X: S, Se, Te)合成期間對材料進行的XRD光譜分析,顯示形成了金屬氧氯化物中間產物(NbOCl3 )。在23.6º 與25.5º出現了(101)與(111)峰,此結果與先前研究報告相符(Z. Anorg. Allg. Chem .,2002,628, 488-491)。實例 43 :添加鹽類與未添加鹽類的 TMD 成核( Nucleation
成核作用是TMD層體成長最開始的關鍵步驟。成核密度將會決定TMD層體的幾何結構。在金屬氧化物與NaCl發生反應時,會形成例如MoClx Oy 、WClx Oy 、NbClx Oy 等金屬氧氯化物。比起未添加鹽類的合成方法,金屬氧氯化物因具有高揮發性,可造成較高的成核速率。依據實驗所觀察到的結果,在ReX2 、TiX2 、WX2 (X: S, Se, Te)的合成過程中添加鹽類時,發生了大量的成核作用(見第24a、c、e圖)。未添加鹽類時,則基板上幾乎未形成晶核(第24b、d、f圖)。實例 44 :比較添加或不添加 NaCl MoS2 單層單晶成長速率的影響
根據實驗觀察結果,在添加NaCl的條件下,MoS2 的成長時間僅需短短3分鐘,且成長速率可達8 µm s−1 (見第26圖),這是由於氧氯化物在化學反應期間具有高反應活性所致。成長速率可由樣品尺寸變化與成長時間的比率測定。第25圖為MoS2 的光學影像及未添加NaCl時的成長速率;第26圖為添加熔鹽成長的MoS2 光學影像,以及成長速率與距離(從基板中央到邊緣)的關係。根據觀察,形成MoCl2 O2 的成長時間約3分鐘。實例 45 :以成核反應及成長速率控制二維 TMD 晶形
藉由控制成核反應及成長速率,可實現不同晶形的二維TMD材料。舉例而言,可藉由控制參數,形成對應的大尺寸單層MoS2 、MoS2 連續薄膜以及具有不同層體的MoS2 薄片。
為合成MoS2 連續薄膜,使用體積流率高達100 sccm的載流氣體來增加S蒸氣濃度,S蒸氣可與金屬氧化物(或氧氯化物)晶核產生反應(見第27圖)。基板與MoO3 /NaCl源的距離為1.2 cm,以750o C的成長溫度成長3分鐘。對應的MoO3 /NaCl源材重量分別為:(a) 2mg/0.2mg;(b) 3mg/0.3mg;(c) 10mg/0.8mg。隨著鹽類對MoO3 之重量比增加,MoS2 成長時的成核密度亦增加,因此,單層MoS2 的分布情形會自低密度單晶態(第27a圖)過渡到中密度單晶態,再到高密度單晶態(高覆蓋率),最後成為連續薄膜態(第27c圖)。MoS2 厚度控制
以層為單位控制的MoS2 成長,需要大尺寸晶核來提供足夠的逐層成長來源,因此基板與MoO3 /NaCl源之間的距離縮短為0.6 cm,載流氣體的體積流率並降至60 sccm,藉此增加晶核尺寸。降低載流氣體的體積流率可產生多餘的晶核,因此可使晶核成長出更大尺寸。考量到平面內成長(in-plane growth)通常比平面外成長(out-of-plane growth)來得快,成長時間增加至15分鐘,以確保晶體能逐層成長,成長溫度設定在750o C。對應的光學影像如第28a至c圖所示。
以不同成長條件生成的二維TMD,其光學影像如第29至31圖所示,顯示出合成後未經處理的二維TMD具有均勻性。第29a至c圖為750o C下成長的MoS2 與MoSe2 ,以及700o C下成長的MoTe2 之光學影像。第29d到f圖為分別於800o C、810o C、820o C下成長的WS2 、WSe2 、WTe2 之光學影像。第29g到i圖為分別於780o C、790o C、800o C下成長的NbS2 、NbSe2 、NbTe2 之光學影像。由於速率常數k Sk Sek Te ,可得到厚度逐漸增加的TMD二維薄膜。一般而言,數層之硒化物和碲化物較易生成。
第30a至f圖為不同成長溫度下生成的TMD之光學影像,成長溫度分別為800o C、780o C、790o C、810o C、810o C、700o C。
此外,TMD的厚度(從單層到數層)可藉由改變溫度加以控制。根據觀察結果,單層PtSe2 可用較高的815 ºC成長溫度生成(見第31a圖),而在800 ºC下則可以成長出數層PtSe2 (見第31b圖)。類似的結果同樣見於VTe2 (見第31c圖)的成長過程,單層VTe2 可用較高的750 ºC成長溫度生成,在700 ºC下則可以成長出數層VTe2 (見第31d圖)。實例 46 V0.03 W0.2 Mo0.77 S1.6 Se0.4 MoS2 用於催化產氫反應( hydrogen evolution reaction HER )的 性質 比較
本實例使用典型的三電極電池系統進行V0.03 W0.2 Mo0.77 S1.6 Se0.4 的電化學測定,三電極由工作電極、石墨輔助電極及飽和甘汞參考電極(saturated calomel reference electrode,SCE)所組成,並使用0.5 M H2 SO4 作為電解質。將電化學電池連接至電化學工作站(CHI760),該電化學工作站與旋轉圓盤電極(rotating disk electrode,RDE)系統(AFMSRCE3529, Pine Research Instrumentation, USA)耦接。使用覆蓋有催化劑樣品的玻璃碳電極(glassy carbon electrode,GCE)作為工作電極。對SCE電極測得的電位,依據等式ERHE = ESCE + Eo SCE (0.2412) + (0.059 × pH) 轉換為電位對可逆氫電極(reversible hydrogen electrode,RHE)關係。在0.5 M H2 SO4 之中,以1500 rpm轉速、2 mVs-1 的掃描速率執行線性掃描伏安法(Linear Sweep Voltammetry,LSV)。電流密度與電位數據圖經過對整個系統進行90%的歐姆補償進行校正。
過去有研究提出,TMD材料可能會是用於催化產氫反應(HER)的極佳選擇。與MoS2 相較,五元合金V0.03 W0.2 Mo0.77 S1.6 Se0.4 的過電位為 -65 mV,大幅低於MoS2 的過電位(見第32圖)。此結果顯示該五元合金比起MoS2 有更好的催化活性,因為依據以下反應式,該五元合金有較小的吉布斯自由能(Gibbs free energy): H+ +e- àH*à 1/2H2 實例 47 :包含不同 Se Te 比值的 MoSex Te2-x 之特性
本實例展示了MoSex Te2-x 的特性可藉由變化Se:Te比值予以調整。第33圖顯示未經處理的MoTe2 之方塊電阻值(square resistance)的溫度相依性,並與包含不同Se對Te比值的各個MoSex Te2-x 樣品進行比較。
樣品在室溫下的方塊電阻值大致上由63 Ω 到3120 Ω不等,且根據觀察,隨著Se摻雜增加,所得到的電阻值也隨之增加。此結果顯示了隨著Se對Te的比值降低,MoSex Te2-x 可由半導體態過渡到金屬態。在較低的溫度下,x值範圍由1.1到1.3的MoSex Te2-x 樣品會表現出半導體性;x值範圍由0到1.0的MoSex Te2-x 樣品則表現出金屬性,並且最終在極端低溫下表現出超導性。然而,觀察結果未顯示溫度在150K至250K之間時出現由1T’ 到Td的相變。參考文獻 1. Zhang, Y. B.et al. ,Nature , 2005,438 , 201–204. 2. Qian, X. F.et al. ,Science , 2014,346 , 1344–1347. 3. Xiao, D.et al. ,Phys. Rev. Lett. , 2012,108 , 196802. 4. Zeng, H. L.et al. ,Nat. Nanotechnol. , 2012,7 , 490–493. 5. Saito, Y.et al. ,Nat. Rev. Mater ., 2017,2 , 16094. 6. Novoselov, K. S.et al. ,Science , 2004,306 , 666–669. 7. Radisavljevic, B. and Kis, A.,Nat. Mater. , 2013,12 , 815–820. 8. Wang, Q. H.et al. ,Nat. Nanotechnol. , 2012,7 , 699–712. 9. Roy, K.et al. ,Nat. Nanotechnol . 2013,8 , 826–830. 10. Lopez-Sanchez, O.et al. ,Nat. Nanotechnol. , 2013,8 , 497–501. 11. Chen, Y. F.et al. ,ACS Nano , 2013,7 , 4610-4616. 12. Gong, Y. J.et al .,Nano Lett ., 2014,14 , 442-449. 13. Lin, Z.et al. ,Apl. Mater. 2014,2 , 092514. 14. Azizi, A.et al. ,Nano Lett. , 2016,16 , 6982-6987. 15. Zhan, Y. J.et al. ,Small , 2012,8 , 966–971. 16. van der Zande, A. M.et al. ,Nat. Mater. , 2013,12 , 554–561. 17. Lee, Y. H.et al. ,Adv. Mater. , 2012,24 , 2320–2325. 18. Lin, Y. C.et al. ,Nanoscale , 2012,4 , 6637–6641. 19. Elías, A. L.et al. ,ACS Nano , 2013,7 , 5235–5242. 20. Lu, X.et al., Nano Lett. , 2014,14 , 2419–2425. 21. Huang, J. K.et al .,ACS Nano , 2014,8 , 923–930. 22. Park, J. C.et al .,ACS Nano , 2015,9 , 6548–6554
10‧‧‧爐管
15‧‧‧晶舟
20‧‧‧基板
25‧‧‧前驅物
30‧‧‧晶舟
35‧‧‧載流氣體
40‧‧‧過渡金屬硫族化合物
45‧‧‧鹽類
1 係使用化學氣相沉積法生成TMD的一般生長過程之流程圖。二維TMD可循四種途徑成長,依金屬前驅物的質量通量及成長速率的變化而定。當金屬前驅物的質量通量高,便可合成大尺寸的連續單層多晶薄膜,並視成長速率而定具備小型晶域(路徑I)或大型晶域(路徑II)。另一方面,當金屬前驅物的質量通量低,便會生成彼此分散、尺寸互異的單晶單層產物。當成長速率較低時將導致晶體尺寸偏小、原子簇集中於單晶產物中心及邊緣(路徑III),而成長速率較高時較易生成大型單晶產物(路徑IV)。
2 係:(a) 用以生成TMD單層產物的化學氣相沉積法配置圖;及 (b) 氧化鋁晶舟15及矽/二氧化矽(Si/SiO2 )基板20的放大圖。
3 係使用本申請案中的方法 合成的47種TMD產生的光學影像。包括32種二元二維晶體、11種三元合金、一種四元合金、一種五元合金、一種1T' MoTe2 – 2H MoTe2 平面內異質結構及一種MoS2 – NbSe2 垂直堆疊異質結構。
4 係MoX2 (X:S、Se及Te)的光學影像、拉曼光譜及光致發光光譜特性分析的結果:(a、d、g) 分別為MoS2 、MoSe2 及MoTe2 之光學影像;(b、e、h) 分別為此三種化合物的拉曼光譜;(c、f) 為MoS2 及MoSe2 的光致發光光譜。
5 係WX2 (X:S、Se及Te)的光學影像、拉曼光譜及光致發光光譜特性分析的結果:(a、d、g) 分別為WS2 、WSe2 及WTe2 之光學影像;(b、e、h) 分別為此三種化合物的拉曼光譜;(c、f) 為WS2 及WSe2 的光致發光光譜。
6 係TiX2 (X:S、Se及Te)的光學影像及拉曼光譜特性分析的結果:(a、c、e) 分別為TiS2 、TiSe2 及TiTe2 之光學影像;(b、d、f) 分別為此三種化合物的拉曼光譜。
7 係ZrX2 (X:S、Se及Te)的光學影像及拉曼光譜特性分析的結果:(a、c、e) 分別為ZrS2 、ZrSe2 及ZrTe2 之光學影像;(b、d、f) 分別為此三種化合物的拉曼光譜。
8 係:(a、b、c) 分別為MoS2x Te2(1-x) 、MoSe2x Te2(1-x) 及WS2x Te2(1-x) 的光學影像;(d、e、f) 分別為此三種化合物的拉曼光譜。
9 係:(a、c) 分別為四元合金Mox Nb1-x S2y Se2(1-y) 及五元合金Vx Wy Mo1-x-y S2z Se2(1-z) 的光學影像;(b、d) 分別為此兩種合金的拉曼光譜。
10 係異質結構的光學影像及拉曼光譜特性分析的結果:(a、b) 1T' MoTe2 – 2H MoTe2 平面內異質結構的光學影像及拉曼光譜;(c、d) MoS2 – NbSe2 垂直堆疊異質結構的光學影像及拉曼光譜。
11 係下列化合物之掃描穿透式顯微鏡(STEM)影像,及其對應快速傅立葉轉換(fast Fourier transform)影像與原子結構模型:(a) 1H相之MoS2 ;(b) 1T相之PtSe2 ;(c) 1T'相之WTe2 ;(d) 1T''相之ReSe2
12 係:(a) MoTe2 之能量色散光譜(EDS);(b、c) 分別為2H相MoTe2 之原子解析度STEM影像及電子能量損失光譜(EELS);(d、e) 1T'相MoTe2 之STEM影像及EELS。
13 係:(a) 數層WTe2 之原子解析度STEM影像;(b) WTe2 之EDS;(c) WTe2 之EELS
14 係TiS2 單層之:(a) 原子解析度STEM影像;(b) EDS;(c) EELS。
15 係:(a) 數層ZrS2 之原子解析度STEM影像;(b) ZrS2 之EDS;(c) ZrS2 之EELS。
16 係:(a) 五元單層合金Vx Wy Mo1-x-y S2z Se2(1-z) 之STEM影像(左),及使用逐原子強度測繪(atom-by-atom intensity mapping)所得之對應原子模型(右);(b) 該單層合金之EDS,其能確認內部化學成分;(c) (a)圖中沿虛線A(代表陽離子)及虛線B(代表陰離子)的線強度分布圖,其顯示各化學物種具備的不同強度。
17 係五元單層合金Vx Wy Mo1-x-y S2z Se2(1-z) 之強度統計圖,以及晶格內V原子之EELS:(a) 視野(field of view)較大之第16a圖STEM影像;(b) 使用高斯模型對陽離子及陰離子格位(site)分別進行之強度擬合,並特別標示峰強度位置;(c、d) 陽離子格位(c)及陰離子格位(d)強度統計圖,各化學物種的影像強度呈現明顯分散的高斯分布曲線,利於判斷各原子柱(atomic column)內的化學成分,基於此影像中的原子計數所得之各化學物種局部濃度分別為:陽離子 – V 3.7%、Mo 95.6%、W 0.7%;陰離子 – S 93.6%、Se 6.4%;(e) 陽離子格位內低強度單原子的EELS,其中顯示典型的V原子L2, 3 游離邊緣峰(ionization edge),因此可確定V原子存在。
18 係針對單層NbSe2 及MoTe2 二維晶體之傳導測量(transport measurement)結果:(a、c) 單層NbSe2 及MoTe2 於零磁場、溫度300 K至0.26 K下之縱向電阻Rxx 的溫度相依性,嵌入圖顯示低溫時曲線的放大圖;(b) 對NbSe2 晶體平面垂直施加不同磁場時,縱向電阻Rxx 的溫度相依性;(d) MoTe2 於不同溫度下之縱向電阻Rxx 隨磁場B變化的函數圖。
19 係顯示MoTe2 之二維超導性:(a) 不同傾斜角下之電阻對磁場相依性;(b) 上臨界磁場(upper critical field)H c2 (θ )對角度相依性,嵌入圖顯示實驗組態裝置圖。
20 係顯示 (a) NbSe2 (b) MoTe2 之上臨界磁場Hc2 對溫度相依性實線為Hc2 之線性回歸。
21 係單層MoS2 及ReS2 之傳導測量結果:(a、b) 分別為單層MoS2 之Id -Vd 及I導電性 -Vg 圖;(c、d) 分別為單層ReS2 之Id -Vd 及Id -Vg 圖。
22 係顯示與金屬來源相混的鹽類之熱重-示差掃描熱分析(TG-DSC)曲線:(a) 顯示加入鹽類之後,該些化合物的熔點皆落於以色塊標示600 °C至850 °C範圍內;(b) 顯示熱重對時間之曲線。
23 係X射線光電子光譜(XPS),其顯示在合成基於Nb、Mo、W的二維晶體期間,所產生的中間產物導致了Cl與其他元素鍵結。(a)、(b)、(c) 分別顯示Nb 3d 、Mo 3d 、W 4f 的X射線光電子光譜。Nb 3d 3/2 與 3d 5/2 、Mo 3d 3/2 與 3d 5/2 、W 4f 5/2 與 4f 7/2 分別為Nb、Mo、W之核心能階能量態,其皆於與Cl鍵結時之能階與高斯峰大幅度擬合。
24 係TMD搭配鹽類成核及不搭配鹽類成核的比較圖:(a、c、e) 顯示加入鹽類促進劑合成ReX2 、TiX2 、WX2 期間的晶核掃描式電子顯微鏡(SEM)影像;(b、d、f) 顯示未加入鹽類促進劑合成ReX2 、TiX2 、WX2 期間的晶核SEM影像。
25 係MoS2 之光學影像及未添加NaCl時之成長速率。嵌入圖顯示單層MoS2 單晶之尺寸變化,主圖顯示單晶尺寸與距離之擬合結果。
26 係MoS2 之光學影像及添加NaCl時之成長速率。嵌入圖顯示單層MoS2 單晶之尺寸變化,主圖顯示單晶尺寸與距離之擬合結果。
27 係不同晶形的MoS2 光學影像,該些產物分別經由控制成核反應及成長速率生成,所使用的MoO3 /NaCl來源之重量分別為(a) 2 mg/0.2 mg;(b) 3 mg/0.3 mg;(c) 10 mg/0.8 mg。隨著鹽類對MoO3 之重量比增加,MoS2 成長時的成核密度亦增加,因此,單層MoS2 的分布情形會自(a) 低密度單晶態過渡到(c) 連續薄膜態。
28 係不同厚度的MoS2 光學影像,該些產物分別經由控制成核反應及成長速率生成。調整該基板及MoO3 /NaCl來源之間的距離,可獲得不同尺寸之晶核:(a) 1.2 cm;(b) 0.8 cm;(c) 0.6 cm。
29 係(a、b) 於750 °C下成長的MoS2 及MoSe2 之光學影像,以及(c) 於700 °C下成長的MoTe2 之光學影像;(d、e、f) 分別於800 °C、810 °C、820 °C下成長的WS2 、WSe2 、WTe2 之光學影像;及(g、h、i) 分別於780 °C、790 °C、800 °C下成長的NbS2 、NbSe2 、NbTe2 之光學影像。
30 係部分二維TMD的光學影像,其顯示所生成之薄片多數皆為單層:(a) 於800 °C下成長之TiS2 ;(b) 於780 °C下成長之NbS2 ;(c) 於790 °C下成長之NbSe2 ;(d) 於810 °C下成長之PtSe2 ;(e) 於810 °C下成長之 WTe2 ;(f) 於700 °C下成長之MoTe2
31 係於(a) 815 °C 及(b) 800 °C下成長的PtSe2 之光學影像;於(c) 750 °C及(d) 700 °C下成長的VTe2 之光學影像。
32 係V0.03 W0.2 Mo0.77 S1.6 Se0.4 與MoS2 比較之線性掃描伏安圖(linear sweep voltammogram),測定工具為常見之三電極電池,其由工作電極、石墨輔助電極及飽和甘汞參考電極(SCE)所組成,電解質為0.5 M H2 SO4
33 係顯示不同MoSex Te2 -x 樣品之方塊電阻值(square resistance)的溫度相依性,樣品之Se對Te比值皆不同。隨著Se對Te之比值降低,樣品會由半導體態逐漸過渡為金屬態。

Claims (22)

  1. 一種生成具化學式I之二維過渡金屬硫族化合物的方法: MX2 I 其中: M係選自由鈦(Ti)、釩(V)、鉻(Cr)、錳(Mn)、鐵(Fe)、鈷(Co)、鎳(Ni)、銅(Cu)、鋅(Zn)、鋯(Zr)、鈮(Nb)、鉬(Mo)、鎘(Cd)、鉿(Hf)、鉭(Ta)、鎢(W)及錸(Re)組成的群組之其中一或多個;及 X係選自由硫(S)、硒(Se)及碲(Te)組成的群組之其中一或多個,該方法包含利用化學氣相沉積法,使具化學式I的過渡金屬硫族化合物沉積於一基板上,其中該氣相沉積法的執行方式如下: 將一載流氣體經一流體通道通入一反應爐中,該流體通道包含一第一溫度區,其中置有一或多個硫元素、硒元素或碲元素;及一第二溫度區,其中置有一或多個金屬前驅物與一鹼金屬鹵化物之混合物,該混合物上方置有一基板,該一或多個金屬前驅物與該鹼金屬鹵化物的重量比為1:2至15:1,其中: 該第一溫度區的溫度係150至500 °C; 該第二溫度區的溫度係350至950 °C; 該基板係位於該一或多個金屬前驅物及該鹼金屬鹵化物之該混合物上方自0.01至2.0 公分處;及 該一或多個金屬前驅物係選自一金屬元素、一金屬氧化物或一金屬鹵化物,各金屬係選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組,其中該具化學式I之二維過渡金屬硫族化合物於該基板上的成長速率係0.01 µm/s 至10 µm/s。
  2. 如申請專利範圍第1項的方法,其中該載流氣體包含體積流率為30至200 sccm之一惰性氣體,選擇性地,該惰性氣體為氬氣及/或氮氣。
  3. 如申請專利範圍第2項的方法,其中該載流氣體進一步包含體積流率為1至20 sccm之氫氣。
  4. 如前述申請專利範圍中任一項的方法,其中該鹼金屬鹵化物選自由氯化鈉(NaCl)、氯化鉀(KCl)、氯化鋰(LiCl)、溴化鈉(NaBr)、溴化鉀(KBr)、溴化鋰(LiBr)、碘化鈉(NaI)、碘化鉀(KI)及碘化鋰(LiI)組成之群組的其中一或多個。
  5. 如前述申請專利範圍中任一項的方法,其中該經沉積之過渡金屬硫族化合物的厚度係1 nm至小於 1 µm(如1 nm至500 nm)。
  6. 如前述申請專利範圍中任一項的方法,其中該方法進一步包含將一或多個具化學式I之二維過渡金屬硫族化合物形成的額外疊層疊於前述申請專利範圍所述之沉積法處理的該基板之上;其中選擇性地,沉積於各額外疊層中的該具化學式I之二維過渡金屬硫族化合物,與該基板表面上的疊層不同。
  7. 如前述申請專利範圍中任一項的方法,其中該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係1.5:1至5:1。
  8. 如前述申請專利範圍中任一項的方法,其中在生成一平面內異質結構的過程中,該載流氣體的體積流率會變動。
  9. 如前述申請專利範圍第1項至第6項中任一項的方法,其中當該具化學式I之過渡金屬硫族化合物係二硫化鉬(MoS2 )時,該第二溫度區的溫度係350至800 °C(如350至600 °C),且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比可為5:1至10:1。
  10. 如申請專利範圍第1項至第6項中任一項的方法,其中當該具化學式I之過渡金屬硫族化合物係二硒化鉬(MoSe2 )時,該第二溫度區的溫度可為550至900 °C(如550至650 °C,譬如自550至600 °C),且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係5:1至10:1。
  11. 如申請專利範圍第9項或第10項的方法,其中: (a) 該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係6:1;及/或 (b) 該金屬前驅物係三氧化鉬(MoO3 );及/或 (c) 該鹼金屬鹵化物係NaCl。
  12. 如申請專利範圍第1項至第6項中任一項的方法,其中當該具化學式I之過渡金屬硫族化合物係選自由二碲化鈀(PdTe2 )、二硒化鈀(PdSe2 )、二硫化鈀(PdS2 )、二碲化鉑(PtTe2 )、二硒化鉑(PtSe2 )及二硫化鉑(PtS2 )組成之群組時,該第二溫度區的溫度係750至860 °C,且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係8:1至12:1。
  13. 如申請專利範圍第12項的方法,其中: (a) 該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係10:1;及/或 (b) 包含Pd時,該金屬前驅物係二氯化鈀(PdCl2 ),且包含Pt時,該金屬前驅物係二氯化鉑(PtCl2 );及/或 (c) 該鹼金屬鹵化物係NaCl。
  14. 如申請專利範圍第1項至第7項中任一項的方法,其中當該具化學式I之過渡金屬硫族化合物係選自由二碲化鉿(HfTe2 )、二硒化鉿(HfSe2 )、二硫化鉿(HfS2 )、二碲化釩(VTe2 )、二硒化釩(VSe2 )、二硫化釩(VS2 )、二碲化鈦(TiTe2 )、二硒化鈦(TiSe2 )、二硫化鈦(TiS2 )、二碲化鈮(NbTe2 )、二硒化鈮(NbSe2 )、二硫化鈮(NbS2 )、二碲化鋯(ZrTe2 )、二硒化鋯(ZrSe2 )、二硫化鋯(ZrS2 )、二碲化鉭(TaTe2 )、二硒化鉭(TaSe2 )、二硫化鉭(TaS2 )、二碲化鉬(MoTe2 )及二碲化鎢(WTe2 )組成之群組時,該第二溫度區的溫度係600至860 °C,且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係1.6:1至4:1。
  15. 如申請專利範圍第14項的方法,其中: (a) 包含Hf時,該金屬前驅物係Hf,而包含V、Ti、Nb、Zr、Ta、Mo及W時,該金屬前驅物可分別為前述各金屬之氧化物;及/或 (b) 該鹼金屬鹵化物係NaCl。
  16. 如申請專利範圍第1項至第6項中任一項的方法,其中當該具化學式I之過渡金屬硫族化合物係二硫化鐵(FeS2 )、二硒化鐵(FeSe2 )或二碲化鐵(FeTe2 )時,該第二溫度區的溫度係500至850 °C(如500至600 °C),且該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係4:1至6:1,如5:1。
  17. 如申請專利範圍第16項的方法,其中: (a) 包含Fe時,該金屬前驅物係一金屬氧化物(如氧化鐵(Fe2 O3 ))或一金屬氯化物(如氯化亞鐵(FeCl2 ));及/或 (b) 該鹼金屬鹵化物係NaCl及/或LiCl。
  18. 如申請專利範圍第1項至第6項中任一項的方法,其中該具化學式I之過渡金屬硫族化合物具備化學式II: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中: A至G皆分別為互異之金屬,各選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組其中之一; a至g分別獨立為0至0.99的值,且a+b+c+d+e+f+g之和為1;及 h至j分別獨立為0至2的值,且h+i+j之和為2, 而a至g其中至少兩者大於0,且/或h至j其中至少兩者大於0。
  19. 如申請專利範圍第18項的方法,其中: (a) 該一或多個金屬前驅物與該鹼金屬鹵化物之重量比係5:1至7.5:1,如5:1;及/或 (b) 該第二溫度區的溫度係600至850 °C。
  20. 如申請專利範圍第18項或第19項的方法,其中該具化學式II之過渡金屬硫族化合物係選自由MoSe2x Te2(1-x) 、Mo1-x Rex S2 、MoS2x Te2(1-x) 、Mo1-x Nbx Se2 、Mo1-x Nbx S2 、Mox Nb1-x S2y Se2(1-y) 、WS2x Te2(1-x) 、WSe2x Te2(1-x) 、Mo1-x Wx Te2 、NbS2x Se2(1-x) 、W1-x Nbx S2 、W1-x Nbx Se2 及Vx Wy Mo(1-x-y) S2z Se2(1-z) 組成之群組。
  21. 一種具化學式II之過渡金屬硫族化合物合金: Aa Bb Cc Dd Ee Ff Gg Sh Sei Tej II 其中: A至G皆分別為互異之金屬,分別選自由Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、Nb、Mo、Cd、Hf、Ta、W及Re組成之群組其中之一; a至g分別獨立為0至0.99的值,且a+b+c+d+e+f+g之和為1;及 h至j分別獨立為0至2的值,且h+i+j之和為2, 而a至g其中至少兩者大於0,且/或h至j其中至少兩者大於0。
  22. 如申請專利範圍第21項的合金,其中該具化學式II之過渡金屬硫族化合物係選自由MoSe2x Te2(1-x) 、Mo1-x Rex S2 、MoS2x Te2(1-x) 、Mo1-x Nbx Se2 、Mo1-x Nbx S2 、Mox Nb1-x S2y Se2(1-y) 、WS2x Te2(1-x) 、WSe2x Te2(1-x) 、Mo1-x Wx Te2 、NbS2x Se2(1-x) 、W1-x Nbx S2 、W1-x Nbx Se2 及Vx Wy Mo(1-x-y) S2z Se2(1-z) 組成之群組。
TW107120704A 2017-06-16 2018-06-15 原子級薄金屬硫族化合物的合成 TW201905231A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SG10201704979P 2017-06-16
SG10201704979P 2017-06-16

Publications (1)

Publication Number Publication Date
TW201905231A true TW201905231A (zh) 2019-02-01

Family

ID=64658646

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107120704A TW201905231A (zh) 2017-06-16 2018-06-15 原子級薄金屬硫族化合物的合成

Country Status (2)

Country Link
TW (1) TW201905231A (zh)
WO (1) WO2018231153A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228796A (zh) * 2019-05-30 2019-09-13 西安电子科技大学 一种薄层二维过渡金属碲基固溶体的制备方法
CN110846621A (zh) * 2019-11-11 2020-02-28 中国科学院上海技术物理研究所 一种制备大面积单层二碲化钒材料的两步气相方法
CN111206284A (zh) * 2020-02-21 2020-05-29 湖南大学 一种硒化钯单晶及其制备和应用
CN112226744A (zh) * 2020-08-31 2021-01-15 西北大学 一种ReS2-HfS2范德瓦尔斯异质结薄膜的制备装置及方法
CN112310339A (zh) * 2019-07-26 2021-02-02 中国科学技术大学 范德华异质结化合物在锂离子电池负极材料中的应用、电极片及锂离子电池
CN113353980A (zh) * 2021-05-21 2021-09-07 国家纳米科学中心 一种自插层钒基二维纳米片及其制备方法和应用
CN113621939A (zh) * 2020-05-07 2021-11-09 北京大学 一种用于单层过渡金属硫族化合物的通用掺杂方法
CN114702085A (zh) * 2022-04-01 2022-07-05 华南师范大学 一种用于制备二维硫化钯纳米材料的装置和方法
US11999614B2 (en) 2022-06-10 2024-06-04 Korea Advanced Institute Of Science And Technology Ferroelectric thin film

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685653B2 (en) * 2019-02-01 2023-06-27 Purdue Research Foundation Substrate-free crystalline 2D nanomaterials
CN110534740A (zh) * 2019-08-25 2019-12-03 湘潭大学 一种复合氮掺杂蜂窝状多孔碳FeSe2/C的制备方法及产品
CN111081868B (zh) * 2019-11-29 2022-11-11 深圳市立洋光电子股份有限公司 铁磁性半金属晶体及其制备方法和应用
CN110790313A (zh) * 2019-12-18 2020-02-14 湘潭大学 一种3r相过渡金属硫属化合物二维纳米片的制备方法
CN111244445B (zh) * 2020-01-16 2021-04-27 中南大学 锂硫电池复合正极活性材料及其制备和应用
CN111893456A (zh) * 2020-07-09 2020-11-06 清华-伯克利深圳学院筹备办公室 二维过渡金属硫族化合物及其制备方法和器件
CN113697779B (zh) * 2020-10-27 2023-07-14 湖南大学 一种超薄三硒化二铬纳米片磁性材料及其制备和应用
CN112520708A (zh) * 2020-11-06 2021-03-19 华东师范大学 一种与生长衬底自发分离的二硒化钒纳米片的制备方法
CN112744876B (zh) * 2020-12-29 2022-05-31 杭州电子科技大学 一种螺旋线形貌硫化钯颗粒的自组装方法
CN114959781B (zh) * 2022-04-25 2023-11-07 江苏理工学院 一种NiS2@V2O5/VS2三元异质结材料及其制备方法和应用
CN114855144B (zh) * 2022-04-29 2023-11-17 清华-伯克利深圳学院筹备办公室 一种过渡金属硫族化合物薄层材料及其制备方法和应用
WO2023230668A1 (en) * 2022-06-02 2023-12-07 Monash University Transition metal di-chalcogenides
CN115094397B (zh) * 2022-06-13 2023-09-01 清华-伯克利深圳学院筹备办公室 一种非层状二维材料及其制备方法与应用
CN115497751B (zh) * 2022-09-02 2024-02-09 青岛科技大学 一种超级电容器负极材料的制备方法
EP4353863A1 (en) * 2022-10-12 2024-04-17 Imec VZW A method for depositing a transition metal dichalcogenide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105197998A (zh) * 2015-09-14 2015-12-30 天津大学 一步化学气相沉积制备高质量二硫化钨纳米片的方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110228796A (zh) * 2019-05-30 2019-09-13 西安电子科技大学 一种薄层二维过渡金属碲基固溶体的制备方法
CN112310339A (zh) * 2019-07-26 2021-02-02 中国科学技术大学 范德华异质结化合物在锂离子电池负极材料中的应用、电极片及锂离子电池
CN110846621A (zh) * 2019-11-11 2020-02-28 中国科学院上海技术物理研究所 一种制备大面积单层二碲化钒材料的两步气相方法
CN111206284A (zh) * 2020-02-21 2020-05-29 湖南大学 一种硒化钯单晶及其制备和应用
CN113621939A (zh) * 2020-05-07 2021-11-09 北京大学 一种用于单层过渡金属硫族化合物的通用掺杂方法
CN112226744A (zh) * 2020-08-31 2021-01-15 西北大学 一种ReS2-HfS2范德瓦尔斯异质结薄膜的制备装置及方法
CN112226744B (zh) * 2020-08-31 2021-07-16 西北大学 一种ReS2-HfS2范德瓦尔斯异质结薄膜的制备装置及方法
CN113353980A (zh) * 2021-05-21 2021-09-07 国家纳米科学中心 一种自插层钒基二维纳米片及其制备方法和应用
CN114702085A (zh) * 2022-04-01 2022-07-05 华南师范大学 一种用于制备二维硫化钯纳米材料的装置和方法
US11999614B2 (en) 2022-06-10 2024-06-04 Korea Advanced Institute Of Science And Technology Ferroelectric thin film

Also Published As

Publication number Publication date
WO2018231153A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
TW201905231A (zh) 原子級薄金屬硫族化合物的合成
Shi et al. Tin selenide (SnSe): growth, properties, and applications
Wang et al. Recent advances in ternary two-dimensional materials: synthesis, properties and applications
Murmu et al. Multifold improvement of thermoelectric power factor by tuning bismuth and antimony in nanostructured n-type bismuth antimony telluride thin films
US5958358A (en) Oriented polycrystalline thin films of transition metal chalcogenides
Shi et al. Synthesis and structure of two-dimensional transition-metal dichalcogenides
Samal et al. Recent developments on emerging properties, growth approaches, and advanced applications of metallic 2D layered vanadium dichalcogenides
US11060186B2 (en) In situ generation of gaseous precursors for chemical vapor deposition of a chalcogenide
Simchi et al. Sulfidation of 2D transition metals (Mo, W, Re, Nb, Ta): thermodynamics, processing, and characterization
Bendt et al. Structural and thermoelectrical characterization of epitaxial Sb2Te3 high quality thin films grown by thermal evaporation
Dong et al. Strong correlation of the growth mode and electrical properties of BiCuSeO single crystals with growth temperature
Babu et al. Deposition of nanocrystal thin films of Cu2Se and their optical and electrical characterization
Konar et al. A mini-review focusing on ambient-pressure chemical vapor deposition (AP-CVD) based synthesis of layered transition metal selenides for energy storage applications
Falmbigl et al. Modifying a charge density wave transition by modulation doping: ferecrystalline compounds ([Sn 1− x Bi x Se] 1.15) 1 (VSe 2) 1 with 0≤ x≤ 0.66
Takashiri et al. Promotion of crystal growth in as-grown Bi2Te3 electrodeposited films without micro-pores using sputtered Bi2Te3 seed layers deposited on a glass substrate
Hussain et al. Fabrication, characterization and applications of iron selenide
Zhao et al. Precise vapor-phase synthesis of two-dimensional atomic single crystals
Wang et al. Thermoelectric properties of β-(Cu, Mn) 2Se films with high (111) preferred orientation
Hatayama et al. Phase control of sputter-grown large-area MoTe2 films by preferential sublimation of Te: amorphous, 1T′ and 2H phases
Liu et al. Spatially controlled two-dimensional heterostructures via solution-phase growth
Wu et al. Fabrication of Microstructured thermoelectric Bi2Te3 thin films by seed layer assisted electrodeposition
CN114232101A (zh) 一种单层p型半导体相二硒化钒单晶及其盐辅助的生长方法以及其背栅场效应晶体管
Özel et al. Refractory‐Metal‐Based Chalcogenides for Energy
Karmakar et al. Molecular precursor mediated selective synthesis of phase pure cubic InSe and hexagonal In 2 Se 3 nanostructures: new anode materials for Li-ion batteries
Bendt et al. Van der Waals epitaxial MOCVD-growth of (BixSb1− x) 2Te3 (0< x< 1) films