TW201829364A - 醋酸之製造方法 - Google Patents

醋酸之製造方法 Download PDF

Info

Publication number
TW201829364A
TW201829364A TW106118996A TW106118996A TW201829364A TW 201829364 A TW201829364 A TW 201829364A TW 106118996 A TW106118996 A TW 106118996A TW 106118996 A TW106118996 A TW 106118996A TW 201829364 A TW201829364 A TW 201829364A
Authority
TW
Taiwan
Prior art keywords
acetic acid
stream
evaporation tank
residual liquid
catalyst
Prior art date
Application number
TW106118996A
Other languages
English (en)
Other versions
TWI697476B (zh
Inventor
清水雅彥
Original Assignee
大賽璐股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60421720&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201829364(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 大賽璐股份有限公司 filed Critical 大賽璐股份有限公司
Publication of TW201829364A publication Critical patent/TW201829364A/zh
Application granted granted Critical
Publication of TWI697476B publication Critical patent/TWI697476B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • C07C51/44Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C53/00Saturated compounds having only one carboxyl group bound to an acyclic carbon atom or hydrogen
    • C07C53/08Acetic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本發明提供一種醋酸之製造方法,其可抑制蒸發槽中的觸媒沉澱、蓄積,並高效率使觸媒再循環至反應槽,因而有助於維持、提高醋酸的生產性及確保穩定運轉。
本發明之醋酸之製造方法中,蒸發槽具有下述(a)及(b)之中至少一種防止觸媒沉澱、蓄積的結構。
(a)結構,其中蒸發槽的倒圓錐台筒狀連結部之內壁面的傾斜角度θ為5°~85°
(b)結構,其中使具備板狀漩渦碎機本體部及水平支持著漩渦碎機本體部之腳部的漩渦碎機,被配設成該漩渦碎機本體部覆蓋著蒸發槽底部的殘液流再循環管線連結部之正上方,且被設計成通過漩渦碎機本體部之周端部與蒸發槽底部之內底面的間隙的殘液流之線速r大於10m/h

Description

醋酸之製造方法
本發明係關於一種製造醋酸之方法。本申請案主張2016年10月28日於日本提出申請之日本特願2016-211922號、及2017年3月2日於日本提出申請之日本特願2017-039388號的優先權,並將其內容引用於此。
作為醋酸的工業製造法,甲醇法羰基化製程已為人所知。該製程中,例如,係在反應槽中,於觸媒之存在下,使甲醇與一氧化碳反應而生成醋酸,將所得到之反應混合物在蒸發槽中分離成包含醋酸及低沸成分的蒸氣相與包含醋酸及觸媒的殘液相,並使該殘液相再循環至反應槽,蒸餾該蒸氣相以分離成低沸成分與粗醋酸,再進一步精製該粗醋酸,藉此得到製品醋酸。
該甲醇法羰基化製程,雖具有可從低價原料高效率地製造醋酸的大優點,但有觸媒容易沉澱的問題。在該製程中防止觸媒的沉澱,從以維持反應槽中的觸媒濃度來確保生產性、及以防止反應槽中的觸媒濃度變動來確保穩定運轉的觀點來看,係重要的課題。其中,謀求防止觸媒在觸媒最容易沉澱之蒸發槽中的沉澱、及 提高從蒸發槽出塔至反應槽的觸媒再循環率,變成最重要的課題。
以往,為了防止觸媒的沉澱而於反應液中含有碘化鋰等觸媒穩定劑的方法已為人所知。又,將含有一氧化碳之氣體導入蒸發槽出塔,使蒸發槽出塔液的CO分壓或CO溶存量增加,以提高一氧化碳及碘化物離子與金屬之錯合物的穩定性的技術已為人所知。例如,專利文獻1中揭示了一種方法,其係將羰基化生成物溶液移至維持壓力低於反應區域的分離區域,並將羰基化生成物的一部分閃蒸分離,將未被閃蒸的羰基化生成物溶液循環至反應區域的步驟中,將含有一氧化碳之氣流導入該分離區域,藉此防止蒸發步驟中的觸媒沉澱。
先前技術文獻 專利文獻
專利文獻1 日本特開平5-194300號公報
然而,上述方法,未必可充分抑制蒸發槽中的觸媒沉澱,又,觀察到蒸發槽內沉澱之觸媒有蓄積的現象。因此,本發明之目的在於提供一種醋酸之製造方法,其可抑制蒸發槽中的觸媒沉澱、蓄積,並高效率地使觸媒再循環至反應槽,因而有助於維持、提高醋酸的生產性及確保穩定運轉。
本案發明人為了達成上述目的而進行深入研究,結果發現,藉由於蒸發槽中設計特定的防止觸媒沉澱、蓄積的結構,可高效率地使觸媒再循環至反應槽,並可抑制反應槽中的觸媒濃度降低,因此有助於維持、提高醋酸的生產性及確保穩定運轉,進而完成本發明。
亦即,本發明提供一種醋酸之製造方法,其係具備下述步驟的醋酸之製造方法:羰基化反應步驟,在包含金屬觸媒及碘甲烷的觸媒系、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應以生成醋酸;蒸發步驟,將該羰基化反應步驟所得到之反應混合物在蒸發槽中分離成蒸氣流與殘液流;殘液流再循環步驟,使該殘液流回到反應槽;及蒸餾步驟,將該蒸氣流送至蒸餾以精製醋酸;該醋酸之製造方法的特徵為:該蒸發槽具有與反應混合物供給管線連接的本體部、與蒸氣流排出管線連接的頂部、及與殘液流再循環管線連接的底部;該本體部具有大口徑的上部圓筒部、小口徑的下部圓筒部、及將上部圓筒部與下部圓筒部連結的倒圓錐台筒狀連結部,且該蒸發槽具有下述(a)及(b)之中至少一種防止觸媒沉澱、蓄積的結構。
(a)結構,其中蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ為5°~85°
(b)結構,其中使具備板狀漩渦碎機本體部及水平支持著漩渦碎機本體部之腳部的漩渦碎機,被配設成該漩渦碎機本體部覆蓋著蒸發槽底部的殘液流再循環管線連結部之正上方,且被設計成通過漩渦碎機本體部之周端部與蒸發槽底部之內底面的間隙的殘液流之線速r大於10m/h
該觸媒系亦可更包含離子性碘化物。
在該(a)的結構中,蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ較佳為10°~80°。該傾斜角度θ再佳為20°~75°,特佳為30°~75°。
在該(b)中,較佳為再將含有一氧化碳之氣體的導入管線連接於蒸發槽的底部及/或殘液流再循環管線。此情況下,較佳為從含有一氧化碳之氣體的導入管線,導入相對於殘液流排出量而言為0.02NL/kg以上的含有一氧化碳之氣體。
該蒸餾步驟較佳為包含去除低沸物步驟,該去除低沸物步驟係蒸餾該蒸氣流,而分離成富含選自碘甲烷及乙醛之至少一種低沸成分的頂部餾出物流、與富含醋酸的醋酸流。此情況下,亦可包含乙醛分離去除步驟,其係用以從該頂部餾出物流中至少分離乙醛。
在本發明之製造方法中,較佳為更包含滌氣器步驟(滌氣步驟),該滌氣器步驟係以至少包含醋酸及/或甲醇之吸收溶劑對來自製程的廢氣進行吸收處理,而分離成富含一氧化碳之流、與富含醋酸之流。
根據本發明,蒸發槽具有:使蒸發槽本體部中連結大口徑的上部圓筒部與小口徑的下部圓筒部的倒圓錐台筒狀連結部之內壁面的傾斜角度成為特定範圍的結構、及/或被設計成使通過配設於蒸發槽內之漩渦碎機與蒸發槽底面之間隙的殘液流之線速成為特定值以上的結構,故可顯著地抑制觸媒在蒸發槽中的沉澱、蓄積,而可高效率地使觸媒再循環至反應槽。因此,可將反應槽內的觸媒濃度保持成一定,而極有助於維持、提高醋酸的生產性及確保穩定運轉。
1‧‧‧反應槽
2‧‧‧蒸發槽
3、5、6‧‧‧蒸餾塔
4‧‧‧傾析器
7‧‧‧離子交換樹脂塔
8‧‧‧滌氣器系統
9‧‧‧乙醛分離去除系統
16‧‧‧反應混合物供給管線
17‧‧‧蒸氣流排出管線
18、19‧‧‧殘液流再循環管線
54‧‧‧含有一氧化碳之氣體的導入管線
55、56‧‧‧氫氧化鉀導入管線
57‧‧‧觸媒循環泵
2O1‧‧‧蒸發槽頂部
202‧‧‧蒸發槽本體部的上部圓筒部
203‧‧‧蒸發槽本體部的連結部
204‧‧‧蒸發槽本體部的下部圓筒部
205‧‧‧蒸發槽底部
206‧‧‧漩渦碎機本體部
207‧‧‧腳部
c‧‧‧間隙
x‧‧‧漩渦碎機
圖1係顯示本發明之一實施形態的醋酸製造流程圖。
圖2係顯示本發明之一實施形態的蒸發槽的概略剖面圖。
圖3係顯示設置於本發明之一實施形態之蒸發槽的漩渦碎機的俯視圖。
用以實施發明之形態
圖1係顯示本發明之一實施形態的醋酸製造流程圖。該醋酸製造流程之醋酸製造裝置具備:反應槽1、蒸發槽2、蒸餾塔3、傾析器4、蒸餾塔5、蒸餾塔6、離子交換樹脂塔7、滌氣器系統8、乙醛分離去除 系統9、冷凝器1a、2a、3a、5a、6a、熱交換器2b、再沸器3b、5b、6b、管線11~56、及泵57,其被構成為可連續地製造醋酸。本實施形態的醋酸之製造方法,係在反應槽1、蒸發槽2、蒸餾塔3、蒸餾塔5、蒸餾塔6、及離子交換樹脂塔7中,分別進行反應步驟、蒸發步驟(閃蒸步驟)、第1蒸餾步驟、第2蒸餾步驟、第3蒸餾步驟、及吸附去除步驟。第1蒸餾步驟亦稱為去除低沸物步驟,第2蒸餾步驟亦稱為脫水步驟,第3蒸餾步驟亦稱為去除高沸物步驟。第1蒸餾步驟、第2蒸餾步驟、第3蒸餾步驟被包含於本發明中的「精製醋酸的蒸餾步驟」。此外,在本發明中,步驟並不限於上述者,有特別是未附帶蒸餾塔6、離子交換樹脂塔7、乙醛分離去除系統9(去乙醛塔等)的設備的情況。
反應槽1係用以進行反應步驟的單元。該反應步驟係用以藉由以下述化學式(1)表示的反應(甲醇的羰基化反應)連續地生成醋酸的步驟。在醋酸製造裝置穩定運轉的狀態下,反應槽1內存在例如以攪拌機被進行攪拌的反應混合物。反應混合物包含:原料的甲醇及一氧化碳、金屬觸媒、輔觸媒、水、製造目標的醋酸、及各種的副生成物,液相與氣相處於平衡狀態。
CH3OH+CO→CH3COOH (1)
反應混合物中的原料為液態的甲醇及氣態的一氧化碳。甲醇係通過管線11從甲醇儲存部(省略圖示)以既定的流量連續地供給至反應槽1。一氧化碳係通 過管線12從一氧化碳儲存部(省略圖示)以既定的流量連續地供給至反應槽1。一氧化碳不一定需為純一氧化碳,亦可包含少量(例如5質量%以下,較佳為1質量%以下)的例如氮、氫、二氧化碳、氧等其他氣體。
反應混合物中的金屬觸媒,係用以促進甲醇之羰基化反應的成分,可使用例如銠觸媒或銥觸媒。作為銠觸媒,可使用例如以化學式[Rh(CO)2I2]-表示的銠錯合物。作為銥觸媒,可使用例如以化學式[Ir(CO)2I2]-表示的銥錯合物。金屬觸媒較佳為金屬錯合物觸媒。相對於反應混合物的液相整體,反應混合物中的觸媒濃度(金屬換算)例如為200~5000質量ppm,較佳為400~2000質量ppm。
輔觸媒係用以輔助上述觸媒之作用的碘化物,可使用例如碘甲烷或離子性碘化物。碘甲烷可展現促進上述觸媒之觸媒作用的作用。相對於反應混合物的液相整體,碘甲烷的濃度例如為1~20質量%。離子性碘化物係在反應液中使生成碘化物離子的碘化物(特別是離子性金屬碘化物),其可展現使上述觸媒穩定化的作用、及抑制副反應的作用。作為離子性碘化物,可列舉例如:碘化鋰、碘化鈉、碘化鉀等的鹼金屬碘化物等。相對於反應混合物的液相整體,反應混合物中的離子性碘化物的濃度例如為1~25質量%,較佳為5~20質量%。又,使用例如銥觸媒等的情況下,亦可使用釕化合物或鋨化合物作為輔觸媒。此等化合物的使用量的總 和,相對於例如1莫耳(金屬換算)的銥而言,為0.1~30莫耳(金屬換算),較佳為0.5~15莫耳(金屬換算)。
反應混合物中的水,在甲醇之羰基化反應的反應機構之中,係生成醋酸的必需成分,又,亦係使反應系之水溶性成分可溶化的必需成分。相對於反應混合物的液相整體,反應混合物中的水的濃度例如為0.1~15質量%,較佳為0.8~10質量%。從抑制去除醋酸精製過程中的水所需要的能量以提升醋酸製造之效率的觀點來看,水濃度較佳為15質量%以下。為了控制水濃度,可連續地對反應槽1供給既定流量的水。
反應混合物中的醋酸,包含:在醋酸製造裝置運轉之前已預先加入反應槽1內的醋酸、及作為甲醇之羰基化反應的主要生成物所生成的醋酸。這樣的醋酸在反應系中可發揮作為溶劑的功能。相對於反應混合物的液相整體,反應混合物中的醋酸濃度例如為50~90質量%,較佳為60~80質量%。
作為反應混合物所包含的主要副生成物,可列舉例如醋酸甲酯。該醋酸甲酯,可藉由醋酸與甲醇的反應而生成。相對於反應混合物的液相整體,反應混合物中的醋酸甲酯的濃度例如為0.1~30質量%,較佳為1~10質量%。作為反應混合物所包含的副生成物,亦可列舉例如碘化氫。該碘化氫,係使用上述觸媒或輔觸媒的情況下,在甲醇之羰基化反應的反應機構上所不可避免地生成者。相對於反應混合物的液相整體,反應混合物中的碘化氫的濃度例如為0.01~2質量%。又,作為副 生成物,可列舉例如:氫、甲烷、二氧化碳、乙醛、巴豆醛、2-乙基巴豆醛、二甲醚、甲酸、丙酸、以及碘己烷及碘癸烷等碘烷等。
在存在上述反應混合物的反應槽1內,係將反應溫度設定為例如150~250℃,將作為整體壓力的反應壓力設定為例如2.0~3.5MPa(絕對壓力),將一氧化碳分壓設定為例如0.4~1.8MPa(絕對壓力),較佳為0.6~1.5MPa(絕對壓力)。
裝置運轉時的反應槽1內之氣相部的蒸氣中,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等。該蒸氣可通過管線13從反應槽1內抽出。藉由調節蒸氣的抽出量,可控制反應槽1內的壓力,例如,將反應槽1內的壓力維持成一定。將從反應槽1內抽出之蒸氣導入冷凝器1a。
冷凝器1a會將來自反應槽1的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等,係通過管線14從冷凝器1a被導入至反應槽1,進行再循環。氣體成分包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,係通過管線15從冷凝器1a被供給至滌氣器系統8。滌氣器系統8中,係將有用成分(例如碘甲烷、水、醋酸甲酯、醋酸等)從來自冷凝器1a的氣體成分分離回 收。本實施形態中,該分離回收係利用濕式法,其係使用用以收集氣體成分中之有用成分的吸收液來進行。作為吸收液,較佳為至少包含醋酸及/或甲醇的吸收溶劑。吸收液中可包含醋酸甲酯。例如,可使用來自下述蒸餾塔6之蒸氣的冷凝成分作為吸收液。分離回收亦可利用壓力變動吸附法。經分離回收的有用成分(例如碘甲烷等),係通過再循環管線48從滌氣器系統8被導入至反應槽1,進行再循環。經收集有用成分後之氣體係通過管線49而被廢棄。此外,從管線49排出的氣體可作為導入下述蒸發槽2的底部205或殘液流再循環管線18、19的CO源來利用。關於滌氣器系統8中的處理以及其後再循環至反應槽1及廢棄,其他從冷凝器供給至滌氣器系統8的後述氣體成分亦相同。在本發明之製造方法中較佳為包含滌氣器步驟,其係以至少包含醋酸的吸收溶劑對來自製程的廢氣進行吸收處理,而分離成富含一氧化碳之流與富含醋酸之流。
裝置運轉時的反應槽1內,係如上所述,連續地生成醋酸。從反應槽1內以既定的流量連續地抽出這樣的包含醋酸的反應混合物,並通過管線16導入下一個蒸發槽2。
蒸發槽2係用以進行蒸發步驟(閃蒸步驟)的單元。該蒸發步驟係用以使通過管線16(反應混合物供給管線)被連續地導入至蒸發槽2的反應混合物部分地蒸發,藉此分成蒸氣流(揮發相)與殘液流(低揮發相)的步驟。可不加熱反應混合物而藉由減少壓力來引起蒸發, 亦可藉由加熱反應混合物並減少壓力來引起蒸發。在蒸發步驟中,蒸氣流的溫度例如為100~260℃,較佳為120~200℃,殘液流的溫度例如為80~200℃,較佳為100~180℃,槽內壓力例如為50~1000kPa(絕對壓力)。又,關於在蒸發步驟中分離的蒸氣流及殘液流的比例,以質量比計,例如為10/90~50/50(蒸氣流/殘液流)。本步驟所產生的蒸氣,包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等,係從蒸發槽2內被連續地抽出至管線17(蒸氣流排出管線)。從蒸發槽2內抽出的蒸氣流之一部分被連續地導入至冷凝器2a,該蒸氣流之另一部分係通過管線21被連續地導入至下一個蒸餾塔3。該蒸氣流的醋酸濃度,例如為50~85質量%,較佳為55~75質量%。本步驟所生成的殘液流,包含:反應混合物中包含的觸媒及輔觸媒(碘甲烷、碘化鋰等)、本步驟中未揮發而殘留的水、醋酸甲酯、醋酸、甲酸及丙酸等,係使用泵57通過管線18從蒸發槽2被連續地導入至熱交換器2b。熱交換器2b會將來自蒸發槽2的殘液流冷卻。通過管線19將降溫之殘液流從熱交換器2b連續地導入至反應槽1,以進行再循環。此外,將管線18與管線19一併稱為殘液流再循環管線。該殘液流的醋酸濃度例如為55~90質量%,較佳為60~85質量%。
圖2係顯示本發明之一實施形態的蒸發槽的概略剖面圖。蒸發槽2具有:與反應混合物供給管線16連接的本體部、與蒸氣流排出管線17連接的頂部 201、及與殘液流再循環管線18連接的底部205。該本體部具有:大口徑的上部圓筒部202、小口徑的下部圓筒部204、及連接上部圓筒部202與下部圓筒部204的倒圓錐台筒狀連結部203。來自反應槽1的反應混合物係從反應混合物供給管線16被導入至蒸發槽2內,反應混合物的一部分係蒸發而變成蒸氣,並從蒸氣流排出管線17被排出。反應混合物中之未蒸發的成分係儲存於下部圓筒部204,通過與底部205連接之殘液流再循環管線18及19而作為蒸發槽出塔液(殘液流)回到反應槽1。上部圓筒部202係發揮作為充滿蒸氣之空間的功能,下部圓筒部204係發揮作為未揮發之殘液之儲存部的功能。因此,將上部圓筒部202設計成大口徑,將下部圓筒部204設計成小口徑。
蒸發槽2的底部205及/或殘液流再循環管線(管線18及/或管線19)較佳為連接著用以導入含有一氧化碳之氣體的含有一氧化碳之氣體導入管線54。藉由將一氧化碳導入至儲存於蒸發槽2之下部圓筒部204的殘液、及通過殘液流再循環管線18、19(特別是管線18)的殘液流,殘液流中的一氧化碳溶存量會增加而加強觸媒的穩定性,可防止觸媒的沉澱、蓄積。導入的含有一氧化碳之氣體中的一氧化碳的含量,例如為10質量%以上,較佳為20質量%以上,再佳為40質量%以上,特佳為60質量%以上。
蒸發槽2中,為了防止已揮發之蒸氣偕同未揮發的液體流入殘液流再循環管線18內,較佳在蒸發 槽2的底部205附近配設漩渦碎機x。若氣體大量流入底部205,則用以將殘液流輸送至反應槽1的泵57(觸媒循環泵)會出現孔蝕(cavitation)而有導致泵破損的疑慮。圖3係顯示設置於本發明之一實施形態之蒸發槽的漩渦碎機的俯視圖(從上面觀察的圖)。漩渦碎機x包含板狀漩渦碎機本體部206、及用以水平支持漩渦碎機本體部206的腳部207。為了穩定,較佳為具有多個腳部207。可將腳部207固定於蒸發槽2之底部205的內底面。板狀漩渦碎機本體部206,較佳為被配設成覆蓋著蒸發槽2的底部205中之與殘液流再循環管線18的連結部之正上方。此外,板狀漩渦碎機本體部206可為平板狀,亦可為底面或頂面具有凸曲面的板狀。
接著,本發明中,蒸發槽2具有下述(a)及(b)之中至少一種防止觸媒沉澱、蓄積的結構。
(a)結構,其中蒸發槽2的該倒圓錐台筒狀連結部203之內壁面的傾斜角度(相對於水平面的角度)θ為5°~85°
(b)結構,其中使包含板狀漩渦碎機本體部206、及水平支持著漩渦碎機本體部206之腳部207的漩渦碎機x,被配設成該漩渦碎機本體部206覆蓋著蒸發槽底部205之與殘液流再循環管線18的連結部之正上方,且被設計成通過漩渦碎機本體部206之周端部與蒸發槽底部205之內底面的間隙c的殘液流之線速r大於10m/h
蒸發槽2在具有結構(a)的情況下,即使在蒸發槽2內沉澱的觸媒蓄積於上述倒圓錐台筒狀連結部203的內壁面上,亦因上述連結部203之內壁面的傾斜 角度為一定值以上,故而這種觸媒,會偕同從管線16被導入的反應混合物中之未揮發而落於下方的液體,一起到達蒸發槽2的底部205,並由此處經由殘液流再循環管線18及19再循環至反應槽1。若沉澱之觸媒的微粒子未停留在蒸發槽2而再循環至反應槽1,則其會在一氧化碳分壓高的反應槽1中再溶解,因此,結果為可抑制反應槽中的觸媒濃度降低,可防止醋酸的生產量降低或變動。該逆圓錐台筒狀連結部203之內壁面的傾斜角度θ只要在5°~85°的範圍內即可,但斜角度θ的下限,較佳為10°,更佳為20°,再佳為30°,特佳為35°(尤其是40°),傾斜角度θ的上限,較佳為80°,更佳為75°,再佳為70°。若傾斜角度θ小於5°,則沉澱之觸媒容易堆積於該連結部203的內壁面上,會導致再循環至反應槽1之觸媒的量減少,反應槽1中的觸媒濃度降低,而導致醋酸生產量降低。若傾斜角度θ超過85°,則該倒圓錐台筒狀連結部203之高度方向的長度變長,蒸發槽2整體的大小增加,因而不佳。
蒸發槽2在具有結構(b)的情況下,通過漩渦碎機本體部206之周端部與蒸發槽底部205之內底面的間隙c的殘液流之線速r較大,故即使觸媒在蒸發槽2的底部205附近沉澱,沉澱之觸媒亦可順勢偕同殘液流一起流入殘液流再循環管線18,並經由管線19再循環至反應槽1。經再循環的沉澱觸媒會如前述在反應槽1中再溶解,故可將反應槽1中的觸媒濃度維持在預期的數值,可防止醋酸的生產量降低或變動。特別是在將含 有一氧化碳之氣體導入至蒸發槽2的底部或殘液流再循環管線18、19的情況中,若該殘液流的線速r較快,則一氧化碳氣體會被抑制上升至蒸發槽2的上方,而容易從蒸發槽2的底部205流入殘液流再循環管線18、19。因此,觸媒沉澱明顯的蒸發槽2的底部205及殘液流再循環管線18、19中的一氧化碳濃度(溶存量)上升,而提高觸媒的穩定性。因此,更可確實地防止反應槽1中的醋酸生產量降低或變動。該線速r只要為大於10m/h的數值即可,但較佳為20m/h以上,更佳為30m/h以上,再佳為50m/h以上,特佳為80m/h以上(尤其是100m/h以上)。該r的上限,例如為6000m/h(特別是4000m/h)。
該線速r為10m/h以下的情況下,沉澱之觸媒偕同殘液流一起流入殘液流再循環管線18的比例減少,故再循環至反應槽1的觸媒量亦減少,醋酸的生產量降低。又,即使是將含有一氧化碳之氣體導入至蒸發槽2的底部205或殘液流再循環管線18、19的情況下,在該線速r為10m/h以下時,所導入的含有一氧化碳之氣體容易上升至蒸發槽2的上方,導致含有一氧化碳之氣體與蒸發槽2的閃蒸氣體一同移動至下一個步驟(蒸餾塔(去除低沸物塔)3或冷凝器(散熱冷凝器)2a),因而使導入一氧化碳的效果(觸媒的穩定化效果)變差。該線速r太大的情況下,有壓力損耗變大,而無法使生成之殘液流再循環的情況。或者必須使蒸發槽2中的液體深度變大。此外,該線速r(m/h)可藉由下述而求得:將殘液流排出量(流通於殘液流再循環管線18的液流 量)(m3/h),除以漩渦碎機本體部206之周端部與蒸發槽底部205之內底面的間隙c之長度(距離)(m)與漩渦碎機本體部206之周長(m)的積。可藉由使間隙c的長度(距離)或漩渦碎機本體部206的周長變化,而調整該線速r。
將含有一氧化碳之氣體導入至蒸發槽2的底部205或殘液流再循環管線18、19的情況下,相對於殘液流排出量(流通於殘液流再循環管線18的液流量),其導入量的總量例如為0.02NL(標準升)/kg以上,較佳為0.05NL/kg以上,再佳為0.1NL/kg以上。該導入量的上限例如為5NL/kg(較佳為3NL/kg,更佳為1NL/kg)。若含有一氧化碳之氣體的導入量太少,則CO溶存量降低,觸媒容易變得不穩定。含有一氧化碳之氣體的導入量太多的情況下,有泵57出現孔蝕而破損的疑慮。
在本發明之製造方法中,若將通過殘液流再循環管線18、19之殘液流的線速r'加快,則即使觸媒沉澱,線速快的殘液流亦可偕同沉澱之觸媒被運送至反應槽1,故可防止沉澱之觸媒在殘液流再循環管線18、19中蓄積。該線速r',較佳在從蒸發槽底部205的出塔部(殘液流再循環管線18的起點)至反應槽1的整個流路的80%以上(較佳為90%以上,再佳為95%以上)之中大於10m/h。該線速r'更佳為100m/h以上,再佳為500m/h以上,特佳為1000m/h以上,最佳為2000m/h以上。此外,該線速r'(m/h)可藉由將殘液流再循環量(流通於殘液流再循環管線之液流量)(m3/h)除以殘液流再循環管線的剖面積(m2)而求得。
雖然即使在蒸發槽2僅具備上述結構(a)與結構(b)之中一種結構的情況下,亦可相當程度上抑制蒸發槽2中的觸媒沉澱、蓄積,但藉由兼具結構(a)與結構(b),可使明顯減少蒸發槽2的觸媒沉澱、蓄積,可大幅改善反應槽1中的醋酸的生產性及運轉穩定性。
冷凝器2a會將來自蒸發槽2的蒸氣流冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛、甲酸及丙酸等,係通過管線22、23從冷凝器2a被導入至反應槽1,進行再循環。氣體成分包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,係通過管線20、15從冷凝器2a被供給至滌氣器系統8。上述反應步驟中醋酸的生成反應為放熱反應時,蓄積於反應混合物的熱量的一部分,在蒸發步驟(閃蒸步驟)中,會轉移到由反應混合物產生的蒸氣中。該蒸氣之因冷凝器2a的冷卻所生成的冷凝成分會再循環至反應槽1。亦即,在該醋酸製造裝置中,可以冷凝器2a高效率地去除甲醇的羰基化反應所產生的熱量。
蒸餾塔3係用以進行第1蒸餾步驟的單元,本實施形態中係將其定位為所謂的去除低沸物塔。第1蒸餾步驟係將被連續地導入至蒸餾塔3的蒸氣流進行蒸餾處理以將低沸成分分離去除的步驟。更具體而言,第1蒸餾步驟中,係將該蒸氣流進行蒸餾,以分離成富含選自碘甲烷及乙醛之至少一種低沸成分的頂部餾出物 流、與富含醋酸的醋酸流。蒸餾塔3,係例如層板塔及填充塔等的精餾塔所構成。採用層板塔作為蒸餾塔3的情況下,其理論板例如為5~50板,迴流比係對應於理論板數,例如為0.5~3000。在蒸餾塔3的內部,將塔頂壓力設定為例如80~160kPa(錶壓),將塔底壓力設定為高於塔頂壓力,例如為85~180kPa(錶壓)。在蒸餾塔3的內部,塔頂溫度,係設定為例如低於醋酸在設定塔頂壓力下之沸點的溫度,即90~130℃;塔底溫度,係設定為例如於醋酸在塔底壓力下之沸點以上的溫度,即120~160℃。
對於蒸餾塔3,係使來自蒸發槽2的蒸氣流通過管線21被連續地導入;從蒸餾塔3的塔頂部,係將作為頂部餾出物流的蒸氣連續地抽出至管線24。從蒸餾塔3的塔底部,係將出塔液連續地抽出至管線25。3b為再沸器。從蒸餾塔3中之塔頂部與塔底部之間的高度位置,係將作為側流的醋酸流(第1醋酸流;液體)由管線27連續地抽出。
從蒸餾塔3的塔頂部抽出的蒸氣,相較於來自蒸餾塔3的上述出塔液及側流,包含更多沸點低於醋酸的成分(低沸點成分),例如包含碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇、乙醛及甲酸等。此蒸氣中亦包含醋酸。這樣的蒸氣,係通過管線24被連續地導入至冷凝器3a。
冷凝器3a會將來自蒸餾塔3的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成 分包含例如碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,係通過管線28從冷凝器3a被連續地導入至傾析器4。導入傾析器4的冷凝成分被分液成水相(上方相)與有機相(碘甲烷相;下方相)。水相中包含水與例如碘甲烷、碘化氫、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。有機相中包含例如碘甲烷與例如碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。本實施形態中,係通過管線29將水相的一部分迴流至蒸餾塔3,並通過管線29、30、23將水相的另一部分導入至反應槽1而進行再循環。通過管線31、23將有機相的一部分導入至反應槽1而進行再循環。通過管線31、50及/或管線30、51將有機相的另一部分及/或水相的另一部分導入至乙醛分離去除系統9。
使用乙醛分離去除系統9的乙醛分離去除步驟中,係藉由習知的方法,例如蒸餾、萃取或組合該等方法將有機相及/或水相所包含的乙醛分離去除。通過管線53將經分離之乙醛排出裝置外。又,通過管線52、23使有機相及/或水相所包含的有用成分(例如碘甲烷等)再循環至反應槽1而進行再利用。
冷凝器3a所生成的氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙酸及甲酸等,係通過管線32、15從冷凝器3a被供給至滌氣器系統8。到達滌氣器系統8的氣體成分中之碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸 等,在滌氣器系統8中被吸收液吸收。碘化氫因與吸收液中的甲醇或醋酸甲酯的反應而生成碘甲烷。接著,通過再循環管線48、23使含有該碘甲烷等有用成分的液體成分從滌氣器系統8再循環至反應槽1以進行再利用。
從蒸餾塔3的塔底部抽出的出塔液,相較於來自蒸餾塔3的上述頂部餾出物流及側流,包含更多沸點高於醋酸的成分(高沸點成分),例如包含丙酸、以及偕同飛沫的上述觸媒或輔觸媒。該出塔液中亦包含醋酸、碘甲烷、醋酸甲酯及水等。本實施形態中,係通過管線25、26將這種出塔液的一部分連續地導入至蒸發槽2以進行再循環,並通過管線25、23將出塔液的另一部分連續地導入至反應槽1以進行再循環。
從蒸餾塔3作為側流被連續地抽出的第1醋酸流,比被連續地導入至蒸餾塔3的蒸氣流更富含醋酸。亦即,第1醋酸流的醋酸濃度高於該蒸氣流的醋酸濃度。第1醋酸流的醋酸濃度,例如為90~99.9質量%,較佳為93~99質量%。又,第1醋酸流,除了醋酸以外,包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇、乙醛、甲酸及丙酸等。此外,管線27相對於蒸餾塔3的連結位置,在蒸餾塔3的高度方向上,如圖所示,可位於較管線21相對於蒸餾塔3的連結位置更上方,亦可位於較管線21相對於蒸餾塔3的連結位置更下方,亦可與管線21相對於蒸餾塔3的連結位置相同。通過管線27將來自蒸餾塔3的第1醋酸流以既定的流量連續地導入至下一個蒸餾塔5。
可通過管線55(氫氧化鉀導入管線)將氫氧化鉀供給或添加至流過管線27的第1醋酸流。可將氫氧化鉀作成為例如水溶液等的溶液來進行供給或添加。藉由對第1醋酸流供給或添加氫氧化鉀,可減少第1醋酸流中的碘化氫。具體而言,碘化氫與氫氧化鉀反應而生成碘化鉀與水。由此,可減少因碘化氫所導致之蒸餾塔等裝置的腐蝕。此外,可將氫氧化鉀供給或添加至本製程中存在碘化氫的適當處。此外,添加至製程中的氫氧化鉀亦會與醋酸反應而生成醋酸鉀。
蒸餾塔5係用以進行第2蒸餾步驟的單元,本實施形態中係將其定位為所謂的脫水塔。第2蒸餾步驟係用以將被連續地導入至蒸餾塔5的第1醋酸流進行蒸餾處理以進一步精製醋酸的步驟。蒸餾塔5,係例如層板塔及填充塔等的精餾塔所構成。採用層板塔作為蒸餾塔5的情況下,其理論板例如為5~50板,迴流比係對應於理論板數,例如為0.2~3000。在第2蒸餾步驟的蒸餾塔5的內部,將塔頂壓力設定為例如150~250kPa(錶壓),將塔底壓力設定成高於塔頂壓力,例如為160~290kPa(錶壓)。在第2蒸餾步驟的蒸餾塔5的內部,塔頂溫度,係設定為例如高於設定塔頂壓力下的水之沸點且低於醋酸之沸點的溫度,即130~160℃;塔底溫度,係設定為例如於醋酸在設定塔底壓力下之沸點以上的溫度,即150~175℃。
從蒸餾塔5的塔頂部,係將作為頂部餾出物流的蒸氣連續地抽出至管線33。從蒸餾塔5的塔底 部,係將出塔液連續地抽出至管線34。5b為再沸器。亦可從蒸餾塔5中之塔頂部與塔底部之間的高度位置,將側流(液體或氣體)連續地抽出至管線34。
從蒸餾塔5的塔頂部抽出的蒸氣,相較於來自蒸餾塔5的上述出塔液,包含更多沸點低於醋酸的成分(低沸點成分),例如包含碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等。這樣的蒸氣,係通過管線33被連續地導入至冷凝器5a。
冷凝器5a會將來自蒸餾塔5的蒸氣冷卻而使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分包含例如水及醋酸等。通過管線35使冷凝成分的一部分從冷凝器5a連續地迴流至蒸餾塔5。通過管線35、36、23將冷凝成分的另一部分從冷凝器5a連續地導入反應槽1,以進行再循環。又,冷凝器5a所生成的氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,係通過管線37、15從冷凝器5a被供給至滌氣器系統8。到達滌氣器系統8的氣體成分中的碘化氫,在滌氣器系統8中被吸收液吸收,而藉由吸收液中的碘化氫與甲醇或醋酸甲酯的反應生成碘甲烷,接著,通過再循環管線48、23使含有該碘甲烷等有用成分的液體成分從滌氣器系統8再循環至反應槽1以進行再利用。
從蒸餾塔5的塔底部抽出的出塔液(或側流),相較於來自蒸餾塔5的上述頂部餾出物流,包含更 多沸點高於醋酸的成分(高沸點成分),例如包含丙酸、醋酸鉀(將氫氧化鉀供給至管線27等的情況下)、以及偕同飛沫的上述觸媒或輔觸媒等。該出塔液中除了包含醋酸以外,亦包含碘化氫。這樣的出塔液(或是側流)係成為第2醋酸流,通過管線34被連續地導入至下一個蒸餾塔6。
第2醋酸流比被連續地導入至蒸餾塔5的第1醋酸流更富含醋酸。亦即,第2醋酸流的醋酸濃度高於第1醋酸流的醋酸濃度。第2醋酸流的醋酸濃度,在高於第1醋酸流的醋酸濃度的範圍內,例如為99.1~99.99質量%。又,第2醋酸流,如上所述,除了包含醋酸以外,亦包含例如丙酸、碘化氫等。本實施形態中,抽出側流的情況下,來自蒸餾塔5之側流的抽出位置,係在蒸餾塔5的高度方向上,低於第1醋酸流導入蒸餾塔5之位置。
可通過管線56(氫氧化鉀導入管線)將氫氧化鉀供給或添加至流過管線34的第2醋酸流。可將氫氧化鉀作成為例如水溶液等的溶液來進行供給或添加。藉由對第2醋酸流供給或添加氫氧化鉀,可減少第2醋酸流中的碘化氫。具體而言,碘化氫與氫氧化鉀反應而生成碘化鉀與水。由此,可減少因碘化氫所導致之蒸餾塔等裝置的腐蝕。
蒸餾塔6係用以進行第3蒸餾步驟的單元,本實施形態中係將其定位為所謂的去除高沸物塔。第3蒸餾步驟係將被連續地導入蒸餾塔6的第2醋酸流進行 精製處理以進一步精製醋酸的步驟。蒸餾塔6,係例如層板塔及填充塔等的精餾塔所構成。採用層板塔作為蒸餾塔6的情況下,其理論板例如為5~50板,迴流比係對應於理論板數,例如為0.2~3000。在第3蒸餾步驟的蒸餾塔6的內部,將塔頂壓力設定為例如-100~150kPa(錶壓),將塔底壓力設定成高於塔頂壓力,例如為-90~180kPa(錶壓)。在第3蒸餾步驟的蒸餾塔6的內部,塔頂溫度,係設定為例如高於設定塔頂壓力下的水之沸點且低於醋酸之沸點的溫度,即50~150℃;塔底溫度,係設定為例如高於醋酸在設定塔底壓力下之沸點的溫度,即70~160℃。
從蒸餾塔6的塔頂部,係將作為頂部餾出物流的蒸氣連續地抽出至管線38。從蒸餾塔6的塔底部,係將出塔液連續地抽出至管線39。6b為再沸器。從蒸餾塔6中之塔頂部與塔底部之間的高度位置,將側流(液體或氣體)連續地抽出至管線46。在蒸餾塔6的高度方向上,管線46相對於蒸餾塔6的連結位置,如圖所示,可位於較管線34相對於蒸餾塔6的連結位置更上方,亦可位於較管線34相對於蒸餾塔6的連結位置更下方,亦可與管線34相對於蒸餾塔6的連結位置相同。
從蒸餾塔6的塔頂部抽出的蒸氣,相較於來自蒸餾塔6的上述出塔液,包含更多沸點低於醋酸的成分(低沸點成分),除了包含醋酸以外,還包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇及甲酸等。這樣的蒸氣,係通過管線38被連續地導入至冷凝器6a。
冷凝器6a會將來自蒸餾塔6的蒸氣冷卻以使其部分冷凝,藉此分成冷凝成分與氣體成分。冷凝成分除了包含醋酸以外,還包含例如碘甲烷、碘化氫、水、醋酸甲酯、二甲醚、甲醇及甲酸等。冷凝成分的至少一部分,係通過管線40從冷凝器6a被連續地迴流至蒸餾塔6。冷凝成分的一部分(餾出成分),可通過管線40、41、42從冷凝器6a再循環至導入蒸餾塔5前的管線27中的第1醋酸流。連同此操作或取而代之,冷凝成分的一部分(餾出成分),可通過管線40、41、43從冷凝器6a再循環至導入蒸餾塔3前的管線21中的蒸氣流。又,冷凝成分的一部分(餾出成分),亦可通過管線40、44、23從冷凝器6a再循環至反應槽1。再者,來自冷凝器6a之餾出成分的一部分,如上所述,可供給至滌氣器系統8,而在該系統內作為吸收液使用。滌氣器系統8中,係將吸收有用成分後的氣體成分排出裝置外,接著,通過再循環管線48、23將包含有用成分的液體成分從滌氣器系統8導入或再循環至反應槽1以進行再利用。此外,來自冷凝器6a之餾出成分的一部分,亦可通過圖示以外的管線導入至在裝置內運轉的各種泵(省略圖示),以用作該泵的密封液。再者,來自冷凝器6a之餾出成分的一部分,亦可通過附設於管線40之抽出管線常態性地被抽出至裝置外,亦可非常態性地在需要時被抽出至裝置外。從蒸餾塔6中的蒸餾處理系統去除冷凝成分之一部分(餾出成分)的情況下,該餾出成分的量(餾出量)為冷凝器6a中所生成之冷凝液的例如0.01~30質量%,較佳為 0.1~10質量%,更佳為0.3~5質量%,更佳為0.5~3質量%。另一方面,冷凝器6a中所生成的氣體成分,包含例如一氧化碳、氫、甲烷、二氧化碳、氮、氧、碘甲烷、碘化氫、水、醋酸甲酯、醋酸、二甲醚、甲醇、乙醛及甲酸等,係通過管線45、15從冷凝器6a被供給至滌氣器系統8。
通過管線39從蒸餾塔6的塔底部抽出的出塔液,相較於來自蒸餾塔6的上述頂部餾出物流,包含更多沸點高於醋酸的成分(高沸點成分),例如包含丙酸、醋酸鉀(將氫氧化鉀供給至管線34等的情況下)等。又,通過管線39從蒸餾塔6的塔底部抽出的出塔液,亦包含在該醋酸製造裝置之構件的內壁生成的遊離之腐蝕性金屬、及來自腐蝕性碘的碘與該腐蝕性金屬之化合物。本實施形態中係將這樣的出塔液排出醋酸製造裝置外。
將從蒸餾塔6被連續地抽出至管線46的側流,作為第3醋酸流,連續地導入下一個離子交換樹脂塔7。該第3醋酸流,比被連續地導入蒸餾塔6的第2醋酸流更富含醋酸。亦即,第3醋酸流的醋酸濃度高於第2醋酸流的醋酸濃度。第3醋酸流的醋酸濃度,在高於第2醋酸流的醋酸濃度的範圍內,例如為99.8~99.999質量%。本實施形態中,來自蒸餾塔6之側流的抽出位置,在蒸餾塔6的高度方向上,可高於將第2醋酸流導入蒸餾塔6的位置。另一實施形態中,來自蒸餾塔6之側流的抽出位置,在蒸餾塔6的高度方向上,可與將第 2醋酸流導入蒸餾塔6的位置相同或較其更低。此外,蒸餾塔6亦可使用單蒸餾器(蒸發器)代替,又,若在蒸餾塔5充分去除雜質,則可省略蒸餾塔6。
離子交換樹脂塔7係用以進行吸附去除步驟的精製單元。該吸附去除步驟,係將被連續地導入至離子交換樹脂塔7的第3醋酸流中主要包含的微量碘烷(碘己烷或碘癸烷等)進行吸附去除以進一步精製醋酸的步驟。在離子交換樹脂塔7中,係將對碘烷具有吸附能力的離子交換樹脂填充至塔內以構成離子交換樹脂床。作為這種離子交換樹脂,可列舉例如:作為交換基的磺酸基、羧基、膦酸基等之中的脫離性質子的一部分被銀或銅等金屬所取代的陽離子交換樹脂。吸附去除步驟中,例如使第3醋酸流(液體)流過填充有這種離子交換樹脂的離子交換樹脂塔7的內部,在該流通過程中,第3醋酸流中的碘烷等雜質會被離子交換樹脂吸附而從第3醋酸流被去除。在吸附去除步驟的離子交換樹脂塔7中,內部溫度例如為18~100℃,醋酸流的通液速度[每1m3樹脂容積的醋酸處理量(m3/h)],例如為3~15m3/h.m3(樹脂容積)。
將第4醋酸流從離子交換樹脂塔7的下端部連續地導出至管線47。第4醋酸流的醋酸濃度高於第3醋酸流的醋酸濃度。亦即,第4醋酸流,比被連續地導入至離子交換樹脂塔7的第3醋酸流更富含醋酸。第4醋酸流的醋酸濃度,在高於第3醋酸流的醋酸濃度的範圍內,例如為99.9~99.999質量%或其以上。在本製造方法中,可將該第4醋酸流儲存於圖示以外的製品槽。
在該醋酸製造裝置中,可設置蒸餾塔,即所謂的製品塔或精加工塔,作為用以進一步精製來自離子交換樹脂塔7的上述第4醋酸流的精製單元。設置這種製品塔的情況下,該製品塔係例如層板塔及填充塔等的精餾塔所構成。採用層板塔作為製品塔的情況下,其理論板例如為5~50板,迴流比係對應於理論板數,例如為0.5~3000。在精製步驟的製品塔內部,將塔頂壓力設定為例如-195~150kPa(錶壓),將塔底壓力設定成高於塔頂壓力,例如為-190~180kPa(錶壓)。在製品塔的內部,塔頂溫度,係設定為例如高於設定塔頂壓力下的水之沸點且低於醋酸之沸點的溫度,即50~150℃;塔底溫度,係設定為例如高於醋酸在設定塔底壓力下之沸點的溫度,即70~160℃。此外,可使用單蒸餾器(蒸發器)代替製品塔或精加工塔。
設置製品塔的情況下,將來自離子交換樹脂塔7的第4醋酸流(液體)的全部或一部分連續地導入製品塔。從這種製品塔的塔頂部連續地抽出包含微量低沸點成分(例如碘甲烷、水、醋酸甲酯、二甲醚、巴豆醛、乙醛及甲酸等)的作為頂部餾出物流的蒸氣。該蒸氣在既定的冷凝器中被分成冷凝成分與氣體成分。可使冷凝成分的一部分連續地迴流至製品塔,並使冷凝成分的另一部分再循環至反應槽1或廢棄至系統外,或可為兩者,而氣體成分則是被供給至滌氣器系統8。從製品塔的塔底部連續地抽出包含微量高沸點成分的出塔液,並使該出塔液再循環至例如導入蒸餾塔6前的管線34中的第2 醋酸流。從製品塔中之塔頂部與塔底部之間的高度位置連續地抽出側流(液體)作為第5醋酸流。來自製品塔之側流的抽出位置,係在製品塔的高度方向上,例如低於第4醋酸流導入製品塔的位置。第5醋酸流比被連續地導入至製品塔的第4醋酸流更富含醋酸。亦即,第5醋酸流的醋酸濃度高於第4醋酸流的醋酸濃度。第5醋酸流的醋酸濃度,在高於第4醋酸流的醋酸濃度的範圍內,例如為99.9~99.999質量%或其以上。將該第5醋酸流儲存於例如圖示以外的製品槽。此外,離子交換樹脂塔7亦可以不設置於蒸餾塔6之下游的方式(或亦可除了設置於蒸餾塔6之下游以外還)設置於製品塔之下游,以處理出製品塔的醋酸流。
實施例
以下,根據實施例更詳細地說明本發明,但本發明並不受該等實施例所限定。
實施例1
以根據圖1之醋酸製造流程的實驗台設備(bench plant)進行實驗。於全壓2.8MPa(錶壓)、187℃下,將碘甲烷、水、醋酸甲酯、醋酸、碘化鋰、銠觸媒([Rh(CO)2I2]-)加入反應槽1,使甲醇與一氧化碳[反應槽CO分壓(絕對壓力)1.2MPa]連續地進行反應,並抽出反應混合液(碘甲烷7.9質量%、水2.6質量%、醋酸甲酯2.0質量%、醋酸(剩餘)、碘化鋰13.9質量%、銠觸媒910質量ppm)。以圖2所示的蒸發槽2將所得到之反應混合液進行閃蒸[壓力0.15MPa(錶壓)、溫度143℃],並將蒸 發槽2的蒸氣(揮發性成分)供給至蒸餾塔3並進行蒸餾,得到粗醋酸作為側流27。此外,使粗醋酸以外的成分再循環至反應槽1。在蒸發槽2中,未揮發之殘液(出塔液)的組成為碘甲烷1.1質量%、水2.7質量%、醋酸甲酯1.1質量%、醋酸(剩餘)、碘化鋰18質量%、銠觸媒1290質量ppm(Rh換算)。使用觸媒循環泵57,通過殘液流再循環管線18、19使蒸發槽2的出塔液再循環至反應槽1。若將在反應混合液加入蒸發槽2的量設為100質量份,則蒸發槽2的出塔液的量相當於76質量份。其他的24質量份全部加入蒸餾塔3。將反應槽1的排放氣體15導入滌氣器系統8(該實驗中為高壓吸收塔)。再通過含有一氧化碳之氣體的導入管線54,將該滌氣器系統8(高壓吸收塔)的廢氣49(CO:72質量%、H2:1質量%、CO2:8質量%、CH4:9質量%、N2:10質量%)以相對於蒸發槽2的殘液流排出量(出塔液量)為0.2NL/kg的方式加入蒸發槽底部205的漩渦碎機本體部206的下方位置。
此時,在蒸發槽2中,使連結上部圓筒部202與下部圓筒部204的倒圓錐台筒狀連結部203之內壁面的傾斜角度θ為0°(參照圖2)。又,使通過漩渦碎機本體部206之周端部與蒸發槽底部205之內底面的間隙c的殘液流(出塔液)之線速r為50m/h。此外,殘液流再循環管線18、19中的殘液流之線速r'為2900m/h。
以此方式進行100小時的連續運轉。結果,在100小時之間的平均Rh沉澱速度為0.15g/h。又,100小時 的實驗後,打開蒸發槽2及殘液流再循環管線(出塔液管線)以確認內部,結果雖於連結部203的內壁面上發現Rh沉澱,但從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部(內壁面)僅附著極少量的觸媒。
此外,平均Rh沉澱速度係由下式求得。
平均Rh沉澱速度(g/h)={開始測量時的系統內溶解Rh總量(g)-100小時後的系統內溶解Rh總量(g)+來自系統外的Rh投入總量(g)}/100(h)
實施例2
在蒸發槽2中,使該θ為45°,並使該線速r為10m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.15g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果雖於連結部203的內壁面上未附著觸媒,但從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部附著沉澱的Rh。
實施例3
在蒸發槽2中,使該θ為60°,並使該線速r為10m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.08g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203的內壁面上及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部僅附著極少量的觸媒。
實施例4
在蒸發槽2中,使該θ為60°,並使該線速r為50m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.04g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果於連結部203的內壁面上未附著Rh,從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部僅附著極少量的觸媒。
實施例5
在蒸發槽2中,使該θ為60°,並使該線速r為100m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.02g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203的內壁面上及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部皆完全未附著觸媒。
實施例6
在蒸發槽2中,使該θ為60°,並使該線速r為300m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.01g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203的內壁面上及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部皆完全未附著觸媒。
實施例7
在蒸發槽2中,使該θ為60°,並使該線速r為1000m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.007g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部皆完全未附著觸媒。
實施例8
在蒸發槽2中,使該θ為60°,並使該線速r為3000m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.005g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203的內壁面上及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部皆完全未附著觸媒。
實施例9
在蒸發槽2中,使該θ為60°,並使該線速r為300m/h,且使通過含有一氧化碳之氣體的導入管線54所加入之廢氣49的加入量相對於蒸發槽2的殘液流排出量(出塔液量)為0.02NL/kg,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.10g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果連結部203的內壁面上、及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部附著微量的觸媒。
比較例1
在蒸發槽2中,使該θ為0°,並使該線速r為10m/h,除此以外,進行與實施例1相同的實驗。結果,在100小時之間的平均Rh沉澱速度為0.2g/h。又,100小時的實驗後,打開蒸發槽2及出塔液管線以確認內部,結果於連結部203的內壁面上、及從蒸發槽底部205的出塔部至觸媒循環泵57之間的管路內部附著Rh微粒子。
作為以上總結,附記本發明之構成及其變化如下。
[1]一種醋酸之製造方法,其係具備下述步驟的醋酸之製造方法:羰基化反應步驟,在包含金屬觸媒及碘甲烷的觸媒系、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應以生成醋酸;蒸發步驟,將該羰基化反應步驟所得到之反應混合物在蒸發槽中分離成蒸氣流與殘液流;殘液流再循環步驟,使該殘液流回到反應槽;及蒸餾步驟,將該蒸氣流送至蒸餾以精製醋酸;該醋酸之製造方法的特徵為:該蒸發槽具有與反應混合物供給管線連接的本體部、與蒸氣流排出管線連接的頂部、及與殘液流再循環管線連接的底部;該本體部具有大口徑的上部圓筒部、小口徑的下部圓筒部、及將上部圓筒部與下部圓筒部連結的倒圓錐台筒狀連結部,且該蒸發槽具有下述(a)及(b)之中至少一種防止觸媒沉澱、蓄積的結構。
(a)結構,其中蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ為5°~85°
(b)結構,其中使具備板狀漩渦碎機本體部及水平支持著漩渦碎機本體部之腳部的漩渦碎機,被配設成該漩渦碎機本體部覆蓋著蒸發槽底部的殘液流再循環管線連結部之正上方,且被設計成通過漩渦碎機本體部之周端部與蒸發槽底部之內底面的間隙的殘液流之線速r大於10m/h
[2]如[1]之醋酸之製造方法,其中觸媒系更包含離子性碘化物。
[3]如[1]或[2]之醋酸之製造方法,其中在該(a)的結構中,蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ為10°~80°(較佳為20°~75°,更佳為30°~75°)。
[4]如[1]至[3]中任一項之醋酸之製造方法,其中在該(b)中,再將含有一氧化碳之氣體的導入管線連接於蒸發槽的底部及/或殘液流再循環管線。
[5]如[1]至[3]中任一項之醋酸之製造方法,其中在該(b)中,再將含有一氧化碳之氣體的導入管線連接於蒸發槽的底部。
[6]如[4]或[5]之醋酸之製造方法,其中從含有一氧化碳之氣體的導入管線導入相對於殘液流排出量而言為0.02NL/kg以上(較佳為0.02~5NL/kg,更佳為0.05~3NL/kg,再佳為0.1~1NL/kg)的含有一氧化碳之氣體。
[7]如[4]至[6]中任一項之醋酸之製造方法,其中導入的含有一氧化碳之氣體中的一氧化碳的含量為10質 量%以上(較佳為20質量%以上,更佳為40質量%以上,再佳為60質量%以上)。
[8]如[1]至[7]中任一項之醋酸之製造方法,其中在該(b)中,流通於殘液流再循環管線之殘液流的線速r',在從蒸發槽底部出塔部至反應槽的整個流路之80%以上(較佳為90%以上,更佳為95%以上)之中為10m/h以上(較佳為100m/h以上,更佳為500m/h以上,再佳為1000m/h以上,特佳為2000m/h以上)。
[9]如[1]至[8]中任一項之醋酸之製造方法,其中該蒸餾步驟包含去除低沸物步驟,該去除低沸物步驟係蒸餾該蒸氣流,而分離成富含選自碘甲烷及乙醛之至少一種低沸成分的頂部餾出物流、與富含醋酸的第1醋酸流。
[10]如[9]之醋酸之製造方法,其中該蒸餾步驟包含脫水步驟,該脫水步驟係蒸餾該第1醋酸流,而分離成比該第1醋酸流更富含醋酸的第2醋酸流、與相較於該第2醋酸流包含更多沸點低於醋酸之成分的頂部餾出物流的蒸氣。
[11]如[10]之醋酸之製造方法,其係通過氫氧化鉀導入管線將氫氧化鉀供給或添加至該第2醋酸流。
[12]如[10]或[11]之醋酸之製造方法,其中該蒸餾步驟包含去除高沸物步驟,該去除高沸物步驟係蒸餾該第2醋酸流,而分離成相較於出塔液包含更多沸點低於醋酸之成分的作為頂部餾出物流的蒸氣、相較於頂部餾出物流包含更多沸點高於醋酸之成分的出塔液、及比該第2醋酸流更富含醋酸的第3醋酸流。
[13]如[12]之醋酸之製造方法,其更包含將該第3醋酸流導入離子交換樹脂塔,以將該第3醋酸流中的碘烷吸附去除的步驟。
[14]如[9]至[13]中任一項之醋酸之製造方法,其更包含用以從該蒸餾步驟所得到之該頂部餾出物流中至少分離乙醛的乙醛分離去除步驟。
[15]如[1]至[14]中任一項之醋酸之製造方法,其更包含滌氣器步驟,該滌氣器步驟係以至少包含醋酸的吸收溶劑對來自製程的廢氣進行吸收處理,而分離成富含一氧化碳之流、與富含醋酸之流。
[16]如[15]之醋酸之製造方法,其中,在該(b)中將含有一氧化碳之氣體的導入管線連接於蒸發槽的底部及/或殘液流再循環管線,並將在該滌氣器步驟中分離的富含一氧化碳之流,作為導入該蒸發槽的底部及/或殘液流再循環管線的CO源使用。
[17]如[1]至[16]中任一項之醋酸之製造方法,其中在該(b)中,使該漩渦碎機本體部之周端部與蒸發槽底部之內底面的間隙的長度及/或該漩渦碎機本體部的周長變化,而調節該線速r。
[18]如[1]至[17]中任一項之醋酸之製造方法,其中該蒸發槽內壓力為50~1000kPa(絕對壓力)。
[19]如[1]至[18]中任一項之醋酸之製造方法,其中在該蒸發步驟中分離的蒸氣流及殘液流的比例,以質量比計為10/90~50/50(蒸氣流/殘液流)。
[20]如[1]至[19]中任一項之醋酸之製造方法,其中在該蒸發步驟中分離的蒸氣流的醋酸濃度為50~85質量%(較佳為55~75質量%)。
[21]如[1]至[20]中任一項之醋酸之製造方法,其中在該蒸發步驟中分離的殘液流的醋酸濃度為55~90質量%(較佳為60~85質量%)。
[22]如[1]至[21]中任一項之醋酸之製造方法,其具備該(b)。
[23]如[1]至[22]中任一項之醋酸之製造方法,其兼具該(a)與該(b)。
產業上的可利用性
本發明之醋酸之製造方法,可用作以甲醇法羰基化製程(甲醇法醋酸製程)所進行的醋酸之工業製造法。

Claims (9)

  1. 一種醋酸之製造方法,其係具備下述步驟的醋酸之製造方法:羰基化反應步驟,在包含金屬觸媒及碘甲烷的觸媒系、以及醋酸、醋酸甲酯、水的存在下,使甲醇與一氧化碳在反應槽中反應以生成醋酸;蒸發步驟,將該羰基化反應步驟所得到之反應混合物在蒸發槽中分離成蒸氣流與殘液流;殘液流再循環步驟,使該殘液流回到反應槽;及蒸餾步驟,將該蒸氣流送至蒸餾以精製醋酸;該醋酸之製造方法的特徵為:該蒸發槽具有與反應混合物供給管線連接的本體部、與蒸氣流排出管線連接的頂部、及與殘液流再循環管線連接的底部;該本體部具有大口徑的上部圓筒部、小口徑的下部圓筒部、及將上部圓筒部與下部圓筒部連結的倒圓錐台筒狀連結部,且該蒸發槽具有下述(a)及(b)之中至少一種防止觸媒沉澱、蓄積的結構;(a)結構,其中蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ為5°~85°(b)結構,其中使具備板狀漩渦碎機本體部及水平支持著漩渦碎機本體部之腳部的漩渦碎機,被配設成該漩渦碎機本體部覆蓋著蒸發槽底部的殘液流再循環管線連結部之正上方,且被設計成通過漩渦碎機本體部之周端部與蒸發槽底部之內底面的間隙的殘液流之線速r大於10m/h。
  2. 如請求項1之醋酸之製造方法,其中觸媒系更包含離子性碘化物。
  3. 如請求項1或2之醋酸之製造方法,其中,在該(a)的結構中,蒸發槽的該倒圓錐台筒狀連結部之內壁面的傾斜角度θ為10°~80°。
  4. 如請求項1至3中任一項之醋酸之製造方法,其中在該(b)中,再將含有一氧化碳之氣體的導入管線連接於蒸發槽的底部及/或殘液流再循環管線。
  5. 如請求項4之醋酸之製造方法,其中從含有一氧化碳之氣體的導入管線導入相對於殘液流排出量而言為0.02NL/kg以上的含有一氧化碳之氣體。
  6. 如請求項1至5中任一項之醋酸之製造方法,其中在該(b)中,流通於殘液流再循環管線之殘液流的線速r ',在從蒸發槽底部出塔部至反應槽的整個流路之80%以上之中為10m/h以上。
  7. 如請求項1至6中任一項之醋酸之製造方法,其中該蒸餾步驟包含去除低沸物步驟,該去除低沸物步驟係蒸餾該蒸氣流,而分離成富含選自碘甲烷及乙醛之至少一種低沸成分的頂部餾出物流、與富含醋酸的醋酸流。
  8. 如請求項7之醋酸之製造方法,其更包含用以從該頂部餾出物流至少分離乙醛的乙醛分離去除步驟。
  9. 如請求項1至8中任一項之醋酸之製造方法,其更包含滌氣器步驟,該滌氣器步驟係以至少包含醋酸之吸收溶劑對來自製程的廢氣進行吸收處理,而分離成富含一氧化碳之流、與富含醋酸之流。
TW106118996A 2016-10-28 2017-06-08 醋酸之製造方法 TWI697476B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016211922 2016-10-28
JP2016-211922 2016-10-28
JP2017039388 2017-03-02
JP2017-039388 2017-03-02

Publications (2)

Publication Number Publication Date
TW201829364A true TW201829364A (zh) 2018-08-16
TWI697476B TWI697476B (zh) 2020-07-01

Family

ID=60421720

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106118996A TWI697476B (zh) 2016-10-28 2017-06-08 醋酸之製造方法

Country Status (11)

Country Link
EP (1) EP3333147B1 (zh)
JP (1) JP6491750B2 (zh)
KR (1) KR102257562B1 (zh)
CN (1) CN110214132A (zh)
BR (1) BR112019008340A2 (zh)
ES (1) ES2744537T3 (zh)
MX (1) MX370246B (zh)
MY (1) MY186617A (zh)
PH (1) PH12019550075A1 (zh)
TW (1) TWI697476B (zh)
WO (1) WO2018078924A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY186617A (en) 2016-10-28 2021-07-30 Daicel Corp Method for producing acetic acid
ES2867879T3 (es) * 2018-05-15 2021-10-21 Daicel Corp Método de producción de ácido acético
WO2019229857A1 (ja) 2018-05-29 2019-12-05 株式会社ダイセル 酢酸の製造方法
KR102591297B1 (ko) 2018-05-29 2023-10-20 주식회사 다이셀 아세트산의 제조 방법
JP6588656B1 (ja) * 2018-05-29 2019-10-09 株式会社ダイセル 酢酸の製造方法
JP6626988B1 (ja) * 2018-05-29 2019-12-25 株式会社ダイセル 酢酸の製造方法
CN110785397B (zh) 2018-05-29 2022-12-02 株式会社大赛璐 乙酸的制备方法
JP6546709B1 (ja) * 2018-07-02 2019-07-17 株式会社ダイセル 酢酸の製造方法
US10759730B2 (en) 2018-07-02 2020-09-01 Daicel Corporation Method for producing acetic acid
WO2020008505A1 (ja) * 2018-07-02 2020-01-09 株式会社ダイセル 酢酸の製造方法
JP6569019B1 (ja) * 2018-07-02 2019-08-28 株式会社ダイセル 酢酸の製造方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3769329A (en) 1970-03-12 1973-10-30 Monsanto Co Production of carboxylic acids and esters
US3845121A (en) 1971-11-10 1974-10-29 Monsanto Co Process for separating carbonylation products from reaction mixture without catalyst decomposition
JPS5710301A (en) 1980-06-18 1982-01-19 Daicel Chem Ind Ltd Concentrating device
US4733006A (en) 1980-12-29 1988-03-22 Monsanto Company Carbonylation process with an alkali metal acetate as catalyst stabilizer
US5144068A (en) 1984-05-03 1992-09-01 Hoechst Celanese Corporation Methanol carbonylation process
CA1299195C (en) 1986-06-16 1992-04-21 G. Paull Torrence Addition of hydrogen to carbon monoxide feed gas in producing acetic acid by carbonylation of methanol
CA2035426A1 (en) 1990-02-09 1991-08-10 David W. Smith Catalytic carbonylation process
US5374774A (en) 1994-03-11 1994-12-20 Hoechst Celanese Corporation Control system for an acetic acid manufacturing process
IN192600B (zh) 1996-10-18 2004-05-08 Hoechst Celanese Corp
CN1180865C (zh) 1999-10-29 2004-12-22 株式会社日本触媒 蒸馏装置和蒸馏方法
JP5069827B2 (ja) 2001-02-28 2012-11-07 株式会社ダイセル 反応制御方法および制御装置
US6599348B2 (en) 2001-06-01 2003-07-29 Celanese International Corporation Methods for reducing entrainment of solids and liquids
US7223886B2 (en) 2004-03-02 2007-05-29 Celanese International Corporation Removal of permanganate reducing compounds from methanol carbonylation process stream
US7855306B2 (en) 2005-04-28 2010-12-21 Celanese International Corporation Process for the production of acetic acid
CN1757627A (zh) * 2005-06-30 2006-04-12 西南化工研究设计院 甲醇低压液相羰基合成醋酸工艺中反应热平衡调节方法
KR20080061390A (ko) 2005-10-03 2008-07-02 다이셀 가가꾸 고교 가부시끼가이샤 아세트산의 제조 방법
CN101489964B (zh) * 2006-06-13 2012-07-18 国际壳牌研究有限公司 二醇分离和纯化
CN200984467Y (zh) * 2006-12-14 2007-12-05 上海太平洋化工(集团)公司焦化设计院 一种用于羰基合成醋酐及醋酸工艺中的闪蒸器
US7989659B2 (en) 2007-05-17 2011-08-02 Celanese International Corporation Method and apparatus for making acetic acid with improved light ends column productivity
CN201415064Y (zh) * 2009-04-03 2010-03-03 北京泽华化学工程有限公司 一种用于化工生产中的闪蒸器
KR20120029399A (ko) * 2009-04-24 2012-03-26 인비스타 테크놀러지스 에스.에이.알.엘. 조질 테레프탈산 및 관련 공정 스트림의 처리 및 정제를 위한 방법, 공정 및 시스템
US8168822B2 (en) * 2009-07-07 2012-05-01 Celanese International Corporation Acetic acid production by way of carbonylation with enhanced reaction and flashing
WO2011146446A1 (en) 2010-05-18 2011-11-24 Celanese International Corporation Process for purifying acetic acid streams by removing permanganate reducing compounds
CN103249705B (zh) * 2010-10-06 2015-11-25 株式会社大赛璐 乙酸的制造方法
WO2012081416A1 (ja) * 2010-12-15 2012-06-21 株式会社ダイセル 酢酸の製造方法
EP2657220B1 (en) * 2010-12-24 2016-08-31 Daicel Corporation Acetic acid production method
US9079121B2 (en) * 2011-12-02 2015-07-14 Celanese International Corporation Distillation column having enlarged downcomers and method of downcomer enlargement
CN104080764B (zh) 2011-12-16 2016-09-14 国际人造丝公司 催化剂稳定性增强的乙酸制备方法
US9193657B2 (en) * 2012-08-17 2015-11-24 Celanese International Corporation Catalyst stability in carbonylation processes
AR094541A1 (es) * 2013-01-25 2015-08-12 Daicel Corp Procedimiento para producir ácido carboxílico
WO2016020410A1 (en) * 2014-08-05 2016-02-11 Bp Chemicals Limited Process
JP2016211922A (ja) 2015-05-01 2016-12-15 Ckd株式会社 三次元計測装置
JP6421987B2 (ja) 2015-08-20 2018-11-14 豊田合成株式会社 オープニングトリムウエザストリップ
MY186617A (en) 2016-10-28 2021-07-30 Daicel Corp Method for producing acetic acid

Also Published As

Publication number Publication date
MX370246B (es) 2019-12-04
EP3333147A1 (en) 2018-06-13
MY186617A (en) 2021-07-30
KR102257562B1 (ko) 2021-05-31
JP6491750B2 (ja) 2019-03-27
BR112019008340A2 (pt) 2019-08-06
TWI697476B (zh) 2020-07-01
WO2018078924A1 (ja) 2018-05-03
CN110214132A (zh) 2019-09-06
KR20190069546A (ko) 2019-06-19
EP3333147B1 (en) 2019-07-10
ES2744537T3 (es) 2020-02-25
EP3333147A4 (en) 2018-06-13
JPWO2018078924A1 (ja) 2018-10-25
MX2019004920A (es) 2019-06-20
PH12019550075A1 (en) 2020-01-20

Similar Documents

Publication Publication Date Title
TWI697476B (zh) 醋酸之製造方法
JP5662269B2 (ja) 酢酸の製造方法
TWI720207B (zh) 醋酸之製造方法
US10266473B2 (en) Method for producing acetic acid
CN112368257B (zh) 乙酸的制造方法
CN110049963B (zh) 乙酸的制备方法
TWI697477B (zh) 醋酸之製造方法
TWI697478B (zh) 醋酸之製造方法
TWI705052B (zh) 醋酸之製造方法
TWI720210B (zh) 醋酸之製造方法
KR102600551B1 (ko) 아세트산의 제조 방법
TWI701234B (zh) 醋酸之製造方法
TWI776054B (zh) 醋酸之製造方法
TWI833768B (zh) 醋酸之製造方法
JP6626987B1 (ja) 酢酸の製造方法
US10207977B2 (en) Method for producing acetic acid
US10428003B2 (en) Method for producing acetic acid
TW202237556A (zh) 醋酸之製造方法