TW201818254A - 控制多個低功率狀態的方法和記憶體裝置 - Google Patents

控制多個低功率狀態的方法和記憶體裝置 Download PDF

Info

Publication number
TW201818254A
TW201818254A TW106137627A TW106137627A TW201818254A TW 201818254 A TW201818254 A TW 201818254A TW 106137627 A TW106137627 A TW 106137627A TW 106137627 A TW106137627 A TW 106137627A TW 201818254 A TW201818254 A TW 201818254A
Authority
TW
Taiwan
Prior art keywords
low power
state
power mode
memory device
exit
Prior art date
Application number
TW106137627A
Other languages
English (en)
Other versions
TWI759349B (zh
Inventor
崔娟圭
金惠蘭
申丞濬
吳起碩
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201818254A publication Critical patent/TW201818254A/zh
Application granted granted Critical
Publication of TWI759349B publication Critical patent/TWI759349B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0629Configuration or reconfiguration of storage systems
    • G06F3/0634Configuration or reconfiguration of storage systems by changing the state or mode of one or more devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/325Power saving in peripheral device
    • G06F1/3275Power saving in memory, e.g. RAM, cache
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3293Power saving characterised by the action undertaken by switching to a less power-consuming processor, e.g. sub-CPU
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0604Improving or facilitating administration, e.g. storage management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0625Power saving in storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0655Vertical data movement, i.e. input-output transfer; data movement between one or more hosts and one or more storage devices
    • G06F3/0659Command handling arrangements, e.g. command buffers, queues, command scheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4067Refresh in standby or low power modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)

Abstract

本發明提供一種控制多個低功率狀態的方法和記憶體裝置。所述方法包含:進入低功率模式狀態,其中響應於低功率狀態進入命令刷新記憶體裝置的記憶體單元列並且功率消耗低於在自身刷新模式狀態中的功率消耗;以及基於在記憶體裝置的模式暫存器中設置的低功率模式退出時延時間,或警報信號和低功率模式退出命令中的至少一個,退出所述低功率模式狀態。

Description

控制多個低功率狀態的方法和記憶體裝置
本發明概念涉及一種記憶體裝置,且更具體來說涉及一種通過使用多個低功率狀態而最大化功率節省的記憶體裝置。
動態隨機存取記憶體(dynamic random access memory,DRAM)用作計算裝置或行動裝置中的工作記憶體。工作記憶體提供用於待由系統處理器存取和執行的資料和程式(或碼)的臨時儲存地點。例如DRAM的揮發性記憶體裝置執行刷新操作以保持儲存在其中的資料位元。
DRAM的刷新操作受記憶體控制器控制。記憶體控制器通過發佈刷新命令,週期地存取DRAM的資料位元。此外,DRAM具有用於減少功率消耗的自身刷新模式。自身刷新模式允許刷新操作通過使用內部計數器而自動執行,並且因此引起低功率消耗。當DRAM未被存取達較長時間時,響應於自身刷新進入命令(self-refresh entry command,SRE)和自身刷新退出命令(self-refresh exit command,SRX)通過記憶體控制器執行自身刷新模式。
如果即使保持儲存在DRAM中的資料位元與自身刷新模式相比功率消耗可以進一步減少,那麼包含DRAM的行動裝置將呈現更好的性能。
本發明概念的示例性實施例提供控制具有多個低功率狀態的記憶體裝置的功率狀態的方法。
本發明概念的示例性實施例還提供具有多個低功率狀態的上述記憶體裝置。
根據示例性實施例,提供控制記憶體裝置的功率狀態的方法,所述方法包含:響應於低功率狀態進入命令進入低功率模式狀態,其中記憶體裝置的儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗;以及基於在記憶體裝置的模式暫存器中設置的低功率模式退出等待時間,自動退出低功率模式狀態。
根據示例性實施例,提供控制記憶體裝置的功率狀態的方法,所述方法包含:響應於低功率狀態進入命令進入低功率模式狀態,其中儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗;以及接收指示從低功率模式狀態中退出的警報信號和低功率模式退出命令中的至少一個,其中低功率模式退出命令是在低功率模式退出等待時間過去之後接收的,其中低功率模式退出等待時間是在記憶體裝置自動退出低功率模式狀態之後的時間期間,並且其中低功率模式退出等待時間是在記憶體裝置的模式暫存器中設置的。
根據示例性實施例,提供控制記憶體裝置的功率狀態的方法,所述方法包含:響應於低功率狀態進入命令進入低功率模式狀態,其中儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗;接收指示從低功率模式狀態轉變到自身刷新模式狀態的觸發信號;以及響應於觸發信號在自身刷新模式狀態中操作。
根據示例性實施例,提供記憶體裝置,所述記憶體裝置包含:儲存單元陣列,其包括儲存單元列;以及控制邏輯,其經配置以控制自身刷新模式狀態和第一低功率模式狀態,在所述自身刷新模式狀態中刷新儲存單元列,在所述第一低功率模式狀態中的功率消耗低於在自身刷新模式狀態中的功率消耗,其中響應於第一低功率狀態進入命令,控制邏輯控制進入到第一低功率模式狀態中,並且基於在記憶體裝置的模式暫存器中設置的第一低功率模式退出等待時間,控制從第一低功率模式狀態中退出。
根據示例性實施例,提供記憶體裝置,所述記憶體裝置包含:儲存單元陣列,其包括儲存單元;以及控制邏輯,其經配置以控制進入到閒置狀態、第一低功率模式狀態和第二低功率模式狀態中以及從閒置狀態、第一低功率模式狀態和第二低功率模式狀態中退出,其中在第一功率模式狀態和第二功率模式狀態中刷新儲存單元,其中記憶體裝置在第一低功率模式中與在閒置狀態中相比消耗較少的功率並且與在第二低功率模式狀態中相比消耗較多的功率,並且其中控制邏輯控制在第一時間期間之後從第一低功率模式狀態中自動退出到閒置狀態,並且控制在第二時間期間之後從第二低功率模式狀態中自動退出到閒置狀態。
在下文中,將參考所附圖式來詳細描述本發明概念的示例性實施例。應理解本發明概念可以不同方式實施而不脫離本發明概念的精神和範圍。因此,應理解以下示例性實施例僅出於說明目的提供且並不解釋為以任何方式限制本發明概念。
圖1說明根據示例性實施例的包含具有多個低功率狀態的記憶體裝置的儲存系統。
參考圖1,儲存系統100可以連接到中央處理單元(central processing unit,CPU)50並且與所述中央處理單元通信。儲存系統100可以根據從CPU 50接收的各種輸入/輸出命令至少執行寫入操作或讀取操作。在圖1中,儲存系統100大體上包含記憶體控制器110和記憶體裝置120。
儲存系統100可以響應於CPU 50的命令執行寫入操作/讀取操作或其它記憶體存取操作。如果CPU 50並不發出任何命令,那麼儲存系統100可以為閒置狀態。儲存系統100的閒置狀態可以暗示記憶體裝置120處於閒置狀態。
儲存系統100可以根據記憶體控制器110的命令CMD確定記憶體裝置120的操作狀態。記憶體裝置120可以通過接收命令CMD的控制邏輯310確定記憶體裝置120的操作狀態。
舉例來說,記憶體裝置120可以根據活躍命令ACT以活躍模式狀態操作、根據刷新命令REF以刷新模式狀態操作、根據深度省電命令DPD以深度省電模式狀態操作、根據自身刷新進入命令SRE以自身刷新模式狀態操作,並且根據低功率狀態進入命令LPSE以低功率模式狀態操作。
記憶體裝置120可以包含儲存單元陣列,其中佈置有多個儲存單元。控制邏輯310可以控制自身刷新模式狀態和低功率模式狀態以刷新儲存單元列。控制邏輯310可以通過自身刷新進入命令SRE和自身刷新退出命令SRX操作或控制在自身刷新模式狀態中的記憶體裝置120。控制邏輯310可以響應於低功率狀態進入命令LPSE控制進入到低功率模式狀態中。控制邏輯310可以通過在模式暫存器中設置的低功率模式退出等待時間tXP_LPS(圖4),控制從低功率模式狀態中自動退出,或者響應於警報信號ALRM、觸發信號TRIG和/或低功率模式退出命令LPSX,控制從低功率模式狀態中退出。
圖2說明根據示例性實施例的記憶體裝置的實例狀態圖。
參考圖2,記憶體裝置120(圖1)可以為多個操作模式狀態中的一個。舉例來說,記憶體裝置120可具有總共六個操作模式狀態,其包含閒置狀態210、活躍模式狀態220、刷新模式狀態230、深度省電模式狀態240、自身刷新模式狀態250和低功率模式狀態260。在此實施例中,雖然將描述六個操作模式狀態,但是本發明概念不限於此,並且取決於記憶體裝置120的操作,記憶體裝置120可具有各種操作模式狀態。
閒置狀態210定義記憶體裝置120何時並不操作,也就是說,記憶體裝置120何時並不被存取。舉例來說,當不存在CPU 50的命令(圖1)時或當CPU 50處於休眠模式時,記憶體裝置120可以處於閒置狀態210。
活躍模式狀態220表示其中記憶體裝置120響應於活躍命令ACT而執行正常操作(例如,讀取、寫入)和其它操作的狀態。活躍模式狀態220為其中由於記憶體裝置120中的所有電路被啟用而使得記憶體裝置120呈現最大功率消耗的狀態。當完成在活躍模式狀態220中的正常操作時,記憶體裝置120可以自動轉變到閒置狀態210。
刷新模式狀態230表示自動刷新狀態,在所述自動刷新狀態中記憶體裝置120響應於通過記憶體控制器110應用的週期刷新命令REF,而刷新儲存單元陣列的儲存單元列。在刷新模式狀態230中,考慮到記憶體裝置120的時鐘信號CK是運作的且CPU 50(圖1)的命令可以發佈到記憶體裝置120,可以啟用所有電路。因此,在刷新模式狀態230中的功率消耗可與在活躍模式狀態220中的功率消耗實質相同。當完成在刷新模式狀態230中的刷新操作時,記憶體裝置120可以自動轉變到閒置狀態210。
深度省電模式狀態240表示深度省電狀態,在所述深度省電狀態中記憶體裝置120響應於深度省電命令DPD而停用在記憶體裝置120中的大多數電路。深度省電模式狀態240是其中記憶體裝置120呈現最小功率消耗的狀態。響應於喚醒命令WAKE-UP,記憶體裝置120可以啟用在深度省電模式狀態240中已經停用的電路並且可以轉變到閒置狀態210。
自身刷新模式狀態250表示自身刷新狀態,在所述自身刷新狀態中記憶體裝置120響應於自身刷新進入命令SRE而刷新儲存單元陣列的儲存單元列。當某一時間期間過去了而記憶體裝置120仍處於閒置狀態210時,為了降低記憶體裝置120的功率消耗,可以通過記憶體控制器110(圖1)發佈自身刷新進入命令SRE。
在自身刷新模式狀態250中,在記憶體裝置120中的電路之間,可以啟用直接地和間接地與自身刷新操作相關的電路並且可以停用其它電路。舉例來說,在自身刷新模式狀態250中,可以停用從記憶體控制器110接收時鐘信號CK的時鐘緩衝器。在自身刷新模式狀態250中,當停用時鐘信號CK時,可以通過使用內部計數器(未示出)來執行刷新操作。因此,在自身刷新模式狀態250中的功率消耗可以低於在活躍模式狀態220以及刷新模式狀態230中的功率消耗,在所述活躍模式狀態220和刷新模式狀態230中可以啟用所有電路。響應於可通過記憶體控制器110發佈的自身刷新退出命令SRX,記憶體裝置120可以退出自身刷新模式狀態250。
低功率模式狀態260表示低功耗狀態,在所述低功耗狀態中雖然儲存單元陣列的儲存單元列如在自身刷新模式狀態250中那樣被更新,但是功率消耗低於在自身刷新模式狀態250中的功率消耗。響應於低功率狀態進入命令LPSE,記憶體裝置120可以從自身刷新模式狀態250轉變到低功率模式狀態260。此外,響應於低功率狀態進入命令LPSE,記憶體裝置120可以從閒置狀態210轉變到低功率模式狀態260。
在低功率模式狀態260中,在記憶體裝置120中的電路之間,僅啟用直接地與自身刷新操作相關的電路並且可以停用其它電路。舉例來說,在低功率模式狀態260中,在自身刷新模式狀態250中被啟用的電路之間,可以僅啟用與內部計數器相關的電路。因此,由於與自身刷新模式狀態250相比低功率模式狀態260控制更多的電路被停用,所以與在自身刷新模式狀態250中相比,可以進一步減少在低功率模式狀態260中的功率消耗。
當完成在低功率模式狀態260中的自身刷新操作時,記憶體裝置120可以自動地轉變到閒置狀態210。此處,根據在模式暫存器312中設置的低功率模式退出等待時間tXP_LPS(圖3),記憶體裝置120可以自動退出低功率模式狀態260。低功率模式退出等待時間tXP_LPS為某一時間期間,所述時間期間被設置成使得通過控制記憶體裝置120足夠早的退出低功耗狀態而不會對記憶體裝置120的正常操作或閒置狀態造成影響。在低功率模式退出等待時間tXP_LPS過去之後,通過使用內部計數器或單獨的計數器(未示出),記憶體裝置120可以接收有效的命令。
根據示例性實施例,記憶體裝置120可以通過在記憶體裝置120的特定接腳(PINC)中設置的警報信號ALRM2(圖5)而退出低功率模式狀態260。舉例來說,記憶體裝置120可以通過由特定接腳(PINC)啟用的警報信號ALRM2而退出低功率模式狀態260,這比應用低功率模式退出命令LPSX的時間點要早出低功率模式退出等待時間tXP_LPS。
舉例來說,低功率模式退出等待時間tXP-LPS可以長於自身刷新退出等待時間tXP。由於與自身刷新模式狀態250相比在低功率模式狀態260中更多電路被停用,所以可能花費更多的時間來啟用在低功率模式狀態260中停用的電路。因此,低功率模式退出等待時間tXP-LPS可以相對較長。
圖3說明根據示例性實施例的記憶體裝置的實例方塊圖。
參考圖3,記憶體裝置120(圖1)可包含時鐘緩衝器302、命令/位址接收器304、時鐘啟用接收器306、晶片選擇接收器308、資料登錄/輸出緩衝器309、控制邏輯310、儲存單元陣列320和第一電路330到第四電路360。
時鐘緩衝器302可以接收來自記憶體控制器110的時鐘信號CK(圖1)並且產生內部時鐘信號ICK。與反轉時鐘信號CKB一起,時鐘信號CK可以被提供為連續的替代地反轉信號。一對時鐘信號CK和CKB可以改善計時準確性,這是因為可以參考它們的交點檢測到上升/下降邊緣。
命令/位址接收器304可以接收來自記憶體控制器110的命令/位址信號CA,並且響應於內部時鐘信號ICK而將接收到的命令/位址信號CA提供到控制邏輯310。命令/位址信號CA可以包含命令信號和位址信號。命令/位址信號CA可以通過控制邏輯310區分為命令信號和位址信號。
時鐘啟用接收器306可以接收時鐘啟用信號CKE,並且可以響應於內部時鐘信號ICK而將接收到的時鐘啟用信號CKE提供到控制邏輯310。當記憶體裝置120進入省電模式時,時鐘啟用信號CKE可用作設置成邏輯低的偽命令。舉例來說,從自身刷新模式(例如,自身刷新模式狀態250)到自身刷新省電模式(例如,自身刷新省電模式狀態255)的轉變(圖5)可以通過時鐘啟用信號CKE的邏輯低來執行。
晶片選擇接收器308可以接收晶片選擇信號/CS,並且可以響應於內部時鐘信號ICK而將接收到的晶片選擇信號/CS提供到控制邏輯310。
資料登錄/輸出緩衝器309緩衝輸入到記憶體裝置120的資料和輸出自記憶體裝置120的資料。在讀取操作中,資料登錄/輸出緩衝器309將從儲存單元陣列320接收的讀取資料選擇性地通過第一電路330到第四電路360中的至少一個輸出到資料登錄/輸出終端DQ。在寫入操作中,資料登錄/輸出緩衝器309可以緩衝通過資料登錄/輸出終端DQ接收到的寫入資料,並且將寫入資料選擇性地通過第一電路330到第四電路360中的至少一個提供到儲存單元陣列320。
控制邏輯310可以根據晶片選擇信號/CS、時鐘啟用信號CKE、命令/位址信號CA及其組合來確定操作模式設置,並且可以產生控制所確定的操作模式的控制信號CNTL。取決於操作模式,控制邏輯310可以產生控制信號CNTL的序列。
控制邏輯310可以包含模式暫存器312和刷新控制邏輯314。雖然在此實施例中控制邏輯310描述為包含兩個組件(為了概念地描述本發明概念為模式暫存器312和刷新控制邏輯314),但是本發明概念不限於此,且控制邏輯310可以包含用於控制記憶體裝置120的操作模式的各種其它電路元件。
根據記憶體裝置120的操作模式的各種選項、功能和特徵可以編程到模式暫存器312中。可以通過模式暫存器設置(MRS)命令對模式暫存器312進行編程,並且可以使用用戶定義的變數來編程。取決於功能和/或操作模式,模式暫存器312被分成各種欄位,並且模式暫存器312的內容可以通過重新執行加電和/或MRS命令來更新。
舉例來說,模式暫存器312可以儲存用於控制突發長度、讀取突發類型、列存取頻閃(CAS)時延、測試模式、資料掩蔽功能、寫入資料匯流排反轉(DBI)功能、讀取DBI功能等等的資料。此外,模式暫存器312可以儲存設置成自動退出低功率模式狀態260(圖2)的低功率模式退出等待時間tXP_LPS。
當記憶體裝置120為自身刷新模式狀態250或低功率模式狀態260時,刷新控制邏輯314可以控制自身刷新操作。響應於自身刷新進入命令SRE和自身刷新退出命令SRX,刷新控制邏輯314可以控制自身刷新模式狀態250以刷新儲存單元列。
響應於低功率狀態進入命令LPSE,刷新控制邏輯314可以控制低功率模式狀態260以刷新儲存單元列。通過在模式暫存器312中設置的低功率模式退出等待時間tXP_LPS,刷新控制邏輯314可以控制記憶體裝置120自動退出低功率模式狀態260。
刷新控制邏輯314可以接收指示從低功率模式狀態260中退出的警報信號ALRM2。在從接收警報信號ALRM2的時間點經過了低功率模式退出等待時間tXP_LPS之後,刷新控制邏輯314可以通過接收低功率模式退出命令LPSX,控制記憶體裝置120退出低功率模式狀態260。
刷新控制邏輯314可以接收指示從低功率模式狀態260到自身刷新模式狀態250的轉變的觸發信號TRIG。響應於觸發信號TRIG,刷新控制邏輯314可以控制記憶體裝置120在自身刷新模式狀態250中操作。
刷新控制邏輯314可以接收指示從自身刷新模式狀態250中退出的警報信號ALRM1。在從接收警報信號ALRM1的時間點經過了自身刷新退出等待時間tXP之後,刷新控制邏輯314可以通過接收自身刷新退出命令SRX,控制記憶體裝置120退出自身刷新模式狀態250。
儲存單元陣列320可以包含DRAM儲存單元,所述DRAM儲存單元中的每一個包含一個存取電晶體和一個儲存電容器。儲存單元經佈置以形成行和列的矩陣結構,並且連接到每個行的儲存單元可以構成儲存單元列。
第一電路330到第四電路360是記憶體裝置120的內部電路,並且是根據本發明概念而概念性地區分的電路。第一電路330到第四電路360可以通過控制邏輯310的控制信號CNTL來控制,並且取決於記憶體裝置120的操作模式,可以選擇性地啟用或停用所述電路。
舉例來說,第一電路330到第四電路360可以包含感測放大器電路、列柵極、輸入/輸出電路、行解碼器、列解碼器等等,所述元件涉及儲存單元陣列320的讀取操作和寫入操作。行解碼器可以解碼行位址,且經解碼的行位址可以被提供到儲存單元陣列320,並且行解碼器操作選自連接到儲存單元的多個字線之中的字線。儲存於連接到所選擇字線的儲存單元中的資料可以被感測放大器電路感測到且被放大。列解碼器可以解碼列位址,並且列柵極可以根據經解碼的列位址通過執行列選通來選擇連接到儲存單元的位元線。輸入/輸出電路可以緩衝讀取自儲存單元陣列320的資料且將資料提供到資料登錄/輸出緩衝器309,或可以緩衝通過資料登錄/輸出緩衝器309接收的資料且將資料提供到儲存單元陣列320。
此外,第一電路330到第四電路360可以包含各種電路,例如,資料反轉電路(其響應於反轉控制信號而通過反轉或非反轉通過資料匯流排和資料登錄/輸出緩衝器309接收到的資料來恢復資料)、資料掩蔽電路(其控制通過資料登錄/輸出緩衝器309接收到的資料並不被選擇性地寫入)等等。
在此實施例中,為方便起見,應注意取決於參考圖2、圖5和圖9所描述的記憶體裝置120的操作模式同時啟用的電路統稱為第一電路330到第四電路360中的每一個。
舉例來說,第一電路330到第四電路360可以為在閒置狀態210中、在活躍模式狀態220中和在刷新模式狀態230中啟用的電路。第一電路330到第三電路350可以為在自身刷新模式狀態250中啟用的電路。第一電路330和第二電路340可以為在低功率模式狀態260中啟用的電路。在深度省電模式狀態240中,可以停用第一電路330到第四電路360中的全部。
圖4是根據示例性實施例在低功率模式狀態中操作的記憶體裝置的時序圖。將參考圖4描述低功率模式進入和低功率模式自動退出。應注意在本發明概念的示例性實施例中所描述的時序圖並不始終按比例示出。
參考圖3和圖4,記憶體裝置120可以接收一對時鐘信號CK和CKB。一對時鐘信號CK和CKB的頻率可以設置為相對較高。因此,考慮到高時鐘頻率,與所述一對時鐘信號CK和CKB同步的命令CMD可以為貫穿兩個時鐘週期(2*tCK)的輸入。雖然與所述一對時鐘信號CK和CKB的邊緣同步,但是命令CMD將實際示出為在時序圖中從所述一對時鐘信號CK和CKB的邊緣延遲某一定時間期間,這是因為高時鐘頻率。為方便起見,所述一對時鐘信號CK和CKB將統稱為時鐘信號CK。
時鐘信號CK是從時間點Ta接收。時鐘信號CK的上升邊緣是在時間點Ta處輸入,並且也可以在時間點Tb、Tc、Td、Te、Tf、Tg和Th中的每一處輸入。在時間點Ta處,可以接收裝置取消選擇(DES)命令。DES命令可以在某一時間期間流逝之後,以及在電力電壓和參考電壓的應用、時鐘信號CK的穩定以及可執行命令的應用之前應用。在此實施例中,記憶體裝置120被描述為響應於時鐘信號CK的上升邊緣而操作。根據示例性實施例,記憶體裝置120可以響應於時鐘信號CK的下降邊緣而操作。
在時間點Tb處,接收低功率狀態進入命令LPSE。低功率狀態進入命令LPSE可以貫穿從時間點Tb到時間點Tc的兩個時鐘週期(2*tCK)來接收。
響應於低功率狀態進入命令LPSE,例如,在時間點Td處,記憶體裝置120可以轉變到低功率模式狀態260(圖2)。在低功率模式狀態260之前的記憶體裝置120可以處於正常模式狀態,在所述正常模式狀態中所有組都在閒置狀態中。在低功率模式狀態260中,如在自身刷新模式狀態250中(圖2),可以刷新儲存單元陣列320的儲存單元列。在低功率模式狀態260中,可以停用時鐘信號CK。
從時間點Te,記憶體裝置120可以自動退出低功率模式狀態260。時間點Te可以通過在模式暫存器312中設置的低功率模式退出等待時間tXP_LPS來確定。
在從時間點Te經過了低功率模式退出等待時間tXP_LPS之後,記憶體裝置120可以接收有效命令。舉例來說,從時間點Th,記憶體裝置120可以接收有效命令。
記憶體裝置120可以退出低功率模式狀態260,並且因此(例如,在時間點Tf處)轉變到其中所有組都處於閒置狀態的正常模式狀態。
在時間點Tg處,在接收有效命令之前,記憶體裝置120可以接收DES命令。
在圖4中,低功率模式狀態時間tLPS(其中記憶體裝置120處於低功率模式狀態260)可以確定為從接收低功率狀態進入命令LPSE的時間點Tc到自動退出低功率模式狀態的時間點Te的時間期間。
由於間隔(在所述間隔期間,記憶體裝置120以低功率模式260操作)是通過記憶體裝置120內部受控制的,所以實際開始和結束時間點可能不是已知的。然而,間隔(在此期間,記憶體裝置120以低功率模式260操作)是與低功率模式狀態時間tLPS相關聯的,並且因此可以預期為從時間點Td到時間點Tf的間隔。
圖5說明根據示例性實施例的記憶體裝置的狀態圖。圖5特定地說明參考圖2所描述的記憶體裝置120(圖1)的狀態圖。
參考圖5,記憶體裝置120的閒置狀態210、自身刷新模式狀態250和低功率模式狀態260與參考圖2所描述的狀態相同。記憶體裝置120響應於自身刷新進入命令SRE而從閒置狀態210進入自身刷新模式狀態250,並且響應於自身刷新退出命令SRX而退出自身刷新模式狀態250。
記憶體裝置120可以響應於時鐘啟用信號CKE的邏輯低而從自身刷新模式狀態250轉變到自身刷新省電模式狀態255。記憶體裝置120還可以通過自身刷新省電命令SRE-PD從閒置狀態210轉變到自身刷新省電模式狀態255。
自身刷新省電模式狀態255表示通過在自身刷新狀態中的時鐘啟用信號CKE的省電狀態,在所述自身刷新狀態中儲存單元陣列320的儲存單元列被刷新。在自身刷新省電模式狀態255中,根據時鐘啟用信號CKE的邏輯低可以停用時鐘信號CK(圖3)。因此,因為停用時鐘緩衝器302(圖3)和停用內部時鐘信號ICK(圖3),所以在自身刷新省電模式狀態255中的功率消耗可以低於在自身刷新模式狀態250中的功率消耗。
響應於時鐘啟用信號CKE的邏輯高,記憶體裝置120可以從自身刷新省電模式255轉變到自身刷新模式狀態250。通過使用應用到第一接腳PINA的第一警報信號ALRM1,記憶體裝置120可以退出自身刷新省電模式狀態255並且轉變到閒置狀態210。
第一警報信號ALRM1是一種信號,所述信號提供為使得通過控制記憶體裝置120足夠早地退出自身刷新省電模式狀態255而不會對記憶體裝置120的正常操作或閒置狀態造成影響。也就是說,第一警報信號ALRM1是控制記憶體裝置120退出自身刷新省電模式狀態255且隨後接收第一有效命令的信號。舉例來說,第一警報信號ALRM1可以提供為比應用自身刷新退出命令SRX的時間點早出自身刷新退出等待時間tXP。
第一接腳PINA可以為多個接腳中的一個,用於記憶體裝置120的操作的信號被應用到所述接腳。第一接腳PINA可以為並不用於記憶體裝置120的自身刷新省電模式狀態255的信號接腳。舉例來說,第一接腳PINA可以為記憶體裝置120的資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。
響應於低功率狀態進入命令LPSE,記憶體裝置120可以從閒置狀態210或自身刷新模式狀態250轉變到低功率模式狀態260。
在低功率模式狀態260中,如在自身刷新模式狀態250和自身刷新省電模式狀態255中,儲存單元陣列320的儲存單元列可以被刷新。因此,由於與自身刷新省電模式狀態255相比在低功率模式狀態260中更多電路被停用,所以在低功率模式狀態260中的功率消耗可以低於在自身刷新省電模式狀態255中的功率消耗。通過使用應用到第二接腳PINB的觸發信號TRIG,記憶體裝置120可以從低功率模式狀態260轉變到自身刷新省電模式狀態255。
觸發信號TRIG是啟用記憶體裝置120以更加快速地退出低功率模式狀態260的信號。在低功率模式退出等待時間tXP_LPS期間,可以啟用在低功率模式狀態260中停用的電路。低功率模式退出等待時間tXP_LPS可以長於自身刷新退出等待時間tXP。因此,觸發信號TRIG控制記憶體裝置120從低功率模式狀態260轉變到自身刷新省電模式狀態255,且因此根據相對較短的自身刷新退出等待時間tXP退出低功率模式狀態260。
第二接腳PINB可以為多個接腳中的一個,用於記憶體裝置120的操作的信號被應用到所述接腳。第二接腳PINB可以為並不用於低功率模式狀態260中的信號接腳。舉例來說,第二接腳PINB可以為記憶體裝置120的資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。
記憶體裝置120可以根據在模式暫存器312中設置的低功率模式退出等待時間tXP_LPS自動退出低功率模式狀態260,並且可以轉變到閒置狀態210。此外,記憶體裝置120可以退出低功率模式狀態260並且通過使用應用到第三接腳PINC的第二警報信號ALRM2來轉變到閒置狀態210。
第二警報信號ALRM2是一種信號,所述信號提供為使得通過控制記憶體裝置120足夠早地退出低功率模式狀態260而不會對記憶體裝置120的正常操作或閒置狀態造成影響。也就是說,第二警報信號ALRM2是控制記憶體裝置120退出低功率模式狀態260且隨後接收第一有效命令的信號。舉例來說,第二警報信號ALRM2可以提供為比應用低功率模式退出命令LPSX的時間點早出低功率模式退出等待時間tXP_LPS。
第三接腳PINC可以為多個接腳中的一個,用於記憶體裝置120的操作的信號被應用到所述接腳。第三接腳PINC可以為並不用於低功率模式狀態260中的信號接腳。舉例來說,第三接腳PINC可以為記憶體裝置120的資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。
圖6是根據示例性實施例在圖5的自身刷新省電模式中操作的記憶體裝置的時序圖。
參考圖5和圖6,在時間點TS1處,接收自身刷新進入命令SRE。自身刷新進入命令SRE可以貫穿從時間點TS1到時間點TS2的兩個時鐘週期(2*tCK)來接收。在時間點TS2處,可以示出無操作NOP。
在時間點TS3處,因為時鐘啟用信號CKE轉變到邏輯低,所以記憶體裝置120可以轉變到自身刷新省電模式狀態255。此處,在時鐘啟用信號CKE的邏輯低間隔期間,可以停用時鐘信號CK。在時鐘啟用信號CKE的邏輯低間隔期間,可以停用時鐘緩衝器302(圖3),並且因此可以停用時鐘信號CK。
在時間點TS4處,時鐘啟用信號CKE轉變到邏輯高。可以基於自身刷新退出等待時間tXP設置時間點TS4,所述時間點在應用自身刷新退出命令SRX的時間點之前。
在從時間點TS4經過了自身刷新退出等待時間tXP之後,在時間點TS5處,接收自身刷新退出命令SRX。自身刷新退出命令SRX可以貫穿從時間點TS5到時間點TS6的兩個時鐘週期(2*tCK)來接收。
在時間點TS7處,記憶體裝置接收有效命令。有效命令可以貫穿從時間點TS7到時間點TS8的兩個時鐘週期(2*tCK)來接收。在接收有效命令之前,記憶體裝置120可以接收DES命令。
在圖6中,自身刷新時間tSR(在此期間記憶體裝置120執行自身刷新)可以被確定為從自身刷新進入命令SRE的時間點TS2到自身刷新退出命令SRX的時間點TS6的時間期間。自身刷新時間tSR可以通過標準設定為最小時間期間(tSR(min))。從自身刷新退出命令SRX的時間點TS6到接收有效命令的時間點TS8的延遲時間tXSR也可以通過標準設定為最小時間期間(tXSR(min))。
由於間隔(在此期間,記憶體裝置120以自身刷新省電模式狀態255操作)是通過記憶體裝置120內部受控制的,所以實際開始和結束時間點可能不是已知的。然而,間隔(在此期間,記憶體裝置120以自身刷新省電模式狀態255操作)可以預期為從時鐘啟用信號CKE轉變到邏輯低的時間點TS3到接收有效命令的時間點TS7的時間期間。
圖7和圖8是在圖5的低功率模式狀態中操作的記憶體裝置的時序圖。圖7說明其中記憶體裝置120從低功率模式狀態260轉變到閒置狀態210的時序圖,並且圖8說明其中記憶體裝置120從低功率模式狀態260轉變到自身刷新省電模式狀態255的時序圖。
參考圖5和圖7,在時間點TL1處,接收低功率狀態進入命令LPSE。低功率狀態進入命令LPSE可以貫穿從時間點TL1到時間點TL2的兩個時鐘週期(2*tCK)來接收。舉例來說,響應於低功率狀態進入命令LPSE,在時間點TL3處記憶體裝置120可以轉變到低功率模式狀態260。
在時間點TL4處,記憶體裝置120的第三接腳PINC接收第二警報信號ALRM2。可以基於低功率模式退出等待時間tXP_LPS設置時間點TL4,所述時間點在應用低功率狀態進入命令LPSE的時間點之前。
舉例來說,第三接腳PINC是並不用於記憶體裝置120的低功率模式狀態260中的信號接腳,並且可以為資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。第二警報信號ALRM2可提供為使得通過控制記憶體裝置120足夠早地退出低功率模式狀態260而不會對記憶體裝置120的正常操作或閒置狀態造成影響。
在從時間點TL4經過了低功率模式退出等待時間tXP_LPS之後,在時間點TL5處,接收低功率模式退出命令LPSX。低功率模式退出命令LPSX可以貫穿從時間點TL5到時間點TL6的兩個時鐘週期(2*tCK)來接收。
在時間點TL7處,記憶體裝置120接收有效命令。有效命令可以貫穿從時間點TL7到時間點TL8的兩個時鐘週期(2*tCK)來接收。在接收有效命令之前,記憶體裝置120可以接收DES命令。
在圖7中,低功率模式狀態時間tLPS(在此期間記憶體裝置120處於低功率模式狀態260)可以確定為從接收低功率狀態進入命令LPSE的時間點TL2到低功率模式退出命令LPSX的時間點TL6的時間期間。低功率模式狀態時間tLPS可以通過標準設定為最小時間期間(tLPS(min))。從接收低功率模式退出命令LPSX的時間點TL6到接收有效命令的時間點TL8的延遲時間tXSR_LPS也可以通過標準設定為最小時間期間(tXSR_LPS(min))。
由於間隔(在此期間,記憶體裝置120以低功率模式260操作)是通過記憶體裝置120內部受控制的,所以實際開始和結束時間點可能不是已知的。然而,間隔(在此期間,記憶體裝置120以低功率模式260操作)是與低功率模式狀態時間tLPS相關聯的,並且因此可以預期為(例如)從進入低功率模式260的時間點TL3到在接收有效命令之前接收DES命令的時間點的間隔。
參考圖5和圖8,在時間點TL1處,接收低功率狀態進入命令LPSE。低功率狀態進入命令LPSE可以貫穿從時間點TL1到時間點TL2的兩個時鐘週期(2*tCK)來接收。
舉例來說,響應於低功率狀態進入命令LPSE,在時間點TL3處,記憶體裝置120可以轉變到低功率模式狀態260。
在時間點TLS0處,記憶體裝置120的第二接腳PINB接收觸發信號TRIG。觸發信號TRIG可提供給記憶體裝置120以更加快速地退出低功率模式狀態260。通過觸發信號TRIG,記憶體裝置120可以從低功率模式狀態260轉變到自身刷新省電模式狀態255。第二接腳PINB是並不用於記憶體裝置120的低功率模式狀態260中的信號接腳,並且可以為資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。
在時間點TLS4處,記憶體裝置120的第一接腳PINA接收第一警報信號ALRM1。可以基於自身刷新退出等待時間tXP設置時間點TLS4,所述時間點在應用自身刷新退出命令SRX的時間點之前。第一接腳PINA是並不用於記憶體裝置120的自身刷新省電模式狀態255中的信號接腳,並且可以為資料反轉信號接腳DBI和資料遮罩信號接腳DM中的一個。第一警報信號ALRM1可提供為使得通過控制記憶體裝置120足夠早地退出自身刷新省電模式狀態255而不會對記憶體裝置120的正常操作或閒置狀態造成影響。
在從時間點TLS4經過了自身刷新退出等待時間tXP之後,在時間點TLS5處,接收自身刷新退出命令SRX。自身刷新退出命令SRX可以貫穿從時間點TLS5到時間點TLS6的兩個時鐘週期(2*tCK)來接收。
在時間點TLS7處,記憶體裝置120接收有效命令。有效命令可以貫穿從時間點TLS7到時間點TLS8的兩個時鐘週期(2*tCK)來接收。在接收有效命令之前,記憶體裝置120可以接收DES命令。
在圖8中,低功率模式狀態時間tLPS(在此期間記憶體裝置120處於低功率模式狀態260)可以確定為從接收低功率狀態進入命令LPSE的時間點TL2到接收觸發信號TRIG的時間點TLS0的時間期間。自身刷新時間tSR(在此期間,記憶體裝置120執行自身刷新)可以被確定為從接收觸發信號TRIG的時間點TLS0到接收自身刷新退出命令SRX的時間點TLS6的時間期間。
在低功率模式狀態260中記憶體裝置120的操作可以根據在標準中設置的計時參數來執行。通過標準,低功率模式時間tLPS可以設置為最小時間期間(tLPS(min)),並且自身刷新時間tSR也可以設置為最小時間期間(tSR(min))。從接收自身刷新退出命令SRX的時間點TLS6到接收有效命令的時間點TLS8的延遲時間tXSR也可以通過標準設定為最小時間期間(tXSR(min))。
在通過觸發信號TRIG從低功率模式狀態260轉變到自身刷新省電模式狀態255之後,根據相對較短的自身刷新退出等待時間tXP,根據此實施例的記憶體裝置120可以退出低功率模式狀態260。
圖9說明根據示例性實施例的記憶體裝置的實例低功率狀態圖。圖9特定地說明參考圖2和圖5所描述的記憶體裝置120(圖1)的低功率模式狀態。
參考圖9,記憶體裝置120可以為多個低功率模式狀態910、920和930中的一個。響應於第一低功率狀態進入命令LPSE1,記憶體裝置120可以從閒置狀態210進入第一低功率模式狀態910。記憶體裝置120可以響應於第二低功率狀態進入命令LPSE2而從閒置狀態210進入第二低功率模式狀態920,並且響應於第n低功率狀態進入命令LPSEn而從閒置狀態210進入第n低功率模式狀態930。
在第一到第n低功率模式狀態910、920和930之中,允許最低功率消耗的狀態假定為第n低功率模式狀態930。先前,在參考圖3的描述中,在第一電路330到第四電路360之中的第一電路330和第二電路340已經描述為在低功率模式狀態260中啟用。
舉例來說,第一電路330和第二電路340可以在第一低功率模式狀態910中啟用。在第二低功率狀態920中,可以啟用第一電路330,並且可以停用第二電路340。在第n低功率模式狀態930中,可以停用第一電路330和第二電路340的全部。
記憶體裝置120可以通過使用低功率模式退出等待時間tXP_LPS而自動退出第一到第n低功率模式狀態910、920和930中的每一個,並且因此可以轉變到閒置狀態210。
舉例來說,在第一低功率模式狀態910中,在有效命令被應用到記憶體裝置120之前,可能需要第一低功率模式退出等待時間tXP_LPS1。在第二低功率模式狀態920中,在應用有效命令之前,可能需要第二低功率模式退出等待時間tXP_LPS2。第二低功率模式退出等待時間tXP_LPS2可以為啟用被停用的第二電路340所花費的時間期間。在第n低功率模式狀態930中,在應用有效命令之前,可能需要啟用被停用的第一電路330和第二電路340所花費的第n低功率模式退出等待時間tXP_LPSn 。
第n低功率模式退出等待時間tXP_LPSn將相對地比第二低功率模式退出等待時間tXP_LPS2長。類似地,第二低功率模式退出等待時間tXP_LPS2將相對地比第一低功率模式退出等待時間tXP_LPS2長。可以在模式暫存器312中設置第一低功率模式退出等待時間tXP_LPS1到第n低功率模式退出等待時間tXP_LPSn。
圖10說明根據示例性實施例設置低功率模式退出等待時間的實例模式暫存器。圖10的模式暫存器312用於對記憶體裝置的各種功能、特徵和模式進行編程,並且圖10說明根據低功率模式的位元分配。
參考圖10,當發佈MRS命令時,可以使用提供為命令/位址信號(CA[0:n])的位元值對模式暫存器312進行編程。舉例來說,CA0位元用於設置從低功率模式狀態自動退出。如果值“0”被編程到CA0位元中,那麼停用從低功率模式狀態中自動退出。如果值“1”被編程到CA0位元中,那麼啟用從低功率模式狀態中自動退出。
低功率模式退出等待時間tXP_LPS可以通過例如3位元的CA[3:1]位元來設置。如果值“000”被編程到CA[3:1]位元中,那麼可以設置第一低功率模式退出等待時間tXP_LPS1;如果值“001”被編程到CA[3:1]位元中,那麼可以設置第二低功率模式退出等待時間tXP_LPS2;並且如果值“111”被編程到CA[3:1]位元中,那麼可以設置第n低功率模式退出等待時間tXP_LPSn。第n低功率模式退出等待時間tXP_LPSn將被設置為與第一低功率模式退出等待時間tXP_LPS1和第二低功率模式退出等待時間tXP_LPS2相比較長的時間期間。
圖11是根據示例性實施例的實例行動裝置的方塊圖,具有多個低功率狀態的記憶體裝置被應用到所述行動裝置。行動裝置可以為行動電話或智慧手機。
參考圖11,行動裝置1100包含全球行動通訊系統(global system for mobile communication,GSM)區塊1110、近場通信(near field communication,NFC)收發器1120、輸入/輸出區塊1130、應用程式區塊1140、記憶體1150和顯示器1160。在圖11中,借助於實例示出行動裝置1100的元件/區塊。行動裝置1100可以包含更多元件/區塊或更少元件/區塊。此外,雖然GSM技術示出為用於這一實施例,但是行動裝置1100可以通過使用其它技術(例如,碼分多址)來實現。圖11的區塊將以積體電路的形式實現。
GSM區塊1110連接到天線1111,並且可以操作為以所屬領域中已知的方式提供無線電話操作。GSM區塊1110包含於其中執行接收和發射操作的接收器和發射器。
NFC收發器1120可經配置以通過使用感應耦合來發射和接收NFC信號以用於無線通訊。NFC收發器1120可以將NFC信號提供到NFC天線匹配網路系統1121,並且NFC天線匹配網路系統1121可以通過感應耦合傳輸NFC信號。
NFC天線匹配網路系統1121可以接收由其它NFC裝置提供的NFC信號,並且可以將接收到的NFC信號提供到NFC收發器1120。通過NFC收發器1120的NFC信號的發射和接收可以以時分方式執行。NFC收發器1120可以根據規則來操作,所述規則描述於NFC介面和協定-1(NFCIP-1)以及NFC介面和協定-2(NFCIP-2)中並且在ECMA-340、ISO/IEC 18092、ETSI TS 102 190、ISO 21481、ECMA 352、ETSI TS 102 312等中標準化。
應用程式區塊1140可以包含硬體電路,例如,一個或多個處理器,並且可以操作為提供各種使用者應用程式,所述使用者應用程式是由行動裝置1100提供的。使用者應用程式可以包含語音呼叫操作、資料傳輸、資料交換等等。通過與GSM區塊1110和/或NFC收發器1120結合的操作,應用程式區塊1140可以提供GSM區塊1110和/或NFC收發器1120的操作特徵。此外,應用程式區塊1140可以包含用於銷售點(point of sale,POS)的程式。此類程式可以提供通過使用行動電話(也就是說,智慧手機)的信用卡購買和支付功能。
響應於從應用程式區塊1140接收的顯示器信號,顯示器1160可以顯示影像。通過應用程式區塊1140提供影像或通過嵌入於行動裝置1100中的相機產生影像。顯示器1160可以於其中包含用於像素值的臨時儲存的訊框緩衝器,並且可以被配置為與相關聯的控制電路結合的顯示幕。
輸入/輸出區塊1130將輸入功能提供給用戶並且提供待通過應用程式區塊1140接收的輸出。
記憶體1150可以儲存待由應用程式區塊1140使用的程式(指令)和/或資料,並且可以實現為隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read-only memory,ROM)、快閃記憶體或類似物。因此,記憶體1150可以包含揮發性儲存和非揮發性儲存裝置。舉例來說,記憶體1500可以對應於參考圖1到圖10所描述的記憶體裝置120。
響應於低功率狀態進入命令LPSE,記憶體1150可以進入其中儲存單元列被刷新的低功率模式狀態。根據儲存在模式暫存器中的低功率模式退出等待時間tXP_LPS,記憶體1150可以自動退出低功率模式狀態。記憶體1150可以接收指示從低功率模式狀態退出的警報信號ALRM2,並且在從接收警報信號ALRM2的時間點經過了低功率模式退出等待時間tXP_LPS之後,可以通過接收低功率模式退出命令LPSX而退出低功率模式狀態。記憶體1150可以接收指示從低功率模式狀態到自身刷新模式狀態轉變的觸發信號TRIG,並且響應於觸發信號TRIG可以以自身刷新模式狀態操作。此外,記憶體1150可以接收指示從自身刷新模式狀態退出的警報信號ALRM1,並且在從接收警報信號ALRM1的時間點經過了自身刷新退出等待時間tXP之後,可以通過接收自身刷新退出命令SRX而退出自身刷新模式狀態。
圖12說明根據示例性實施例的行動裝置和通信系統的操作概念,在所述行動裝置和通信系統中安裝了具有多個低功率狀態的記憶體裝置。
參考圖12,通信系統1200包含基站1210和位在基站1210的單元覆蓋區內的多個通信裝置1221和通信裝置1222。通信裝置1221和通信裝置1222可指發射各種類型的資訊的發射終端,並且可指接收各種類型的資訊的接收終端。此外,通信裝置1221和通信裝置1222可以對應於執行發射和接收功能兩者的收發器。在以下實施例中,通信裝置1221和通信裝置1222中的每一個將被稱作終端,且可以為圖11的行動裝置1100。
基站1210可以對應於節點B、eNode B(eNB)、基站、存取點(access point,AP)或類似物,並且可以被定義為共同地參考與終端通信的任意節點的概念。此外,終端1221和終端1222中的每一個可以被定義為統一地參考行動和固定用戶終端(例如,使用者設備(user equipment,UE)、行動電台(mobile station,MS)、高級行動電台(advanced mobile station,AMS)等等)的概念。
終端1221和終端1222可以蜂巢通信模式(或中繼通信模式)操作,在所述通信模式中基站1210執行中繼。在蜂巢通信模式中,當第一終端1221傳輸資料到第二終端1222時,第一終端1221可以通過到基站1210的上行鏈路傳輸資料到基站1210,並且基站1210可以通過到第二終端1222的下行鏈路傳輸資料到第二終端1222。
在蜂巢通信模式中,可以提供用於找出第一終端1221和第二終端1222的位置的位置測量服務。可以通過在第一終端1221和第二終端1222中的GPS接收器找出第一終端1221和第二終端1222的位置。舉例來說,通過從基站1210向第一終端1221和第二終端1222週期地發送的特定信號,可以找出第一終端1221和第二終端1222的位置。
第一終端1221和第二終端1222需要醒著以響應從基站1210週期地發送的信號。舉例來說,當第一終端1221和第二終端1222的閒置狀態變得較長時,在第一終端1221和第二終端1222中的記憶體裝置120a和120b可以處於自身刷新模式狀態或低功率模式狀態以節省功率。在此情況下,可能需要記憶體裝置120a和120b在接收從基站1210發送的週期信號之前退出自身刷新模式狀態或低功率模式狀態。
記憶體裝置120a和記憶體裝置120b可以在自身刷新模式狀態中通過使用第一警報信號ALRM1來執行自身刷新退出,並且可以在低功率模式狀態中通過使用第二警報信號ALRM2來執行低功率模式退出。記憶體裝置120a和記憶體裝置120b可以接收第一警報信號ALRM1和第二警報信號ALRM2以便在從基站1210發送的週期信號被接受之前退出自身刷新模式狀態和低功率模式狀態。因此,記憶體裝置120a和記憶體裝置可以穩定地操作,而不會影響記憶體裝置120a和記憶體裝置的正常操作或閒置狀態。
上文所述的方法或演算法的操作或步驟可以實施為在電腦可讀取記錄媒體上的電腦可讀碼或通過傳輸媒體傳輸。電腦可讀記錄媒體是可以儲存其後可由電腦系統讀取的資料的任何資料儲存裝置。電腦可讀記錄媒體的實例包含唯讀記憶體(read-only memory,ROM)、隨機存取記憶體(random-access memory,RAM)、光碟(compact disc,CD)-ROM、數位化多功能光碟(digital versatile disc,DVD)、磁帶、軟碟和光學資料儲存裝置,且並不限於此。傳輸媒體可以包含通過網際網路或各種類型的通信通道傳輸的載波。電腦可讀記錄媒體還可分佈在耦合到電腦系統的網路上,使得電腦可讀碼以分散式方式儲存和執行。
根據示例性實施例,由如圖1和圖3中所示的區塊表示的組件、元件、模組或單元中的至少一個可以實施為執行上文所述的相應的功能的各種數量的硬體、軟體和/或韌體結構。舉例來說,這些組件、元件、模組或單元中的至少一個可以使用直接電路結構,例如,記憶體、處理器、邏輯電路、查找表等,這些電路結構可以通過一個或多個微處理器或其它控制設備的控制執行相應的功能。並且,這些組件、元件、模組或單元中的至少一個可以通過模組、程式或代碼的一部分(其包含用於執行規定的邏輯功能的一個或多個可執行指令)具體地實施,並且通過一個或多個微處理器或其它控制設備執行。並且,這些組件、元件、模組或單元中的至少一個可進一步包含處理器或可以通過處理器實施,所述處理器例如執行相應的功能的中央處理單元(central processing unit,CPU)、微處理器或類似物。這些組件、元件、模組或單元中的兩個或大於兩個可以組合到單一個組件、元件、模組或單元中,其執行所組合的兩個或大於兩個組件、元件、模組或單元的所有操作或功能。並且,這些組件、元件、模組或單元中的至少一個的至少一部分功能可以通過這些組件、元件、模組或單元中的另一者來執行。另外,雖然在以上方塊圖中未說明匯流排,但是組件、元件、模組或單元之間的通信可以通過匯流排來執行。以上示例性實施例的功能性方面可以在執行於一個或多個處理器上的演算法中實施。此外,由區塊或處理步驟表示的組件、元件、模組或單元可以採用用於電子元件配置、信號處理和/或控制、資料處理等等的任何數目的現有技術技術。
儘管已參考本發明概念的實施例具體示出並闡述了本發明概念,然而應理解,在不背離所附申請專利範圍的精神及範圍的條件下,可在其作出形式及細節上的各種改變。
50‧‧‧中央處理單元
100‧‧‧儲存系統
110‧‧‧記憶體控制器
120‧‧‧記憶體裝置
120a、120b‧‧‧記憶體
210‧‧‧閒置狀態
220‧‧‧活躍模式狀態
230‧‧‧刷新模式狀態
240‧‧‧深度省電模式狀態
250‧‧‧自身刷新模式狀態
255‧‧‧自身刷新省電模式狀態
260‧‧‧低功率模式狀態
302‧‧‧時鐘緩衝器
304‧‧‧命令/位址接收器
306‧‧‧時鐘啟用接收器
308‧‧‧晶片選擇接收器
309‧‧‧資料登錄/輸出緩衝器
310‧‧‧控制邏輯
312‧‧‧模式暫存器
314‧‧‧刷新控制邏輯
330‧‧‧第一電路
340‧‧‧第二電路
350‧‧‧第三電路
360‧‧‧第四電路
320‧‧‧儲存單元陣列
309‧‧‧資料登錄/輸出緩衝器
302‧‧‧時鐘緩衝器
304‧‧‧命令/位址接收器
306‧‧‧時鐘啟用接收器
308‧‧‧晶片選擇接收器
312‧‧‧模式暫存器
255‧‧‧自身刷新省電模式狀態
910‧‧‧第一低功率模式狀態
920‧‧‧第二低功率模式狀態
930‧‧‧第n低功率模式狀態
1100‧‧‧行動裝置
1110‧‧‧全球行動通信系統塊
1111‧‧‧天線
1120‧‧‧近場通信收發器
1121‧‧‧NFC天線匹配網路系統
1130‧‧‧輸入/輸出區塊
1140‧‧‧應用程式區塊
1150‧‧‧記憶體
1160‧‧‧顯示器
1200‧‧‧通信系統
1210‧‧‧基站
1221、1222‧‧‧通信裝置
ACT‧‧‧活躍命令
ALRM、ALRM1、ALRM2‧‧‧警報信號
CA、CA0~CAn‧‧‧命令/位址信號
CK、CKB‧‧‧時鐘信號
CKE‧‧‧時鐘啟用信號
/CS‧‧‧晶片選擇信號
CKE_H‧‧‧邏輯高時鐘啟用信號
CKE_L‧‧‧邏輯低時鐘啟用信號
CMD‧‧‧命令
CNTL‧‧‧控制信號
DES‧‧‧裝置取消選擇命令
DPD‧‧‧深度省電命令
DQ‧‧‧資料登錄/輸出終端
ICK‧‧‧內部時鐘信號
LPSE、LPSE1、LPSE2、LPSEn‧‧‧低功率狀態進入命令
LPSX‧‧‧低功率模式退出命令
MRS‧‧‧模式暫存器設置命令
NOP‧‧‧無操作
PINA、PINB、PINC‧‧‧接腳
REF‧‧‧週期刷新命令
SRE、SRE_PD‧‧‧自身刷新進入命令
SRX‧‧‧自身刷新退出命令
tCK‧‧‧時鐘週期
tLPS‧‧‧低功率模式狀態時間
tSR‧‧‧自身刷新時間
tXP‧‧‧自身刷新退出等待時間
tXP_LPS、tXP_LPS1、tXP_LPS2、tXP_LPSn‧‧‧低功率模式退出等待時間
tXSR、tXSR_LPS‧‧‧延遲時間
Ta、Tb、Tc、Td、Te、Tf、Tg、Th、TS1、TS2、TS3、TS4、TS5、TS6、TS7、TS8、TL1、TL2、TL3、TL4、TL5、TL6、TL7、TL8、TS0、TS4、TLS5、TLS6、TLS7、TLS8‧‧‧時間點
TRIG‧‧‧觸發信號
UE1、UE2‧‧‧使用者設備
WAKE-UP‧‧‧喚醒命令。
通過結合所附圖示閱讀以下詳細說明,將更清晰地理解本發明概念的實施例,在所附圖示中:
圖1說明根據示例性實施例的包含具有多個低功率狀態的記憶體裝置的儲存系統。
圖2說明根據示例性實施例的記憶體裝置的實例狀態圖。
圖3說明根據示例性實施例的記憶體裝置的實例方塊圖。
圖4是根據示例性實施例在低功率模式狀態中操作的記憶體裝置的時序圖。
圖5說明根據示例性實施例的記憶體裝置的狀態圖。
圖6是根據實施例在自身刷新省電模式中操作的記憶體裝置的時序圖。
圖7和圖8是根據示例性實施例在低功率模式狀態中操作的記憶體裝置的時序圖。
圖9說明根據示例性實施例的記憶體裝置的實例低功率狀態圖。
圖10說明根據示例性實施例設置低功率模式退出等待時間的實例模式暫存器。
圖11是根據示例性實施例的實例行動裝置的方塊圖,具有多個低功率狀態的記憶體裝置被應用到所述行動裝置。
圖12說明根據示例性實施例的行動裝置和通信系統的操作概念,在所述行動裝置和通信系統中安裝了具有多個低功率狀態的記憶體裝置。

Claims (20)

  1. 一種控制記憶體裝置的功率狀態的方法,所述方法包括: 響應於第一低功率狀態進入命令,進入第一低功率模式狀態,其中所述記憶體裝置的儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗;以及 基於在所述記憶體裝置的模式暫存器中設置的第一低功率模式退出等待時間,自動退出所述第一低功率模式狀態。
  2. 如申請專利範圍第1項所述的方法,更包括: 接收有效命令, 其中所述方法包括在接收所述有效命令之前,通過所述第一低功率模式退出等待時間自動退出所述第一低功率模式狀態。
  3. 如申請專利範圍第1項所述的方法,其中所述第一低功率模式退出等待時間設置為長於所述自身刷新模式狀態的自身刷新退出等待時間,基於所述自身刷新模式狀態的自身刷新退出等待時間所述記憶體裝置退出所述自身刷新模式狀態。
  4. 如申請專利範圍第1項所述的方法,更包括: 響應於指示進入到所述第二低功率模式狀態中的第二低功率狀態進入命令,進入第二低功率模式狀態,其中所述儲存單元列被刷新並且功率消耗低於所述第一低功率模式狀態的功率消耗, 其中用於自動退出所述第二低功率模式狀態的第二低功率模式退出等待時間儲存在所述模式暫存器中,使得所述第二低功率模式退出等待時間長於所述第一低功率模式退出等待時間。
  5. 一種控制記憶體裝置的功率狀態的方法,所述方法包括: 響應於低功率狀態進入命令進入低功率模式狀態,其中儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗;以及 接收警報信號以及低功率模式退出命令中的至少一個,所述警報信號和所述低功率模式退出命令指示從所述低功率模式狀態中退出, 其中所述低功率模式退出命令是在低功率模式退出等待時間過去之後接收的, 其中所述低功率模式退出等待時間是在其後所述記憶體裝置自動退出所述低功率模式狀態的時間期間,並且 其中所述低功率模式退出等待時間是在所述記憶體裝置的模式暫存器中設置的。
  6. 如申請專利範圍第5項所述的方法,其中所述接收指示退出所述低功率模式狀態的所述警報信號包括在接收從所述記憶體裝置外部提供的時鐘信號以產生所述低功率模式退出命令之前,接收所述警報信號以退出所述低功率模式狀態。
  7. 如申請專利範圍第5項所述的方法,更包括: 在從接收所述警報信號或所述低功率模式退出命令的時間點過去延遲時間之後接收有效命令。
  8. 一種控制記憶體裝置的功率狀態的方法,所述方法包括: 響應於低功率狀態進入命令進入低功率模式狀態,其中儲存單元列被刷新並且功率消耗低於在自身刷新模式狀態中的功率消耗; 接收指示從所述低功率模式狀態轉變到所述自身刷新模式狀態的觸發信號;以及 響應於所述觸發信號在所述自身刷新模式狀態中操作。
  9. 如申請專利範圍第8項所述的方法,更包括: 接收警報信號以及自身刷新退出命令中的至少一個,所述警報信號和所述自身刷新退出命令指示退出所述自身刷新模式狀態, 其中所述自身刷新退出命令是在自身刷新退出等待時間過去之後接收的, 其中所述自身刷新退出等待時間是在其後所述記憶體裝置自動退出所述自身刷新模式狀態的時間期間,並且 其中所述自身刷新退出等待時間是在所述記憶體裝置的模式暫存器中設置的。
  10. 一種記憶體裝置,其包括: 儲存單元陣列,其包括儲存單元列;以及 控制邏輯,其經配置以控制自身刷新模式狀態以及第一低功率模式狀態,在所述自身刷新模式狀態中刷新所述儲存單元列,在所述第一低功率模式狀態中的功率消耗低於在所述自身刷新模式狀態中的功率消耗, 其中響應於第一低功率狀態進入命令,所述控制邏輯控制進入到所述第一低功率模式狀態中,並且基於在所述記憶體裝置的模式暫存器中設置的第一低功率模式退出等待時間,控制從所述第一低功率模式狀態中退出。
  11. 如申請專利範圍第10項所述的記憶體裝置,其中所述控制邏輯控制在所述記憶體裝置處接收有效命令之前,基於所述第一低功率模式退出等待時間從所述第一低功率模式狀態中自動退出。
  12. 如申請專利範圍第11項所述的記憶體裝置,其中所述控制邏輯在所述模式暫存器中設置是否基於所述第一低功率模式退出等待時間自動退出所述第一低功率模式狀態。
  13. 如申請專利範圍第10項所述的記憶體裝置,其中所述控制邏輯接收警報信號以及低功率模式退出命令中的至少一個,所述警報信號和所述低功率模式退出命令指示從所述第一低功率模式狀態中退出, 其中所述低功率模式退出命令是在所述第一低功率模式退出等待時間過去之後接收的。
  14. 如申請專利範圍第13項所述的記憶體裝置,其中所述控制邏輯接收所述警報信號與在所述控制邏輯處接收所述低功率模式退出命令的時間點相比早出所述第一低功率模式退出等待時間。
  15. 如申請專利範圍第10項所述的記憶體裝置,其中所述控制邏輯接收指示從所述第一低功率模式狀態轉變到所述自身刷新模式狀態的觸發信號,並且響應於所述觸發信號控制在所述自身刷新模式狀態中操作。
  16. 如申請專利範圍第15項所述的記憶體裝置,其中所述控制邏輯接收警報信號以及自身刷新退出命令中的至少一個,所述警報信號和所述自身刷新退出命令指示退出所述自身刷新模式狀態, 其中所述自身刷新退出命令是在自身刷新退出等待時間過去之後接收的,並且 其中所述自身刷新退出等待時間是在其後所述記憶體裝置自動退出所述自身刷新模式狀態的時間期間。
  17. 如申請專利範圍第10項所述的記憶體裝置,其中所述控制邏輯響應於指示進入到所述第二低功率模式狀態中的第二低功率狀態進入命令,控制進入到第二低功率模式狀態中,其中所述儲存單元列被刷新並且功率消耗低於所述第一低功率模式狀態中的功率消耗。
  18. 一種記憶體裝置,其包括: 儲存單元陣列,其包括多個儲存單元;以及 控制邏輯,其經配置以控制進入到閒置狀態、第一低功率模式狀態以及第二低功率模式狀態中以及從閒置狀態、第一低功率模式狀態以及第二低功率模式狀態中退出, 其中,在所述第一功率模式狀態以及第二功率模式狀態中所述儲存單元被刷新, 其中所述記憶體裝置在所述第一低功率模式中與在所述閒置狀態中相比消耗較少的功率,並且與在所述第二低功率模式狀態中相比消耗較多的功率,並且 其中所述控制邏輯控制在第一時間期間之後從所述第一低功率模式狀態中自動退出到所述閒置狀態,並且控制在第二時間期間之後從所述第二低功率模式狀態中自動退出到所述閒置狀態。
  19. 如申請專利範圍第18項所述的記憶體裝置,其中所述第二時間期間長於所述第一時間期間。
  20. 如申請專利範圍第18項所述的記憶體裝置,其中所述控制邏輯控制響應於在所述第一時間期間或第二時間期間之前接收的警報信號以及在所述第一時間期間或第二時間期間之後接收的低功率模式退出命令中的至少一個從所述第一低功率模式狀態或第二低功率模式狀態中退出到所述閒置狀態。
TW106137627A 2016-11-01 2017-10-31 控制多個低功率狀態的方法和記憶體裝置 TWI759349B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2016-0144483 2016-11-01
??10-2016-0144483 2016-11-01
KR1020160144483A KR20180047778A (ko) 2016-11-01 2016-11-01 단계별 저전력 상태들을 갖는 메모리 장치

Publications (2)

Publication Number Publication Date
TW201818254A true TW201818254A (zh) 2018-05-16
TWI759349B TWI759349B (zh) 2022-04-01

Family

ID=62021464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137627A TWI759349B (zh) 2016-11-01 2017-10-31 控制多個低功率狀態的方法和記憶體裝置

Country Status (4)

Country Link
US (4) US10754564B2 (zh)
KR (1) KR20180047778A (zh)
CN (1) CN108008805B (zh)
TW (1) TWI759349B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743890B (zh) * 2019-08-26 2021-10-21 美商美光科技公司 庫之可組態的功率模式

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10332582B2 (en) 2017-08-02 2019-06-25 Qualcomm Incorporated Partial refresh technique to save memory refresh power
KR20200057235A (ko) * 2018-11-16 2020-05-26 삼성전자주식회사 참조 신호 수신 방법 및 이를 위한 전자 장치
US11249539B2 (en) * 2019-06-28 2022-02-15 Integrated Device Technology, Inc. DDR5 client PMIC power up sequence and state transitions
US11216058B2 (en) * 2019-07-15 2022-01-04 Micron Technology, Inc. Storage system deep idle power mode
US11508422B2 (en) * 2019-08-02 2022-11-22 Micron Technology, Inc. Methods for memory power management and memory devices and systems employing the same
US10998076B1 (en) * 2019-11-01 2021-05-04 Realtek Semiconductor Corporation Signal calibration method used in memory apparatus
KR20220037142A (ko) * 2020-09-17 2022-03-24 삼성전자주식회사 반도체 메모리 장치 및 이를 포함하는 시스템
CN112162710A (zh) * 2020-10-30 2021-01-01 深圳忆联信息系统有限公司 降低芯片功耗的方法、装置、计算机设备及存储介质
US11843939B2 (en) * 2020-12-16 2023-12-12 Itron, Inc. Secure messaging for outage events
KR20230022345A (ko) * 2021-08-06 2023-02-15 삼성전자주식회사 메모리 장치 및 그것의 동작 방법
CN113885692B (zh) * 2021-10-22 2023-09-26 合肥兆芯电子有限公司 存储器效能优化方法、存储器控制电路单元以及存储装置
US20240004560A1 (en) * 2022-06-29 2024-01-04 Advanced Micro Devices, Inc. Efficient memory power control operations

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6618791B1 (en) * 2000-09-29 2003-09-09 Intel Corporation System and method for controlling power states of a memory device via detection of a chip select signal
JP4216457B2 (ja) * 2000-11-30 2009-01-28 富士通マイクロエレクトロニクス株式会社 半導体記憶装置及び半導体装置
JP2002352598A (ja) * 2001-05-28 2002-12-06 Mitsubishi Electric Corp 半導体記憶装置
US6549479B2 (en) * 2001-06-29 2003-04-15 Micron Technology, Inc. Memory device and method having reduced-power self-refresh mode
JP4765222B2 (ja) * 2001-08-09 2011-09-07 日本電気株式会社 Dram装置
JP2003068076A (ja) * 2001-08-27 2003-03-07 Elpida Memory Inc 半導体記憶装置の電力制御方法及び半導体記憶装置
US6771553B2 (en) * 2001-10-18 2004-08-03 Micron Technology, Inc. Low power auto-refresh circuit and method for dynamic random access memories
US7000133B2 (en) * 2002-03-22 2006-02-14 Intel Corporation Method and apparatus for controlling power states in a memory device utilizing state information
US6751143B2 (en) * 2002-04-11 2004-06-15 Micron Technology, Inc. Method and system for low power refresh of dynamic random access memories
US6975556B2 (en) * 2003-10-09 2005-12-13 Micron Technology, Inc. Circuit and method for controlling a clock synchronizing circuit for low power refresh operation
KR100549947B1 (ko) * 2003-10-29 2006-02-07 삼성전자주식회사 집적회로용 기준전압 발생회로
WO2005066970A2 (en) * 2003-12-30 2005-07-21 Sandisk Corporation Robust data duplication and improved update method in a multibit non-volatile memory
US20050144516A1 (en) 2003-12-30 2005-06-30 Gonzalez Carlos J. Adaptive deterministic grouping of blocks into multi-block units
US7188219B2 (en) 2004-01-30 2007-03-06 Micron Technology, Inc. Buffer control system and method for a memory system having outstanding read and write request buffers
US7583551B2 (en) 2004-03-10 2009-09-01 Micron Technology, Inc. Power management control and controlling memory refresh operations
US20060005053A1 (en) * 2004-06-30 2006-01-05 Jones Oscar F Jr Cache and tag power-down function during low-power data retention standby mode technique for cached integrated circuit memory devices
US7164615B2 (en) * 2004-07-21 2007-01-16 Samsung Electronics Co., Ltd. Semiconductor memory device performing auto refresh in the self refresh mode
KR100610011B1 (ko) * 2004-07-29 2006-08-09 삼성전자주식회사 셀프 리프레쉬 주기 제어회로
JP4461430B2 (ja) 2004-12-10 2010-05-12 エルピーダメモリ株式会社 セルフリフレッシュタイマ回路及びセルフリフレッシュタイマの調整方法
US7218566B1 (en) * 2005-04-28 2007-05-15 Network Applicance, Inc. Power management of memory via wake/sleep cycles
US20070220530A1 (en) * 2006-03-03 2007-09-20 Accton Technology Corporation Power management architectures
KR20090013342A (ko) * 2007-08-01 2009-02-05 삼성전자주식회사 멀티 포트 반도체 메모리 장치 및 그에 따른 리프레쉬 방법
US8161356B2 (en) 2008-03-28 2012-04-17 Intel Corporation Systems, methods, and apparatuses to save memory self-refresh power
KR20100050097A (ko) * 2008-11-05 2010-05-13 삼성전자주식회사 영상처리장치 및 그 제어 방법
US8639874B2 (en) * 2008-12-22 2014-01-28 International Business Machines Corporation Power management of a spare DRAM on a buffered DIMM by issuing a power on/off command to the DRAM device
KR101597513B1 (ko) * 2008-12-26 2016-02-25 삼성전자주식회사 셀프 리프레쉬에 의한 데이터 복구력을 향상시킨 반도체 메모리 장치 및 그 시스템
US8307270B2 (en) * 2009-09-03 2012-11-06 International Business Machines Corporation Advanced memory device having improved performance, reduced power and increased reliability
KR20110093086A (ko) * 2010-02-11 2011-08-18 삼성전자주식회사 셀프 리프레쉬 동작 모드에서 내부 고 전원전압을 사용하는 반도체 메모리 장치 및 그에 따른 고 전원전압 인가방법
US8392650B2 (en) * 2010-04-01 2013-03-05 Intel Corporation Fast exit from self-refresh state of a memory device
US9292426B2 (en) 2010-09-24 2016-03-22 Intel Corporation Fast exit from DRAM self-refresh
US9053812B2 (en) * 2010-09-24 2015-06-09 Intel Corporation Fast exit from DRAM self-refresh
WO2012115839A1 (en) * 2011-02-23 2012-08-30 Rambus Inc. Protocol for memory power-mode control
US8806112B2 (en) * 2011-07-14 2014-08-12 Lsi Corporation Meta data handling within a flash media controller
TWI601006B (zh) * 2011-10-31 2017-10-01 聯想企業解決方案(新加坡)有限公司 記憶體控制系統與具有記憶體控制系統的電腦系統
US8879346B2 (en) * 2011-12-30 2014-11-04 Intel Corporation Mechanisms for enabling power management of embedded dynamic random access memory on a semiconductor integrated circuit package
KR102050474B1 (ko) * 2012-09-26 2019-11-29 삼성전자주식회사 휘발성 메모리 장치 및 메모리 컨트롤러
KR102282971B1 (ko) 2014-12-05 2021-07-29 삼성전자주식회사 반도체 메모리 장치, 및 상기 반도체 메모리 장치를 포함하는 메모리 시스템
US9418723B2 (en) 2014-12-23 2016-08-16 Intel Corporation Techniques to reduce memory cell refreshes for a memory device
US9721640B2 (en) * 2015-12-09 2017-08-01 Intel Corporation Performance of additional refresh operations during self-refresh mode
US10002657B2 (en) * 2016-03-25 2018-06-19 The Regents Of The University Of Michigan Enhanced memory device
US9824742B1 (en) * 2016-04-28 2017-11-21 Qualcomm Incorporated DRAM access in self-refresh state
US9576637B1 (en) * 2016-05-25 2017-02-21 Advanced Micro Devices, Inc. Fine granularity refresh
US10098065B2 (en) * 2017-02-21 2018-10-09 Qualcomm Incorporated Power saving via PHY firmware island

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743890B (zh) * 2019-08-26 2021-10-21 美商美光科技公司 庫之可組態的功率模式

Also Published As

Publication number Publication date
US11644989B2 (en) 2023-05-09
US20200356290A1 (en) 2020-11-12
US11733890B2 (en) 2023-08-22
US20220413725A1 (en) 2022-12-29
KR20180047778A (ko) 2018-05-10
TWI759349B (zh) 2022-04-01
US20230004313A1 (en) 2023-01-05
US10754564B2 (en) 2020-08-25
CN108008805A (zh) 2018-05-08
US11797203B2 (en) 2023-10-24
US20180121124A1 (en) 2018-05-03
CN108008805B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
TWI759349B (zh) 控制多個低功率狀態的方法和記憶體裝置
US9754655B2 (en) Controlling a refresh mode of a dynamic random access memory (DRAM) die
US10665273B2 (en) Semiconductor memory devices, memory systems and refresh methods of the same
US10839887B2 (en) Applying chip select for memory device identification and power management control
US7548468B2 (en) Semiconductor memory and operation method for same
CN101465151B (zh) 存储器系统和存储器的控制方法
EP3465687B1 (en) Periodic zq calibration with traffic-based self-refresh in a multi-rank ddr system
US9734896B2 (en) Circuits and methods for performance optimization of SRAM memory
US7242631B2 (en) Semiconductor memory device and information processing system
US7646660B2 (en) Semiconductor memory, system, and operating method of semiconductor memory
US11900981B2 (en) Protocol for refresh between a memory controller and a memory device
KR100663771B1 (ko) 반도체 기억 장치
KR100667724B1 (ko) 반도체 기억 장치 및 메모리 시스템
US20160154454A1 (en) Storage apparatus, storage system, storage apparatus controlling method
KR20070021744A (ko) 반도체 메모리 장치