TW201514193A - 製備蛋白質之方法 - Google Patents

製備蛋白質之方法 Download PDF

Info

Publication number
TW201514193A
TW201514193A TW103103687A TW103103687A TW201514193A TW 201514193 A TW201514193 A TW 201514193A TW 103103687 A TW103103687 A TW 103103687A TW 103103687 A TW103103687 A TW 103103687A TW 201514193 A TW201514193 A TW 201514193A
Authority
TW
Taiwan
Prior art keywords
harvest
pei
dab
less
flocculant
Prior art date
Application number
TW103103687A
Other languages
English (en)
Inventor
Peter Kumpalume
Jessica Rachel Molek
Jason Michael Reck
Andrew David Weber
Alex Chatel
Michael Hoare
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxo Group Ltd filed Critical Glaxo Group Ltd
Publication of TW201514193A publication Critical patent/TW201514193A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/303Extraction; Separation; Purification by precipitation by salting out
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/30Extraction; Separation; Purification by precipitation
    • C07K1/32Extraction; Separation; Purification by precipitation as complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/36Extraction; Separation; Purification by a combination of two or more processes of different types
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2878Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/32Fusion polypeptide fusions with soluble part of a cell surface receptor, "decoy receptors"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本發明係關於藉由收穫微生物細胞培養液並添加一定量絮凝劑以達成有效粒徑分佈來製備重組蛋白的方法。本發明亦係關於藉由添加一定量絮凝劑以達成有效粒徑分佈來澄清微生物收穫物的方法。

Description

製備蛋白質之方法
本發明係關於藉由收穫微生物細胞培養液並添加一定量絮凝劑以達成有效粒徑分佈來製備重組蛋白的方法。本發明亦係關於藉由添加一定量絮凝劑以達成有效粒徑分佈來澄清微生物收穫物的方法。
重組蛋白之大規模製造係生物技術工業之重要挑戰。重組蛋白通常係由宿主細胞培養物或經由無細胞之系統產生。在每一情形下,將蛋白質自包含雜質之試樣純化至足以用作人類治療產品之純度。典型製程涉及初始澄清以移除固體微粒,之後純化以確保足夠純度。澄清可降低對純化期間後續層析步驟之負荷。
典型澄清步驟包含離心步驟或過濾步驟或二者。在澄清之前,可使用預處理步驟作為調節試樣之方法。調節預處理步驟之實例係絮凝,其引起固體微粒形成較大聚集物,隨後藉由澄清移除該等較大聚集物。
對使用絮凝劑之許多焦點係增加存於試樣中之固體微粒之粒徑以改良澄清效率。此乃因較大聚集物藉由離心更易於移除。
澄清方法之研發通常涉及選擇有效量之絮凝劑以(i)最大化固體微粒移除、(ii)保存產品品質及產品回收率、(iii)最小化所用絮凝劑之量(過多會引起渾濁)、(iv)最小化絮凝劑對後續純化步驟(例如層析步驟)之影響及(v)確保絮凝劑移除至治療產品中之可接受程度。
因此,在選擇有效量之絮凝劑以達成期望效應同時最小化不期 望效應時,必須達成小心平衡。
用以測定有效量之絮凝劑之經驗測試通常係於澄清及純化製程之不同階段實施,該等製程包括評定以下中之一者或組合:(a)絮凝物特性,例如(i)絮凝物之形成(絮凝之起始)及絮凝物之破裂;(ii)絮凝物大小;(iii)絮凝物之機械穩定性/強度;(iv)絮凝物之表面剪切抗性;(b)澄清效率;(c)濾過率;及(d)純化。該經驗測試可耗時且耗力。
因此,需要製備重組蛋白之微生物細胞收穫物之更有效澄清方法。
本發明提供製備重組蛋白之方法,其中該方法包含:(a)收穫表現重組蛋白之微生物細胞培養液;及(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈。
在另一態樣中,本發明提供製備重組蛋白之方法,其中該方法包含:(a)收穫表現重組蛋白之微生物細胞培養液;(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈;及(c)澄清絮凝收穫物。
在另一態樣中,本發明提供製備重組蛋白之方法,其中該方法包含:(a)收穫表現重組蛋白之微生物細胞培養液;(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈;(c)澄清絮凝收穫物;及 (d)自澄清絮凝收穫物純化重組蛋白。
在另一態樣中,本發明提供澄清微生物收穫物之方法,其中該方法包含:(a)收穫微生物細胞培養液;(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈;及(c)澄清絮凝收穫物。
在又一態樣中,本發明提供經改質大腸桿菌(Escherichia coli)細胞收穫物,其中:(a)細胞表現細胞周質靶向重組蛋白;(b)收穫物包含0.01%至2% PEI;且(c)收穫物之體積粒徑分佈係約5%或更少粒子在5μm或更小之大小範圍內。
圖1:顯示DOM100收穫物之粒徑分佈,其中添加0.005%、0.05%、0.1%、0.5%及2% PEI。
圖2:Dat06收穫物之直徑等於或小於5μm之粒子的體積%,其中添加0.03%、0.05%、0.1%、0.5%及2.0% PEI。
圖3:DOM101收穫物(空心圓)及暴露於高剪切之收穫物(閉合圓)的粒徑分佈。大小分佈表示為(a)總體積粒徑分佈(log標度);強調峰1(插圖b)、峰1及2(插圖c)及峰3(插圖d)之粒徑分佈。
圖4:經0.5% PEI處理之DOM101收穫物(閉合圓)及經低剪切(十字形)及高剪切(空心圓)處理之PEI絮凝收穫物的粒徑分佈。大小分佈表示為(a)總體積粒徑分佈(log標度);強調峰1(插圖b)、峰1(插圖c)及峰2(插圖d)之粒徑分佈。
圖5:PEI濃度對DOM100微生物培養液收穫物濁度(進料濁度)及 離心後濁度(離心濾液濁度)之效應。
圖6:DOM0101收穫物(a)及0.5% PEI存在下之DOM101收穫物(b)之剩餘固體%之超比例縮減模型。亦代表經受無剪切(閉合圓)、低剪切(十字形)及高剪切(空心圓)之試樣。
圖7:PEI濃度對DOM100收穫物離心濾液之主要過濾器容量的效應。
圖8:三種不同絮凝劑對樣品蛋白質Dat06及DOM100之收穫物中之DNA濃度的效應。
圖9:0.5% PEI對樣品蛋白質DOM0101收穫物離心濾液之濾過率的效應。
圖10:於不同收穫物誘導後時間時具有及無0.5% PEI處理之DOM0101收穫物離心濾液的濾過率之變化Vmax
圖11:解凍DOM101收穫物(空心圓)及經高剪切處理之解凍收穫物(閉合圓)的粒徑分佈。大小分佈表示為(a)總體積粒徑分佈(log標度);強調峰1(插圖b)、峰1、2及3(插圖c)及峰3及4(插圖d)之粒徑分佈。
圖12:解凍DOM101收穫物(閉合圓)及經高剪切處理之0.5% PEI解凍收穫物(空心圓)的粒徑分佈。大小分佈表示為(a)總體積粒徑分佈(log標度);強調子峰(插圖b)、峰1(插圖c)、峰1及2(插圖d)及峰2之尾端(插圖e)之粒徑分佈。
圖13:在無剪切(閉合圓)、低剪切(十字形)及高剪切(空心圓)存在下經0.5% PEI處理之解凍DOM101收穫物的粒徑分佈。大小分佈表示為(a)總體積粒徑分佈(log標度);強調峰1(插圖b)、峰1(插圖c)及峰2(插圖d)之粒徑分佈。
圖14:經剪切解凍DOM101收穫物(閉合圓)及均質化解凍DOM101收穫物(空心圓)之粒徑分佈。大小分佈表示為(a)總體積粒 徑分佈(log標度);強調峰1(插圖b)、峰2及3(插圖c)及峰3(插圖d)之粒徑分佈。
圖15:解凍DOM101收穫物(a)與添加PEI(b)及隨後暴露於低剪切(c)或高剪切(d)之顯微鏡影像。
圖16:DOM0101均質化解凍收穫物(a)、DOM101解凍收穫物(b)及0.5% PEI絮凝DOM101解凍收穫物(c)之剩餘之固體%之超比例縮減模型(關於圖6之圖例)。
圖17:評定具有0%至0.6%之PEI濃度範圍及pH4-9之pH範圍的DAT06發酵收穫物之:(A)如於A600nm波長下量測之上清液濁度以評定溶液澄清度(0.2-2.0之標度);及(B)處理能力,如藉由在離心力下穿過0.2μm過濾器之直接過濾性能量測(濾液體積標度為0-250)。
圖18:用0.1% PEI(低絮凝劑濃度)及0.4% PEI(高絮凝劑濃度)及不同離子強度(導電率)之NaCl溶液處理Dat06收穫物。「低絮凝劑」及「高絮凝劑」僅出於比較原因使用。於A中評定平均粒子直徑(μm);且於B中評定5μm之粒子之體積%。
圖19:用4.3% CaCl2、0.1% PEI及0.2% PEI使DOM100收穫物發生絮凝。於A中評定平均粒子直徑,且於B中評定5μm之粒子之體積%(粒徑由空心正方形顯示)。使用間歇式離心機及管式離心機(連續離心機)測定過濾器容量。
圖20:將添加0.4% PEI之Dat06及DOM100收穫物與未經絮凝劑處理之試樣進行比較。隨後藉由離心實施澄清且使用室內分析型免疫分析量測HCP含量。
本發明涉及以下認識:可藉由影響粒徑分佈及5μm或以下之粒子之比例達成利用絮凝劑之更有效澄清方法。本發明者已認識到,在絮凝劑添加後,5μm或以下之粒子之比例決定澄清效率。藉由在絮凝 劑添加後達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈而產生更有效澄清方法。
使用此方法會防止需要費力經驗測試以測定澄清製程之不同時段時之絮凝劑之有效量。
與未添加絮凝劑或未達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈之絮凝劑之量相比,本文所述方法在澄清期間離心後產生降低之固體含量(增加之固體移除)。此離心步驟中之固體之有效移除代表顯著益處,此乃因改良性能對下游過濾及/或純化步驟具有放大效應。此亦使用尤其黏或具有高密度之細胞培養物。此可經由離心機產生改良之處理時間。
與未添加絮凝劑或未達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈之絮凝劑之量相比,本文所述方法在澄清期間產生改良濾過率。此可產生穿過過濾器之改良流速。亦可增加最大過濾器容量。因此,總處理時間減少。由於該等優勢,可降低過濾器成本。
與未添加絮凝劑或未達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈之絮凝劑之量相比,本文所述方法在澄清期間離心後產生降低濁度。
與未添加絮凝劑或未達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈之絮凝劑之量相比,本文所述方法產生澄清絮凝收穫物中之降低DNA濃度。
與未添加絮凝劑相比,其他改良包括在澄清期間改良之保護抵抗剪切之效應。
所述改良亦適於藉由冷凍-解凍及/或均質化預處理之收穫物。
所述方法可鑑別在澄清期間達成期望效應之絮凝劑之最小有效量。
本文所用「約」在提及可量測值(例如量、時距及諸如此類)時,意指涵蓋偏離指定值±1%、±0.75%、±0.5%、±0.25%、±0.2%及±0.1%之變化,如同該等變化適於實施所述方法一般。
重組蛋白
重組蛋白可包含抗原結合蛋白、單株抗體、抗體片段或結構域抗體。
重組蛋白可包含病毒蛋白、細菌毒素、細菌類毒素或癌症抗原。舉例而言,細菌類毒素係白喉類毒素,例如CRM197;或肺炎鏈球菌(Streptococcus pneumoniae)莢膜糖偶聯物及包含蛋白質E及/或流感嗜血菌(Haemophilus influenzae)之PilA的蛋白質組份。
如本文所用,「重組蛋白」係指任何可投與哺乳動物以誘發組織、系統、動物或人類之生物或醫學反應的蛋白質及/或多肽。重組蛋白可誘發一個以上生物或醫學反應。此外,術語「治療有效量」意指與未接受該量之相應個體相比,可(但不限於)改良治癒、預防或改善疾病、病症或副作用或疾病或病症之進展速率降低之量。該術語在其範疇內亦包括可有效增強正常生理功能之量以及在患者中有效引起增強或有助於第二醫藥劑之治療效應的生理功能。
本文所用術語「抗原結合蛋白」係指能夠結合至抗原之抗體、抗體片段及其他蛋白構築體(例如結構域)。
本文所用術語「抗體」在最廣泛含義上係指具有免疫球蛋白樣結構域之分子。如本文所用,「免疫球蛋白樣結構域」係指保留抗體分子之免疫球蛋白摺疊抗性之多肽之家族,其含有兩個β片及通常保守二硫鍵。此家族包括單株(例如IgG、IgM、IgA、IgD或IgE)、重組、多株、嵌合、人類化、雙特異性及異源偶聯物抗體;單一可變結構域、結構域抗體、抗原結合片段、免疫有效片段、Fab、F(ab’)2、Fv、二硫鍵鍵結之Fv、單鏈Fv、雙鏈抗體、TANDABSTM等(關於替代 「抗體」模式之概述,參見Holliger及Hudson,Nature Biotechnology,2005,第23卷,第9期,1126-1136)。
片語「單一可變結構域」係指以獨立於不同可變區或結構域之方式特異性結合抗原或表位的抗原結合蛋白可變結構域(例如,VH、VHH、VL)。可認為「結構域抗體」或「dAb」與能夠結合至抗原或表位之「單一可變結構域」相同。術語「表位結合結構域」係指以獨立於不同結構域之方式特異性結合抗原或表位的結構域。
本文所用術語「結構域」係指經摺疊蛋白結構,其保留獨立於蛋白質剩餘部分之三級結構。一般而言,結構域負責蛋白質之離散功能性質,且在許多情況下可對其實施添加、移除或將其轉移至其他蛋白質而不損失蛋白質之剩餘部分及/或結構域之功能。單一抗體可變結構域或免疫球蛋白單一可變結構域意指包含抗體可變結構域之序列特性之經摺疊多肽結構域。因此,其包括完整抗體可變結構域及經修飾可變結構域(例如其中一或多個環已經不具有抗體可變結構域特性之序列置換)、或已經截短或包含N-或C末端延伸之抗體可變結構域、以及可變結構域中至少部分保留全長結構域之結合活性及特異性的摺疊片段。
結構域抗體可以具有其他可變區或可變結構域之模式(例如同多聚物或異多聚物)存在,其中該單一免疫球蛋白可變結構域結合抗原時不需要該等其他區或結構域(即其中免疫球蛋白單一可變結構域以獨立於其他可變結構域之方式結合抗原)。
結構域抗體可為人類抗體可變結構域。dAb可具有人類起源。換言之,dAb可基於人類Ig框架序列。
本文所用術語「抗原結合位點」係指抗原結合蛋白上能夠特異性結合抗原之位點,此可為單一結構域,或其可為可在標準抗體上發現之成對VH/VL結構域。單鏈Fv(ScFv)結構域亦可提供抗原結合位 點。
抗原結合蛋白可包含不同抗原之其他抗原結合位點,例如其他表位結合結構域。舉例而言,抗原結合蛋白可對一種以上抗原(例如兩種抗原或三種抗原或四種抗原)具有特異性。
抗原結合蛋白可由在每一末端直接或間接(例如經由連接體序列)連接至結合結構域之抗體之Fc區或其部組成或基本上由其組成。該抗原結合蛋白可包含兩個由Fc區或其部分分開之結合結構域。分開意指結合結構域不彼此直接連接,且可位於Fc區或任何其他支架區之相對末端(C及N末端)。
抗原結合蛋白可包含兩個支架區,其各自在(例如)每一支架區之N及C末端處直接或經由連接體間接結合至兩個結合結構域。每一結合結構域可結合至不同抗原。
抗原結合蛋白可採取mAbdAb之蛋白質支架模式。「mAbdAb」及「dAbmAb」可互換使用且意欲具有與本文所用相同之含義。該等抗原結合蛋白包含蛋白質支架,例如Ig支架,例如IgG,例如單株抗體,其連接至其他結合結構域,例如結構域抗體。mAbdAb具有至少兩個抗原結合位點,其至少一者係來自結構域抗體,且至少一者係來自經配對VH/VL結構域。
結構域抗體可存在且以單體或多聚物(例如二聚物)形式結合至靶標,且可與其他分子組合用於模式化及靶向方法。舉例而言,可製備具有多個結構域之抗原結合蛋白,其中一個結構域結合至血清蛋白,例如白蛋白。結合血清白蛋白之結構域抗體(AlbudAbsTM)闡述於(例如)WO05/118642中且可本身為結構域融合配偶體提供延長血清半衰期。
dAb亦可偶聯至其他分子,例如呈與其他分子(例如藥物、另一蛋白質、抗體分子或抗體片段)之dAb-偶聯物或dAb-融合物形式。舉 例而言,dAb可以模式化dAb形式存在,例如,dAb可以dAb-fc融合物或偶聯物形式存在,如(例如)WO 2008/149148中所述。或者,模式化dAb可以mAbdAb形式存在如WO 2009/068649中所述。dAb可以與延長半衰期之蛋白質或多肽(例如,結合至血清白蛋白或延長半衰期之化學部分(例如聚乙二醇(PEG))之另一dAb(AlbudAbTM))之融合物或偶聯物形式存在。dAb可以與其他治療或活性分子之融合物或偶聯物形式存在。
本文所用「藥物」係指任何可投與個體以經由在個體中結合至生物靶分子及/或改變其功能產生有益治療或診斷效應的化合物(例如,小的有機分子、核酸、多肽)。靶分子可為由個體之基因組編碼之內源靶分子(例如,由個體之基因組編碼之酶、受體、生長因子、細胞因子)或由病原體之基因組編碼之外源靶分子。藥物可為dAb或mAb。
「dAb偶聯物」係指組合物包含藉助共價或非共價連接化學偶聯藥物之dAb。較佳地,dAb及藥物共價鍵結。此共價連接可係經由肽鍵或其他方式,例如經由經修飾之側鏈。非共價鍵結可係直接(例如,靜電相互作用、疏水相互作用)或間接鍵結(例如,經由互補結合配偶體(例如,生物素及抗生物素蛋白)之非共價結合,其中一種配偶體共價鍵結至藥物且互補結合配偶體共價鍵結至dAb)。當採用互補結合配偶體時,一種結合配偶體可直接或經由適宜連接體部分共價鍵結至藥物,且互補結合配偶體可直接或經由適宜連接體部分共價鍵結至dAb。
如本文所用「dAb融合物」係指包含dAb及多肽藥物(其可為多肽、dAb或mAb)之融合蛋白。dAb及多肽藥物係以單一連續多肽鏈之離散部分(parts或moieties)存在。
因此,本揭示內容之方法可適於以下中之一或多者:治療蛋 白、單株抗體(mAb)、結構域抗體(dAb)、dAb偶聯物、dAb融合物、mAbdAb或上述任何其他抗原結合蛋白。
舉例而言,抗原結合蛋白係肽-dAb融合物(例如艾塞那肽4(Exendin 4)-AlbudAbTM/Dat01)、dAb偶聯物(例如具有C末端半胱胺酸(對於PYY化學偶聯)之AlbudAbTM/Dat06)、dAb-dAb融合物(例如AlbudAbTM-TNFR1 VH dAb/DOM100)或裸dAb(例如VH dAb(抗TNFR1)/DOM101)。
舉例而言,抗原結合蛋白包含SEQ ID NO:1(Dat01)、SEQ ID NO:3(Dat06)、SEQ ID NO:5(DOM100)、SEQ ID NO:7(DOM101)、或SEQ ID NO:9(DOM101丙胺酸延伸)或由其組成。
蛋白質之表現
適宜微生物細胞可為原核細胞,其包括細菌細胞,例如革蘭氏陰性或革蘭氏陽性細菌。該等細菌細胞包括大腸桿菌(例如,菌株W3110或BL21)、芽孢桿菌屬(Bacilli sp.)(例如枯草芽孢桿菌(B.subtilis))、假單胞菌屬(Pseudomonas sp.)、摩拉克氏菌屬(Moraxella sp.)、棒桿菌屬(Corynebacterium sp.)及其他適宜細菌。
適宜微生物細胞可為真核細胞,其包括酵母(例如釀酒酵母(Saccharomyces cerevisiae)、甲醇酵母(Pichia pastoris))或真菌(例如曲黴菌屬(Aspergilus sp.))。
本文亦闡述包含編碼重組蛋白之重組核酸分子的載體。載體可為包含一或多個以可操作方式連接至重組核酸之表現控制元件或序列的表現載體。載體之實例包括質粒及噬菌粒。
適宜表現載體可含有多個組份,例如複製起點、可選標記基因、一或多個表現控制元件(例如轉錄控制元件(例如啟動子、增強子、終止子))及/或一或多個轉譯信號、信號序列或前導序列。表現控制元件及信號序列(若存在)可由載體或其他來源提供。舉例而言,編 碼抗體鏈之選殖核酸之轉錄及/或轉譯控制序列可用於引導表現。
可提供用於在期望細胞中表現之啟動子。啟動子可為組成型或誘導型。舉例而言,啟動子可以可操作方式連接至編碼抗體、抗體鏈或其部分之核酸,以使其引導核酸之轉錄。可使用適於原核細胞之多種啟動子(例如,大腸桿菌之lac、tac、trp、phoA、lambdapL、T3、T7(T7A1、T7A2、T7A3)啟動子)。可採用之操縱子序列包括lac、gal、deo及gin。可採用一或多個完美回文對稱操縱子序列。
另外,表現載體通常包含用於選擇帶有載體之細胞的可選標記,且在可複製表現載體情形下包含複製起點。編碼賦予抗生素或藥物抗性之產物之基因係常見可選標記物且可用於原核細胞(例如,內醯胺酶基因(氨苄西林(ampicillin)抗性)、Tet基因(四環素抗性)及真核細胞(例如,新黴素(neomycin)(G418或遺傳黴素)、gpt(黴酚酸)、氨苄西林或潮黴素(hygromycin)抗性基因)。二氫葉酸還原酶標記物基因允許用胺甲蝶呤(methotrexate)在多種細胞中進行選擇。
可使用如WO2007/088371中所述之表現載體(例如pAVE037、pAVE007或pAVE011)以表現蛋白質。或者,可使用市售載體(例如pJExpress 401)以表現蛋白質。
宿主細胞包含上述重組核酸分子或載體。
本發明之微生物細胞培養液之細胞表現重組蛋白。可在細胞內表現重組蛋白。在另一態樣中,表現之重組蛋白具有信號序列(亦稱作信號肽),其沿微生物細胞之分泌途徑引導蛋白質。
在革蘭氏陽性(Gram-positive)細菌中,分泌蛋白質最通常橫跨單一膜藉由Sec途徑或Tat途徑移位。在革蘭氏陰性細菌中,一些分泌蛋白質在單一步驟中經由I型、III型、IV或VI型分泌途徑橫跨內膜及外膜輸出,而其他蛋白質首先經由通用Sec或Tat途徑輸出至細胞周質中且隨後主要經由II型或V型機制橫跨外膜移位。II型系統涉及兩步製 程,其中含有Sec分泌序列之未成熟蛋白質使用Sec途徑輸出至細胞周質。藉由蛋白溶解移除分泌序列,從而引起在細胞周質中存在成熟之經處理蛋白質,且蛋白質是否分泌至培養基高度取決於分泌序列、蛋白質、細胞及培養物條件之特性。同樣在細胞溶解(自溶)之情形下,可假定培養基中之大部分蛋白質源自細胞周質且因此對其進行處理。重組蛋白可經由分泌信號序列主動分泌至培養基中;或經由業內已知之其他細胞途徑自細胞周質被動分泌至培養基。
信號序列之處理包括信號序列自蛋白質之解離及移除。然而,已知信號序列之一些胺基酸保留在蛋白質之N末端處,以使信號序列未經適當處理。信號序列可90%或更多經處理,以使10%或更少信號保留在蛋白質之N末端處。信號序列可至少91%、92%、93%、94%、95%、96%、97%、98%或99%經處理。信號序列可約100%經處理,以使在穿過細胞之分泌途徑後,在蛋白質之N末端處無保留。
信號序列可為細胞周質靶向信號序列。業內已知用以引導蛋白質至細胞周質之信號序列。舉例而言,使用MalE信號序列。或者,使用PelB或OmpA信號序列。
收穫
使微生物宿主細胞在適宜條件下生長以表現重組蛋白。微生物細胞培養液係表現重組蛋白之宿主細胞的群體。可在發酵容器中遵循標準程序利用培養基(例如複雜培養基)使用宿主細胞(例如大腸桿菌)之進料分批發酵產生微生物細胞培養液。發酵條件包括為細胞進給營養及空氣供應。
收穫係發酵之結束。收穫可在發酵期間認為足以結束發酵製程且回收所表現重組蛋白之任一時間點。收穫可在細胞培養液誘導以表現重組蛋白後8小時與50小時之間進行。舉例而言,收穫可在誘導後8小時與36小時之間進行。在收穫時,微生物細胞群體之固體含量可介 於5%至30%濕細胞重量(WCW)之間。
發酵器體積可為:(i)約10,000升;約5,000升;約2,000升;約1,000升;約500升;約125升;約50升;約20升;約10升;約5升;或(ii)介於5升與10,000升之間;介於10升與5,000升之間;介於20升與2,000升之間;介於50升與1,000升之間。
收穫物之粒徑分佈之變化可相當大,其中更大或更小程度之微細(5μm)粒子形成。舉例而言,粒子5μm之總體積%可為5%或更多、10%或更多、25%或更多、50%或更多、75%或更多、80%或更多、85%或更多、90%或更多、95%或更多或100%。
收穫物可包含自然溶解(亦稱作自溶)之細胞。舉例而言,收穫物中之1%至50%細胞可經歷自溶。或者,收穫物中之20%至50%、或30%至50%或40%至50%細胞自溶。或者,收穫物中之10%或更多、20%或更多、30%或更多、40%或更多或50%或更多細胞自溶。可藉由澄清收穫物中之DNA濃度或藉由電容間接測定自溶,如實例中所述。亦可藉由將重組蛋白釋放/分泌至培養基中間接測定自溶,但此未必係直接關係,此乃因存在其他方式可釋放/分泌至培養基中(如上文論述)。
收穫可包括排空微生物細胞培養液之發酵器的可選步驟。
收穫物之可選預處理
收穫物之預處理係調節收穫物之方法。此步驟可在發酵器中或在自發酵器移除收穫物後實施。預處理包括:熱、機械或化學溶解收穫物(例如藉由均質化、冷凍-解凍、溶解);及細胞周質萃取。可使用業內已知之方法萃取至少一種細胞周質萃取物。可在細胞內表現蛋白質,且可溶解細胞以釋放蛋白質。舉例而言,可均質化細胞以自細胞內部或自細胞周質內釋放蛋白質。
在一個實施例中,在添加絮凝劑之前未進一步處理收穫物。舉例而言,收穫物並非裂解物,亦即其未經化學溶解劑處理。舉例而言,收穫物並非均質物。舉例而言,收穫物未經受冷凍-解凍。
絮凝劑之添加
本發明者假設改良之澄清步驟可涉及使用絮凝劑以達成收穫物中之低比例(5%或更少)之微細(5μm或更小)粒子。因此,在添加絮凝劑之前監測粒徑分佈,且絮凝劑之含量不斷增加。
絮凝劑包括:礦物質或植物水膠體;陰離子聚電解質(例如聚苯乙烯磺酸酯、陰離子聚丙烯醯胺);陽離子聚電解質(例如聚乙烯亞胺(PEI)、陽離子聚丙烯醯胺)、來自微生物之天然聚合物(例如殼聚糖);及化學絮凝劑,例如硫酸鋁、合成及非合成聚合物、強陽離子及。絮凝劑之具體實例包括PEI(MW:50kDa至100kDa)、聚(二烯丙基二甲基氯化銨)(PDADMAC)(低分子量型式MW:100kDa至200kDa;或高分子量型式400kDa至500kDa)、酸沈澱、CaCl2、殼聚糖(MW:110kDa)。在一個實施例中,絮凝劑係PEI(50kDa至100kDa)。在另一實施例中,絮凝劑係PDADMAC低分子量型式MW:100kDa至200kDa。在又一實施例中,絮凝劑係PDADMAC高分子量型式400kDa至500kDa。在另一實施例中,絮凝劑係CaCl2
絮凝劑引起不溶性或固體物質聚集,以使可溶性重組蛋白保留於溶液中。PEI既可用作可溶性物質(例如核酸、脂質、膠狀蛋白質(並非重組蛋白))之「沈澱」;且亦可用作細胞及細胞碎片之「絮凝劑」,以使重組蛋白留在溶液中。
向收穫物中添加一定量之絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈。絮凝劑之此量可佔收穫物之介於0.01體積%至5體積%之間。或者,絮凝劑之量可於佔收穫物之介0.01體積%至2體積%之間。例如,絮凝劑之量可佔收穫物之介於0.1 體積%與2體積%之間、介於0.1體積%與0.5體積%之間;或介於0.3體積%與0.5體積%之間,或係0.5體積%。
舉例而言,PEI、PDADMAC低分子量型式(MW:100kDa至200kDa)或PDADMAC高分子量型式(400kDa至500kDa)係於介於0.1%至2%之間之濃度下。或者,CaCl2係於介於3%至6%之間、例如4.3%之濃度下。舉例而言,DOM100收穫物中之PEI濃度係0.1%至2.0%、0.15%至2.0%、0.2%至2.0%或0.3%至0.5%。或者,DOM100收穫物中之CaCl2濃度係4.3%。舉例而言,Dat01收穫物中之PEI濃度介於0.05%至0.8%、0.1%至0.8%或0.1%至0.2%之間。舉例而言,Dat06收穫物中之PEI濃度或PDADMAC(高或低)濃度介於0.1%至0.5%、0.2%至0.5%或0.15%至0.4%之間。舉例而言,DOM101收穫物中之PEI濃度係0.5%。
絮凝收穫物之粒徑分佈應為約5%或更少粒子在5μm或更小之大小範圍內。此與在5μm或更小之大小範圍內之粒子佔絮凝劑添加之前之收穫物之起始比例無關。因此,若在5μm或更小之大小範圍內之粒子於收穫物中之百分比高於5%,則絮凝劑之添加應將此百分比降低至約5%或以下。若在5μm或更小之大小範圍內之粒子於收穫物中之百分比係約5%或以下,則絮凝劑之添加應維持此百分比為約5%或以下。
收穫步驟與絮凝劑添加之間經過之時間可介於0小時至24小時之間。或者,收穫步驟與絮凝劑添加之間經過之時間可介於0小時至12小時、0小時至6小時或0小時至3小時之間。
可使用配備有小體積分散單元之Malvern Master Size Instrument(Malvern儀器,Worcestershire,UK)根據製造商建議之方案測定粒徑分佈。
折射率(RI)可設定介於1.4至1.6之間。舉例而言,RI可設定為 1.45或1.52或1.59。吸附係數可設定介於0.000與0.001之間。舉例而言,吸附係數可設定為0.000或0.001。
在添加絮凝劑之後,5μm之大小分佈中之粒子的百分比可為約5%或更小;約4%或更小;約3%或更小;約2.5%或更小;約2%或更小;約1.5%或更小;約1%或更小;約0.5%或更小;約0.25,或less;約0.1%或更小;約0.05%或更小;約0.01%或更小;或約0%。
舉例而言,5μm之大小分佈中之粒子的百分比可在0%至6%、0%至5%、0%至4%、0%至3%、0%至2.5%、0%至2%、0%至1.5%、0%至1%、0%至0.05%或0%至0.01%範圍內。
5μm或更小體積中之粒子之大小範圍可約4μm或更小;約3μm或更小;約2.5μm或更小;約2μm或更小;約1.5μm或更小;約1μm或更小;約0.5μm或更小。舉例而言,大小範圍可為0μm至5μm、0μm至4μm、0μm至3μm、0μm至2μm、或0μm至1μm。
可添加第一量之絮凝劑,評定粒徑分佈,且若需要,添加第二量之絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈。
澄清
澄清係移除固體微粒之過程。澄清可降低對純化期間後續層析步驟之負荷。典型澄清步驟包含沉降步驟(亦稱作沈積,例如藉由重力)、及/或離心步驟及/或過濾步驟。
離心步驟可為連續離心(例如,利用連續進料區)。就其自身而言,離心機可關於排放固體「分批」或「間歇」或「連續」操作。舉例而言,管式離心機可用作連續離心步驟。
離心後剩餘之固體%可為約0%;約0.5%或更小;約1%或更小;約2%或更小;約3%或更小;約4%或更小;約5%或更小;約10%或更小;約15%或更小;或約20%或更小。
可使用離心作為唯一澄清過程。或者,離心可與過濾組合使用以提供組合澄清過程。離心可進行作為第一步驟且隨後過濾作為後續步驟,或反之亦然。或者,可使用過濾作為唯一澄清過程。過濾(例如深度過濾)可進一步提供澄清,從而移除小的固體粒子。
與無絮凝劑相比,添加絮凝劑之過濾器容量可改良約200%;約300%或更多;約400%或更多;約500%或更多;約600%或更多;約700%或更多;約800%或更多;約900%或更多;約1000%或更多;或約2000%或更多。
重組蛋白之純化
澄清之後經常純化以確保重組蛋白之足夠純度。可使用一或多個層析步驟,例如一或多種層析樹脂;及/或一或多個過濾步驟。舉例而言,可使用利用諸如蛋白質A或L等樹脂之親和層析純化重組蛋白。或者或另外,可使用離子交換樹脂(例如陽離子交換)以純化重組蛋白。
重組蛋白回收率
實例中闡述四種不同重組蛋白。並未指示蛋白質回收率受絮凝劑之使用損害,如藉由本文方法所述。如藉由本文方法所述使用絮凝劑可能實際上改良蛋白質自細胞釋放。
其他因素
改變添加絮凝劑後之收穫物之pH可用於微調5μm及以下之粒子的數目。舉例而言,收穫物加上絮凝劑之pH可調節至pH7。收穫物加上絮凝劑之pH可調節至pH 4-7;或pH 4-6;或pH 4-5。
改變添加絮凝劑後之收穫物之導電率可用於微調5μm及以下之粒子的數目或平均粒子直徑。
以下項目闡述本發明:
項目1. 一種製備重組蛋白之方法,其中該方法包含: (a)收穫表現該重組蛋白之微生物細胞培養液;及(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈。
項目2. 如項目1之方法,其中該方法進一步包含以下步驟:(c)澄清絮凝收穫物。
項目3. 如項目2之方法,其中該方法進一步包含以下步驟:(d)自該澄清絮凝收穫物純化該重組蛋白。
項目4. 一種澄清微生物收穫物之方法,其中該方法包含:(a)收穫微生物細胞培養液;(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈;及(c)澄清該絮凝收穫物。
項目5. 如項目4之方法,其中該微生物細胞培養液表現重組蛋白。
項目6. 如前述項目中任一項之方法,其中(a)之該收穫步驟與步驟(b)中之該絮凝劑添加之間經過的時間介於0小時至24小時之間。
項目7. 如前述項目中任一項之方法,其中該方法在步驟(a)與(b)之間進一步包含額外步驟:(b’)藉由(i)機械或化學溶解或(ii)細胞周質萃取預處理該收穫物。
項目8. 如項目1至6中任一項之方法,其中在步驟(b)之前,步驟(a)之該收穫微生物細胞培養液未經進一步處理。
項目9. 如項目2至8中任一項之方法,其中步驟(c)包含(i)沉降;及/或(ii)離心;及/或(iii)過濾。
項目10. 如項目1至3及5至9中任一項之方法,其中該表現重組蛋白包含信號序列。
項目11. 如項目10之方法,其中該分泌重組蛋白之該信號序列90%以上經處理。
項目12. 如項目10或11之方法,其中該信號序列係細胞周質靶向信號序列。
項目13. 如項目1至3及5至12中任一項之方法,其中該重組蛋白分泌至該培養基中。
項目14. 如前述項目中任一項之方法,其中(a)之該微生物細胞培養液中之細胞的1%至50%經歷自溶。
項目15. 如項目14之方法,其中藉由電容評定自溶。
項目16. 如前述項目中任一項之方法,其中該方法進一步包含在步驟(b)中添加第一量之絮凝劑,從而評定粒徑分佈,且若需要,添加第二量之絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內的體積粒徑分佈。
項目17. 如前述項目中任一項之方法,其中該量之該絮凝劑係以佔收穫物介於0.01體積%至5體積%之間之量添加。
項目18. 如前述項目中任一項之方法,其中該量之該絮凝劑係以佔收穫物介於0.01體積%至2體積%之間之量添加。
項目19. 如項目18之方法,其中該絮凝劑係聚乙烯亞胺(PEI)或聚(二烯丙基二甲基氯化銨)(PDADMAC)。
項目20. 如項目19之方法,其中該PEI係高分子量PEI,例如MW 50kDa至100kDa。
項目21. 如項目18之方法,其中該絮凝劑係CaCl2
項目22. 如前述項目中任一項之方法,其中該微生物細胞培養液係大腸桿菌細胞培養液。
項目23. 如前述項目中任一項之方法,其中在步驟(b)中添加該絮凝劑之後,5μm之大小分佈中之該粒子%係約4%或更小;約3%或 更小;約2.5%或更小;約2%或更小;約1.5%或更小;約1%或更小;約0.5%或更小;約0.25%或更小;約0.1%或更小;約0.05%或更小;約0.01%或更小;或約0%。
項目24. 如前述項目中任一項之方法,其中5μm或更小體積中之粒子之該大小範圍係:約4μm或更小;約3μm或更小;約2.5μm或更小;約2μm或更小;約1.5μm或更小;約1μm或更小;約0.5μm或更小。
項目25. 如項目9至24中任一項之方法,其中該離心係藉由連續離心。
項目26. 如項目9至24中任一項之方法,其中該離心係藉由分批離心。
項目27. 如項目2至26中任一項之方法,其中步驟(c)期間剩餘之固體%係約0%;約0.5%或更小;約1%或更小;約2%或更小;約3%或更小;約4%或更小;約5%或更小;約10%或更小;約15%或更小;或約20%或更小。
項目28. 如項目2至27中任一項之方法,其中與無絮凝劑相比,在絮凝劑存在下步驟(c)期間之過濾器容量改良約200%;約300%或更多;約400%或更多;約500%或更多;約600%或更多;約700%或更多;約800%或更多;約900%或更多;約1000%或更多;或約2000%或更多。
項目29. 如項目1至3及5至28中任一項之方法,其中該重組蛋白係抗原結合蛋白。
項目30. 如項目29之方法,其中該抗原結合蛋白包含dAb(結構域抗體)。
項目31. 如項29之方法,其中該抗原結合蛋白包含:(a)肽-dAb融合物; (b)dAb偶聯物;(c)dAb-dAb融合物;或(d)裸dAb。
項目32. 如項29之方法,其中該抗原結合蛋白包含:(a)艾塞那肽4-AlbudAbTM(SEQ ID NO:1);(b)具有C末端半胱胺酸(SEQ ID NO:3)之AlbudAbTM;(c)AlbudAbTM-TNFR1 VH dAb(SEQ ID NO:5);或(d)VH dAb抗TNFR1(SEQ ID NO:7或9)。
項目33. 如項目1至3及5至28中任一項之方法,其中該重組蛋白包含病毒蛋白、細菌毒素、細菌類毒素或癌症抗原。
項目34. 如前述項目中任一項之方法,其中(a)中之該收穫物之該固體含量係5%至30%濕細胞重量(WCW)。
項目35. 如前述項目中任一項之方法,其中該微生物細胞培養液係自發酵器收穫。
項目36. 如項目35之方法,其中該發酵器體積係:(i)約10,000升;約5,000升;約2,000升;約1,000升;約500升;約125升;約50升;約20升;約10升;約5升;或(ii)介於5升與10,000升之間;介於10升與5,000升之間;介於20升與2,000升之間;介於50升與1,000升之間。
項目37. 一種經改質大腸桿菌細胞收穫物,其中:(a)該等細胞表現細胞周質靶向重組蛋白;(b)該收穫物包含0.01體積%至2體積% PEI;且(c)該收穫物之體積粒徑分佈係約5%或更少粒子在5μm或更小之大小範圍內。
項目38. 如項目37之經改質收穫物,其中該收穫物藉由(i)機械或化學溶解或(ii)細胞周質萃取經處理。
項目39. 如項目37或38之經改質收穫物,其中該等細胞之1%至50%經歷自溶。
項目40. 如項目39之經改質收穫物,其中藉由電容評定自溶。
項目41. 如項目37至40中任一項之經改質收穫物,其中聚乙烯亞胺(PEI)係高分子量PEI,例如MW 50kDa至100kDa。
項目42. 如項目37至41中任一項之經改質收穫物,其中5μm之大小分佈中之該粒子%係約4%或更小;約3%或更小;約2.5%或更小;約2%或更小;約1.5%或更小;約1%或更小;約0.5%或更小;約0.25%或更小;約0.1%或更小;約0.05%或更小;約0.01%或更小;或約0%。
項目43. 如項目37至42中任一項之經改質收穫物,其中5μm或更小體積中之粒子的該大小範圍係約4μm或更小;約3μm或更小;約2.5μm或更小;約2μm或更小;約1.5μm或更小;約1μm或更小;約0.5μm或更小。
項目44. 如項目37至43中任一項之經改質收穫物,其中該重組蛋白包含抗原結合蛋白。
項目45. 如項目44之經改質收穫物,其中該抗原結合蛋白包含dAb(結構域抗體)。
項目46. 如項目44之經改質收穫物,其中該抗原結合蛋白包含:(a)肽-dAb融合物;(b)dAb偶聯物;(c)dAb-dAb融合物;或(d)裸dAb。
項目47. 如項目44之經改質收穫物,其中該抗原結合蛋白包含:(a)艾塞那肽4-AlbudAbTM;(b)具有C末端半胱胺酸之AlbudAbTM; (c)AlbudAbTM-TNFR1 VH dAb;或(d)VH dAb抗TNFR1。
項目48. 如項目37至43中任一項之經改質收穫物,其中該重組蛋白包含病毒蛋白、細菌毒素、細菌類毒素或癌症抗原。
項目49. 如項目37至48中任一項之經改質收穫物,其中該收穫物之該固體含量係5%至30%濕細胞重量(WCW)。
項目50. 如項目37至49中任一項之經改質收穫物,其中該收穫物體積係:(i)約10,000升;約5,000升;約2,000升;約1,000升;約500升;約125升;約50升;約20升;約10升;約5升;或(ii)介於5升與10,000升之間;介於10升與5,000升之間;介於20升與2,000升之間;介於50升與1,000升之間。
實例
除非另有說明,否則所用之所有化學品及試劑皆係來自Sigma Aldrich。
絮凝劑聚乙烯亞胺(PEI)係包含一級、二級及三級胺之陽離子聚合物((C2H5N) n ,MW=50,000-100,000Da)且製備為水中之10%或12.5% w/v溶液且在使用之前老化至少30分鐘。
絮凝劑聚(二烯丙基二甲基氯化銨)(PDADMAC)係以低分子量型式(100,000-200,000Da)或高分子量型式(400,000-500,000Da)使用之高電荷密度陽離子聚合物。
實例中使用四種樣品重組蛋白且其闡述於下表1中。
據信本文利用DOM101(SEQ ID NO:7)實施之工作直接等效於針對丙胺酸延伸之DOM101(SEQ ID NO:9)預測之結果。
在1L發酵容器中遵循標準程序利用複雜培養基使用使用大腸桿 菌之進料分批發酵產生蛋白質。隨後在誘導後介於8小時與50小時之間在適當條件下收穫發酵物。
使用配備有小體積分散單元之Malvern Mastersize Instrument(Malvern儀器,Worcestershire,UK)根據製造商建議之方案測定粒徑分佈。折射率(RI)在1.4至1.6範圍內。吸附係數在0至0.001範圍內。
實例1
此研究中使用三種蛋白質。Dom100、Dat06及Dat01均係包含如表1中所述結構域抗體(dAb)之重組蛋白。
向發酵收穫物中添加預製備10% PEI溶液以產生用於研究之期望濃度。隨後在粒徑分佈量測之前,將此物質於室溫下混合1小時。
圖1中給出DOM100收穫物且添加0.005%、0.05%、0.1%、0.5%及2% PEI之粒徑分佈。可看到收穫物(未添加絮凝劑)包含直徑5μm之以體積計之大部分粒子。然而,重要的是,應注意,單獨研究(本文未顯示)指示收穫物之粒徑分佈的變化可相當大,具有更大或更小程度之以體積計直徑5μm粒子。圖1顯示藉由增加PEI之量,分佈中5μm粒子之存在減少。於0.5% PEI下,已移除直徑5μm之大部分粒子。
在添加PEI後表現DOM100之收穫物的粒徑分佈之此位移之更詳細說明以及表現Dat06或Dat01之收穫物之數據一起示於表2中。表2並非聚焦於較大粒子/聚集物(其經常係利用絮凝劑之研究之焦點),而是聚焦於5μm之粒子佔收穫物或絮凝收穫物之總體積之百分比。
對於DOM100收穫物,在添加PEI後,5μm粒子之比例降低。具體而言,達成約5%或更少粒子5μm之體積粒徑分佈的PEI濃度介於0.1%至2.0%(所測試上限)之間。最佳甜蜜點(sweet spot)看似為於0.2%%至2.0%(小於2體積%)或0.3%至0.5%(小於1.5體積%)之濃度下。
對於Dat01收穫物,達成約5%或更少粒子5μm之體積粒徑分佈的PEI濃度介於0.1%至0.8%(所測試上限)之間。最佳甜蜜點看似為於0.1%至0.2%(小於1.6體積%)之濃度下。
對於Dat06收穫物,達成約5%或更少粒子5μm之體積粒徑分佈 的PEI濃度介於0.1%至0.5%之間。應注意,對於此收穫物,「約5%」等於6.15%及5.35%。假定Dat06收穫物粒徑分佈在範圍0.1%至0.5% PEI內可降低至5%以下,且此展示於圖2中。表2中所述針對Dat06收穫物之數據(0% PEI(100%)及0.01% PEI(57%)除外)繪示於圖2中,外推線以證實以下假設:體積%分佈應在0.1%至0.5% PEI之實驗衍生點之間5μm粒子下降低於5%。因此,對於此Dat06收穫物,預測最佳甜蜜點可為0.15%至0.4% PEI。分析兩種其他Dat06收穫物:收穫物A含有金屬螯合劑(EDTA),且收穫物B在發酵期間經控制以具有低細胞質量。在未添加PEI情況下,對於收穫物A,直徑5μm之粒子佔總體積之體積%係97.09%;且對於收穫物B係93.78%。對於收穫物A,0.1%至0.4%之PEI濃度下5μm粒子之該等百分比降低至約5%(1.79%至5.62%5μm粒子);且對於收穫物B,0.1%至0.5% PEI(0.64%-1.73%5μm粒子)。未進一步分析該等收穫物。
因此,可看到,增加絮凝劑之量並不直接與5μm範圍內之粒子之降低百分比一致。可鑑別絮凝劑之最佳量,且此最佳量具有如下文所示改良之效應。
實例2
此研究中使用四種實例重組蛋白。DOM101闡述於表1中。表現DOM101之收穫物之粒徑分佈如上述計算。
在本研究中研究剪切之影響,此乃因通常以實驗室規模呈現之剪切條件實質上小於彼等以大的製造規模呈現者。因此,在以實驗室規模實施之早期製程研究中經常忽略或低估剪切之影響。
研究兩種不同程度之剪切:0.04×106W kg-1之「低剪切」等效最大功耗εmax,和0.53×106W kg-1之「高剪切」等效最大功耗εmax
暴露適當試樣以在旋轉盤裝置(具有50mm內直徑及10mm高度之20mL不銹鋼腔,裝配有40mm直徑及1mm厚度之不銹鋼旋轉盤,由 定製設計電源組(UCL機械工廠,UCL,London,亦參見McCoy R,Hoare M,Ward S.2009。Ultra scale-down studies of the effect of shear on cell quality;Processing of a human cell line for cancer vaccine therapy.Biotechnology Progress 25(5):1448-1458)控制盤速度(0rpm至20,000rpm))中剪切20s。盤速度與使用計算流體動力學衍生之關聯之最大能量耗散速率有關(對於所涉及方法,例如,參見Boychyn M、Doyle W、Bulmer M、More J、Hoare M.2000.Laboratory scaledown of protein purification processes involving fractional precipitation and centrifugal recovery,Biotechnology and Bioengineering 69:1-10,現在重新定義且提煉成經驗關係式ε=(1.7×10^-3)(N^3.71),其中ε具有W kg-1之單位且N係速度(轉.sec-1),100<N<200;及Chatel,A.,Kumpalume,P.及Hoare,M.(2013),Ultra scale-down characterization of the impact of conditioning methods for harvested cell broths on clarification by continuous centrifugation-Recovery of domain antibodies from rec E.coli.Biotechnol.Bioeng.doi:10.1002/bit.25164)。
收穫物(空心圓)及暴露於高剪切之收穫物(閉合圓)之粒徑分佈提供於圖3中。大小分佈表示為(a)對數大小標度上之總體積粒徑分佈,及分別於插圖(b)、(c)及(d)中強調峰1、2及3之粒徑分佈。收穫物及剪切材料之相對體積分數φv係0.11。圖之v Fd及相對放大倍數M之軸標度於插圖(b)、(c)及(d)中給出。收穫物之峰1、2及3之體積比係2:1:97且剪切收穫物之體積比為8:4:88。對於三種表現實例1之收穫物之重組蛋白,所觀察粒徑分佈不同,其中5μm以上之較大粒子之比例較大。如上文所論述,單獨研究(本文未顯示)指示收穫物之大小分佈之變化相當大,具有更大或更小程度之微細粒子形成。
下表3顯示上述每一試樣中5μm之粒子佔收穫物之總體積之百 分比。如在增加程度之與生物處理相關之剪切後所見,5μm範圍內之粒子之發生率增加,以使5體積%以上含有5μm之粒子。此可增加對後續澄清及純化步驟之負荷。
絮凝劑之添加
使上述DOM101收穫物經受如實例1中所述PEI處理至0.5% w/v之最終濃度。關於DOM101收穫物之前述工作(本文未顯示)已經顯示0.5%係PEI之最佳量。隨後使PEI處理之收穫物經受上述剪切。
PEI絮凝收穫物(閉合圓)及以低剪切(十字形)及高剪切(空心圓)剪切之PEI絮凝收穫物的粒徑分佈提供於圖4中。大小分佈表示為(a)對數大小標度上之總體積粒徑分佈,及分別於插入物(b)、(c)及(d)中強調峰1、1及2之粒徑分佈。峰1及2之體積比係(PEI絮凝收穫物)50:50,(PEI絮凝低剪切)87:13,(PEI絮凝高剪切)93:7。
如可見,在與圖3中之無PEI分佈相比時,PEI之存在增加自最小粒徑峰至較大直徑點之位移。然而,此又對5μm粒子之體積具有最小效應。
下表3顯示上述每一試樣中5μm之粒子佔收穫物之總體積之百分比。在0.5% PEI存在下約5%或更少粒子5μm之體積粒徑分佈在低及高剪切存在下保持相對恆定。然而,在未添加PEI之情況下,在高剪切存在下,5μm之粒子之百分比使5μm之總體積進一步增加6%。此數據表明,在剪切存在下,0.5% PEI產生更有效且穩健之澄清步驟。
實例3
如實例1中所述用PEI處理DOM100收穫物至期望濃度。使用Carr Powerfuge以0.5升/分鐘(lpm)及15325轉/分鐘(rpm)之速度使試樣經受連續離心。隨後在離心之前(進料濁度)及在離心之後(離心濾液濁度)使用標準條件利用Hach濁度計(Colorado,US)量測試樣之濁度。
圖5展示在離心之前及之後增加添加至收穫物之PEI之濃度對濁度的效應。離心之前之收穫物之濁度(進料濁度)顯示隨PEI之添加而穩定增加,此與絮凝物之形成一致。離心濾液濁度顯示隨PEI之含量增加而降低,此與更有效離心製程步驟一致。在右側軸上量測離心濾液濁度,且在左側軸上繪示進料濁度,此乃因離心濾液濁度比進料濁度低數個數量級。離心後之此濁度改良與如表2中所示於0.1%至2.0%之PEI濃度下針對DOM100觀察到之5%或更低之5μm粒子一致。具體而言,在此研究中,離心濾液濁度改良始於0.1% PEI,且改良直至0.5% PEI之終點,最佳係於0.4%下。此與表2中所示針對DOM100收穫物0.3%至0.5%之PEI濃度下之最佳甜蜜點一致。
實例4
在具有及無PEI情況下,如實例2中製備DOM101收穫物。隨後使用由以下先前闡述之方法使試樣經受超比例縮減離心方法:Tait AS、Aucamp JP、Bugeon A、Hoare M.2009.Ultra scale-down prediction using microwell technology of the industrial scale clarification characteristics by centrifugation of mammalian cell broths.Biotechnology and Bioengineering 104(2):321-331。藉由測定於波長600nm之吸光率下光學密度之相對減少計算剩餘之固體百分比。
圖6展示DOM101收穫物(a)及0.5% PEI存在下DOM101收穫物(b)之剩餘固體%。每一圖中亦表示未經受剪切(閉合圓)、經受低剪切(十字形)及高剪切(空心圓)之試樣(剪切係如上文實例2中所述)。
數據表示為平均值±s.d.;線係使用三階多項式之最佳最小平方擬合。對於圖(a),給出單一關聯,此乃因與增加剪切速率無一致趨勢。在所有情形下,經由提供對照之原點擬合關聯。
如圖6中可見,0.5% PEI之存在顯著降低離心後剩餘之固體% -無PEI添加情況下剩餘之固體%存在至多10%至15%,而在0.5% PEI情況下,此降低至剩餘0.8%固體。
實例5
在一系列PEI濃度下如實例1中製備DOM100收穫物。隨後使此物質如實例3中所述穿過離心機,且隨後穿過包含主要及次要過濾器之過濾器組。計算過加壓之前主要過濾器之最大容量(亦稱作Vmax)(L/m2)且針對所添加PEI%繪圖。如圖7中可見,主要過濾器容量實質上隨PEI之濃度增加而上升,對應於在絮凝劑添加後收穫物中5μm粒子之存在減少。可觀察到因添加PEI而產生之過濾器容量改良始於0.1% PEI且於0.4%下達到峰值,在此研究中0.5%之終點處仍觀察到改良。最佳值看似為於0.4% PEI下。此與實例3及表2一起展示,利用達成在5μm範圍內佔總粒子5%或更低之含量之絮凝劑的DOM100收穫物之澄清顯著改良。此改良與如表2中所示於0.1%至2.0%之PEI濃度下針對DOM100觀察到之5%或更低之5μm粒子一致,且具體而言,表2中所示0.3%至0.5%之PEI濃度下針對DOM100收穫物之最佳甜蜜點。
實例6
如下文所述處理Dat06及DOM100收穫物。藉由離心澄清對照收穫物且利用來自Invitrogen之Quant-iT dsDNA Broad Range分析套組根據製造商之說明書量測DNA含量。使用Gaulin型均質化於10,000psi之靶壓力下均質化所有其他收穫物,通過2次。該等均質化收穫物皆經增加濃度之PEI(對於Dat06及DOM100收穫物)或高或低MW PDADMAC(對於Dat06收穫物)處理且隨後藉由離心澄清。如上文針對對照收穫物所述量測DNA含量。
可將DNA視為細胞溶解之指示劑-在完整細胞存在下,上清液中應存在極少。就其自身而言,DNA之存在可能影響澄清,此乃因其增加上清液之黏度且可促使有效離心機澄清損失及降低過濾器通量速率。
圖8顯示對照及經三種類型之絮凝劑處理之均質化試樣的DNA濃度。對照、非均質化試樣中存在大量DNA(十字)表明已發生顯著細胞溶解。可比較DOM100對照(灰色十字)與具有0% PEI之DOM100均質化收穫物(黑線),此指示約50%細胞經歷自溶。此可能增加對澄清步驟之負荷。如可見,絮凝劑之存在明顯降低澄清收穫物中之DNA濃度。具體而言,在PEI存在下DOM100收穫物之DNA濃度降低對應於降低濁度(實例3)及改良之主要過濾器組(實例5),其與如表2中所示5μm範圍內之5%或更少粒子相關,且具體而言,0.3%至0.5%之PEI濃度下之最佳甜蜜點。
此實例亦顯示兩種替代絮凝劑(高或低MW PDADMAC)之結果與PEI之結果相當。
實例7
在0.5% PEI存在及不存在下如實例4中離心DOM101收穫物以產生離心濾液。隨後量測在封阻之前在含有Pall Seitz-EKS 60D 0.2μm 過濾器(具有標稱孔徑0.05μm至0.2μm之深度過濾器)之小規模過濾器上達成之濾液之體積且使用Tecan Evo II(Tecan,Theale,UK)上之真空驅動之小規模系統針對兩個試樣之時間繪圖。
圖9顯示在0.5% PEI存在下可獲得之濾液體積幾乎係在無PEI情況下可獲得之3倍-在0% PEI情況下,於200μl濾液體積下在30s內達成最大值,且在0.5% PEI情況下,此於600μl下在110s內仍緩慢升高。此對DOM101收穫物之濾過率具有顯著效應且對該製程之成本具有隨後減少效應。
實例8
於誘導後之不同時間收穫DOM101,且一半試樣經0.5% PEI處理。隨後如實例4中離心PEI及無PEI處理之兩種試樣且隨後使其經歷如實例7中之過濾研究。隨後計算兩組試樣之Vmax且針對誘導時間繪圖。Vmax量測係試樣之濾過率之直接量測且可用於基於所接收數據放大過濾過程。
如圖10中可見,製程中0.5% PEI絮凝步驟之存在藉由將最大可獲得濾液增加250%(誘導後0小時)、從而在發酵結束時(誘導後45小時)增加至2500%而顯著改良濾過率。可觀察到,於誘導後約25小時時,在發酵結束時,離心濾液之濾過率在無PEI處理之試樣中顯著降低至幾乎零。經PEI處理之試樣之Vmax不僅保持恆定較高,且亦較不易受誘導後時間影響,顯示0.5% PEI絮凝步驟為澄清過程增加相當大之穩健性。
25小時之誘導時間後之濾過率降低可與發酵細胞培養液中觀察到之自溶之量相關,該量可為約50%(參見下文實例6及實例9)。
實例9
亦可使用電容探針(Aber Instruments有限公司,Aberystwyth,UK)間接量測自溶,該探針量測自發酵期間記錄之最大量測至在計算最大 量測後之營養(最低點,其通常與收穫點相同)之電容減少百分比。表4展示藉由電容量測之大量DOM101發酵複製品中觀察之細胞溶解之量。
實例10
圖11展示表現DOM101之冷凍及解凍(解凍)收穫物之性質及剪切對其之效應。提供解凍收穫物(空心圓)及如實例2中經受εmax=0.53×106W kg-1下之高剪切的解凍收穫物(閉合圓)的粒徑分佈(如實例1中計算)。解凍收穫物及經受高剪切之解凍收穫物的相對固體體積分數φv係0.11w/v。兩種物質之峰1、2、3、4之體積比係5:7:4:84。
如可見,解凍物質之分佈極為類似。表5顯示5μm直徑之試樣粒子佔總體積之體積%,其顯示對於未經剪切為13.2%且對於經剪切為12.3%。在與顯示剪切對未經預處理之收穫物之效應的圖3相比時,似乎冷凍-解凍製程對在高剪切存在下研究之試樣之粒徑分佈具有穩定效應。此係實驗物質之令人感興趣之觀察,然而,在生物處理中,該物質較不可能作為澄清之一部分冷凍。
絮凝劑之添加
圖12顯示0.5% PEI絮凝對表現DOM101之冷凍-解凍收穫物之效應。提供解凍收穫物(閉合圓)及如實例2中經受εmax=0.53×106W kg-1下之高剪切的PEI絮凝解凍收穫物(空心圓)的粒徑分佈。解凍收穫物 之相對固體體積分數φv係0.11w/v且PEI絮凝物質為0.15w/v(針對利用PEI溶液之稀釋因子校正所引述φv值)。峰1及2之體積比係約20:80。
如自表5可見,在PEI自8.08%增加至0.6%後,5μm粒子之百分比降低。
實例11
圖13顯示低及高剪切對表現DOM101之PEI絮凝冷凍-解凍收穫物的效應。提供PEI絮凝解凍收穫物(閉合圓)及如實例2中經受εmax 0.04×106W kg-1下之低剪切(十字形)及εmax 0.53×106W kg-1之高剪切(空心圓)的PEI絮凝解凍收穫物的粒徑分佈(如實例1中量測)。具有低剪切之PEI絮凝解凍收穫物之相對固體體積分數φv係0.13w/v且具有高剪切之PEI絮凝解凍收穫物為0.12w/v(針對利用PEI溶液之稀釋因子校正所引述φv值)。
如自表5可見,剪切對PEI絮凝解凍收穫物之效應係減小所存在粒子之大小,但PEI之存在維持大部分粒子為5μm以上範圍(分佈%自0.6%移位至2.01%(低剪切)或至1.84%(高剪切))。此顯示即使在增加剪切程度存在下,PEI澄清步驟亦係穩健步驟。
實例12
使表現DOM101之冷凍-解凍收穫物經受剪切或使用於500巴及4℃下操作之高壓均質器(Gaulin Micron Lab40,Lubeck,Germany)均質化,通過2次。隨後如實例1中量測來測定試樣之粒徑分佈。
圖14顯示均質化對粒徑分佈之效應。提供經剪切解凍收穫物(閉合圓)及均質化收穫物(空心圓)之粒徑分佈。解凍收穫物之相對固體體積分數φv係0.11w/v且均質化收穫物為0.078w/v。
如自圖14及表5中之分佈可見,均質化對解凍收穫物之粒徑分佈具有顯著影響,5μm範圍內之粒子之數目升高至94.73%。均質化試 樣中普遍存在極小粒子可對生物處理具有極端有害效應。
實例13
使用Gaulin型均質化於10,000psi之靶壓力下均質化Dat01收穫物,通過2次。用增加濃度之PEI處理均質化收穫物。下表6顯示5μm範圍內之粒子之大的百分比可藉由添加0.054%至0.99%或0.374%至0.65% PEI(所測試上限)降低至小於5%。因此,均質化之預處理調節步驟亦可受益於適當量之PEI添加以產生更有效之澄清過程。
實例14
使用習用顯微鏡捕獲在添加0.5% PEI之前(a)及之後(b)及經受上述低剪切(c)或高剪切(d)的冷凍-解凍DOM101收穫物影像,圖15中所示。
如自圖15可見,在添加PEI後形成大量無規之大的大小之絮凝物(b)。該等物質隨後變得稍微較小且在經受低剪切(c)後變得甚至更小且在高剪切(d)後變得更小。高剪切後存在之絮凝物大於未經處理影像(a)中觀察到之細胞。
實例15
以與實例4中實施之相同方式使冷凍-解凍DOM101收穫物經受超比例縮減離心研究。使解凍收穫物試樣經受0.5% PEI絮凝(c)。亦使用於500巴及4℃下操作之高壓均質器(Gaulin Micron Lab40,Lubeck,Germany)使解凍收穫物試樣經受均質化,通過2次(a)。將不同懸浮液均暴露於以下條件:無剪切(實心圓);低剪切(空心圓);高剪切(空心三角形)(如上文所述)。
圖16顯示(a)均質化解凍收穫物、(b)解凍收穫物及(c)PEI絮凝解凍收穫物剩餘之固體%。數據表示為平均值±s.d.;線係使用三階多項式之最佳最小平方擬合。對於圖(a)及(b),給出單一關聯,此乃因與增加剪切速率無一致趨勢。在所有情形下,經由提供對照之原點擬合關聯。
如自圖可見,解凍試樣(b)顯示剩餘至多16%固體且均質化試樣(a)顯示剩餘至多60%固體-該等試樣皆不適於進一步處理,此乃因剩餘之固體%過高-通常期望量係小於1%。在添加0.5% PEI情況下充裕地達成小於1%之此靶標,此顯示減少至剩餘小於0.2%固體。
實例16
在來自DOM101收穫物之DOM101之產率或上述試樣中之任一者之單體/二聚物的特性中未觀察到明顯差別(本文未顯示數據)。假定此亦適於所述其他重組蛋白。
實例17
向發酵收穫物(Dat06)中添加預製備1.5% PEI溶液以產生PEI之期望濃度範圍(0%至0.6%)。用200mM乙酸或1M NaOH調節溶液之pH以達成期望pH範圍(4至9)。典型細胞培養液之pH介於pH 6-7之間。於室溫下混合約5至10分鐘後,使用間歇式離心機於3400rcf下持續20分鐘自上清液分離每一PEI濃度及pH條件之絮凝微粒以完成絮凝劑沉降。於600nm波長下量測所得上清液濁度以評定溶液澄清度,結果示於圖17(A)中。藉由在3400rcf之離心力下持續90秒穿過0.2μm過濾器之直接過濾性能來量測處理能力,結果示於圖17(B)中。儘管未直接量測該等絮凝條件之粒徑,但圖2、5及7中已確立澄清度及過濾性能與粒徑分佈之間之關聯。使用具有0.2μm過濾器及吸光度讀數之板模式可用作高通量模式以得到設計空間之理解。
除絮凝劑濃度外,pH亦可影響大腸桿菌溶液之絮凝行為。此實 例顯示pH與絮凝劑濃度之相互作用對溶液之澄清度具有效應。於>0.4% PEI之絮凝劑濃度下,溶液之濁度較低,此與溶液pH無關。低於0.3% PEI之絮凝劑濃度,低於pH 7.0,溶液澄清度較大(亦即,低濁度)。此研究之結果與圖1中所示更詳細粒徑分析一致;表明pH與PEI濃度之組合可用於微調大小在5μm以下之粒子的數目。
實例18
如實例1中概述用0.1% PEI及0.4% PEI處理Dat06之收穫物試樣。在圖18中,出於比較原因,使用術語「低絮凝劑」表示0.1% PEI,且使用術語「高絮凝劑」表示0.4% PEI。如前述實例中測定「0」導電率試樣之兩種PEI濃度之粒徑。對於該等導電率試樣,稀釋劑自純水變為不同離子強度之NaCl溶液。平均粒子直徑(A)及5μm之粒子體積%(B)的結果示於圖18中。所有試樣皆係取自相同發酵培養液,但放置於>1:100之稀釋程度下之不同鹽溶液中。
放置於水基質中之0.1% PEI處理之試樣的平均粒子直徑遠大於經0.4%之較高濃度之PEI處理之試樣。於高鹽(NaCl)濃度下,不同絮凝劑濃度之平均粒子直徑變得更類似。對於低導電率(及隨後)離子強度之程度,對於「低絮凝劑濃度」0.1% PEI,平均粒子直徑高於「高絮凝劑濃度」0.4% PEI下。於較高濃度之鹽(高導電率及離子強度)下,對於不同絮凝劑濃度量,平均粒子直徑之變化遠更小。此允許基於鹽濃度以及絮凝劑濃度微調平均粒子直徑。圖18A顯示此現象之實例,其中對於0.1%絮凝劑及低導電率,平均粒子直徑達到大於60μm,且在導電率大於100mS/cm時,平均粒徑為20μm至30μm,平均粒子直徑對高離子強度下之絮凝劑濃度遠更不敏感。
對於「低絮凝劑濃度」0.1% PEI,大小5μm之粒子之體積於高導電率下增加,而大小5μm之粒子在寬範圍導電率內對於「高絮凝劑濃度」0.4% PEI保持相對類似。對於Dat06於「高絮凝劑濃度」 0.4% PEI下,關於平均粒子直徑及大小5μm之粒子的觀察支持更穩定絮凝物。PEI之兩個濃度(0.1%及0.4%)達成於0導電率下5μm之「約5%」群體,但PEI之較高濃度(0.4%)在增加導電率內達成5μm群體之更穩定%。
實例19
利用4.3% CaCl2、0.1% PEI及0.2% PEI藉由添加每一組份並混合約1小時使DOM100收穫物絮凝;類似於實例1中遵循之程序。隨後藉由靜態光散射(Malvern Mastersizer)量測發酵培養液之平均粒徑。將試樣分成兩個單獨等份試樣;將一份間歇式離心且使用管式離心機(連續離心機)使另一份離心;二者具有類似總加速力。隨後使用深度/膜過濾器組以恆定流速過濾離心機試樣之所得上清液,以移除剩餘細胞碎片。藉由用在達到25psi回壓之前處理之總體積除以主要深度過濾器之前面面積量測過濾器容量。所有情形下之大部分粒子之大小>5μm。在圖19A中評定平均粒子直徑,且在圖19B中評定5μm之粒子體積%。
具有如藉由靜態光散射量測之較小平均粒徑之試樣具有間歇式離心試樣之較低主要深度過濾器容量。此關聯表明,在絮凝、之後分批離心期間形成之較大平均大小離子將改良隨後深度過濾器之過濾器容量。經由Carr管式離心機處理之試樣觀察到相反結果。若比較5μm大小限制之粒子之數目與間歇式離心機性能,則觀察到,性能相關。
實例20
如實例1中所述處理Dat06及DOM100收穫物。比較添加0.4% PEI之試樣與未經絮凝劑處理之試樣。隨後藉由離心實施澄清且使用室內分析型免疫分析量測HCP含量。
可認為HCP物質之大的含量為細胞溶解之指示。大的增加可指示 大量細胞溶解,此可引起黏度增加及澄清困難。高HCP含量亦可引起額外下游純化挑戰。
圖20顯示具有及無0.4% PEI處理之DOM100及Dat06試樣的HCP濃度。儘管PEI能夠移除Dat06中之大量宿主細胞蛋白質群體,但DOM100之情形並非如此。結果例示宿主細胞蛋白質群體之複雜性質及可在產物間預計之差別。PEI亦可移除基本量之HCP及/或絮凝劑較其他類型可更有效地移除特定類型之宿主細胞蛋白質。
序列表
SEQ ID NO:1 dAt01(艾塞那肽4-Dom7h-14-10 AlbudAb)之胺基酸序列
SEQ ID NO:2 dAt01(艾塞那肽4-Dom7h-14-10 AlbudAb)之DNA序列-(無信號序列)
SEQ ID NO:3 dAt06(Dom7h-11-15 R108C)AlbudAb之胺基酸序列
SEQ ID NO:4 dAt06(Dom7h-11-15 R108C)AlbudAb之DNA序列-(無信號序列)
SEQ ID NO:5 DOM100(DMS5541)AlbudAb-TNFR1之胺基酸序列
SEQ ID NO:6 DOM100(DMS5541)AlbudAb-TNFR1之DNA序列-(無信號序列)
SEQ ID NO:7 DOM101之胺基酸序列
SEQ ID NO:8 DOM101之DNA序列-(無信號序列)
SEQ ID NO:9丙胺酸延伸之DOM101之胺基酸序列
SEQ ID NO:10丙胺酸延伸之DOM101之DNA序列-(無信號序列)
<110> 英商葛蘭素集團有限公司
<120> 製備蛋白質之方法
<130> PB65373
<160> 10
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 163
<212> PRT
<213> 人工序列
<220>
<223> dAt01(艾塞那肽4-Dom7h-14-10 AlbudAb)之胺基酸序列
<400> 1
<210> 2
<211> 489
<212> DNA
<213> 人工序列
<220>
<223> dAt01(艾塞那肽4-Dom7h-14-10 AlbudAb)之DNA序列
<400> 2
<210> 3
<211> 108
<212> PRT
<213> 人工序列
<220>
<223> dAt06(Dom7h-11-15 R108C)AlbudAb之胺基酸序列
<400> 3
<210> 4
<211> 324
<212> DNA
<213> 人工序列
<220>
<223> dAt06(Dom7h-11-15 R108C)AlbudAb之DNA序列
<400> 4
<210> 5
<211> 230
<212> PRT
<213> 人工序列
<220>
<223> DOM100(DMS5541)AlbudAb-TNFR1之胺基酸序列
<400> 5
<210> 6
<211> 690
<212> DNA
<213> 人工序列
<220>
<223> DOM100(DMS5541)AlbudAb-TNFR1之DNA序列
<400> 6
<210> 7
<211> 119
<212> PRT
<213> 人工序列
<220>
<223> DOM101之胺基酸序列
<400> 7
<210> 8
<211> 357
<212> DNA
<213> 人工序列
<220>
<223> DOM101之DNA序列
<400> 8
<210> 9
<211> 120
<212> PRT
<213> 人工序列
<220>
<223> 丙胺酸延伸之DOM101之胺基酸序列
<400> 9
<210> 10
<211> 360
<212> DNA
<213> 人工序列
<220>
<223> 丙胺酸延伸之DOM101之DNA序列
<400> 10

Claims (20)

  1. 一種製備重組蛋白之方法,其中該方法包含:(a)收穫表現該重組蛋白之微生物細胞培養液;及(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈。
  2. 如請求項1之方法,其中該方法進一步包含以下步驟:(c)澄清該絮凝收穫物。
  3. 如請求項2之方法,其中該方法進一步包含以下步驟:(d)自該澄清絮凝收穫物純化該重組蛋白。
  4. 一種澄清微生物收穫物之方法,其中該方法包含:(a)收穫微生物細胞培養液;(b)添加一定量絮凝劑以達成約5%或更少粒子在5μm或更小之大小範圍內之體積粒徑分佈;及(c)澄清該絮凝收穫物。
  5. 如請求項4之方法,其中該微生物細胞培養液表現重組蛋白。
  6. 如請求項2至5中任一項之方法,其中步驟(c)包含(i)沉降;及/或(ii)離心;及/或(iii)過濾。
  7. 如請求項1至3及5中任一項之方法,其中該所表現重組蛋白包含信號序列。
  8. 如請求項7之方法,其中該信號序列係細胞周質靶向信號序列。
  9. 如請求項1至5中任一項之方法,其中該量之該絮凝劑係以佔該收穫物介於0.01體積%至5體積%之間之量添加。
  10. 如請求項1至5中任一項之方法,其中該量之該絮凝劑係以佔該收穫物介於0.01體積%至2體積%之間之量添加。
  11. 如請求項1至5中任一項之方法,其中該絮凝劑係聚乙烯亞胺 (PEI)或聚(二烯丙基二甲基氯化銨)(PDADMAC)。
  12. 如請求項1至5中任一項之方法,其中該絮凝劑係CaCl2
  13. 如請求項1至5中任一項之方法,其中該微生物細胞培養液係大腸桿菌(Escherichia coli)細胞培養液。
  14. 如請求項1至3及5中任一項之方法,其中該重組蛋白係抗原結合蛋白。
  15. 如請求項14之方法,其中該抗原結合蛋白包含:(a)肽-dAb融合物;(b)dAb偶聯物;(c)dAb-dAb融合物;或(d)裸dAb。
  16. 如請求項14之方法,其中該抗原結合蛋白包含:(a)艾塞那肽(Exendin)4-AlbudAbTM(SEQ ID NO:1);(b)具有C末端半胱胺酸之AlbudAbTM(SEQ ID NO:3);(c)AlbudAbTM-TNFR1 VH dAb(SEQ ID NO:5);或(d)VH dAb抗TNFR1(SEQ ID NO:7或9)。
  17. 一種經改質大腸桿菌細胞收穫物,其中:(d)該等細胞表現細胞周質靶向重組蛋白;(e)該收穫物包含0.01體積%至2體積% PEI;且(f)該收穫物之體積粒徑分佈係約5%或更少粒子在5μm或更小之大小範圍內。
  18. 如請求項17之經改質大腸桿菌細胞收穫物,其中該重組蛋白包含抗原結合蛋白。
  19. 如請求項18之經改質大腸桿菌細胞收穫物,其中該抗原結合蛋白包含:(a)肽-dAb融合物;(b)dAb偶聯物;(c)dAb-dAb融合物;或(d)裸dAb。
  20. 如請求項18之經改質大腸桿菌細胞收穫物,其中該抗原結合蛋 白包含:(a)艾塞那肽4-AlbudAbTM;(b)具有C末端半胱胺酸之AlbudAbTM;(c)AlbudAbTM-TNFR1 VH dAb;或(d)VH dAb抗TNFR1。
TW103103687A 2013-01-31 2014-01-29 製備蛋白質之方法 TW201514193A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361758870P 2013-01-31 2013-01-31
US201361899437P 2013-11-04 2013-11-04

Publications (1)

Publication Number Publication Date
TW201514193A true TW201514193A (zh) 2015-04-16

Family

ID=50033522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103103687A TW201514193A (zh) 2013-01-31 2014-01-29 製備蛋白質之方法

Country Status (13)

Country Link
US (1) US20150368292A1 (zh)
EP (1) EP2951192A1 (zh)
JP (1) JP2016504918A (zh)
KR (1) KR20150113105A (zh)
CN (1) CN104936973A (zh)
AU (1) AU2014211438B2 (zh)
BR (1) BR112015017994A2 (zh)
CA (1) CA2897345A1 (zh)
IL (1) IL239737A0 (zh)
RU (1) RU2015128651A (zh)
SG (1) SG11201505388QA (zh)
TW (1) TW201514193A (zh)
WO (1) WO2014118220A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811725B2 (ja) 2015-05-15 2021-01-13 グラクソ グループ リミテッドGlaxo Group Limited 組換えタンパク質の生成方法
MA45489A (fr) 2015-10-22 2018-08-29 Juno Therapeutics Gmbh Procédés de culture de cellules, kits et appareil associés
CN105462943A (zh) * 2015-12-30 2016-04-06 海口奇力制药股份有限公司 无机氯化物的应用、杂蛋白絮凝组合物及杂蛋白絮凝方法
AU2017310785B9 (en) * 2016-08-10 2022-07-21 Spiber Inc. Production method for insoluble recombinant protein aggregate
MA49288A (fr) 2017-04-27 2020-03-04 Juno Therapeutics Gmbh Reactifs particulaires oligomères et leurs méthodes d'utilisation
WO2020044201A1 (en) * 2018-08-30 2020-03-05 Glaxosmithkline Intellectual Property Development Limited Methods of detecting nucleic acid
JP7239509B6 (ja) * 2019-02-22 2023-03-28 ファイザー・インク 細菌多糖類を精製するための方法
CN110577566B (zh) * 2019-08-09 2021-05-04 北京首朗生物科技有限公司 一种梭菌菌体蛋白的制备方法
BR112023005111A2 (pt) 2020-09-22 2023-04-18 Basf Se Método para recuperar uma proteína de interesse de um caldo de fermentação bacteriana, e, uso de pelo menos um floculante
CN114574457A (zh) * 2022-01-25 2022-06-03 华东理工大学 一种快速分离纯化蛋白质的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1041824C (zh) * 1991-06-18 1999-01-27 华东北工学院 从发酵液中提取l-赖氨酸的方法
EA012622B1 (ru) 2004-06-01 2009-10-30 Домэнтис Лимитед Биспецифичные гибридные антитела с увеличенным периодом полувыведения из сыворотки
GB0602173D0 (en) 2006-02-03 2006-03-15 Avecia Ltd Expression system
KR20100018040A (ko) * 2007-06-06 2010-02-16 도만티스 리미티드 프로테아제 내성 폴리펩티드를 선택하는 방법
CL2008003561A1 (es) 2007-11-30 2010-02-05 Glaxo Group Ltd Construccion de union a il - 13 que comprende a lo menos un dominio simple (dab) de anticuerpo injertado en un anticuerpo monoclonal ( mabdab); polinucleotido y celula huesped; procedimiento para preparar la construccion; composicion farmaceutica que la comprende y uso para tratar cancer o enfermedades inflamatorias.
US20110184154A1 (en) * 2008-10-17 2011-07-28 Percivia Llc Cell broth clarification and host cell protein removal
CA2756853A1 (en) * 2009-03-27 2010-09-30 Christopher Herring Drug fusions and conjugates
WO2011008814A2 (en) * 2009-07-14 2011-01-20 Immune Tolerance Institute, Inc., A California Not-For-Profit Corporation Multiplexed measurement of exogenous and endogenous dna
CN101665778B (zh) * 2009-09-25 2012-03-28 浙江大学 黄色素生成缺陷鞘脂单胞菌及其在结冷胶生产中的应用
EP2483308A1 (en) * 2009-09-30 2012-08-08 Glaxo Group Limited Drug fusions and conjugates with extended half life
TW201125877A (en) * 2009-10-27 2011-08-01 Glaxo Group Ltd Stable anti-TNFR1 polypeptides, antibody variable domains & and antagonists

Also Published As

Publication number Publication date
AU2014211438A1 (en) 2015-08-20
SG11201505388QA (en) 2015-08-28
WO2014118220A1 (en) 2014-08-07
US20150368292A1 (en) 2015-12-24
JP2016504918A (ja) 2016-02-18
CA2897345A1 (en) 2014-08-07
CN104936973A (zh) 2015-09-23
KR20150113105A (ko) 2015-10-07
BR112015017994A2 (pt) 2017-07-11
RU2015128651A (ru) 2017-03-06
AU2014211438B2 (en) 2017-02-02
IL239737A0 (en) 2015-08-31
EP2951192A1 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
TW201514193A (zh) 製備蛋白質之方法
JP5893622B2 (ja) タンパク質精製
JP2010111700A (ja) タンパク質の抽出方法
TW201309722A (zh) 野生型或突變型白喉毒素之純化方法
JP7352555B2 (ja) 抗体または抗体様分子の精製方法
CN105683210A (zh) 用于细胞破碎和/或回收生物分子的微粒
US11739126B2 (en) Genetically encoded polypeptide for affinity capture and purification of biologics
JP6215231B2 (ja) リゾチームのタグとしての使用
CN108503864B (zh) 一种重组人β2-微球蛋白聚合物的制备方法
Petrus et al. A microbial expression system for high-level production of scFv HIV-neutralizing antibody fragments in Escherichia coli
JP6811725B2 (ja) 組換えタンパク質の生成方法
WO2020074483A1 (en) Chromatography-free antibody purification method
WO2023229029A1 (ja) ヘテロダイマータンパク質の製造方法、ダイマータンパク質、モノマータンパク質、および標的反応性のヘテロダイマータンパク質のスクリーニング方法
Gundinger et al. pH conditioning is a crucial step in primary recovery-a case study for a recombinant fab from E. coli
Woodford Purification of periplasmic bound recombinant shiga toxin B protein from Escherichia coli BL21 using two different rupture schemes: Osmotic shock and cell lysis
US20210246497A1 (en) Methods of detecting nucleic acid
JP5722854B2 (ja) 細胞培養方法
JP5733693B2 (ja) 組換え型ポリペプチドの製造方法
KR20210119385A (ko) 세포 배양물 정화 방법
TW202016313A (zh) 葡聚醣親和性標籤及其應用