TW201327887A - 光吸收層之改質方法 - Google Patents

光吸收層之改質方法 Download PDF

Info

Publication number
TW201327887A
TW201327887A TW100149119A TW100149119A TW201327887A TW 201327887 A TW201327887 A TW 201327887A TW 100149119 A TW100149119 A TW 100149119A TW 100149119 A TW100149119 A TW 100149119A TW 201327887 A TW201327887 A TW 201327887A
Authority
TW
Taiwan
Prior art keywords
absorbing layer
light absorbing
modifying
slurry
layer according
Prior art date
Application number
TW100149119A
Other languages
English (en)
Other versions
TWI456779B (zh
Inventor
Wei-Chien Chen
Lung-Teng Cheng
Ding-Wen Chiou
Tung-Po Hsieh
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100149119A priority Critical patent/TWI456779B/zh
Priority to CN201210030982XA priority patent/CN103187480A/zh
Priority to US13/586,938 priority patent/US9169549B2/en
Priority to EP12189780.5A priority patent/EP2610363B1/en
Publication of TW201327887A publication Critical patent/TW201327887A/zh
Application granted granted Critical
Publication of TWI456779B publication Critical patent/TWI456779B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • C23C10/30Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes using a layer of powder or paste on the surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Abstract

本發明提供一種光吸收層之改質方法,包括以下步驟:(a)提供一基板;(b)形成一光吸收層於該基板之上,其中該光吸收層包括IB族元素、IIIA族元素與VI族元素;(c)形成一漿料於該光吸收層之上,其中該漿料包括VI族元素;以及(d)將含有該漿料之該光吸收層進行一熱處理製程。

Description

光吸收層之改質方法
本發明係有關於一種光吸收層之改質方法,且特別是有關於一種CIGS光吸收層之改質方法。
近年來由於受到全球氣候變遷、環境污染問題以及資源日趨短缺的影響,在環保意識高漲與能源危機的警訊下刺激了太陽光電產業的蓬勃發展。於各種太陽能電池中,由於硒化銅銦鎵電池(Cu(In,Ga)Se2,CIGS)具備高轉換效率、穩定性佳、低材料成本、可製成薄膜等優點,因此受到極大的重視。
CIGS化合物屬於黃銅礦(chalcopyrite)結構,其主要由ⅠB-ⅢA-ⅥA族化合物所組成,其為一種直接能隙(direct bandgap)半導體材料,可藉由調控組成而改變半導體之能隙,是目前作為光吸收層之主要材料。
習知之CIGS化合物之製法中,通常先形成CIGS光吸收層,之後進行硫化(sulfurization)步驟,以增加界面能隙(boundary energy gap)。
然而,硫化步驟所使用之硫化氫(H2S)氣體具有高毒性與高污染性,且氣體價格昂貴,導致製程成本提高。再者,硫化氫(H2S)氣體與CIGS光吸收層之間的反應屬於固-氣反應,氣體於腔體中分佈不均,將會導致光吸收層之均勻性不佳。
因此,業界亟需發展一種光吸收層之改質方法,此方法不需要使用硫化氫(H2S)氣體進行硫化步驟,以提升光吸收層之均勻性並降低製程成本。
本發明提供一種光吸收層之改質方法,包括以下步驟:(a)提供一基板;(b)形成一光吸收層於該基板之上,其中該光吸收層包括IB族元素、IIIA族元素與VI族元素;(c)形成一漿料於該光吸收層之上,其中該漿料包括VI族元素;以及(d)將含有該漿料之該光吸收層進行一熱處理製程。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:
本發明提供一種光吸收層之改質方法,此方法係先形成銅銦鎵硒(CIGS)光吸收層,再將漿料塗佈於光吸收層之上,之後進行熱處理製程,以將CIGS光吸收層改質成CIGSS層。
改質方法包括以下步驟(a)-(d),首先,進行步驟(a),提供基板,其中基板包括鉬、銀、鋁或上述之組合。
接著,進行步驟(b),形成光吸收層於基板之上,其中光吸收層包括IB族元素、IIIA族元素與VI族元素,以形成IB-IIIA-VIA族化合物。
上述IB族包括銅(Cu)、銀(Ag)、金(Au)或上述之組合,IIIA族包括鋁(Al)、銦(In)、鎵(Ga)或上述之組合。
上述之VIA族包括硫(S)、硒(Se)、銻(Te)或上述之組合。
於一實施例中,IB-IIIA-VIA族化合物為CuInGaSe2。於一另實施例中,IB-IIIA-VIA族化合物為CuInGaS2
形成光吸收層之方式包括蒸鍍(vapor deposition)、濺鍍(sputter)、電沉積法(electrodeposition)或塗佈法(coating)。須注意的是,除上述方式之外,只要能形成光吸收層之其他沉積方式亦在本發明之保護範圍內。
於一實施例中,將鉬作為基板,放入蒸鍍腔體中,利用加熱系統將銅、銦、鎵與硒元素蒸鍍沉積於鉬基板之上。
上述IB族、IIIA族與VIA族莫耳數比為約(0.7~1.4):(0.7~1.4):(0.005~2.2),較佳為約(0.7~1.3):(0.7~1.3):(0.006~2.2),最佳為約(0.8~1.3):(0.8~1.3):(0.008~2.2)。
之後,進行步驟(c),形成漿料於光吸收層之上,其中漿料包括VI族元素,其中VIA族包括硫(S)、硒(Se)、銻(Te)或上述之組合。
須注意的是,光吸收層中的VIA族元素與漿料中的VI族元素不同。於一實施例中,當光吸收層含有硫時,可使用含有硒之漿料。於另一實施例中,當光吸收層含有硒時,可使用含有硫之漿料。
此外,於又一實施例中,當光吸收層為CZTS時(例如:銅鋅錫硫),當光吸收層含有硫時,可使用含有硒之漿料。同樣的,當光吸收層含有硒時,可使用含有硫之漿料。
此外,漿料更包括溶劑,其中溶劑包括水、醇類、酮類、醚類、胺類、酸類、鹼類溶劑。
上述醇類包括甲醇、乙醇、丙醇、異丙醇、正丁醇、異戊醇或乙二醇;酮類包括丙酮、丁酮、甲基異丁酮;醚類包括甲醚、乙醚、甲乙醚、二苯醚、乙二醇甲醚、乙二醇丁醚或乙二醇乙醚醋酸;胺類包括乙二胺、二甲基甲醯胺、三乙醇胺或二乙醇胺。上述酸類包括硝酸、鹽酸、硫酸、醋酸或丙酮酸。上述鹼類包括氫氧化鈉(NaOH)、氫氧化鉀(KOH)、氫氧化鋰(LiOH)、尿素(CON2H4)、氨(NH3)、碳酸鈉(Na2CO3)、碳酸氫鈉(NaHCO3)或上述之組合。
須注意的是,溶劑之選擇並不限於上述提及之醇類、酮類、醚類、胺類、酸類、鹼類溶劑,只要是能將上述化合物溶解之單一或混合溶劑皆可。
於一實施例中,漿料包括水與硫粉。此外,亦可依據實際應用之需要,加入其他添加劑於漿料中,例如可加入增稠劑(thickener)於漿料中,以調整漿料之黏度及附著性,以利後續之塗佈製程。
形成漿料之方法包括毛細管塗佈、旋轉塗佈(spin coating)、刷塗(brush coating)、刮刀塗佈(knife coating)、噴灑(spraying)、印刷(printing)。此外,形成漿料之溫度為約100℃-200℃,較佳為約150℃-170℃。形成漿料之厚度為約10 nm-1000 nm,較佳為約300 nm-700 nm。
接著,進行步驟(d),將含有漿料之光吸收層進行熱處理製程,其中熱處理置於氣體氣氛中,氣體氣氛包括大氣、氮氣(N2)、氫氣(H2)、氬氣(Ar)、氨氣(NH3)、含IIIA族之氣體或上述之組合。
熱處理製程之壓力為約760 torr-10-7 torr,較佳為約760 torr-10-4 torr;熱處理製程之溫度為約300℃-600℃,較佳為約450℃-550℃;熱處理製程之時間為約10秒-8小時,較佳為約1分鐘-60分鐘。
須注意的是,前案使用硫化氫(H2S)氣體進行硫化步驟,而本案藉由濕式塗佈法將含VI族元素的漿料塗佈於光吸收層上,再經過熱處理製程,以表面改質光吸收層。
因此,相較於前案,本案之硫化反應不需使用硫化氫(H2S)氣體,不但可避免毒性且可降低製程成本,且由於塗佈方法可大面積塗佈,因此可提高成膜的均勻性(uniform)。
本發明提供之光吸收層之改質方法,可提升光吸收層之界面能隙(interface band gap),進而增加開路電壓,實驗數據也顯示將改質後的光吸收層製作成太陽能電池之後,確實可提高開路電壓(Voc)。
【實施例】
實施例1
先將鉬濺鍍於鈉玻璃(SLG)之上,之後將Mo/SLG置於共蒸鍍腔體中,利用加熱系統使Cu、In、Ga、Se元四素共蒸鍍於Mo/SLG之上,以作為前驅物薄膜。
之後,利用毛細管塗佈法將含硫漿料沈積在CIGS上。此作法是將前驅物樣品放置在加熱板上,把漿料滴在樣品上,接著拿玻璃板蓋在上方並加熱超過硫的熔點溫度(115.21℃),利用毛細力使其均勻分佈於前驅物上,且同時趕走漿料中溶劑。
等降溫後取下玻璃則可得到均勻塗佈之樣品,再放置在充滿惰性氣體的管爐中進行熱處理,於溫度550℃,壓力為約10-4 torr的條件下,進行熱處理10分鐘,得到CIGSS吸收層。
實施例2
於光吸收層之上依序形成硫化鎘(CdS)(作為緩衝層)、摻鋁氧化鋅(iZnO/AZO)(作為透明導電層)與上電極,,即完成太陽能電池。此太陽能電池切割成6個小電池cell,並分別量測其電池效率如表1。
表1顯示太陽能電池之開路電壓(open-circuit voltage,Voc)、短路電流(short-circuit current,Jsc)、填充因子(fill factor,F.F.)、光電轉化效率、串聯電阻(series resistance,Rs)與並聯電阻(shunt resistance,Rsh)之數據,其中開路電壓為約0.56-0.59 V,短路電流為約20-24 mA/cm2,填充因子為約67-69,光電轉化效率為約8-9.2%。
比較例
先將鉬濺鍍於鈉玻璃(SLG)之上,之後將Mo/SLG置於共蒸鍍腔體中,利用加熱系統使Cu、In、Ga、Se元四素共蒸鍍於Mo/SLG之上,以製作CIGS光吸收層。
之後,依序於CIGS光吸收層之上依序形成硫化鎘(CdS)(作為緩衝層)、摻鋁氧化鋅(iZnO/AZO)(作為透明導電層)與上電極,即完成太陽能電池。此太陽能電池切割成6個小電池(cell 1~cell 6),並分別量測其電池效率如表2。
比較例與實施例2之差別在於,比較例並未對光吸收層進行改質。請參見表1與表2,實施例2之開路電壓確實高於比較例之開路電壓,由此可知,光吸收層經過改質,確實可提升光吸收層之界面能隙(interface band gap),進而增加開路電壓。
實施例3
實施例3之製法同實施例2,差別僅在於熱處理時壓力為約1 torr。表3顯示實施例3之太陽能電池之開路電壓(Voc)、短路電流(Jsc)、填充因子(F.F.)、光電轉化效率、串聯電阻(Rs)與並聯電阻Rsh)之數據。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

Claims (13)

  1. 一種光吸收層之改質方法,包括以下步驟:(a) 提供一基板;(b) 形成一光吸收層於該基板之上,其中該光吸收層包括IB族元素、IIIA族元素與VI族元素;(c) 形成一漿料於該光吸收層之上,其中該漿料包括VI族元素;以及(d) 將含有該漿料之該光吸收層進行一熱處理製程。
  2. 如申請專利範圍第1項所述之光吸收層之改質方法,其中該基板包括鉬、銀、鋁或上述之組合。
  3. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(b)中,形成該光吸收層之方法包括蒸鍍(vapor deposition)、濺鍍(sputter)、電沉積法(electrodeposition)或塗佈法(coating)。
  4. 如申請專利範圍第1項所述之光吸收層之改質方法,其中該吸收層中的VI族元素與該漿料中的VI族元素不同。
  5. 如申請專利範圍第1項所述之光吸收層之改質方法,其中該漿料更包括一溶劑,其中該溶劑包括水、醇類、酮類、醚類、胺類、酸類、鹼類溶劑。
  6. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(c)中,形成該漿料之方法包括毛細管塗佈、旋轉塗佈(spin coating)、刷塗(brush coating)、刮刀塗佈(knife coating)、噴灑(spraying)、印刷(printing)。
  7. 如申請專利範圍第1項所述之光吸收層之改質方法,其中該漿料之厚度為約10 nm-1000 nm。
  8. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(c)中,形成該漿料之溫度為約100℃-200℃。
  9. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(d)中,該熱處理製程包括置於一氣體氣氛中。
  10. 如申請專利範圍第9項所述之光吸收層之改質方法,其中於步驟(d)中,該熱處理製程之氣體壓力為約760 torr~10-4torr。
  11. 如申請專利範圍第9項所述之光吸收層之改質方法,其中於步驟(d)中,該氣體氣氛包括大氣、氮氣(N2)、氫氣(H2)、氬氣(Ar)、氨氣(NH3)、含IIIA族之氣體或上述之組合。
  12. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(d)中,該熱處理製程之溫度為約300℃-600℃。
  13. 如申請專利範圍第1項所述之光吸收層之改質方法,其中於步驟(d)中,該熱處理製程之時間為約1分鐘~60分鐘。
TW100149119A 2011-12-28 2011-12-28 光吸收層之改質方法 TWI456779B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW100149119A TWI456779B (zh) 2011-12-28 2011-12-28 光吸收層之改質方法
CN201210030982XA CN103187480A (zh) 2011-12-28 2012-02-06 光吸收层的改质方法
US13/586,938 US9169549B2 (en) 2011-12-28 2012-08-16 Method for modifying light absorption layer
EP12189780.5A EP2610363B1 (en) 2011-12-28 2012-10-24 Method for modifying light absorption layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100149119A TWI456779B (zh) 2011-12-28 2011-12-28 光吸收層之改質方法

Publications (2)

Publication Number Publication Date
TW201327887A true TW201327887A (zh) 2013-07-01
TWI456779B TWI456779B (zh) 2014-10-11

Family

ID=47142941

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149119A TWI456779B (zh) 2011-12-28 2011-12-28 光吸收層之改質方法

Country Status (4)

Country Link
US (1) US9169549B2 (zh)
EP (1) EP2610363B1 (zh)
CN (1) CN103187480A (zh)
TW (1) TWI456779B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064503A (zh) * 2014-06-19 2014-09-24 奉化拓升商贸有限公司 石墨舟的清洗工艺
CN105633198B (zh) * 2014-11-06 2017-05-10 中物院成都科学技术发展中心 铜锌锡硫薄膜太阳电池吸收层表面刻蚀的电化学处理方法
TW201621068A (zh) * 2014-12-09 2016-06-16 新能光電科技股份有限公司 銅銦鎵硒之表面硫化的製程方法
CN107093639A (zh) * 2017-03-30 2017-08-25 华南理工大学 一种铜锌锡硫薄膜的硒化方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3249408B2 (ja) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 薄膜太陽電池の薄膜光吸収層の製造方法及び製造装置
JP3249407B2 (ja) * 1996-10-25 2002-01-21 昭和シェル石油株式会社 カルコパイライト系多元化合物半導体薄膜光吸収層からなる薄膜太陽電池
US6268014B1 (en) 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US20130025532A1 (en) * 2004-09-18 2013-01-31 Nanosolar, Inc. Formation of photovoltaic absorber layers on foil substrates
US7470307B2 (en) 2005-03-29 2008-12-30 Climax Engineered Materials, Llc Metal powders and methods for producing the same
FR2886460B1 (fr) * 2005-05-25 2007-08-24 Electricite De France Sulfurisation et selenisation de couches de cigs electrodepose par recuit thermique
US7632701B2 (en) * 2006-05-08 2009-12-15 University Of Central Florida Research Foundation, Inc. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
US7867551B2 (en) * 2006-09-21 2011-01-11 Solopower, Inc. Processing method for group IBIIIAVIA semiconductor layer growth
US20080190483A1 (en) * 2007-02-13 2008-08-14 Carpenter R Douglas Composition and method of preparing nanoscale thin film photovoltaic materials
JP4974986B2 (ja) * 2007-09-28 2012-07-11 富士フイルム株式会社 太陽電池用基板および太陽電池
KR101030780B1 (ko) * 2007-11-14 2011-04-27 성균관대학교산학협력단 Ⅰ-ⅲ-ⅵ2 나노입자의 제조방법 및 다결정 광흡수층박막의 제조방법
US8008198B1 (en) * 2008-09-30 2011-08-30 Stion Corporation Large scale method and furnace system for selenization of thin film photovoltaic materials
US7910399B1 (en) * 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
TWI495114B (zh) 2009-03-19 2015-08-01 Univ Nat Taiwan 光吸收層之製備方法及前驅物溶液
US20100243043A1 (en) * 2009-03-25 2010-09-30 Chuan-Lung Chuang Light Absorbing Layer Of CIGS Solar Cell And Method For Fabricating The Same
US20110023750A1 (en) * 2009-07-28 2011-02-03 Kuan-Che Wang Ink composition for forming absorbers of thin film cells and producing method thereof
TW201108425A (en) 2009-08-26 2011-03-01 Ind Tech Res Inst Solar cell and fabrication method thereof
DE102009053532B4 (de) * 2009-11-18 2017-01-05 Centrotherm Photovoltaics Ag Verfahren und Vorrichtung zur Herstellung einer Verbindungshalbleiterschicht
CN101820029A (zh) * 2010-02-11 2010-09-01 昆山正富机械工业有限公司 非真空制作铜铟镓硒和/或硫的太阳能电池
TW201127746A (en) 2010-02-12 2011-08-16 Jenn Feng New Energy Co Ltd Method for manufacturing copper-indium-gallium-selenide slurry at non-vacuum condition
JP2011171605A (ja) 2010-02-19 2011-09-01 Sumitomo Metal Mining Co Ltd カルコパイライト膜の製造方法
US7998789B1 (en) 2010-04-16 2011-08-16 Jenn Feng New Energy Co., Ltd. Method and system for forming copper indium gallium sulfur selenide absorption layer and cadmium sulfide buffer layer under non-vacuum condition
US20120006687A1 (en) * 2010-07-06 2012-01-12 Chi-Woo Lee Method of forming cigs thin film
KR20120054365A (ko) * 2010-11-19 2012-05-30 한국전자통신연구원 화합물 반도체 태양전지 및 그 제조방법
US20120156827A1 (en) * 2010-12-17 2012-06-21 General Electric Company Method for forming cadmium tin oxide layer and a photovoltaic device
US8476105B2 (en) * 2010-12-22 2013-07-02 General Electric Company Method of making a transparent conductive oxide layer and a photovoltaic device
KR101267254B1 (ko) * 2011-08-22 2013-05-23 한국과학기술연구원 박막형 광흡수층의 제조방법 및 이를 이용한 박막 태양전지의 제조방법
TW201322472A (zh) * 2011-11-21 2013-06-01 Axuntek Solar Energy 快速加熱處理系統及其硫化方法

Also Published As

Publication number Publication date
EP2610363A1 (en) 2013-07-03
US9169549B2 (en) 2015-10-27
US20130171759A1 (en) 2013-07-04
TWI456779B (zh) 2014-10-11
CN103187480A (zh) 2013-07-03
EP2610363B1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
CN102054897B (zh) 多元素合金单一靶材制备薄膜太阳能电池的方法
KR101094326B1 (ko) 태양전지용 Cu-In-Zn-Sn-(Se,S)계 박막 및 이의 제조방법
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN102386283B (zh) Cigss太阳能光伏电池制备方法
CN104947050A (zh) 一种CZTSSe薄膜的硫化物靶材共溅射制备方法及产品
CN103762257A (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
KR20130016528A (ko) 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
TW201327887A (zh) 光吸收層之改質方法
Saha A status review on Cu2ZnSn (S, Se) 4-based thin-film solar cells
CN103602982A (zh) 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
EP2702615B1 (en) Method of preparing a solar cell
KR101591719B1 (ko) 고압 셀렌화 공정을 이용한 비진공 박막 제조방법
CN105895735A (zh) 氧化锌靶溅射制备铜锌锡硫薄膜太阳电池的方法
KR20180034248A (ko) 수산화나트륨을 이용한 유연 czts계 박막태양전지 및 이의 제조방법
TW201427054A (zh) 光電變換元件及其製造方法、光電變換元件的緩衝層的製造方法與太陽電池
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN106374012B (zh) 一种简单结构制备铜锌锡硫薄膜太阳电池的方法
CN105039937A (zh) 一种基于水溶剂制备铜锌锡硫硒薄膜的方法
CN102496656A (zh) 一种铜锌锡硫光伏薄膜的制备方法
CN110752272B (zh) 一种提高柔性铜铟镓硒薄膜太阳能电池效率的方法
JPH07263735A (ja) 太陽電池およびその製造方法
KR102025091B1 (ko) CZT(S,Se)계 박막, 시드가 형성된 전구체층을 이용하는 CZT(S,Se)계 박막 형성방법 및 CZT(S,Se)계 박막 태양전지와 그 제조방법
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods