TW201301481A - 雙極高電子遷移率電晶體及其形成方法 - Google Patents

雙極高電子遷移率電晶體及其形成方法 Download PDF

Info

Publication number
TW201301481A
TW201301481A TW101122267A TW101122267A TW201301481A TW 201301481 A TW201301481 A TW 201301481A TW 101122267 A TW101122267 A TW 101122267A TW 101122267 A TW101122267 A TW 101122267A TW 201301481 A TW201301481 A TW 201301481A
Authority
TW
Taiwan
Prior art keywords
collector
layer
epitaxial layer
transistor structure
gaas
Prior art date
Application number
TW101122267A
Other languages
English (en)
Inventor
Kevin Stevens
Charles Lutz
Original Assignee
Kopin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kopin Corp filed Critical Kopin Corp
Publication of TW201301481A publication Critical patent/TW201301481A/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0623Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Bipolar Transistors (AREA)

Abstract

一種外延層結構,包括場效應電晶體結構和異質結雙極電晶體結構。異質結雙極電晶體結構包含與場效應電晶體結構組合形成的n摻雜次集電極和集電極,其中次集電極或集電極中至少一部分包含Sn、Te或Se。在一個實施例中,基極形成在集電極上方;以及發射極形成在基極上方。雙極電晶體和場效應電晶體每個獨立地包含III-V族半導體材料。

Description

雙極高電子遷移率電晶體及其形成方法 相關申請
本申請案主張2011年6月23日提交的美國臨時申請案第61/500,546號的權利。
以上申請案的全部教示經由引用併入於本文。
本案係關於雙極高電子遷移率電晶體及該雙極高電子遷移率電晶體之形成方法。
砷化鎵(GaAs)異質結雙極電晶體(HBT)積體電路已發展成用於很多應用的重要技術,尤其是用於無線通訊系統的功率放大器(PAs)。未來需要期望具有更高集成水準的器件以改良性能或功能,減小封裝尺寸,或降低成本。獲得此種集成的一個方法是將HBT PA與由GaAs贗晶高電子遷移率電晶體(pHEMT)形成的射頻開關組合。
為了單片集成HBT和pHEMT器件,已使用雙極高電子遷移率電晶體(BiHEMT)結構。典型的BiHEMT外延結構包括生長在HEMT外延層頂上的HBT外延層。BiHEMT的組合外延層結構很難生產並且BiHEMT的組合外延層結構可包括超過30個離散的層。此種外延層結構可藉由例 如生長技術(比如金屬有機化學氣相沉積(MOCVD)或分子束外延(MBE))形成。可替換地,該等層的順序可以顛倒並且在HBT的頂上生長HEMT是有利的。該等器件有時也被稱為雙極場效應電晶體(BiFET)。
為了在BiHEMT結構中製造pHEMT器件,必需蝕刻或移除pHEMT層上的HBT層。由於在pHEMT表面和HBT表面之間大的高度差(典型地1-3 μm),如此導致顯著的器件加工難度。此高度差的任何減少將有助於降低該等加工難度。HBT的次集電極層和集電極層是關注該等努力的明顯選擇因為該等次集電極層和集電極層構成高度差的大百分比。次集電極層典型地位於集電極層下面並且次集電極層典型地以較高的摻雜密度生長。但是,應注意,此處使用術語「集電極」來指HBT的基極下面的集電極和次集電極層的整體,而術語「次集電極」是指圖1所示的集電極下面的高摻雜的層。
雖然希望集電極層變薄,但是如此將減小電晶體擊穿電壓並降低器件健壯性。使次集電極層變薄增加了集電極薄層電阻和電晶體寄生電阻。藉由增加次集電極中的摻雜,可以減小集電極薄層電阻。但是,大多數現有基於n-p-n GaAs的HBT次集電極外延層已摻雜接近上限(一般稱為「飽和」)的矽Si。而且,由於生長附加層期間的退火影響,集電極和次集電極上的附加層(例如HBT的基極和發射極結構)的生長可以惡化GaAs:Si薄層電阻和電子濃度。該退火可導致顯著減小常規的矽摻雜的GaAs膜的電 子濃度(相對于該電子濃度之原生值)。該等結果可以經由三個現象的交互來解釋:a)鎵空穴的平衡濃度增加;b)鎵空穴趨向于與矽施主原子形成複合物因此使摻雜劑原子不活躍;以及c)生長GaAs的生長條件對非平衡狀態的影響。【1】
因此需要一種解決上述問題或使問題最小化之BiHEMT。
本發明提供了一種BiHEMT外延層結構,包括場效應電晶體結構,該場效應電晶體結構包括接觸層,以及形成在場效應電晶體結構上方的異質結雙極電晶體結構。異質結雙極電晶體結構包含形成在場效應電晶體結構的接觸層上方的n摻雜次集電極和集電極,其中次集電極和集電極中至少一個每個獨立地包括由錫Sn、碲Te和硒Se組成的群組中的至少一個成員。基極在集電極上方,並且發射極在基極上方,其中場效應電晶體結構和異質結雙極電晶體的集電極和次集電極中至少一個,以及場效應電晶體結構的接觸層,每個獨立地包含III-V族半導體。集電極和次集電極的合適材料的實例包括GaAs、AlGaAs和InGaP。優選地,次集電極和集電極包括GaAs。而且,優選地,集電極和次集電極由相同材料形成,雖然該集電極和次集電極可以由不同的材料形成。在優選的實施例中,III-V族半 導體材料包括鎵和砷。集電極的厚度典型地在約5000 Å到3μm之間。次集電極的厚度典型地在約3000 Å到2μm之間。在另一優選實施例中,場效應電晶體是高電子遷移率電晶體。
典型地,集電極中錫Sn、碲Te或硒Se摻雜劑的濃度在約1E15 cm-3(每立方釐米1x1015濃度)到約5E17 cm-3之間。在另一實施例中,集電極可摻雜矽。在一個實施例中,次集電極的至少一部分是n型,錫Sn、碲Te或硒Se濃度大於1E18 cm-3,而在另一實施例中,次集電極的至少一部分是n型,電子濃度大於1E19 cm-3
在一個優選實施例中,從材料InGaP、AlInGaP或AlGaAs中選擇發射極。在另一優選實施例中,基極摻雜碳,濃度為約1E19 cm-3到約7E19 cm-3
本發明還提供了用於形成雙極高電子遷移率電晶體的方法,其中異質結雙極電晶體藉由該方法形成在場效應電晶體上;其中集電極層摻雜錫Sn、碲Te或硒Se。在一個優選實施例中,該等層由金屬有機化學氣相沉積形成。
本發明提供了對BiHEMT結構的集電極及/或次集電極增加最大摻雜和減小最小薄層電阻限制的結構和方法。藉由用錫Sn、碲Te或硒Se,包括該等錫Sn、碲Te或硒Se的組合,摻雜集電極和次集電極層,可以減小由於GaAs:Si層的薄層電阻和電子濃度惡化的負面影響。產生的BiHEMT器件可展示出減小的次集電極厚度、使拓撲減少並改良器件加工,同時維持想要的低集電極薄層電阻。
以下是本發明的示例性實施例的說明。
雖然已結合示例性實施例具體示出和說明了本發明,但是本領域技術人員將理解,可以做出對形式和細節的各種改變而不脫離所附權利要求包含的本發明的範圍。
圖1是本發明的代表性BiHEMT外延層結構的示意圖。注意,在器件製造期間HBT的層被移除以在基礎層上形成pHEMT。此舉導致在HBT和pHEMT的表面之間的顯著拓撲。在光刻步驟中此種拓撲可導致問題,尤其是對於pHEMT。對於pHEMT開關,最小特徵典型地是柵電極以及需要精確光學以限定<1 μm的尺度。BiHEMT晶片的拓撲可導致不均勻的光致抗蝕劑厚度及/或印刷柵極圖案的光學系統的焦點深度問題。為了減輕該等問題中的一些問題,可能必須橫向地使pHEMT與BiHEMT分離,但此舉會浪費晶片面積。應注意圖1所示的層是代表性的且已為了說明而簡化。可以預期附加的層、分級的層和其他材料設計出現在典型的BiHEMT中。
如圖1所示,BiHEMT外延層結構10生長在襯底14上。在一個實施例中,襯底14基本由砷化鎵(GaAs)組成。緩衝層16在襯底14上方。在一個實施例中,緩衝層16包括GaAs和AlGaAs。典型地,緩衝層16的厚度範圍在約500 Å到約5000 Å之間。可選地,可採用其他層代替緩 衝層16,或者除了緩衝層16,還具有其他層,以及其他層可以與緩衝層16任意組合。其他可選層的實例包括超晶格結構層,包括交替的低/高能隙材料比如GaAs和AlGaAs或GaAs和InGaAs層,該GaAs和AlGaAs或GaAs和InGaAs層厚度在約10 Å到約300 Å之間。溝道層18生長在緩衝層16或該緩衝層16之替換或附加層上方。溝道層18的合適材料的實例包括GaAs和InGaAs,層厚度範圍從約20 Å到200 Å。可選地,分隔層或其他可選層(未圖示)可以在溝道層18上方(或下方)。用於形成分隔層的合適材料包括GaAs、AlGaAs、InGaP和AlInGaP,厚度從20 Å到100 Å。其他可選層的實例可包括,例如,GaAs、AlGaAs、InGaP、AlInGaP、InGaAs,厚度在約5 Å到50 Å之間。肖特基層20在溝道層18的上方。肖特基層20的合適材料的實例包括AlGaAs、InGaP和AlInGaP,厚度範圍從約100 Å到1500 Å。接觸層22在肖特基層20的上方。接觸層22的合適材料的實例包括GaAs、AlGaAs和InGaP,厚度在約100 Å到2000 Å之間。接觸層22包括凹陷部分24。所有層16、18、20和22可用本領域已知的合適方法製造,比如金屬有機化學氣相沉積或分子束外延。凹陷24可用本領域已知的合適技術形成,比如光刻和蝕刻。柵極接點26位於凹陷部分24中。源極接點28和汲極接點30位於接觸層22,或源極接點28和汲極接點30與接觸層22電連接。
BiHEMT外延層結構還可選地包括蝕刻停止、分隔或在 接觸層22的其他可選層32。合適的蝕刻停止層的實例包括AlGaAs、AlAs或InGaP,厚度範圍從約10 Å到500 Å。
BiHEMT外延層結構10還包括異質結雙極電晶體(HBT)組件34。HBT34包括次集電極36。次集電極36的合適材料的實例包括III-V族半導體材料。在一個實施例中,III-V族半導體材料包括鎵和砷。次集電極36的特定材料的實例包括砷化鎵(GaAs)、砷化鋁鎵(AlGaAs)、磷化銦鎵(InGaP)和用於基於InP的HBT的InGaAs和InP。次集電極36摻雜從錫(Sn)、碲(Te)和硒(Se)組成的群組中選擇的至少一種元素。在一個實施例中,次集電極36的摻雜的濃度範圍在約1x1018 cm-3到約1 x1020 cm-3之間。可替換地,摻雜的濃度範圍在約1x1019 cm-3到約6 x1019 cm-3之間。在一個實施例中,次集電極層36的厚度範圍在約2000 Å到約4 μm之間。在另一個實施例中,次集電極36的厚度範圍在約3000 Å到約2 μm之間。
集電極38在次集電極36的上方。在一個實施例中,集電極38包括III-V族半導體材料,該III-V族半導體材料包括鎵和砷。集電極38的材料可以是與次集電極36相同的材料或不同的III-V族半導體材料。次集電極36和集電極38中的一個或兩個可以摻雜矽。在一個實施例中,集電極38僅摻雜矽。在另一個實施例中,除了矽(Si)之外,或在無Si之情況下,集電極38摻雜錫(Sn)、碲(Te)和硒(Se)中的至少一種。在一個實施例中,錫(Sn)、碲(Te)和硒(Se)摻雜劑中的至少一種的濃度共同地範圍 在約1x1015 cm-3到約5 x1017 cm-3之間。集電極中的摻雜可以根據有意的應用和器件的期望的電性能利用多種分佈分級。
基極40在集電極38上方。在一個實施例中,基極40主要由GaAs、GaAsSb、GaInAs、GaInAsN組成的群組中選擇的至少一個成員組成。在一個實施例中,基極40摻雜碳。在一個具體實施例中,基極40摻雜碳,濃度在約1x1019 cm-3到約7 x1019 cm-3之間。
發射極42在基極40上方,並且可選地,發射極42包括覆蓋層。合適的覆蓋層材料可包括GaAs、AlGaAs、InGaP、AlInGaP、InP和AlInP。典型的摻雜劑可包括Si、Sn、Se和Te。發射極層的摻雜劑濃度範圍在5x1016 cm-3到約1x1018 cm-3之間。發射極覆蓋層典型地摻雜在1x1018 cm-3到3x1019 cm-3之間。
BiHEMT 10包括在pHEMT12的電接觸柵極36、源極28和汲極30,以及在HBT 34的接點44、46和48。該等電接點的合適材料的實例是鈦、鉑和金。蝕刻停止32、次集電極36、集電極38、基極40和發射極42層可用與形成pHEMT 12的層相同的方法形成,該等方法包括,例如,本領域技術人員已知的技術,比如金屬有機化學氣相沉積和分子束外延。
在本發明的上下文中,術語BiHEMT用於說明結合雙極電晶體和場效應電晶體的功能的任何外延層結構,不管結構的順序或命名。例如,作為對如圖1所示BiHEMT 10 的替換,根據本發明的另一實施例,pHEMT 34形成在HBT12上方。
圖2A中的引用資料圖示0.5 μm n+GaAs:Si層對總摻雜劑(乙矽烷)流的薄層電阻(Rs)。原生(即在生長在GaAs:Si膜之後立即結束的層中),最大的活躍摻雜級別在mid-E18 cm-3範圍。圖2B圖示退火次集電極層(作為在BiHEMT結構生長期間類比HBT層隨後過度生長的方法)的影響。從GaAs:Si膜獲得的Rs和電子濃度在退火的和未退火的樣本之間顯著不同。該等資料表明活躍的摻雜(對n型傳導率有貢獻的摻雜劑原子的數量)在退火之後顯著減少並且此舉是限制BiHEMT器件中n+GaAs:Si HBT次集電極層最小可得薄層電阻的首要因素。
圖3A圖示0.5 μm n+GaAs:Sn層對總摻雜劑流的薄層電阻Rs。圖3B所示原生最大活躍摻雜級別是約1E19 cm-3,比圖2所示的GaAs:Si的高。如圖3B所示,退火次集電極層的影響仍然明顯,但是隨著退火增加的Rs基本小於Si摻雜的膜。GaAs:Sn獲得的峰值電子濃度是約7E18 cm-3,或比圖2B所示的GaAs:Si高約40%。
圖4A圖示0.5 μm n+GaAs:Te層對總摻雜劑流的Rs。原生最大活躍摻雜級別是約9E18 cm-3,略小於圖3A所示的GaAs:Sn的情況。但是,如圖4B所示,退火次集電極層的影響顯著減少且基本消失。此舉導致電子濃度比圖2B所示的GaAs:Si和圖3B所示的GaAs:Sn的情況有額外增加,值為約9E18 cm-3。退火的GaAs:Te的薄層電阻為約10 ohms/sq,比經由常規的Si摻雜或Sn摻雜可獲得的低。
此處引用的所有參考的相關部分經由整體引用結合於此。
參考:
[1]H.Fushimi,M.Shinohara,and K.Wada,J.Appl.Phys.,81,1745(1997)
10‧‧‧BiHEMT外延層結構
12‧‧‧贗晶高電子遷移率電晶體(pHEMT)
14‧‧‧襯底
16‧‧‧緩衝層
18‧‧‧溝道層
20‧‧‧肖特基層
22‧‧‧接觸層
24‧‧‧凹陷部分
26‧‧‧柵極接點
28‧‧‧源極接點
30‧‧‧汲極接點
32‧‧‧其他可選層/蝕刻停止層
34‧‧‧異質結雙極電晶體(HBT)組件
36‧‧‧次集電極層
38‧‧‧集電極層
40‧‧‧基極層
42‧‧‧發射極層
44‧‧‧接點
46‧‧‧接點
48‧‧‧接點
根據本發明的示例性實施例的以下更具體的說明,上文的描述將會更明白,如附圖中所示,在不同視圖中相同元件符號表示相同元件。圖不需要按比例,重點在於說明本發明的實施例。
圖1是BiHEMT外延層結構的示意圖,圖示了在同一晶片上的pHEMT和BiHEMT層的單片結合以及從該等外延層形成的HBT和pHEMT器件的表面之間的拓撲。
圖2A和2B是現有的GaAs:Si層的薄層電阻(圖2A)和電子濃度(圖2B)的圖,圖示了在退火時薄層電阻增加和電子濃度減小。x軸是總摻雜劑流,量測在外延層生長期間多少矽Si被引入反應器。
圖3A和3B是本發明的GaAs:Sn層的薄層電阻(圖3A)和電子濃度(圖3B)的圖,圖示了退火對薄層電阻和電子濃度相對於GaAs:Si(圖2)的減少影響。x軸是總摻雜劑流,量測在外延層生長期間多少錫Sn被引入反應器。
圖4A和4B是本發明的GaAs:Te層的薄層電阻(圖4A)和電子濃度(圖4B)的圖,圖示了退火對薄層電阻和電子濃度相對於GaAs:Si(圖2)和GaAs:Sn(圖3)的減少影響。x軸是總摻雜劑流,量測在外延層生長期間多少碲Te被引入反應器。
10‧‧‧BiHEMT外延層結構
12‧‧‧贗晶高電子遷移率電晶體(pHEMT)
14‧‧‧襯底
16‧‧‧緩衝層
18‧‧‧溝道層
20‧‧‧肖特基層
22‧‧‧接觸層
24‧‧‧凹陷部分
26‧‧‧柵極接點
28‧‧‧源極接點
30‧‧‧汲極接點
32‧‧‧其他可選層/蝕刻停止層
34‧‧‧異質結雙極電晶體(HBT)組件
36‧‧‧次集電極層
38‧‧‧集電極層
40‧‧‧基極層
42‧‧‧發射極層
44‧‧‧接點
46‧‧‧接點
48‧‧‧接點

Claims (9)

  1. 一種外延層結構,包括:(a)一場效應電晶體結構,該場效應電晶體結構包括一接觸層;及(b)形成在該場效應電晶體結構上方的一異質結雙極電晶體結構,其中該異質結雙極電晶體結構包含i)形成在該場效應電晶體結構的該接觸層上方的一n摻雜次集電極ii)該次集電極上方的集電極,其中該次集電極和該集電極中的至少一個每個獨立地包括由錫Sn、碲Te和硒Se組成的群組中的至少一個成員;iii)在該集電極上方的基極,及iv)在該基極上方的發射極;其中該異質結雙極電晶體結構的該集電極和該次集電極中至少一個,以及該場效應電晶體結構的該接觸層,每個獨立地包含一III-V族半導體材料。
  2. 如請求項1所述的外延層結構,其中該III-V族半導體材料包括鎵和砷。
  3. 如請求項1所述的外延層結構,其中該場效應電晶 體是一高電子遷移率電晶體。
  4. 如請求項1所述的外延層結構,其中該次集電極的至少一部分是一n型材料,具有大於約1E18 cm-3的一電子濃度。
  5. 如請求項1所述的外延層結構,其中該次集電極的至少一部分是一n型材料,具有大於約1E19 cm-3的一電子濃度。
  6. 如請求項1所述的外延層結構,其中該發射極主要由InGaP、AlInGaP和AlGaAs組成的群組中的至少一個成員組成。
  7. 如請求項1所述的外延層結構,其中該基極摻雜碳,一濃度在約1E19 cm-3到約7E19 cm-3之間。
  8. 一種用於形成一雙極高電子遷移率電晶體結構的方法,包括以下步驟:a)在一高電子遷移率電晶體結構的一接觸層上方形成一次集電極;及b)在該次集電極上方形成一集電極,其中次集電極和集電極中至少一個每個獨立地包括錫Sn、碲Te和硒Se組成的群組中的至少一個成員。
  9. 如請求項8所述的方法,其中該次集電極和集電極 層中的至少一個由金屬有機化學氣相沉積形成。
TW101122267A 2011-06-23 2012-06-21 雙極高電子遷移率電晶體及其形成方法 TW201301481A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161500546P 2011-06-23 2011-06-23

Publications (1)

Publication Number Publication Date
TW201301481A true TW201301481A (zh) 2013-01-01

Family

ID=47361037

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101122267A TW201301481A (zh) 2011-06-23 2012-06-21 雙極高電子遷移率電晶體及其形成方法

Country Status (3)

Country Link
US (1) US20120326211A1 (zh)
CN (1) CN102842578A (zh)
TW (1) TW201301481A (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101649004B1 (ko) * 2009-05-26 2016-08-17 스미또모 가가꾸 가부시키가이샤 반도체 기판, 반도체 기판의 제조 방법 및 전자 디바이스
US9679869B2 (en) 2011-09-02 2017-06-13 Skyworks Solutions, Inc. Transmission line for high performance radio frequency applications
US9054065B2 (en) * 2012-04-30 2015-06-09 Skyworks Solutions, Inc. Bipolar transistor having collector with grading
KR101680511B1 (ko) 2012-06-14 2016-11-28 스카이워크스 솔루션즈, 인코포레이티드 계조를 갖는 쌍극성 트랜지스터 및 관련된 시스템, 장치, 및 방법을 포함하는 전력 증폭기 모듈
CN103107096B (zh) * 2013-03-05 2015-07-15 中国科学院半导体研究所 一种硅基III-V族nMOS器件的制作方法
CN103390591B (zh) * 2013-07-22 2015-11-25 中国科学院半导体研究所 硅基高迁移率Ⅲ-V/Ge沟道的CMOS制备方法
US20160049502A1 (en) * 2014-08-15 2016-02-18 Visual Photonics Epitaxy Co., Ltd. Heterojunction bipolar transistor with blocking layer structure
JP2016184675A (ja) 2015-03-26 2016-10-20 住友化学株式会社 ヘテロ接合バイポーラトランジスタ用エピタキシャルウェハ及びヘテロ接合バイポーラトランジスタ
CN105355627A (zh) * 2015-11-23 2016-02-24 中山德华芯片技术有限公司 一种Si基GaN Bi-HEMT芯片及其制备方法
WO2017096032A1 (en) * 2015-12-04 2017-06-08 Quora Technology, Inc. Wide band gap device integrated circuit architecture on engineered substrate
JP2018026406A (ja) * 2016-08-08 2018-02-15 株式会社村田製作所 ヘテロ接合バイポーラトランジスタ
JP2018101652A (ja) * 2016-12-19 2018-06-28 株式会社村田製作所 バイポーラトランジスタ及びその製造方法
CN113066762B (zh) * 2021-03-18 2024-05-07 厦门市三安集成电路有限公司 一种双极型场效应晶体管及其制备方法
CN113113294B (zh) * 2021-04-07 2022-06-07 厦门市三安集成电路有限公司 一种复合衬底及制备方法、射频集成芯片制备方法
CN113130478A (zh) * 2021-04-13 2021-07-16 厦门市三安集成电路有限公司 一种射频芯片及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392480B1 (en) * 1989-04-12 1997-03-12 Sumitomo Electric Industries, Ltd. Method of manufacturing a semiconductor integrated circuit device
DE69522075T2 (de) * 1994-11-02 2002-01-03 Trw Inc Verfahren zum Herstellen von multifunktionellen, monolithisch-integrierten Schaltungsanordnungen
JP3368452B2 (ja) * 1995-04-25 2003-01-20 富士通株式会社 化合物半導体装置及びその製造方法
US7170147B2 (en) * 2003-07-28 2007-01-30 Lucent Technologies Inc. Dissipative isolation frames for active microelectronic devices, and methods of making such dissipative isolation frames
US7385236B2 (en) * 2005-10-21 2008-06-10 Visual Photonics Epitaxy Co., Ltd. BiFET semiconductor device having vertically integrated FET and HBT
CN100483738C (zh) * 2006-12-07 2009-04-29 西安电子科技大学 基于自支撑SiC的GaN器件及制作方法
JP5295593B2 (ja) * 2008-03-13 2013-09-18 パナソニック株式会社 半導体装置

Also Published As

Publication number Publication date
US20120326211A1 (en) 2012-12-27
CN102842578A (zh) 2012-12-26

Similar Documents

Publication Publication Date Title
TW201301481A (zh) 雙極高電子遷移率電晶體及其形成方法
JP4524298B2 (ja) 半導体装置の製造方法
JPH06342921A (ja) 電力用縦型電界効果デバイス
US11916130B2 (en) Direct growth of lateral III-V bipolar transistor on silicon substrate
JP2007173624A (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
US8823140B2 (en) GaN vertical bipolar transistor
CN113764519B (zh) 异质结双极晶体管
JP2007142365A (ja) p型ひずみInGaNベース層を有するGaNヘテロ接合バイポーラトランジスタとその製造方法
JP2010199597A (ja) 化合物半導体装置の製造方法
US7915640B2 (en) Heterojunction semiconductor device and method of manufacturing
JP2008016615A (ja) バイポーラトランジスタ
JP2003518776A (ja) コレクタ−アップ・ヘテロ接合バイポーラ・トランジスタとその製造方法
TWI681511B (zh) 整合場效電晶體與異質接面雙極電晶體的結構及其形成方法
US7569872B1 (en) Bipolar transistors with low parasitic losses
JPH11186280A (ja) バイポーラトランジスタとその製造方法
US20100187571A1 (en) Semiconductor device and manufacturing method thereof
US10680077B2 (en) Fabrication of heterojunction bipolar transistors with a selectively grown collector/sub-collector
JP3874919B2 (ja) 化合物半導体装置
JP2002009253A (ja) 半導体装置およびその製造方法
JP2007005616A (ja) 半導体装置及びその製造方法
JP3307371B2 (ja) ヘテロ接合バイポーラトランジスタ及びその製造方法
JP3859149B2 (ja) ヘテロ接合バイポーラトランジスタの製造方法
JP3228431B2 (ja) コレクタアップ構造ヘテロ接合バイポーラトランジスタの製造方法
JP5290909B2 (ja) ヘテロ接合バイポーラトランジスタの製法
JP2011176214A (ja) バイポーラトランジスタおよびその製造方法