TW201246301A - A method and apparatus for forming a thin lamina - Google Patents

A method and apparatus for forming a thin lamina Download PDF

Info

Publication number
TW201246301A
TW201246301A TW100149202A TW100149202A TW201246301A TW 201246301 A TW201246301 A TW 201246301A TW 100149202 A TW100149202 A TW 100149202A TW 100149202 A TW100149202 A TW 100149202A TW 201246301 A TW201246301 A TW 201246301A
Authority
TW
Taiwan
Prior art keywords
layer
donor
plate
donor body
temperature
Prior art date
Application number
TW100149202A
Other languages
Chinese (zh)
Other versions
TWI552205B (en
Inventor
Adam Kell
Robert Clark-Phelps
Joseph D Gillespie
Gopal Prabhu
Takao Sakase
Theodore H Smick
Steve Zuniga
Steve Bababyan
Original Assignee
Twin Creeks Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/980,424 external-priority patent/US8173452B1/en
Application filed by Twin Creeks Technologies Inc filed Critical Twin Creeks Technologies Inc
Publication of TW201246301A publication Critical patent/TW201246301A/en
Application granted granted Critical
Publication of TWI552205B publication Critical patent/TWI552205B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67132Apparatus for placing on an insulating substrate, e.g. tape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

A method for producing a lamina from a donor body includes implanting the donor body with an ion dosage and heating the donor body to an implant temperature during implanting. The donor body is separably contacted with a susceptor assembly, where the donor body and the susceptor assembly are in direct contact. A lamina is exfoliated from the donor body by applying a thermal profile to the donor body. Implantation and exfoliation conditions may be adjusted in order to maximize the defect-free area of the lamina.

Description

201246301 六、發明說明: 【^^明所屬戈^技術領域】 相關申請案 本申請案為Murali等人在2010年12月20日申請及屬於 本申請案讓受人之美國專利申請案第12/980,424號,標題為 A Method to Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina”的部份連續案,在 此併入本文作為參考資料。依照USC第35條第119(e)項,本 申請案主張以下申請曰期的優先權:2011年7月21曰申請的 美國臨時專利申請案第61/510,477號,標題為“Detection Methods in Exfoliation of Lamina” ; 2011 年7月 21 日申請的 美國臨時專利申請案第61/510,476號,標題為“Support Apparatus and Methods For Production of Silicon Lamina” ; 2011年7月21日申請的美國臨時專利申請案第61/510,478 號’標題為“Ion Implantation and Exfoliation Methods” ;以 及’ 2011年7月21曰申請的美國臨時專利申請案第 61/510,475 號,標題為 “Apparatus and Methods f〇r Production of Silicon Lamina” ;這些申請案的揭示内容併入 本文作為參考資料。 發明領域 本發明係有關於用以形成薄層體之方法與裝置。 【先前技術3 發明背景 習知先前技術光伏胞元包含P_n二極體;第1圖圖示^ 201246301 實軛例。空乏區在P-n接面形成而產生電場。入射光子(入射 光用箭頭表示)會把電子從價電帶(valence band)打到傳導 ^•(conduction band),而產生自由電子·電洞對。在p_n接面 的電場内,電子傾向往二極體的”型區遷移,而電洞往p型 區遷移,而產生所謂光電流的電流。通常,一區域的摻雜 物濃度會高於其他區域的濃度’使得接面為p+/n-接面(如第 1圖所示)或者是n+/p_接面。被更輕度地摻雜的區域被稱為 光伏胞元的基極(base),而被更重度地摻雜成相反導電型的 區域被稱為射極(emitter)。大部份的載流子(carrier)在通常 為胞元之最厚部份的基極内產生。基極與射極一起形成胞 元的作用區。 離子植入為用以在半導體材料中形成分裂平面(cleave plane)以形成使用於光伏胞元之層體的習知方法。該等方法 的離子植入及脫層步驟(exfoliation step)對於製成層體的品 質有顯著的影響。最好改善用於產生層體的方法及裝置。 【明内溶L】 發明概要 一種用以由施體(donor body)製成層體的方法包括:用 一離子劑量植入該施體,以及在植入期間加熱該施體至一 植入溫度。該施體係與一晶座總成(susceptor assembly)可分 離地接觸,其中該施體與該晶座總成直接接觸。藉由施加 一熱分佈於該施體,使一層體與該施體脫層。可調整植入 及脫層條件以最大化該層體的無缺陷面積。 圖式簡單說明 201246301 可單獨使用或以彼此組合的方式使用描述於本文之本 發明方面及具體實施例中之每一者。此時會參考附圖來描 述該等方面及具體實施例。 第1圖為先前技術光伏胞元的橫截面圖。 第2A至2D圖的橫截面圖圖示美國專利申請案第 12/026,530號(Sivaram等人)之光伏裝置的形成階段。 第3圖的流程圖根據本發明之方面圖示一示範方法的 步驟。 第4A及4B圖的橫截面圖根據本發明之具體實施例圖 示層體的形成階段。 第5A及5B圖的橫截面圖根據本發明之具體實施例圖 示層體的分離。 第6 A及6 B圖的橫截面圖根據本發明之具體實施例圖 示層體的分離。 第7A及7C圖的橫截面圖圖示有構成金屬支撐元件之 光伏裝置的形成階段。 第8A及8B圖為本發明之示範晶座總成的橫截面透視 圖與俯視透視圖。 第9A及9B圖的俯視圖圖示本發明晶座板的具體實施 例。 第10A及10B圖的透視橫截面圖圖示本發明之一具體 實施例的分離吸盤。 C實施方式3 較佳實施例之詳細說明 201246301 茲描述數種方法及裝置,其中在不用黏著劑或永久性 鍵結至支撐元件下形成與施體分離的自立型層體。本發明 的方法及裝置包括:用離子劑量植入施體的第一表面,以 及在植入期間加熱該施體至一植入溫度。該施體之該第一 表面與晶座總成之第一表面可分離地接觸,以及藉由施加 一熱分佈於該施體,使一層體與該施體脫層。然後,該層 體可與該施體分離。在有些具體實施例中,分離方法包括: 施加變形力(deforming force)於層體或施體的表面。可根據 施體的材料來調整植入及脫層條件以最大化自立型薄層體 的無缺陷區。 由石夕體(silicon body)形成的習知光伏胞元包括p-n二極 體,如第1圖所示,空乏區形成於p-n接面。用來形成光伏 胞元的矽施體通常約有200至250微米厚。經由磊晶成長、 黏著材料使層體永久性固定於支撐元件或藉由在與施體分 裂或藉分離前產生鍵結層體的其他方法,由矽施體形成的 較薄層體可用來形成光伏胞元。通常用此方式形成的層體 必須使支撐元件與任何所得光伏胞元結合或者是參與剝離 步驟(debonding step)以移除支稽元件。本發明方法及裝置 係經描述成可形成自立型薄層體以及與施體分離而不用黏 著劑或永久性鍵結至支撐元件下以及在製造光伏胞元之前 不需剝離或清洗步驟下。在本發明,係通過第一表面植入 施體以形成分裂平面。然後,可安置施體的第一表面於支 撐元件附近。執行加熱步驟以使層體與.施體之第一表面脫 層而產生第二表面。此方法是在層體上沒有鍵結支撐元件 201246301 下進行。離子植入及脫層條件可顯著影響用此方法製成之 層體的品質以及可加以優化以減少可能形成於自立型層體 之物理缺陷的數量。也描述用於經脫層之自立型薄層體的 分離方法。201246301 VI. Description of the invention: [^^明 belongs to Ge^Technical field] Related Applications This application is filed on December 20, 2010 by Murali et al. and is filed on US Patent Application No. 12/ No. 980,424, entitled "A Method to Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina", which is hereby incorporated by reference herein. The application claims the priority of the following application: US Provisional Patent Application No. 61/510,477, filed July 21, 2011, entitled "Detection Methods in Exfoliation of Lamina"; United States, filed on July 21, 2011 Provisional Patent Application No. 61/510,476, entitled "Support Apparatus and Methods For Production of Silicon Lamina"; U.S. Provisional Patent Application Serial No. 61/510,478, filed on July 21, 2011, entitled "Ion Implantation and Exfoliation And "U.S. Provisional Patent Application No. 61/510,475, filed July 21, 2011, entitled "Apparatus and Methods f r Production of Silicon Lamina"; the disclosures of these applications are hereby incorporated by reference herein in its entirety in its entirety in the the the the the the the the the the the the The element contains a P_n diode; Figure 1 shows a real yoke example of 201246301. The depletion region is formed at the Pn junction to generate an electric field. The incident photon (incident light is indicated by an arrow) will drive the electron from the valence band. To the conduction band, a free electron-hole pair is generated. In the electric field of the p_n junction, electrons tend to migrate toward the "type region" of the diode, and the hole migrates to the p-type region, resulting in the so-called The current of the photocurrent. Typically, the dopant concentration of one region will be higher than the concentration of other regions such that the junction is a p+/n- junction (as shown in Figure 1) or an n+/p_ junction. The lightly doped region is referred to as the base of the photovoltaic cell, and the region that is more heavily doped to the opposite conductivity is referred to as the emitter. Most of the carriers are generated in the base of the thickest portion of the cell. The base and emitter together form the active area of the cell. Ion implantation is a conventional method for forming a cleave plane in a semiconductor material to form a layer body for use in a photovoltaic cell. The ion implantation and exfoliation steps of these methods have a significant effect on the quality of the layer being formed. It is preferred to improve the method and apparatus for producing a layer. [Inventive L] Summary of the Invention A method for forming a layer body from a donor body includes implanting the donor body with an ion dose and heating the donor body to an implantation temperature during implantation. The application system is in discrete contact with a susceptor assembly, wherein the donor body is in direct contact with the crystal holder assembly. A layer of the body is delaminated from the donor by applying a heat distribution to the donor. Implantation and delamination conditions can be adjusted to maximize the defect free area of the layer. BRIEF DESCRIPTION OF THE DRAWINGS 201246301 Each of the inventive aspects and specific embodiments described herein may be used alone or in combination with one another. These aspects and specific embodiments will now be described with reference to the drawings. Figure 1 is a cross-sectional view of a prior art photovoltaic cell. A cross-sectional view of Figures 2A through 2D illustrates the stage of formation of a photovoltaic device of U.S. Patent Application Serial No. 12/026,530 (Sivaram et al.). The flowchart of Figure 3 illustrates the steps of an exemplary method in accordance with aspects of the present invention. Cross-sectional views of Figures 4A and 4B illustrate stages of formation of a layer body in accordance with a particular embodiment of the present invention. Cross-sectional views of Figures 5A and 5B illustrate the separation of the layers in accordance with a particular embodiment of the present invention. Cross-sectional views of Figures 6A and 6B illustrate the separation of the layers in accordance with a particular embodiment of the present invention. The cross-sectional views of Figures 7A and 7C illustrate the stages of formation of a photovoltaic device that constitutes a metal support member. 8A and 8B are cross-sectional perspective and top perspective views of an exemplary crystal seat assembly of the present invention. The top views of Figs. 9A and 9B illustrate a specific embodiment of the crystal panel of the present invention. The perspective cross-sectional views of Figures 10A and 10B illustrate a separation chuck of one embodiment of the present invention. C. Embodiment 3 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT 201246301 Several methods and apparatus are described in which a self-standing layer separated from a donor body is formed without an adhesive or permanent bonding to a support member. The method and apparatus of the present invention comprise implanting a first surface of a donor with an ion dose and heating the donor to an implantation temperature during implantation. The first surface of the donor body is in detachable contact with the first surface of the crystal holder assembly, and the layer is debonded from the donor body by applying a heat distribution to the donor body. The layer can then be separated from the donor. In some embodiments, the separating method comprises: applying a forming force to the surface of the layer or donor. Implantation and delamination conditions can be tailored to the material of the donor to maximize the defect free area of the free standing sheet. A conventional photovoltaic cell formed of a silicon body includes a p-n diode, and as shown in Fig. 1, a depletion region is formed on the p-n junction. The donor body used to form the photovoltaic cells is typically about 200 to 250 microns thick. The thinner layer formed by the bismuth donor can be formed by epitaxial growth, adhesion of the layer to the support member permanently or by other means of creating a bond layer before splitting or borrowing from the donor. Photovoltaic cells. The layer body typically formed in this manner must either bond the support element to any resulting photovoltaic cells or participate in a debonding step to remove the support elements. The method and apparatus of the present invention are described as being capable of forming a self-standing sheet and being separated from the donor without adhesive or permanent bonding to the support member and without the need for a stripping or cleaning step prior to fabrication of the photovoltaic cell. In the present invention, the donor body is implanted through the first surface to form a split plane. The first surface of the donor body can then be placed adjacent the support member. A heating step is performed to delaminate the layer from the first surface of the donor to create a second surface. This method is performed without a bond support element 201246301 on the layer. Ion implantation and delamination conditions can significantly affect the quality of the layers produced by this method and can be optimized to reduce the number of physical defects that may form in the free-standing layer. A separation method for a delaminated free-standing thin layer body is also described.

Sivaram等人於2〇〇8年2月Μ曰申請及屬於本申請案讓 受人從而併入本文作為參考資料的美國專利申請案第 12/026,530號’標題為“Method to Form a Photovoltaic CellU.S. Patent Application Serial No. 12/026,530, entitled "Method to Form a Photovoltaic Cell", filed on Jan. 28, 2008, which is hereby incorporated by reference.

Comprising a Thin Lamina” ’係描述製造包含由未沉積半導 體材料形成之半導體薄層體的光伏胞元。請參考圖示 Sivaram等人之具體實施例的第2八圖,用一或更多種氣體離 子(例如’氫及/或氦離子)’通過第一表面1〇來植入半導體 施體20。植入離子在半導體施體内定義分裂平面3〇。如第 2B圖所示’施體20在第一表面1〇固定於受體(receiver)6〇。 請參考第2C圖,回火步驟造成層體4〇與施體2〇在分裂平面 30分裂而產生第二表面62。在Sivaram等人的實施例中,在 分裂步驟之前及之後用額外步驟形成包含半導體層體40的 光伏胞元,該半導體層體40約有0.2至約1〇〇微米厚’例如 約有0.2至約50微米,例如約有1至約2〇微米厚,在有些具 體實施例中’約有1至約10微米厚或約有4至約20或約有5至 約15微米厚’然而在指定範圍的任何厚度都有可能。第21) 圖圖示被顛倒的結構,其中受體6〇是在底部,如同在有些 具體實施例的操作期間。受體60可為最大寬度大於施體1〇 最大寬度不超過百分之50的離散受體元件,以及寬度大約 相同為較佳,如描述於Herner在2008年3月27日申請及屬於 201246301 本申請案讓受人的美國專利申請案第12/057,265號,標題為 “Method to Form a Photovoltaic Cell Comprising a Thin Lamina Bonded to a Discrete Receiver Element”,其揭示内 容併入本文作為參考資料。替換地,多個施體可固定於單 一較大的受體,以及層體與各個施體分裂。 使用Sivaram等人的方法,光伏胞元由薄半導體層體形 成,而不是切割後的晶圓,而不會通過截口損失(kerf loss) 浪費掉矽或製造不必要的厚胞元,從而可減少成本。可再 利用同一個施體晶圓以形成多個層體,這可進一步減少成 本’以及在多個層體脫層後,可轉售用於某些其他的用途。 在本發明中,自立型層體的形成係藉由用離子植入半 導體施體以定義分裂平面以及使半導體層體與施體在分裂 平面脫層。該層體有未鍵結第一表面及與其相反的未鍵結 第二表面。在脫層步驟後,該層體與該施體分離以及製作 成光伏胞元’其中該層體包含該光伏胞元之基極區。該詹 體的厚度可在約4微米至約20微米之間。在層體加入光伏胞 凡之前’可形成一、二或更多層於該層體之該第一表面上。 在自立型層體的第二表面上可形成一、二或更多層。層體 的厚度取決於分裂平面的深度。在許多具體實施例中,層 體的厚度在約1至約10微米之間,例如在約2至約5微米之 間,例如約4.5微米。在其他具體實施例中,層體的厚度在 約4至約20微米之間’例如在約1〇至約15微米之間,例如約 11微米。該第二表面用分裂法產生。儘管流程可能不同, 般疋在不永久或以黏著方式固定於支撐元件下提供層 201246301 體。在大部份的具體實施例中,它已與較大施體(例如,晶 圓或梨晶(boule))脫層及分離。 翻到概述本發明方法的第3圖,首先通過第一表面植入 離子於施體以形成分裂平面(第3圖的步驟1)。可調整植入條 件以減少最終成形層體的外觀物理缺陷,例如撕裂(tear)、 裂縫(crack)、裂痕(rip)、波前缺陷、放射條紋(radial stnation)、片落(flaking)或彼等之任何組合)。在一具體實施 例中,該等物理缺陷包括裂縫,以及本發明方法提供一種 其中裂缝總長度小於100毫米的自立型層體。物理缺陷包括 可能導致分流(shunting)或減少完成胞元之效能的任何缺 陷。層體中包含物理缺陷的區域可等價於光伏胞元中呈現 無法使用的區域。可調整以最大化分裂後層體中實質無缺 陷區的植入條件包括在植入期間施加於施體的溫度及/或 疋力在有些具體貫施例中,植入溫度可維持在Μ至 之間,例如100至2〇〇。(:之間或在12〇至18〇。(:之間。本發明 之方面在於可基於材料及施體之取向來調整植入溫度。 在-些具體實施例中,該材料為{Π1}定㈣而植入溫度可 在150至2GGt之間。在其他具體實施例巾,該材料糾叫 定向石夕而植人溫度可在25至15叱之間。描述於本文的方法 可也應用於有任何取向的半導體施體,例如{ι叫定向石夕, 或_}。可針對任何卿向及植入能量來優化植入溫度。 其他可調整的植人條件可包括初始製程參數,例如植入劑 量與植入離子的比_如,氫:氦的㈣)。在有些具體實 施例中’可優化植人條件與脫層條件,例如脫層溫度 '脫 201246301 層晶座真空程度、加熱速率及/或脫層壓力以便最大化層體 中實質無物理缺陷的區域。在一些具體實施例中’由本發 明方法製成的層體有百分之9〇以上的表面積無物理缺陷。 在植入以形成分裂平面後,可使施體與臨時支撐元件 (例如,晶座總成)接觸(第3圖’步驟2)供進一步加工。施體、 層體或光伏胞元通常在不同的製造階段可用黏著劑或經由 化學鍵結(chemical bonding)固定於臨時載體(temporary carrier)。若使用黏著劑,則需要額外的步驟以初始化層體 的剝離及/或在脫離後清潔光伏胞元的表面及臨時載體。替 換地,可溶解支撐元件或以其他方式移除及致使不能用於 其他支撐台階(support step)。在本發明之一方面中,在不用 黏著劑或永久性鍵結下’該施體與支撐元件(例如,晶座總 成)可分離地接觸,以在脫層期間穩定層體。該接觸可為施 體與支撐元件的直接接觸’以及不包含附著物(adherent)或 需要化學或物理步驟以僅僅在使施體或層體由晶座升高後 瓦解該接觸的結合步驟(bonding step)。然後,該晶座再度 用作支撐元件而不進一步加工。在本發明方法的一些具體 實施例中,植入施體可與支撐元件(例如,晶座總成)可分離 地接觸’其中施體與晶座在脫層期間的相互作用力只是施 體在晶座上的重量或只是晶座總成在施體上的重量。在只 用細體之重量建立接觸的情形下’可將該施體定向成植入 面朝下以及與晶座接觸。替換地,可將該施體定向成植入 面朝上以及不與晶座接觸。就此情形而言,在脫層期間或 之後’盍板可用來穩定層體。在其他具體實施例中,該4接 10Comprising a Thin Lamina" 'Describes the fabrication of photovoltaic cells comprising a semiconductor thin layer formed from undeposited semiconductor material. Please refer to Figure 2 of the specific embodiment of Sivaram et al., using one or more gases An ion (eg, 'hydrogen and/or helium ion') is implanted into the semiconductor donor body 20 through the first surface. The implanted ions define a split plane 3〇 in the semiconductor body. As shown in FIG. 2B, the donor body 20 The first surface is fixed to the receiver 6〇. Referring to Figure 2C, the tempering step causes the layer 4〇 and the donor 2〇 to split at the split plane 30 to produce the second surface 62. In Sivaram et al. In a human embodiment, the photovoltaic cells comprising the semiconductor layer 40 are formed with additional steps before and after the splitting step, the semiconductor layer 40 having a thickness of about 0.2 to about 1 Å and a thickness of, for example, about 0.2 to about 50 microns. , for example, from about 1 to about 2 microns thick, in some embodiments 'about 1 to about 10 microns thick or about 4 to about 20 or about 5 to about 15 microns thick', however, any of the specified ranges Thickness is possible. Figure 21) shows the structure that is reversed, The intermediate acceptor 6 〇 is at the bottom, as during the operation of some embodiments. The acceptor 60 can be a discrete acceptor element having a maximum width greater than the maximum width of the donor 1 不 and no more than 50 percent, and the width is approximately the same </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; a Discrete Receiver Element, the disclosure of which is incorporated herein by reference. In the alternative, a plurality of donors can be affixed to a single larger receptor, and the layers are split with the individual donors. Using the method of Sivaram et al., Photovoltaics The cell is formed by a thin semiconductor layer, rather than a diced wafer, without wasting kerf loss or making unnecessary thick cells, thereby reducing cost. Reuse the same The wafer is applied to form a plurality of layers, which can further reduce the cost' and after delamination of the plurality of layers, can be resold for some other use. In the present invention, The formation of the layer is formed by ion implantation of the semiconductor donor to define the split plane and to delaminate the semiconductor layer from the donor at the split plane. The layer has an unbonded first surface and an opposite unbonded surface a second surface. After the delamination step, the layer is separated from the donor and fabricated into a photovoltaic cell 'where the layer comprises a base region of the photovoltaic cell. The thickness of the body can range from about 4 microns to about Between 20 microns. One, two or more layers may be formed on the first surface of the layer before the layer is added to the photovoltaic cell. One, two or more layers may be formed on the second surface of the free standing layer. The thickness of the layer depends on the depth of the split plane. In many embodiments, the thickness of the layer is between about 1 and about 10 microns, such as between about 2 and about 5 microns, such as about 4.5 microns. In other embodiments, the thickness of the layer body is between about 4 and about 20 microns, such as between about 1 inch and about 15 microns, such as about 11 microns. The second surface is produced by a splitting process. Although the process may be different, the layer is not permanently or adhesively attached to the support element to provide the layer 201246301. In most embodiments, it has been delaminated and separated from larger donors (e.g., crystal or boule). Turning to Figure 3, which outlines the method of the present invention, ions are first implanted through the first surface to form a split plane (step 1 of Figure 3). Implant conditions can be adjusted to reduce physical defects in the appearance of the final formed layer, such as tears, cracks, rips, wavefront defects, radial stnations, flaking, or Any combination of them). In a specific embodiment, the physical defects include cracks, and the method of the present invention provides a free standing layer in which the total length of the crack is less than 100 mm. Physical defects include any defects that may result in shunting or reduce the performance of the completed cell. An area containing physical defects in the layer may be equivalent to an area in the photovoltaic cell that is rendered unusable. Implantation conditions that can be adjusted to maximize substantial defect-free regions in the layer after splitting include temperature and/or force applied to the donor during implantation. In some specific embodiments, the implantation temperature can be maintained at Between, for example, 100 to 2 inches. (: between or between 12 〇 and 18 〇. (: Between. Aspects of the invention are that the implantation temperature can be adjusted based on the orientation of the material and the donor body. In some embodiments, the material is {Π1} The implant temperature may be between 150 and 2 GGt. In other embodiments, the material is calibrated and the implant temperature may be between 25 and 15 。. The method described herein may also be applied. There are semiconductor donors of any orientation, such as { directional directional Shi Xi, or _}. The implantation temperature can be optimized for any orientation and implantation energy. Other adjustable implant conditions can include initial process parameters, such as The ratio of the dose to the implanted ion_for example, hydrogen: ( (4). In some embodiments, 'implantation conditions and delamination conditions can be optimized, such as delamination temperature' off 201246301 layer wafer seat vacuum degree, heating rate And/or delamination pressure to maximize the area of the layer that is substantially free of physical defects. In some embodiments, the layer formed by the method of the present invention has a surface area of more than 9 % without physical defects. After forming a split plane, it can be applied Contact with a temporary support element (eg, a crystal holder assembly) (Fig. 3 'Step 2) for further processing. The donor, layer or photovoltaic cell is typically available at various stages of manufacture with an adhesive or via chemical bonding. Fixed to a temporary carrier. If an adhesive is used, additional steps are required to initiate stripping of the layer and/or to clean the surface of the photovoltaic cell and the temporary carrier after detachment. Alternatively, the support element may be dissolved or It is otherwise removed and rendered unusable for other support steps. In one aspect of the invention, the donor and support elements (eg, a crystal seat assembly) are used without an adhesive or permanent bonding. Separably contacting to stabilize the layer during delamination. The contact may be direct contact between the donor and the support member and may not contain an adherent or require chemical or physical steps to merely apply the donor or layer A bonding step of disintegrating the contact after the crystal holder is raised. The crystal holder is then used again as a support member without further processing. In the method of the present invention In a specific embodiment, the implant donor can be in detachable contact with the support member (eg, the crystal holder assembly), wherein the interaction force between the donor and the wafer during the delamination is only the weight of the donor body on the crystal holder or It is only the weight of the crystal holder assembly on the donor body. In the case where contact is established only by the weight of the fine body, the donor body can be oriented with the implant face down and in contact with the crystal holder. Alternatively, the donor body can be oriented The implant face is facing up and not in contact with the crystal seat. In this case, the seesaw can be used to stabilize the layer during or after delamination. In other embodiments, the 4 is 10

S 201246301 觸可進-步包含··晶座與施體之間的真空力。可施加真空 力於施體以便使施體臨時固定於晶座總成而不使用黏: 劑’化學反應,靜電壓力或其類似者。 如同本發明’在脫層及損傷回火(damage annea丨)的步驟 期間使層體與未鍵結支撐元件接觸可提供數個顯著優=。 脫層及回火的步驟係以相對高的溫度進行。如果在該等高 溫步驟之前把預先形成的支撐元件,例如用黏著劑或化學 物,固定於施體,則它一定會與層體一起暴露於高溫,如 同任何中介層(intervening layer)。許多材料難以忍受高溫, 而且若是支撐元件與層體的熱膨脹係數(CTE)失配,加熱及 冷卻會產生可能損傷薄層體的應變。因此,未鍵結支禮元 件&amp;供用於製造層體的優化表面而與可能抑制無缺陷層體 形成的結合及剝離協定無關。回火可在層體與施體分離之 前或之後發生。 在使施體與晶座總成接觸後’可施加熱於施體以使層 體與施體在分裂平面分裂。可優化脫層條件以使層體與施 體分裂(第3圖,步驟3)以便最小化層體在沒有黏著支撐元件 下脫層時的物理缺陷。可針對特定的施體來優化脫層參 數。脫層在大氣壓力發生。可應用有一、或二或多次熱升 溫(thermal ramp)的脫層熱分佈。在有些具體實施例中,脫 層條件可包括單一快速熱升溫至大於600°C的尖峰脫層溫 度。熱升溫速率可為l〇〇°C/分鐘、200°C/分鐘或更大。晶座 •h材料可具有小於施體的熱容(heat capacity)以及可抵抗在 最終脫層溫度時的熱裂解(thermal degradation)以促進此方 11 201246301 法的脫層。在其他具體實施例中,最終脫層溫度可在400至 600°C之間,以及升溫速率為任何速度,但是在層體的表面 上施加貝貝均勻的溫度。該晶座總成可包含熱各向互異性 材料(thermally anisotropic material)以促進施體表面在脫層 期間有均勻的熱分佈。在一些具體實施例中,可輸送施體 至溫度較尚的區域使得能夠由一端至另一端均勻地加熱施 體。在一具體實施例中’使施體由溫度較低的地區移到溫 度較尚的地區(例如,帶爐(belt furnace))。移動速率可提供 施體快速的溫度變化,例如60°C/分鐘,200。(:/分鐘或更大。 可用任何方法使脫層層體與施體分離(第3圖,步驟4), 例如藉由施加變形力於施體的第一表面而從新成形層體的 反面離開。在一些具體實施例中,可使施體變形離開脫層 層體。在其他具體實施例中,可使脫層層體變形離開施體。 在脫層後’可使為施體第一表面的自立型層體表面與支撐 裝置(例如,晶座總成)可分離地接觸。在有些具體實施例 中,接觸力可包含層體與晶座板之間的真空力。在有些具 體實施例中’接觸力只是施體在層體上的重量。吸盤板 (chuck plate)可在與層體相反的表面上附著至施體。在有些 具體實施例中,該附著可為通過多孔吸盤板施加於施體的 真空力。可通過吸盤板來施加真空壓力,從而使施體附著 至吸盤板。該吸盤板可耦合至撓曲裂置(flexing device),例 如棱曲臂、或可變形板或其類似物。施加於撓曲裝置的力 可使施體變形離開層體。該力可使施體的任何部份(例如, 邊緣或其他區域)變形離開層體。該變形可使施體離開層體 12S 201246301 Touch-in steps include the vacuum force between the crystal holder and the donor body. A vacuum force can be applied to the donor body to temporarily secure the donor body to the crystal holder assembly without the use of a chemical reaction, electrostatic stress or the like. As in the present invention, the contact of the layer with the unbonded support member during the steps of delamination and damage anneal provides several significant advantages. The steps of delamination and tempering are carried out at relatively high temperatures. If a preformed support member, such as an adhesive or a chemical, is applied to the donor prior to the high temperature steps, it must be exposed to the elevated temperature with the laminate, as any intervening layer. Many materials are unbearable for high temperatures, and if the coefficient of thermal expansion (CTE) of the support member and the layer are mismatched, heating and cooling can create strain that can damage the thin layer. Thus, the unbonded gift elements &amp; are used to make the optimized surface of the layer body regardless of the bond and peeling agreement that may inhibit the formation of the defect free layer. Tempering can occur before or after the separation of the layer from the donor. After the donor body is brought into contact with the crystal seat assembly, heat can be applied to the donor body to cause the layer and the donor body to split in the split plane. The delamination conditions can be optimized to split the layer from the donor (Fig. 3, step 3) in order to minimize physical defects of the layer when it is delaminated without the adhesive support element. The delamination parameters can be optimized for a specific donor. Delamination occurs at atmospheric pressure. A delamination heat distribution of one, two or more thermal ramps may be applied. In some embodiments, the delamination conditions can include a single rapid thermal ramp to a peak delamination temperature greater than 600 °C. The rate of thermal heating may be 10 ° C / min, 200 ° C / min or more. The crystal holder • h material may have a heat capacity that is less than the donor body and is resistant to thermal degradation at the final delamination temperature to promote delamination of the method of 201224301. In other embodiments, the final delamination temperature can be between 400 and 600 ° C, and the rate of temperature rise is any speed, but a uniform temperature of babe is applied to the surface of the layer. The crystal holder assembly can comprise a thermally anisotropic material to promote a uniform heat distribution of the donor surface during delamination. In some embodiments, the delivery of the donor body to a temperature-extended region enables uniform heating of the donor from one end to the other. In one embodiment, the donor is moved from a lower temperature zone to a warmer temperature zone (e.g., a belt furnace). The rate of movement provides a rapid temperature change for the donor, such as 60 ° C / min, 200. (: / minute or more. The delamination layer can be separated from the donor body by any method (Fig. 3, step 4), for example, by applying a deformation force to the first surface of the donor body to leave the opposite side of the newly formed layer body. In some embodiments, the donor body can be deformed away from the delamination layer. In other embodiments, the delamination layer can be deformed away from the donor body. After delamination, the first surface can be applied. The free standing layer surface is detachably contacted with a support device (eg, a crystal seat assembly). In some embodiments, the contact force can include a vacuum force between the layer body and the crystal plate. In some embodiments The 'contact force' is only the weight of the donor body on the layer. The chuck plate can be attached to the donor body on the opposite surface of the layer. In some embodiments, the attachment can be applied through a porous chuck plate. The vacuum force applied to the body. The vacuum pressure can be applied by the suction cup to attach the donor body to the suction cup. The suction cup can be coupled to a flexing device, such as a curved arm, or a deformable plate or Its analogue. Applied to flexure The force is applied to deform the donor body away from the layer body. This force can deform any part of the donor body (eg, the edge or other area) away from the layer body. This deformation can cause the donor body to leave the layer body.

S 201246301 表面之一部份大於1毫米的距離,而施體邊緣在層體與施體 的後續完全分離時鬆脫。分離的層體可留在晶座板上或轉 移至不同的臨時或永久支撐元件供進一步加工。在有些具 體實施例中,在自立型層體上可建造永久的支撐物。 本發明之一方面包含由自立型層體製成光伏胞元的方 法以及用有合適半導體材料的施體開始。合適施體可為有 任何有用厚度(例如’約有2〇〇至约1〇〇〇微米厚)的單晶矽晶 圓。通常晶圓有U〇〇}或{111}的米勒指數(Miller index),然 而可使用其他取向。在替代具體實施例中,施體晶圓可厚 些,最大厚度只受限於晶圓處理的實務。替換地,可使用 複日日或夕日日石夕’以及微晶石,(micr〇crystaiiine siiicon),或其 他半導體材料的晶圓或錢,包括鍺、石夕鍺或丨化乂或仏…簇 半導體化合物,例如GaAs、InP等等。可使用其他材料,例 如SiC、LiNb〇3、SrTi〇3、藍寶石及其類似者。關於這點, 術夕晶通常思指粒控約有一毫米或更大的半導體材料, 而複晶半導體材料有較小的立,約數百王矣。微晶半導體 材料的顆粒極小’例如刚埃左右。例如,微晶發可完全結 曰日或可包含在非日日態基體(amorphous matrix)中的微晶體。 多晶或複晶半導體複理解為可呈完全或實質結晶。熟請此 藝者應瞭解’慣用術語“單晶♦’,不排除偶而有缺陷或雜質 (例如,導電性增強用摻雜物)的矽。 形成單晶石夕的方法通常生產圓形晶圓,但是施體也可 具有其他的形狀。以光伏應用而言,柱形單晶鍵(咖」⑽ m〇n〇crysta出ne i零t)在切割晶圓之前常被機械加工成八S 201246301 One part of the surface is greater than 1 mm, and the donor edge is loosened when the layer is completely separated from the donor. The separated layers can be left on the base plate or transferred to different temporary or permanent support elements for further processing. In some embodiments, a permanent support can be constructed on the self-supporting layer. One aspect of the invention comprises a method of making photovoltaic cells from a free standing layer and starting with a donor having a suitable semiconductor material. Suitable donors can be single crystal twins having any useful thickness (e.g., &lt; about 2 Å to about 1 〇〇〇 microns thick). Usually the wafer has a Miller index of U〇〇} or {111}, but other orientations can be used. In an alternative embodiment, the donor wafer can be thicker and the maximum thickness is limited only by the practice of wafer processing. Alternatively, you can use wafers or money from the day or the day of the day, as well as microcrystalline stone, (micr〇crystaiiine siiicon), or other semiconductor materials, including 锗, 石夕锗 or 丨化乂 or 仏... Semiconductor compounds such as GaAs, InP, and the like. Other materials such as SiC, LiNb〇3, SrTi〇3, sapphire and the like can be used. In this regard, Xingjing usually thinks that the grain control is about one millimeter or more of semiconductor material, while the polycrystalline semiconductor material has a small stand, about a few hundred. The particles of the microcrystalline semiconductor material are extremely small, e.g., around angstroms. For example, the microcrystalline hair may be completely spliced or may be included in a non-day-day amorphous matrix. Polycrystalline or polycrystalline semiconductors are understood to be fully or substantially crystalline. Those skilled in the art should be familiar with the 'conventional terminology' single crystal ♦', and do not exclude the defects of occasional defects or impurities (for example, dopants for conductivity enhancement). The method of forming single crystal is usually to produce a circular wafer. However, the donor body can have other shapes. For photovoltaic applications, the cylindrical single crystal key (coffee) (10) m〇n〇crysta out ne i zero t) is often machined into eight before cutting the wafer.

S 201246301 角形橫截面。晶圓也可具有其他的形狀,例如方形。不像 圓形或六角形晶圓,方形晶圓有以下優點:它們在光伏模 組上可以其間有最小未使用間隙的方式邊對邊對齊。晶圓 的直徑或寬度可為任何標準或客製尺寸。為使描述簡潔, 本揭示内容會描述作為半導體施體之單晶矽晶圓的用途, 但是應瞭解,可使用其他類型及材料的施體。 通過第一表面植入離子,氫或氫及氦之組合為較佳, 於施體以定義分裂平面,如先前所述。分裂平面的總深度 取決於數個因素,包括植入能量。分裂平面的深度可離第 一表面約有0.2至約100微米,例如在約0.5至約20或約50微 米之間,例如在約1至約10微米之間,在約1或2微米至約5 或6微米之間,或在約4至約8微米之間。替換地,分裂平面 的深度可在約5至約15微米之間,例如約11或12微米。 可根據待植入材料及分裂平面的所欲深度來調 整離子植入的溫度及劑量,以便提供實質無物理缺 陷的自立型層體。離子劑量可為任何劑量,例如在 l.OxlO14至1.0xl018H/cm2之間。植入溫度可為任何溫度,例 如140°C以上(例如,在150至250°C之間)。可基於施體的米 勒指數與植入離子的能量來調整植入條件。例如,有{111} 之米勒指數的單晶矽可能需要與有{100}之米勒指數的單 晶矽施體晶圓不同的植入條件集合。本發明之一方面包 括:調整植入條件以最大化層體中實質無缺陷的面積。在 有些具體實施例中,植入劑量可小於1.3xl017H/cm2以及植 入溫度大於25°C,例如在80°C至250°C之間。在有些具體實S 201246301 Angled cross section. The wafer can also have other shapes, such as a square. Unlike circular or hexagonal wafers, square wafers have the advantage that they can be edge-to-edge aligned on the PV module with minimal unused gaps. The diameter or width of the wafer can be any standard or custom size. For simplicity of description, the present disclosure will describe the use of a single crystal germanium wafer as a semiconductor donor, although it will be appreciated that other types and materials may be used. It is preferred to implant ions through the first surface, hydrogen or a combination of hydrogen and helium, to define the split plane, as previously described. The total depth of the split plane depends on several factors, including the implant energy. The depth of the split plane may be from about 0.2 to about 100 microns from the first surface, such as between about 0.5 to about 20 or about 50 microns, such as between about 1 to about 10 microns, at about 1 or 2 microns to about Between 5 or 6 microns, or between about 4 and about 8 microns. Alternatively, the depth of the split plane can be between about 5 and about 15 microns, such as about 11 or 12 microns. The temperature and dose of the ion implantation can be adjusted depending on the desired depth of the material to be implanted and the plane of the splitting to provide a free standing layer that is substantially free of physical defects. The ion dose can be any dose, for example between l.OxlO14 and 1.0xl018H/cm2. The implantation temperature can be any temperature, such as above 140 °C (e.g., between 150 and 250 °C). Implantation conditions can be adjusted based on the Miller index of the donor and the energy of the implanted ions. For example, a single crystal germanium having a Miller index of {111} may require a different set of implantation conditions than a single crystal germanium wafer having a Miller index of {100}. One aspect of the invention includes adjusting the implantation conditions to maximize the substantially defect free area of the layer. In some embodiments, the implant dose can be less than 1.3 x 1 017 H/cm 2 and the implant temperature is greater than 25 ° C, such as between 80 ° C and 250 ° C. In some concrete

14 S 201246301 施例_,可以150至200°C的溫度植入有{1〗1}之米勒指數的 單晶矽施體。在有些具體實施例中,可以100至150°C的溫 度植入有{100}之米勒指數的單晶矽施體。在有些具體實施 例中,較高植入溫度可產生更均勻的脫層。 請參考第4A圖,施體20的植入面1〇可與支撐元件(例 如,晶座總成400)可分離地接觸。該晶座總成可與施體接 觸同時仍然未鍵結於施體。施體與晶座總成在脫層期間的 接觸力只為施體的重量。替換地,整個總成及施體可反過 來以及接觸力可為晶座總成在施體上的重量。在有些具體 實施例中’施體與晶座的接觸力可用晶座與施體之間的真 空力來增加。晶座總成的材料性質可促進實質無缺陷層體 與施體的脫層。晶座總成400可包含呈如第4A圖所示之扁平 的單一晶座板。在有些具體實施例中,晶座總成的表面可 包含熱膨脹係數(CTE)在寬廣溫度範圍内(例如,〇至1〇〇〇。〇 與鈀體貫質相同的材料β該晶座總成可包含熱容實質小於 或等於施體之熱容的材料以便支援快速熱升溫至4〇〇它以 上的脫層溫度。 在如第4B圖所示的其他具體實施例中,晶座總成4〇1 可包含多個板體以提供適當的條件用以加工來自施體20的 ^體在有些具體實施例中,晶座總成4G1與施體的接觸力 可$通過真空通道梢施加於晶座總成之纽晶座板405的 真空。力(=第犯圖所示)。在用真空力固持施體時,晶座板 °為夕孔;5墨或真空壓力可滲透的任何材料。例如,多 孔板405的材料可包含多孔石墨、多孔氮化删、多孔石夕 '多 c 15 201246301 孔碳切、雷射鑽孔梦、雷射鑽孔礙切、氧化銘、氮化 铭、氮化石夕或彼等之任何組合。可應用在約〇至約-i〇〇 ^ 之間的真空壓力,例如,在G psi至_15 psi之間。晶座總成 ) &gt;、膨脹係數類似或 實質相同的第-板405。在有些具體實施例中,應用於脫層 期間的熱分佈必須在施體表面上呈實f均勻以促進自立型 層體成功地脫f為了在施體表面上實現均勻的熱分佈, 晶座總成可包含與第一板4〇5毗鄰的第二板415,苴 錄施體的方向相比,第二板415在與付施體的平面中有 較高的導熱性為較佳。熱各向互異性材料,例如熱解石墨 (pyrolytic graphite),非常適合用此方式促進施加均勻的熱 分佈於施體上。晶座總成視需要可包含配置於熱各向互異 性板415下的熱絕緣板425,例如石英板,以便藉由使施體 與潛在冷卻力(❹,操作真空歧管)熱絕緣來促進維持脫層 所需的熱分佈。 在施體與晶座總成接觸後,可應用熱脫層協定來產生 由施體20在分裂平㈣分裂而實質無物理缺陷的自立型層 體。該脫層協定可包含-或二或更多熱升溫至—或二或更 多尖峰脫層溫度’接著熱浸泡一段時間,例如少於卜2、3、 4、5或6分鐘。央峰脫層溫度可在35()至刪。c之間例如在 之間。也可優化在熱脫層分 佈期間的升溫鱗。熱升溫速率,例如,可姐秒至扣 U秒之間。脫層壓力可為大氣壓力蚊高。可根據施體的 材料及取向來優化熱脫層分佈以便形成實質無物理缺陷的14 S 201246301 Example _, a single crystal crucible with a Miller index of {1〗1} can be implanted at a temperature of 150 to 200 °C. In some embodiments, a single crystal germanium donor having a Miller's index of {100} may be implanted at a temperature of 100 to 150 °C. In some embodiments, a higher implantation temperature produces a more uniform delamination. Referring to Figure 4A, the implant face 1 of the body 20 can be detachably contacted with a support member (e.g., the wafer holder assembly 400). The crystal seat assembly can be in contact with the donor body while still not being bonded to the donor body. The contact force between the donor and the crystal holder assembly during delamination is only the weight of the donor body. Alternatively, the entire assembly and the donor body can be reversed and the contact force can be the weight of the crystal seat assembly on the donor body. In some embodiments, the contact force of the donor and the crystal holder can be increased by the vacuum between the crystal holder and the donor. The material properties of the crystal holder assembly promote delamination of the substantially defect-free layer and the donor. The wafer holder assembly 400 can comprise a flat single wafer plate as shown in Figure 4A. In some embodiments, the surface of the crystal holder assembly may comprise a coefficient of thermal expansion (CTE) over a wide temperature range (eg, 〇 to 1 〇〇〇. 〇 is the same material as the palladium body. The crystal holder assembly A material having a heat capacity substantially less than or equal to the heat capacity of the donor body may be included to support rapid thermal heating to a delamination temperature above 4 。. In other embodiments as shown in FIG. 4B, the crystal seat assembly 4 The crucible 1 may comprise a plurality of plates to provide suitable conditions for processing the body from the donor body 20. In some embodiments, the contact force of the crystal holder assembly 4G1 with the donor body may be applied to the crystal through the vacuum channel tip. The vacuum of the base plate 405 of the seat assembly. (= as shown in the figure). When the body is held by vacuum force, the seat plate is a hole; 5 ink or vacuum pressure permeable material. For example, the material of the porous plate 405 may include porous graphite, porous nitride, porous stone ' ' multi c 15 201246301 hole carbon cutting, laser drilling dream, laser drilling obstacle, oxidation Ming, nitrite, nitrogen Fossil eve or any combination of them. Applicable between about 〇 to about -i〇〇^ . Air pressure, e.g., susceptor assembly) &gt;, a similar expansion coefficient between G psi _15 psi or substantially identical to the first - the plate 405. In some embodiments, the heat distribution applied during delamination must be uniform f on the surface of the donor to promote successful detachment of the free-standing layer in order to achieve uniform heat distribution on the surface of the donor, total The second plate 415 may be included adjacent to the first plate 4〇5, and the second plate 415 preferably has a higher thermal conductivity in a plane with the donor body than the direction in which the body is applied. Thermally anisotropic materials, such as pyrolytic graphite, are well suited to promote uniform application of heat distribution to the donor in this manner. The crystal holder assembly may optionally include a thermal insulation plate 425 disposed under the thermally anisotropic plate 415, such as a quartz plate, to facilitate thermal insulation of the donor body from potential cooling forces (❹, operating vacuum manifold). Maintain the heat distribution required for delamination. After the donor body is in contact with the crystal holder assembly, a thermal delamination protocol can be applied to create a free standing layer that is split by the donor body 20 in a split-flat (4) without substantial physical defects. The delamination protocol may comprise - or two or more heats up to - or two or more peak delamination temperatures' followed by hot soaking for a period of time, such as less than 2, 3, 4, 5 or 6 minutes. The central peak delamination temperature can be deleted from 35 (). Between c is for example between. It is also possible to optimize the heating scale during the thermal delamination distribution. The rate of thermal heating, for example, can be between seconds and deductions. The delamination pressure can be atmospheric pressure mosquito height. The thermal delamination distribution can be optimized according to the material and orientation of the donor to form a substantial physical defect free

S 16 201246301 自立型層體。 在有些具體實施例中,藉由以大於15。〇/秒之單—熱升 溫速率施加脫層熱分佈至大於之最終脫層溫度,;晶 夕層體可由取向為{Ul}的施體剝落。尖峰脫層溫度可保持 _ 50、25秒或更少。在其他具體實施例中熱分佈可包 3在1 5C/mi的升溫速率至在·、6⑻。c之間的尖 峰脫層溫度’其中在層體表面區域上的熱升溫速率實質相 同。尖峰脫層溫度可保持少於3分鐘、i分鐘、或少於3〇秒。 &quot;亥Μ座可包含熱各向互異性材料,例如第圖之第二板 415 ’以促進在脫層期間施加均勻的熱分佈於施體表面。 替換地,脫詹可包含二或更多熱升溫以提供被控制對 象更多的脫層方法。多個熱升溫可適應米勒指數為{111}、 U〇〇}或其他取向的施體。例如,熱分佈可包含10至20&lt;^ /秒的第一熱升溫速率至350、500它之間的尖峰溫度,接著 約5、20°c/秒之間的第二熱升溫速率至60()、8〇〇〇c之間的 尖峰溫度。在每個熱升溫之後的尖峰脫層溫度可保持6〇秒 以下,接著冷卻下來或進一步加工以使脫層層體回火或分 離。在有些具體實施例中,脫層協定可包含在熱各向互異 性條件下的二或更多熱升溫以提供被控制對象更多的脫層 方法。多熱升溫速率的其他實施例包括在0.5、1〇。匚/秒之間 的第一熱升溫至在350、450°C之間的尖峰溫度,接著在約 〇·1、5°C/秒之間的第二熱升溫至在450、700°C之間的尖峰 巧度。在每個熱升溫之後的尖峰脫層溫度可保持1〇秒以 下’接著冷卻下來或進一步加工以使脫層層體回火。熱分 5 17 201246301 佈的施加可藉由使晶座總成/分裂施體從有一溫度的第一 地區移到有不同溫度的第二地區。該第一溫度可低於該第 二溫度。經由帶爐或其他輸送裝置,可實現此方法。 已發現’定義分裂平面的植入步驟可能損傷單晶施體 晶圓的晶格。若不修復,此損傷可能減少胞元的效率。在 本揭示内容中,回火可移除脫層層體的殘留物理缺陷。相 對高溫的回火,例如高於800、850、900或950。(:,會修復 層體内大部份的植入損傷。在脫層後,可使自立型層體與 晶座接觸’以及施體仍在頂部。藉由施加變形力於與層體 相反的施體表面可使施體變形離開脫層層體。此方法可應 用充分溫和的力以便使施體與厚度在50微米以下的層體分 離而不知傷層體。然後,放置真空吸盤裝置於施體頂面用 以使施體表面與在反面的層體接觸。真空吸盤裝置的第一 吸盤板可覆蓋與層體相反的整個表面,如第5圖所示(吸盤 )或覆蓋與層體相反的部份表面,如第6圖所示(吸盤 板615)。該第一吸盤板可為多孔板(例如,多孔石墨、多孔 氮化硼 '多孔矽、多孔碳化矽、雷射鑽孔矽、雷射鑽孔碳 、氣化銘、氮化銘、氮化矽或彼等之任何組合)或包含 真二通道。真空係通過第—吸盤板施加而真空夾住施體。 接下來,偏移第一吸盤板。可施加壓力至撓曲裝置的背面, 1成繞曲裝置'接觸板及被真空夾住之施體的輕微偏移。 、^真空吸盤方法的一方面是首先拉扯施體的邊緣離開層 體, 這允許施體及層體表面之間流入空氣。此動作排除在 ^新成形表面上的吸吮,因為這可能導致出現物理缺 18S 16 201246301 Self-supporting layer. In some embodiments, by greater than 15. The enthalpy/second of the single-hot temperature rate is applied to the delamination heat distribution to be greater than the final delamination temperature; the crystal layer body may be peeled off by the donor body oriented at {Ul}. The peak delamination temperature can be maintained at _ 50, 25 seconds or less. In other embodiments, the heat distribution may be at a rate of temperature rise of 15 C/mi to at, 6 (8). The peak delamination temperature between c' is such that the rate of thermal heating on the surface area of the layer is substantially the same. The peak delamination temperature can be maintained for less than 3 minutes, i minutes, or less than 3 seconds. &quot;Hairback can include a thermally anisotropic material, such as the second plate 415' of the figure to facilitate application of uniform heat distribution to the donor surface during delamination. Alternatively, the dejanation may include two or more thermal ramps to provide more delamination of the controlled object. Multiple thermal rises can be applied to donors with a Miller index of {111}, U〇〇} or other orientations. For example, the heat profile may comprise a first thermal ramp rate of 10 to 20 < / per second to a peak temperature between 350 and 500, followed by a second thermal ramp rate between about 5 and 20 ° c / sec to 60 ( ), the peak temperature between 8〇〇〇c. The peak delamination temperature after each thermal rise can be maintained for less than 6 sec seconds, followed by cooling down or further processing to temper or separate the delaminated layer. In some embodiments, the delamination protocol can include two or more thermal ramps under thermal anisotropy conditions to provide more delamination of the controlled object. Other embodiments of the multi-heat ramp rate are included at 0.5, 1 Torr. The first heat between 匚/sec is raised to a peak temperature between 350 and 450 ° C, followed by a second heat increase between about 〇·1 and 5 ° C/sec to 450 and 700 ° C. The sharpness between the two. The peak delamination temperature after each thermal rise can be maintained for less than 1 second. Then it is cooled down or further processed to temper the delaminated layer. Heat score 5 17 201246301 The application of the cloth can be achieved by moving the crystal seat assembly/split donor body from a first region having a temperature to a second region having a different temperature. The first temperature can be lower than the second temperature. This method can be implemented via a belt furnace or other conveying device. It has been found that the implantation step of defining the split plane may damage the crystal lattice of the single crystal donor wafer. If not repaired, this damage may reduce the efficiency of the cells. In the present disclosure, tempering removes residual physical defects of the delaminated layer. Tempering at relatively high temperatures, for example, above 800, 850, 900 or 950. (:, will repair most of the implant damage in the layer. After delamination, the self-standing layer can be in contact with the crystal holder' and the donor body is still at the top. By applying a deformation force to the opposite of the layer body The surface of the donor body can deform the donor body away from the delamination layer. This method can apply a sufficiently gentle force to separate the donor body from the layer body having a thickness of less than 50 microns without knowing the damage layer. Then, the vacuum suction cup device is placed on the body. The top surface of the body is used to bring the donor surface into contact with the layer on the reverse side. The first chuck plate of the vacuum chuck device can cover the entire surface opposite to the layer body, as shown in Fig. 5 (suction cup) or cover opposite to the layer body Part of the surface, as shown in Figure 6 (sucker plate 615). The first chuck plate can be a multi-well plate (for example, porous graphite, porous boron nitride 'porous tantalum, porous tantalum carbide, laser drilled, Laser drilling carbon, gasification, nitriding, tantalum nitride or any combination thereof) or containing the true two channels. The vacuum is applied by the first suction cup and vacuum clamps the donor. First suction cup. Pressure can be applied to the back of the flexing device, 10% The bending device's contact plate and the slight offset of the body clamped by the vacuum. One aspect of the vacuum chuck method is to first pull the edge of the donor body away from the layer body, which allows air to flow between the donor body and the surface of the layer body. This action excludes suction on the newly formed surface as this may result in physical defects 18

S 201246301 陷0 請參考第5A圖與第5B圖,在有些具體實施例中,藉由 用撓曲板使施體變形離開層體,可分離層體與施體。該變 形可促進施體以最小化形成於自立型層體之缺陷的方式與 自立型層體分離。第5A圖圖示此方法之一具體實施例的第 一步驟,其中施體20係耗合至分離吸盤(separation chuck) 500 ’例如真空吸盤。吸盤500可包含第一吸盤板515,其係 經由通過真空通道525或任何其他黏著力施加的真空壓力 可固持於施體20中與層體40相反的表面520。第一吸盤板 515可耦合至撓曲裝置,例如順應臂體、撓曲臂、撓性板535 或其類似物。該撓曲裝置可耗合至支承板(backing plate)545 或支撐臂、支點或其類似物。可使脫層層體40與晶座總成 402的晶座板405可分離地接觸。經由透過真空通道410來施 加的真空壓力,可施加額外的接觸力於晶座板405 ^分離的 實現係藉由施加力於使施體中與層體相反之表面撓曲的的 撓曲裝置。此分離的實施例圖示於第5B圖’其係圖示撓性 板535的撓曲以及造成施體20離開層體40的變形°在此具體 實施例中’經由通道555施加正歷於撓性板535背面而造成 挽性板535、第〆吸盤板515及夾住施體20稍微偏移。可用 任何手段來施加該正壓,例如在撓性板535、支承板545之 間流動的氣體。町使部份施體20變形1至3毫米或更多離開 層體以初始化施體離開在晶座板405上保持不動之分裂後 層體40的分離。在一替代具體實施例中’施體可保持固定 於晶座板,而使分裂後層體附著至吸盤板以及與施體分 19 201246301 離,如上述。 第6A圖與第6B圖圖示該分離方法之一具體實施例,其 中該分離吸盤包含第一吸盤板615用以只附著於施體20中 與層體4 0相反的表面之一部份以及耦合至為剛性臂63 5的 撓曲裝置。第一吸盤板615與施體20的附著可利用通過真空 通道625傳輸的真空力。第一吸盤板615可為多孔型。剛性 臂635可耦合至支點645或經設計成可使剛性臂移動離開施 體的任何裝置。層體40可固定於晶座板405或只是與它接 觸。如第6B圖所示,剛性臂635撓曲離開層體40導致部份施 體20變形離開在晶座板405上保持不動的層體40。在一替代 具體實施例中,該施體可保持固定於晶座板,同時使分裂 後層體附著至吸盤板615以及與施體分離,如上述。在此方 法的任何階段可執行回火步驟,例如在自立型層體的分離 後,以便修復在植入、脫層步驟或分離步驟期間造成層體 中之晶格的損傷。在層體仍在晶座總成上時,可執行回火, 例如,用500°C以上的溫度,例如550'600、650'700、800、 850°C或更高,例如約950°C或更高持續一段任何時間。該 結構的回火,例如,可以約650°C進行約45分鐘或以約800°C 進行約10分鐘,或以950°C持續120秒或更少。在許多具體 實施例中,超過850°C的溫度持續至少60秒。在一些具體實 施例中,在使層體回火至700°C以上的溫度之前移除施體藉 此保留施體的結構及電子性質供後續重覆執行植入-脫層 方法時使用是有利的。 在自立型薄層體回火後,可由該層體製成光伏裝置。S 201246301 Trap 0 Referring to Figures 5A and 5B, in some embodiments, the layer body and the donor body can be separated by deforming the donor body away from the layer body with a flexure plate. This deformation promotes separation of the donor body from the free standing layer in a manner that minimizes defects formed in the free standing layer. Figure 5A illustrates a first step of one embodiment of this method wherein the donor body 20 is consuming to a separation chuck 500' such as a vacuum chuck. The suction cup 500 can include a first suction cup 515 that can be retained in a surface 520 of the donor body 20 opposite the layer 40 via vacuum pressure applied by vacuum passage 525 or any other adhesive force. The first suction cup 515 can be coupled to a flexing device, such as a compliant arm, a flexing arm, a flexplate 535, or the like. The flexing device can be consuming to a backing plate 545 or support arm, fulcrum or the like. The delamination layer 40 can be detachably contacted with the wafer plate 405 of the wafer assembly 402. Through the vacuum pressure applied through the vacuum channel 410, an additional contact force can be applied to the wafer plate 405. The separation is achieved by applying a force to deflect the surface of the donor body that is opposite the surface of the layer. This separated embodiment is illustrated in Figure 5B, which illustrates the flexing of the flexplate 535 and the deformation of the donor body 20 away from the layer body 40. In this particular embodiment, the application of the channel 555 is applied to the scratch. The back of the plate 535 causes the pull-up plate 535, the second suction cup plate 515, and the gripping body 20 to be slightly offset. The positive pressure can be applied by any means, such as a gas flowing between the flexible plate 535 and the support plate 545. The mold deforms part of the body 20 by 1 to 3 mm or more away from the layer to initialize the separation of the body 40 from the split body 40 which remains on the base plate 405. In an alternate embodiment, the donor body can remain fixed to the wafer deck, and the split layer body can be attached to the chuck plate and separated from the donor body 19 201246301, as described above. 6A and 6B illustrate an embodiment of the separation method, wherein the separation chuck includes a first chuck plate 615 for attaching only to a portion of the surface of the donor body 20 opposite the layer 40 and A flexing device coupled to the rigid arm 63 5 is coupled. The attachment of the first chucking plate 615 to the donor body 20 utilizes the vacuum force transmitted through the vacuum channel 625. The first chuck plate 615 can be of a porous type. Rigid arm 635 can be coupled to fulcrum 645 or any device designed to move the rigid arm away from the donor. The layer 40 can be attached to or simply in contact with the base plate 405. As shown in Fig. 6B, the rigid arm 635 flexes away from the layer 40 causing the portion of the body 20 to deform away from the layer 40 that remains stationary on the base plate 405. In an alternate embodiment, the donor body can remain fixed to the base plate while the split layer is attached to the suction cup 615 and separated from the donor body, as described above. A tempering step can be performed at any stage of the process, such as after separation of the free standing layer, to repair damage to the crystal lattice in the layer during the implantation, delamination step or separation step. Tempering may be performed while the layer is still on the crystal holder assembly, for example, at a temperature above 500 ° C, such as 550 '600, 650 '700, 800, 850 ° C or higher, such as about 950 ° C Or higher for any period of time. The tempering of the structure, for example, may be carried out at about 650 ° C for about 45 minutes or at about 800 ° C for about 10 minutes, or at 950 ° C for 120 seconds or less. In many embodiments, temperatures in excess of 850 ° C last for at least 60 seconds. In some embodiments, it is advantageous to remove the donor prior to tempering the layer to a temperature above 700 ° C thereby retaining the structural and electronic properties of the donor for subsequent repeated implementation of the implant-delamination process. of. After tempering the self-supporting thin layer, the photovoltaic device can be made from the layer.

S 20 201246301 為此,該層體可轉移至臨時或永久支撐物供進一步加工, 如申請於2010年12月29日之美國專利申請案第12/980,424 號所述,其;通為 A Method to Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina” ’從而併入本文作為參考資料。例如,這可用真空 漿板(未圖示)來完成。為了影響此轉移,可安置真空漿板於 第一表面上,同時釋放第一表面的真空。在轉移至真空漿 板後,第二表面用真空固持,同時暴露第一表面。參考第 7A圖,層體40可固定於臨時載體5〇,例如使用黏著劑。此 黏著劑必須忍受中等溫度(達約2 〇 〇。〔:)以及必須可立即釋 放。合適黏著劑包含,例如,有顺丁烯二酸酐(maleic anhydride)及松香(rosin)的聚酯,其係可溶於烴;或聚異丁 烯(polyisobutylene)及松香,其係可溶於清潔劑。臨時载體 50可為任何適當材料,例如玻璃、金屬、聚合物、矽、等 等。在轉移後,用黏著劑固定第一表面1〇於臨時載體5〇, 同時暴露第二表面62。 如第7B圖所示,接著可進一步加工以形成光伏襞置。 可執〃亍可移除由脫層導致之損傷的姓刻步驟,例如藉由施 加氫氟酸(HF)與硝酸的混合液,或使用koh。可發現,回 火足以移除所有或幾乎所有的損傷而此蝕刻步驟為不必 要。使用稀釋HF溶液可消除表面的有機材料及殘留氧化 物;例如,10: 1的氫氟酸持續兩分鐘。在此濕式處理後, &gt;儿積非日日石夕層72於第一表面62上。此層72可為重度摻雜石夕 以及例如有在約50至約350埃之間的厚度。第7B圖的具體實 21 201246301 施例係包含在第二表面62、摻雜層72之間以及與兩者直接 接觸的本徵或近似本徵非晶矽層74。在其他具體實施例 中,可省略層74。在此實施例中,重度摻雜矽層72為重度 摻雜η型,其導電型與輕度摻雜11型層體4〇相同。輕度摻雜η 型層體40包含待形成光伏胞元的基極區,以及重度摻雜非 晶矽層72提供至基極區的電接觸。若有的話,層%充分薄 而不會妨礙層體40與重度摻雜矽層72的電氣連接 在非晶矽層74上形成與其直接接觸的透明導電氧化物 (TCO)層11〇。tc〇 110的適當材料包括氧化銦錫與摻雜鋁 的氧化鋅。此層的厚度,例如,可在約5〇〇至約丨5〇〇埃之間, 例如約750埃厚。此厚度會增強待沉積反射層的反射。在有 些具體實施例中,此層可實質較薄些,例如約1〇〇至約2〇〇 埃。在層體回火後,也可施加非晶矽層76至第二表面。 如圖示第7C圖之完成裝置所示,入射光會進入在第— 表面10的層體40。在穿經層體40後,沒有被吸收的光線會 在第二表面62離開層體40,然後穿經TCO層110。形成於 TCO層11〇上的反射層12會反射光線回到胞元而有第二次 被吸收的機會,這可改善效率。導電反光金屬可用於反射 層12。可使用各式各樣的層或堆疊。在一具體實施例中, 反射層12的形成係藉由在丁(:〇層u〇上沉積極薄的鉻層,例 如約30或50埃至約1〇〇埃,接著沉積約ιοοο至約3〇〇〇埃的 銀。在未圖示的一替代具體實施例中,反射層12可為鋁, 其厚度約有1000至約3〇〇〇埃。在下一個步驟,用鍍覆法形 成一層。習知鍍覆法無法用於鋁層,因此若是用鋁為反射 22S 20 201246301 To this end, the layer may be transferred to a temporary or permanent support for further processing, as described in U.S. Patent Application Serial No. 12/980,424, filed on Dec. 29, 2010; Form a Device by Constructing a Support Element on a Thin Semiconductor Lamina" 'and thus incorporated herein by reference. For example, this can be done with a vacuum slab (not shown). To effect this transfer, a vacuum slab can be placed On one surface, the vacuum of the first surface is simultaneously released. After transferring to the vacuum paddle, the second surface is held by vacuum while exposing the first surface. Referring to Figure 7A, the layer 40 can be fixed to the temporary carrier 5, for example Adhesives are used. This adhesive must withstand moderate temperatures (up to about 2 〇〇. [:) and must be released immediately. Suitable adhesives include, for example, maleic anhydride and rosin. a polyester which is soluble in hydrocarbons; or polyisobutylene and rosin which is soluble in detergents. The temporary carrier 50 can be any suitable material such as glass, gold. , polymer, ruthenium, etc. After transfer, the first surface is fixed with an adhesive to the temporary carrier 5 while the second surface 62 is exposed. As shown in Figure 7B, it can be further processed to form a photovoltaic crucible. It is possible to remove the surname step that removes the damage caused by delamination, for example by applying a mixture of hydrofluoric acid (HF) and nitric acid, or using koh. It can be found that tempering is sufficient to remove all or Almost all damage and this etching step is unnecessary. The use of diluted HF solution can eliminate the surface of organic materials and residual oxides; for example, 10:1 hydrofluoric acid lasts for two minutes. After this wet treatment, &gt; The non-daily day layer 72 is on the first surface 62. This layer 72 can be heavily doped and has a thickness of, for example, between about 50 and about 350 angstroms. Figure 7B shows the actual 21 201246301 The intrinsic or near intrinsic amorphous germanium layer 74 is included between the second surface 62, the doped layer 72, and the direct contact with the two. In other embodiments, the layer 74 can be omitted. In this embodiment The heavily doped germanium layer 72 is heavily doped n-type, and its conductivity type and lightness The doped 11-type layer body is the same. The lightly doped n-type layer body 40 includes a base region to be formed of photovoltaic cells, and the heavily doped amorphous germanium layer 72 provides electrical contact to the base region. If so, the layer % is sufficiently thin to prevent the electrical connection of the layer 40 and the heavily doped germanium layer 72 from forming a transparent conductive oxide (TCO) layer 11 与其 directly in contact with the amorphous germanium layer 74. tc〇110 Suitable materials include indium tin oxide and aluminum-doped zinc oxide. The thickness of this layer, for example, may be between about 5 Å and about 〇〇 5 Å, for example about 750 angstroms thick. This thickness enhances the reflection of the reflective layer to be deposited. In some embodiments, the layer can be substantially thinner, such as from about 1 Torr to about 2 angstroms. After the layer is tempered, the amorphous germanium layer 76 can also be applied to the second surface. As shown in the completion device of Fig. 7C, the incident light enters the layer 40 of the first surface 10. After passing through the layer body 40, the unabsorbed light exits the layer body 40 at the second surface 62 and then passes through the TCO layer 110. The reflective layer 12 formed on the TCO layer 11 reflects the opportunity for the light to return to the cell for a second absorption, which improves efficiency. A conductive reflective metal can be used for the reflective layer 12. A wide variety of layers or stacks can be used. In a specific embodiment, the reflective layer 12 is formed by depositing a very thin layer of chromium on the layer of germanium, for example, from about 30 or 50 angstroms to about 1 angstrom, followed by deposition of about ιοοο to about 3 Å of silver. In an alternative embodiment not shown, the reflective layer 12 can be aluminum having a thickness of about 1000 to about 3 angstroms. In the next step, a layer is formed by plating. Conventional plating methods cannot be used for aluminum layers, so if aluminum is used for reflection 22

S 201246301 層12,必須增加附加層或數層以提供用於鍍覆的種子層。 在一具體貫施例中,例如,一層鈦,例如約有200至約3〇〇 埃厚,接著例如由鈷構成的種子層,它可具有任何適當厚 度,例如約500埃。 在反射層12(在此實施例為鉻/銀堆疊)上形成金屬支撐 元件60。在有些具體實施例中,用電鍍法形成金屬支撐元 件60。將臨時載體50與層體40,及相關層浸入電解液池。 使電極附接至反射層12,以及使電流經過電解液。電解液 池的離子在反射層12上集結,以形成連續的金屬支撐元件 60。金屬支撐元件,例如,可為鎳鐵合金。鐵比較便宜, 然而鎳的熱膨脹係數與矽的熱膨脹係數有較好的匹配,這 可減少後面步驟期間的應力(stress)。金屬支撐元件6〇的厚 度可按需要。金屬支撐元件60應厚到足以提供用於待形成 光伏胞元的結構支撐。較厚支撐元件60比較不容易彎曲成 弓形。相比之下,最小化厚度可減少成本。熟諳此藝者會 選擇適當的厚度與鐵:鎳比率以平衡這些問題。金屬支撐 兀件60的厚度,例如,可在約25至約100微米之間,例如約 50微米。在—些具體實施例中,鐵鎳合金有約百分之55至 約65的鐵,例如百分之60的鐵。S 201246301 Layer 12, additional layers or layers must be added to provide a seed layer for plating. In a specific embodiment, for example, a layer of titanium, such as about 200 to about 3 angstroms thick, followed by a seed layer, such as cobalt, may have any suitable thickness, such as about 500 angstroms. A metal support member 60 is formed on the reflective layer 12 (in this embodiment, a chrome/silver stack). In some embodiments, the metal support member 60 is formed by electroplating. The temporary carrier 50 and the layer body 40, and associated layers, are immersed in the electrolyte bath. The electrodes are attached to the reflective layer 12 and current is passed through the electrolyte. Ions of the electrolyte pool are collected on the reflective layer 12 to form a continuous metal support member 60. The metal support member, for example, may be a nickel-iron alloy. Iron is cheaper, but the coefficient of thermal expansion of nickel is well matched to the coefficient of thermal expansion of niobium, which reduces the stress during subsequent steps. The thickness of the metal support member 6 turns can be as desired. The metal support member 60 should be thick enough to provide structural support for the photovoltaic cells to be formed. The thicker support member 60 is less likely to bend into an arcuate shape. In contrast, minimizing thickness reduces costs. Those skilled in the art will choose the appropriate thickness and iron: nickel ratio to balance these issues. The thickness of the metal support member 60 can be, for example, between about 25 and about 100 microns, such as about 50 microns. In some embodiments, the iron-nickel alloy has from about 55 to about 65 percent iron, such as 60 percent iron.

輕度摻雜η型層體40包含光伏胞元的基極,以及重度摻 雜Ρ型非晶矽層76用作胞元的射極。重度摻雜η型非晶矽層 72會提供至胞元之基極區的優良電接觸。在胞元的兩面必 須做電接觸。至非晶矽層76的接觸用經由TCO層112的格 '線57做成。金屬支撐元件60導電以及經由傳導層12及TCOThe lightly doped n-type layer body 40 contains the base of the photovoltaic cell, and the heavily doped germanium-type amorphous germanium layer 76 serves as the emitter of the cell. Severe doping of the n-type amorphous germanium layer 72 provides excellent electrical contact to the base region of the cell. Electrical contact must be made on both sides of the cell. Contact to the amorphous germanium layer 76 is made via a grid 57 of the TCO layer 112. Metal support member 60 is electrically conductive and via conductive layer 12 and TCO

S 23 201246301 層110與基極接觸72電接觸。 八第7C圖圖示完成的光伏總成8〇,其係包含光伏胞元與 金屬切元件60。在㈣具體實施彳种,料改變所用的 摻雜物,重度摻雜非晶矽層72可用作射極,同時重度摻雜 非晶石夕層76用作至基極區的接觸。非晶石夕層η、%可各自 與自立型層體的第―、第二表面直接接觸。人射光(用箭頭 表)落在TCO 112上,在重度掺雜p型非晶石夕層76進入胞 元在第纟面10進入層體40,以及行進通過層體4〇。反 射層12會时反射-些光線㈣胞元心在此具體實施例 中又體元件60用來作為基板。受體元件6〇與層體40及相 關層形成光伏總成80。可形成多個光伏總成8〇以及固定於 支撐基板90,或替換地,於支撐上層材,未圖 示)。每個光伏總成80包含光伏胞元。模組的光伏胞元大體 以串聯方式電連接。 晶座裝置 凊參考第8A及8B圖’如先前在說明第4A及4B圖時所述 的晶座總成可包含一或更多晶座板。晶座總成4〇〇可設置於 第8B圖之晶座室8〇〇的下半部以及被組態成可支援用於脫 層、回火或分離自立型層體的適當條件。在第8A圖中,第 一板405可用於接觸施體的第一表面以及在脫層、分離、回 火或彼等之任何組合期間提供層體的可分離支撐。在整個 層體製造方法中可使用第一晶座板4〇5,或可使用有經優化 成可用於特定步驟之獨立性質的獨立板。例如,施體在植 入期間可接觸第一晶座板總成,在脫層期間接觸第二晶座S 23 201246301 Layer 110 is in electrical contact with base contact 72. Eighth Figure 7C illustrates a completed photovoltaic assembly 8 〇 comprising photovoltaic cells and metal cutting elements 60. In (iv) the specific implementation, the dopant used in the material change, the heavily doped amorphous germanium layer 72 can be used as an emitter, while the heavily doped amorphous layer 76 serves as a contact to the base region. The amorphous stellite layers η, % may each be in direct contact with the first and second surfaces of the self-standing layer. The human light (indicated by the arrow) falls on the TCO 112, enters the cell 40 in the heavily doped p-type amorphous layer 76, enters the layer 40 on the first surface 10, and travels through the layer 4〇. The reflective layer 12 will reflect some of the light (four) cell cores in this embodiment as the substrate. Receptor element 6A forms a photovoltaic assembly 80 with layer 40 and associated layers. A plurality of photovoltaic assemblies 8 can be formed and fixed to the support substrate 90, or alternatively, to support the upper layer, not shown). Each photovoltaic assembly 80 contains photovoltaic cells. The photovoltaic cells of the module are generally electrically connected in series. The crystal holder assembly 凊 refers to Figures 8A and 8B'. The wafer holder assembly as previously described in the description of Figures 4A and 4B may comprise one or more wafer plates. The wafer holder assembly 4 can be disposed in the lower half of the cell chamber 8A of Figure 8B and is configured to support suitable conditions for delamination, tempering or separation of the self-standing layer. In Figure 8A, the first plate 405 can be used to contact the first surface of the donor body and provide detachable support for the layer during delamination, separation, tempering, or any combination thereof. The first wafer deck 4〇5 can be used throughout the layer fabrication process, or a separate panel having independent properties that can be optimized for a particular step can be used. For example, the donor body can contact the first wafer deck assembly during implantation and contact the second crystal seat during delamination

S 24 201246301 板’以及在分離期間接觸第三晶座板。視需要的上表面⑽ 如’吸盤’未圖示)可用來與施體中與第—表面相反的第二 表面接觸。晶輯成_在脫層後提供薄層體的物理支樓以 及也可提供有助於所親層及回火協定料特性。在有些 具體實施财,第_晶座板衝可為惰性固體,例如石墨。 在本發明之—些具體實施财,祕切體與真空可渗透 的晶座總成可分離地接觸。多孔材料可用於第—晶座板彻 以使得在脫層期間真空壓力能夠使施體或層體固持於晶 座。多孔材料可包含多孔石.s、多孔氮“、多孔石夕、、= 孔碳化矽'雷射鑽孔矽'雷射鑽孔碳化矽、氧化鋁、氮化 铭、氮化石夕或彼等之任何組合。 只現邊真空可藉由在周遭環境中(例如,空氣或幻施加 負表壓(negative gauge pressure)或經由一序列的真空通道 410的定向真空壓力(direete(j vacuum pressure)。選擇有助於 加工流程的多孔晶座板材料對於脫層方法很重要。有助於 脫層方法的材料性質包括:低靜磨擦係數(有例如〇1至〇 5 的CSF) ’低硬度(莫式硬度小於1〇),小於約15微米的平均 孔徑,能夠用機器壓平(亦即’對於該等晶座能夠使用習知 機械技術/材料)’低粗糙度(粗糙度小於丨微米),平坦度(主 體的起伏小於10微米),充分的導電性以防靜電出現於層體 與晶座之間、等等。在一具體實施例中,第一晶座板4〇5的 熱膨脹係數(CTE)可與施體的CTE實質相同。在其他具體實 施例中,該晶座板的熱容可等於或低於施體的熱容。在有 些具體實施例中,該施體為單晶矽以及晶座的熱容大約與 25S 24 201246301 plate 'and contact with the third base plate during separation. The desired upper surface (10), such as a 'suction cup&apos; (not shown), can be used to contact the second surface of the donor body opposite the first surface. The crystallized layer _ provides a physical layer of the thin layer after delamination and also provides properties that contribute to the affinity layer and tempering material. In some implementations, the first plateholder may be an inert solid such as graphite. In some embodiments of the present invention, the secret body is in detachable contact with the vacuum permeable wafer holder assembly. The porous material can be used in the first platen such that the vacuum pressure during the delamination enables the donor or layer to be held in the pedestal. The porous material may comprise porous stone.s, porous nitrogen ", porous stone, = hole carbonized 矽 'laser drilling 矽' laser drilling 碳, alumina, nitriding, nitriding or others Any combination. Only the vacuum can be selected in a surrounding environment (for example, air or a negative gauge pressure or a direete (j vacuum pressure) via a sequence of vacuum channels 410. The porous crystal plate material that contributes to the processing flow is important for the delamination process. The material properties that contribute to the delamination process include: low static friction coefficient (for CSF such as 〇1 to 〇5) 'low hardness (mo style) Hardness less than 1 〇), average pore size less than about 15 microns, can be machine flattened (ie 'can use conventional mechanical techniques/materials for such crystal holders') low roughness (roughness less than 丨 micron), flat Degree (the undulation of the main body is less than 10 microns), sufficient conductivity to prevent static electricity from appearing between the layer body and the crystal seat, etc. In a specific embodiment, the coefficient of thermal expansion of the first crystal seat plate 4〇5 (CTE) ) can be related to the CTE of the donor body In another specific implementation embodiment, the heat capacity of the susceptor plate can be less than or equal to the heat capacity thereof is administered. In some particular embodiments have, a single crystal silicon body, and the heat capacity of the susceptor is applied with approximately 25

S 201246301 矽的相同(約19.8焦耳/莫耳。κ)。 在這些限制下,可選擇許多工程陶瓷(engineering ceramics)及其他材料以提供用於第一晶座板405的特性。在 一具體實施例中,可使用RingS(i〇rffTMS墨等級R6340,因 為它有與矽類似的CTE。為了防止在與脫層或回火相關的 熱處理期間有側向力作用於施體或層體,這是重要的。在 石墨與矽的CTE不相似的情形下,温度變化可能導致層體 皺折或撕裂。用CTE匹配的石墨,層體在溫度變化期間可 能仍處於輕度留存的真空或無真空留存。體型蝕刻(bulk etch)可應用於石墨以改善純度。常見體型蝕刻製程由在已 導入氯化氫氣體之真空室中的24小時高溫烘烤構成。 在脫層方法的其他具體實施例中,應用快速高溫熱分 佈。在該等具體實施例中,在高達800或900或1000。(:的溫 度對廢氣(off-gassing)或降級有抵抗力的晶座板為所欲。晶 座材料可具有能防止施體污染的特性,例如能夠忍受製程 的溫度與大氣暴露而材料不會降級。該材料本質上對於降 級有抵抗力或塗上在升高溫度下用作施體污染物之阻障層 的材料。例如,多孔碳化矽(其係堅硬,耐用以及有優良CTE 匹配性)可塗上軟質及有低CSF和高純度的氮化硼。在其他 具體實施例中,可利用優化的多孔/雷射鑽孔材料。雷射鑽 孔材料允許區別大多數吸盤(多孔性,CTE,平坦度/可機械 加工性)的必要性與表面材料(低CSF、柔軟、高純度、等等) 的必要性。例如,提供與上述所欲性質清單建立介面的材 料可塗上有基礎塊材想要性質的庫存材料。在其他具體實 26S 201246301 The same as 矽 (about 19.8 joules / mole. κ). Under these limitations, a number of engineering ceramics and other materials may be selected to provide characteristics for the first wafer deck 405. In a specific embodiment, RingS (i〇rffTMS ink grade R6340 can be used because it has a similar CTE as ruthenium. To prevent lateral forces from acting on the donor or layer during heat treatment associated with delamination or tempering Body, this is important. In the case where the CTE of graphite and bismuth is not similar, temperature changes may cause the layer to wrinkle or tear. With CTE-matched graphite, the layer may still be slightly retained during temperature changes. Vacuum or no vacuum retention. Bulk etch can be applied to graphite to improve purity. Common body etching process consists of 24-hour high temperature baking in a vacuum chamber where hydrogen chloride gas has been introduced. Other implementations of the delamination method In the example, a rapid high temperature heat distribution is applied. In these particular embodiments, a platen that is resistant to off-gassing or degradation is desirable at temperatures up to 800 or 900 or 1000. The crystal holder material may have characteristics that prevent contamination of the donor body, such as being able to withstand the temperature of the process and atmospheric exposure without degrading the material. The material is inherently resistant to degradation or coated at elevated temperatures. A material used as a barrier layer for donor contaminants. For example, porous tantalum carbide (which is hard, durable, and has excellent CTE matching) can be coated with soft boron with low CSF and high purity. In embodiments, optimized porous/laser drilling materials can be utilized. Laser drilling materials allow the distinction between the need for most suction cups (porosity, CTE, flatness/machineability) and surface materials (low CSF, The necessity of softness, high purity, etc.) For example, a material that provides an interface to the above-mentioned desired property list may be coated with a stock material having the desired properties of the base block.

S 201246301 施例中,滿足前述規格的金屬氧化物、碳化物、氮化物、 陶瓷、及高溫合金可候選使用。上述晶座材料的特性有利 於改善製成層體的品質’包括層體的機械性質、均勻廢及 純度。 在本發明之另一具體實施例中,在脫層期間可施加均 勻的溫度分佈於施體。在第8A圖中,可配置有熱各向互異 性的第二晶座板415於第一板405附近以提供導熱性,其中 與垂直於施體的方向相比’第二晶座板415在與平行施體的 平面中有較高的導熱性為較佳,以便有利於施加均勻的熱 分佈。熱解碳(其係與垂直於分裂平面相比,在分裂平面高 度導熱的石墨材料)的存在可增加脫層溫度分佈的均勾 度,因而為理想的平面熱導體。有熱各向互異性的第二板 可包含真空通道4丨〇以有利於分配真空壓力至第一晶座板 405的底面。額外的特徵可包含能在晶座板表面加工的數個 真空通道455以改善真空壓力的分配。在第9A圖的具體實施 例中,有一組真空通道955(其係圖示成為用徑向路徑連接 的同心環)的第二晶座板915可用來分配真空壓力至個別的 多孔晶座板。在第二晶座板915之周邊925上的真空通道可 用來分配真空壓力至晶座板周邊的四周以便使_晶座板固 定於另一裝置或板。 在-些具體實施例中,可提供晶座裝置的加熱源,例 如藉由嵌入數個熱燈於晶座室内。該加熱源可為能夠提供 植入、脫層或回火所需溫度(例如,達1〇〇〇。〇的任何來源1 在其他具體實施例中’該加熱源可安置成與晶座室分離,S 201246301 In the example, metal oxides, carbides, nitrides, ceramics, and superalloys that meet the above specifications can be used as candidates. The characteristics of the above-mentioned crystal holder material are advantageous for improving the quality of the layered body, including the mechanical properties of the layer body, uniform waste, and purity. In another embodiment of the invention, a uniform temperature distribution can be applied to the donor during delamination. In FIG. 8A, a second wafer plate 415, which may be configured with thermal anisotropy, is provided adjacent the first plate 405 to provide thermal conductivity, wherein the second platen plate 415 is in contrast to the direction perpendicular to the donor body. It is preferred to have a higher thermal conductivity in the plane parallel to the body to facilitate application of a uniform heat distribution. The presence of pyrolytic carbon, which is a highly conductive graphite material in the split plane compared to the plane of the split, increases the uniformity of the delamination temperature profile and is therefore an ideal planar heat conductor. The second plate having thermal anisotropy may include a vacuum passage 4 to facilitate dispensing vacuum pressure to the bottom surface of the first landing plate 405. Additional features may include a plurality of vacuum channels 455 that can be machined on the surface of the crystal plate to improve the distribution of vacuum pressure. In the specific embodiment of Figure 9A, a second platen 915 having a plurality of vacuum channels 955 (shown as concentric rings connected by radial paths) can be used to distribute vacuum pressure to individual porous platens. A vacuum channel on the periphery 925 of the second landing plate 915 can be used to distribute vacuum pressure to the periphery of the periphery of the base plate to secure the slab to another device or plate. In some embodiments, a heating source for the pedestal device can be provided, such as by embedding a plurality of thermal lamps within the crystallizer chamber. The heating source can be any temperature (eg, up to 1 Torr. 〇 any source 1) that can be implanted, delaminated, or tempered. In other embodiments, the heating source can be placed separate from the wafer chamber. ,

S 27 201246301 例如但不受限於:配置於晶座室内的石英加熱或感應加熱 元件以加熱晶座總成及/或施體。 在另一具體實施例中,可使用差動真空通道於晶座板 上使得可使板405與415固定在一起的真空與使施體固持於 晶座總成400的真空分開。第8A圖圖示有差動真空通道的示 範晶座總成。為了改變固持力,可能需要調節通過晶座吸 引的真空。為了去耦合通過多孔材料(例如,石墨)吸引層體 的效果與吸引第一晶座板本身的效果,可使用針對這兩種 效果的差動真空通道。第一組通道410位在中央,以及控制 對層體本身的吸力。第二組真空通道460與環形物47〇位在 第一及第二晶座之邊緣的四周,其係保持第一晶座的位 置,而不管夾持於中央的施體。剎用此系統有可能移除層 體同時仍使晶座總成結合在一起。 在有些具體實施例中,在回火或脫層方法期間施加真 空力以使層體固定於晶座總成可能導致晶座總成冷卻。為 了實現回火方法或脫層方法所需的高溫’晶座總成可包含 在施體與真空下歧管之間提供熱裂縫(thermal break)的板 體。第8A圖的晶座總成400在真空歧管(未圖示)與第一405 或者是第二415晶座板之間可增加用作熱裂縫的第三晶座 板475。在一替代具體實施例中,第一或第二晶座板可用作 在真空歧管、層體之間的熱裂縫。在本發明的一些具體實 施例中,實現回火及/或脫層時的熱裂縫可用圖示於第9B圖 的石英圓盤,例如圓盤975。圓盤的數目,例如’一或二個, 可取決於溫度範圍與想要的均勻度。除石英以外,可使用S 27 201246301 is for example but not limited to: a quartz heating or induction heating element disposed within the crystallizer chamber to heat the crystal seat assembly and/or the donor body. In another embodiment, a differential vacuum passage can be used on the base plate such that the vacuum that holds the plates 405 and 415 together separates from the vacuum that holds the donor in the base assembly 400. Figure 8A illustrates an exemplary crystal mount assembly with a differential vacuum channel. In order to change the holding force, it may be necessary to adjust the vacuum drawn through the crystal holder. In order to decouple the effect of attracting the layer body through the porous material (e.g., graphite) and the effect of attracting the first crystal seat panel itself, a differential vacuum passage for both effects can be used. The first set of channels 410 is centered and controls the suction of the layer itself. The second set of vacuum channels 460 and the annulus 47 are clamped around the edges of the first and second crystal holders to maintain the position of the first crystal holder regardless of the central body. It is possible to use this system to remove the layers while still bonding the wafer assembly together. In some embodiments, applying a vacuum during the tempering or delamination process to secure the layer to the wafer holder assembly may result in cooling of the wafer assembly. The high temperature &apos; pedestal assembly required to achieve the tempering or delamination process may comprise a plate that provides a thermal break between the donor and the vacuum manifold. The crystal holder assembly 400 of Figure 8A can add a third wafer plate 475 for use as a thermal crack between the vacuum manifold (not shown) and the first 405 or second 415 wafer plate. In an alternate embodiment, the first or second wafer deck can be used as a thermal crack between the vacuum manifold and the layer. In some embodiments of the invention, thermal cracking upon tempering and/or delamination can be achieved with a quartz disk, such as disk 975, illustrated in Figure 9B. The number of discs, e.g., one or two, may depend on the temperature range and the desired uniformity. Can be used in addition to quartz

S 28 201246301 能夠禁得住回火溫度的其他熱絕緣材料,例如高溫陶瓷β 將該等石英圓盤機械加工成使得真空能夠通過它們,同時 仍隔離差動真空通道的内、外環。在使用在水冷式晶座總 成下方的真空歧管時,此熱裂缝圓盤是關鍵。該熱裂縫可 防止第一晶座板405的熱損失,這可能有助於實現達成回火 及/或脫層所需要的溫度。熱裂缝晶座板475中有助於回火 方法的性質包括:高度擴散性異物的含量低(低於20 PPM雜 質)’與矽類似的熱膨脹係數(例如,在矽CTE的20%内),以 及高溫兼容性(例如,1,〇〇〇。〇,以及電阻率低。 應注意,儘管第8A圖有差動通道的晶座總成是以結合 熱堆疊的方式圖示,然而差動通道460/470與熱堆疊475特 徵的使用可彼此獨立。同樣,熱堆疊可用於任何情況,其 中支撐層體的頂面是用與在熱裂縫元件下面之組件不同的 工作溫度。此外,可用不同的順序或組態個別使用熱堆叠 (石英作為隔離溫度不同的頂面及下表面的熱裂縫)的個別 元件。 分離裝置 第10A及10B圖圖示第5B圖之方法中用於分開施體與 層體的分離吸盤100具體實施例。操作時,施體中與層體相 反的表面會被安置成貼著分離吸盤,以及脫層後(但尚未分 離)的層體放在晶座總成上。替換地,施體/層體在此裝置中 可顛倒。第10A及B圖的分離吸盤1〇〇包含一疊板體’包括 多孔板115(例如,石墨)、撓曲裝置(例如,撓性板135,例 如,鋁或PEEK),以及硬挺支撐板145(例如,鋁)°多孔板 29S 28 201246301 Other thermal insulating materials capable of withstanding tempering temperatures, such as high temperature ceramics β, are machined such that vacuum can pass through them while still isolating the inner and outer rings of the differential vacuum channel. This thermal crack disk is critical when using a vacuum manifold below the water-cooled crystal seat assembly. This thermal crack prevents heat loss from the first landing plate 405, which may help achieve the temperatures required to achieve tempering and/or delamination. The properties of the thermal cracking platen 475 that contribute to the tempering process include: low diffuse foreign matter content (less than 20 PPM impurities) 'similar to the coefficient of thermal expansion of the crucible (eg, within 20% of the 矽CTE), And high temperature compatibility (for example, 1, 〇〇〇.〇, and low resistivity. It should be noted that although the crystal holder assembly of the differential channel in Figure 8A is illustrated in a combined thermal stacking manner, the differential channel The use of 460/470 and thermal stacking 475 features can be independent of each other. Likewise, thermal stacking can be used in any situation where the top surface of the support layer is at a different operating temperature than the components below the thermal cracking element. Individual components of thermal stacking (quartz as thermal cracks for top and bottom surfaces with different isolation temperatures) are used in sequence or configuration. Separating devices 10A and 10B illustrate the method of Figure 5B for separating donor and layer A specific embodiment of the body separating the suction cup 100. In operation, the surface of the donor body opposite the layer body is placed against the separation chuck, and the layer after the delamination (but not yet separated) is placed on the wafer holder assembly. Alternatively The layer/layer may be reversed in this apparatus. The separation chuck 1A of Figs. 10A and B includes a stack of plates 'including a perforated plate 115 (for example, graphite), a flexing device (for example, a flexible plate 135, for example, Aluminum or PEEK), and stiffened support plate 145 (eg, aluminum) ° perforated plate 29

S 201246301 115在本揭示内容將被稱為石墨;不過,如以下所述,其他 材料也有可能。硬板145内有分配通道15〇以施加正壓於撓 性板135的背面。可將該等分配通道組態成為,例如,用徑 向通道連接的同心環,或成為線性網格。撓性板135可固接 至硬板145的周緣。在施加正壓時,撓性板135的中央部份 會彎成凸形’如第10B圊所示,而迫使多孔板115遵循該形 狀。該撓性板偏移’例如,約1或2或更多毫米。該裝置的 工作壓力可為壓力,例如,0.1至5巴。此壓力取決於該裝 置中之材料的厚度。該撓性板的3個要求為可承受外加壓力 的機械強度,對彈性彎曲的柔性(compliance)(與斷裂相反) 以及加壓空氣無法滲透。在一具體實施例中,多孔層115約 有3毫米厚,以及不透氣撓性板135約有5毫米厚。撓性板135 的其他材料選擇包括柔軟金屬,例如鋁、薄量具用鋼(gauge steel)或聚合物,基於彈性體或橡膠的材料。在有些具體實 施例中,藉由施加真空於撓性板、多孔板之間,該施體(未 圖示)可保持頂著多孔板115。由於石墨板多孔,因此可施 加真空至在板115後面的分配通道160 ’經由真空入口至真 空容積,以通過多孔板115提供蟎勻的吸力。 實施例 由{111}單晶施體晶圓形成層體 該方法由米勒指數為{111}的施體晶圓開始。提供實質 平坦的第一表面,但是它可能有一些已經存在的結構 (texture)。用4.Ox 10丨6氫原子/立方公分的總離子劑重以 400keV植入該施體。植入溫度約有16〇°C。該植入產生離施S 201246301 115 will be referred to as graphite in the present disclosure; however, other materials are also possible as described below. The hard plate 145 has a distribution passage 15 therein for applying a positive pressure to the back surface of the flexible plate 135. The distribution channels can be configured, for example, as concentric rings connected by radial channels, or as linear grids. The flexible plate 135 can be fixed to the periphery of the hard plate 145. When a positive pressure is applied, the central portion of the flexible plate 135 is bent into a convex shape as shown in Fig. 10B, forcing the perforated plate 115 to follow the shape. The flexplate is offset by, for example, about 1 or 2 or more millimeters. The working pressure of the device can be a pressure, for example, 0.1 to 5 bar. This pressure depends on the thickness of the material in the device. The three requirements of the flexplate are mechanical strength that can withstand the applied pressure, compliance with elastic bending (as opposed to fracture), and impervious air. In one embodiment, the porous layer 115 is about 3 mm thick and the gas impermeable flexible sheet 135 is about 5 mm thick. Other material choices for the flexplate 135 include soft metals such as aluminum, gauge steel or polymers, elastomer or rubber based materials. In some embodiments, the donor (not shown) can remain against the perforated plate 115 by applying a vacuum between the flexible sheet and the perforated plate. Since the graphite plate is porous, a vacuum can be applied to the distribution channel 160' behind the plate 115 via the vacuum inlet to the vacuum volume to provide a uniform suction through the perforated plate 115. EXAMPLES Formation of a layer body from a {111} single crystal donor wafer This method was started with a donor wafer having a Miller index of {111}. A substantially flat first surface is provided, but it may have some existing texture. The donor was implanted at 400 keV with a total ionic agent weight of 4.Ox 10 丨 6 hydrogen atoms per cubic centimeter. The implantation temperature is approximately 16 °C. The implant produces a dissociation

S 30 201246301 體之第一表面有4.5微米的分裂平面。該施體用n型摻雜物 (例如,硼)摻雜成有丨至3歐姆-公分的電阻率。 在植入後,使施體晶圓的植入面與晶座總成接觸。該 晶座總成由多孔石墨的晶座板構成。另外,已用粒度15〇〇 號砂紙將該纽石墨機械式平滑加工成可提供均勻平滑的 表面。無真空壓力施加於晶圓。—旦與晶座總成接觸後, 施加包含兩個熱升溫的熱脫層分佈。由室溫開始施加以下 的升溫順序:15。(:/秒升至40(TC,保持在铜。c持續6〇秒, 接著以1GC/秒升至7GGC。在此時,層體已與施體晶圓脫 層以及藉UlGt/料至〇(:以及轉丨分鐘來回火。然 後’讓晶圓冷卻至室溫β -玄她體在至溫與層體分離同時層體(原先為施體)的第 -表面仍固定於晶座板。施加_13⑽的真空力於晶座總成 的多孔板,這使層體固定於晶座總成。該施體中與第一表 面才反的第一表面箱與耗合至真空管線之分離吸盤的多 孔板接觸。分離吸盤的多孔板耦合至包含支點的剛性臂。 田知加真空於分離吸盤的多孔板時,該板中緊密地貼著施 體的部份導致.臂以支點為巾心轉,這使部份施體升 同離開層體。在與層體初始分離後’肖手使施體升高離開 層體以及回到生產線。進一步加工該層體以形成光伏裝 置。該分財法是在周遭溫度及壓力下進行。 出於{100}單晶施體晶圓的層體 該方法由米勒指數為{1叫的施體晶圓開始。提供實質 平L的第—表面,但是它可能有—些已經存在的結構。用S 30 201246301 The first surface of the body has a 4.5 micron split plane. The donor body is doped with an n-type dopant (e.g., boron) to have a resistivity of 丨 to 3 ohm-cm. After implantation, the implanted face of the donor wafer is brought into contact with the wafer holder assembly. The crystal seat assembly is composed of a perforated plate of porous graphite. In addition, the neodymium graphite has been mechanically smoothed to a uniform smooth surface by using 15 grit sandpaper. No vacuum pressure is applied to the wafer. Once in contact with the crystal seat assembly, a thermal delamination distribution comprising two thermal temperatures is applied. The following temperature rise sequence was applied starting from room temperature: 15. (: / sec rises to 40 (TC, stays in copper. c lasts 6 sec seconds, then rises to 7 GGC at 1 GC / sec. At this point, the layer has been delaminated from the donor wafer and borrowed UlGt / material to 〇 (: And turn around for a minute and then fire. Then 'let the wafer cool to room temperature β - my body is separated from the temperature and the layer is separated while the first surface of the layer (formerly the donor body) is still fixed to the crystal plate. The vacuum force of 13(10) is applied to the perforated plate of the crystal seat assembly, which fixes the layer body to the crystal seat assembly. The first surface case opposite to the first surface in the donor body and the perforated plate of the separation suction cup that is consumed to the vacuum line The perforated plate separating the suction cup is coupled to the rigid arm containing the fulcrum. When the vacuum is applied to the perforated plate of the suction cup, the portion of the plate that closely adheres to the donor body causes the arm to pivot with the fulcrum. The partial donor body is lifted away from the layer body. After the initial separation from the layer body, the hand is lifted away from the layer body and returned to the production line. The layer body is further processed to form a photovoltaic device. The sub-financing method is at ambient temperature and pressure. Under the {100} single crystal donor wafer layer method by Miller The number is {1 called the donor wafer start. Provides the first surface of the substantially flat L, but it may have some existing structures.

S 31 201246301 8·0χ 1 〇16氫原子/立方公分的總離子劑量以4〇〇keV植入該施 體。植入溫度約有16〇。(:。該植入產生離施體之第一表面有 4,5微米的分裂平面。 在植入後,使施體晶圓的植入面與晶座總成接觸。該 晶座總成由多孔石墨的晶座板構成。已用粒度15〇〇號砂紙 將該多孔石墨機械式平滑加工成可提供均勻平滑的表面。 該晶座總成天包含有熱各向互異性的第二晶座板。該第二 晶座板包含熱解石墨以及提供熱各向互異性材料以協助均 勻的熱處理。藉由施加-13psi的真空於第一晶座板使該施體 固定至晶座總成。 在使晶座總成與施體後,施加由以下組成的熱脫層分 佈:2.3°C/秒的熱升溫速率至440°C的第一脫層溫度再保持 60秒,接著〇.2°C/秒的熱升溫速率至490°C再保持500秒。在 脫層後,包含為第一表面(其係施體的第一表面)及與第一表 面相反之第二表面的自立型薄層體以950°C回火3分鐘。讓 晶圓冷卻至室溫。 該施體在室溫與層體分離同時層體(原先為施體)的第 一表面仍固定於晶座板以及施加-13Psi的真空力。該施體中 與第一表面相反的第二表面部份與耦合至真空管線之分離 吸盤的多孔板接觸。該多孔板也耦合至包含支點的剛性 臂。當施加真空於多孔板時,該板中緊密地貼著施體的部 份導致剛性臂以支點為中心樞轉,這使部份施體升高離開 層體。用手使施體升高離開層體以及回到生產線。進一步 加工該層體以形成光伏裝置。 32S 31 201246301 8·0χ 1 The total ion dose of 〇16 hydrogen atoms/cubic centimeters was implanted at 4 〇〇 keV. The implantation temperature is about 16 inches. (: The implant produces a 4,5 micron split plane from the first surface of the donor body. After implantation, the implanted wafer is brought into contact with the wafer holder assembly. The crystal holder assembly is made of porous graphite The crystal plate is constructed. The porous graphite has been mechanically smoothed to a uniform smooth surface by using 15 grit sandpaper. The crystal holder assembly includes a second crystal plate having thermal anisotropy. The second wafer plate comprises pyrolytic graphite and a thermally anisotropic material to assist in uniform heat treatment. The donor is fixed to the wafer holder assembly by applying a vacuum of -13 psi to the first wafer plate. After the assembly and the donor, a thermal delamination distribution consisting of: a thermal ramp rate of 2.3 ° C / sec to a first delamination temperature of 440 ° C for 60 seconds, followed by 2 2 ° C / sec is applied. The thermal heating rate was maintained at 490 ° C for another 500 seconds. After delamination, the self-standing thin layer body including the first surface (the first surface of the donor body) and the second surface opposite to the first surface was 950. Tempering for 3 minutes at °C. Allow the wafer to cool to room temperature. The body is separated from the layer at room temperature and the layer is The first surface (originally the donor body) is still fixed to the base plate and a vacuum force of -13 Psi is applied. The second surface portion of the donor opposite the first surface is in contact with the perforated plate coupled to the separation chuck of the vacuum line The perforated plate is also coupled to a rigid arm comprising a fulcrum. When a vacuum is applied to the perforated plate, the portion of the plate that closely adheres to the donor body causes the rigid arm to pivot about the fulcrum, which causes the portion of the donor to rise away The layer body is raised by hand to lift the donor body away from the layer body and back to the production line. The layer body is further processed to form a photovoltaic device.

S 201246301 為求清晰及完整,已提供各種具體實施例。顯然,列 出所有可能具體實施例是不切實際的。本技藝一般技術人 員在獲悉本專利說明書時會明白本發明的其他具體實施 例。本文已詳述數種製造方法,但是仍可使用能形成相同 結構的任何其他方法同時結果仍落在本發明的範疇内。以 下詳細說明只描述了本發明可採用之許多形式中的少數幾 個。因此之故,詳細說明旨在用實例做說明,而不是用來 限制。以下申請專利範圍及其所有等價陳述係旨在定義本 發明的範♦。 【圖式簡單說明3 第1圖為先前技術光伏胞元的橫截面圖。 第2A至2D圖的橫截面圖圖示美國專利申請案第 12/026,530號(Sivaram等人)之光伏裝置的形成階段。 第3圖的流程圖根據本發明之方面圖示一示範方法的 步驟。 第4A及4B圖的橫截面圖根據本發明之具體實施例圖 示層體的形成階段。 第5A及5B圖的橫截面圖根據本發明之具體實施例圖 示層體的分離。 第6A及6B圖的橫截面圖根據本發明之具體實施例圖 示層體的分離。 第7A及7C圖的橫截面圖圖示有構成金屬支撐元件之 光伏裝置的形成階段。 第8Α及8Β圖為本發明之示範晶座總成的橫截面透視 33 201246301 圖與俯視透視圖。 第9A及9B圖的俯視圖圖示本發明晶座板的具體實施 例。 第10A及10B圖的透視橫截面圖圖示本發明之一具體 實施例的分離吸盤。S 201246301 Various specific embodiments have been provided for clarity and completeness. Obviously, it is impractical to list all possible specific embodiments. Other embodiments of the invention will be apparent to those skilled in the art upon accessing this disclosure. Several manufacturing methods have been described in detail herein, but any other method capable of forming the same structure can still be used while the results still fall within the scope of the present invention. The following detailed description describes only a few of the many forms that can be employed by the present invention. For this reason, the detailed description is intended to be illustrative and not limiting. The scope of the following claims and all equivalents thereof are intended to define the scope of the invention. [Simple diagram of the diagram 3 Figure 1 is a cross-sectional view of a prior art photovoltaic cell. A cross-sectional view of Figures 2A through 2D illustrates the stage of formation of a photovoltaic device of U.S. Patent Application Serial No. 12/026,530 (Sivaram et al.). The flowchart of Figure 3 illustrates the steps of an exemplary method in accordance with aspects of the present invention. Cross-sectional views of Figures 4A and 4B illustrate stages of formation of a layer body in accordance with a particular embodiment of the present invention. Cross-sectional views of Figures 5A and 5B illustrate the separation of the layers in accordance with a particular embodiment of the present invention. Cross-sectional views of Figures 6A and 6B illustrate the separation of the layers in accordance with a particular embodiment of the present invention. The cross-sectional views of Figures 7A and 7C illustrate the stages of formation of a photovoltaic device that constitutes a metal support member. Figures 8 and 8 are cross-sectional perspective views of an exemplary crystal seat assembly of the present invention. 33 201246301 Figure and top perspective view. The top views of Figs. 9A and 9B illustrate a specific embodiment of the crystal panel of the present invention. The perspective cross-sectional views of Figures 10A and 10B illustrate a separation chuck of one embodiment of the present invention.

S 【主要元件符號說明】 1...植入離子至施體内 90...支撐基板 2...使施體與晶座可分離地接觸 100...分離吸盤 3...使層體與施體脫層 110...透明導電氧化物(TCO)層 4...分離層體 112...TCO 層 10...第一表面 115…多孔板 12...反射層 135...撓性板 20...半導體施體 145...硬挺支撐板 30...分裂平面 150...分配通道 40...層體 160...分配通道 50...臨時載體 400...晶座總成 57…格線 401...晶座總成 60...受體 402...晶座總成 60...金屬支#元件 405…多孔晶座板 62...第二表面 405…第一板 72...非晶矽層 410…真空通道 74...本徵或近似本徵非晶矽層 415...第二板 76...非晶矽層 425...熱絕緣板 80...光伏總成 455…真空通道 34 201246301 460...第二組真空通道 615…第一吸盤板 470...環形物 625…真空通道 475...第三晶座板 635…剛性臂 500...分離吸盤 645..·支點 515…第一吸盤板 800...晶座室 520...表面 915…弟二晶座板 525...真空通道 925...周邊 535...順應臂體、撓曲臂、撓性板 955…真空通道 5M...支承板 975...圓盤 555...通道 35S [Description of main component symbols] 1... implanting ions into the body 90... supporting the substrate 2... detachably contacting the donor and the crystal holder 100... separating the suction cup 3... Body and donor delamination 110...transparent conductive oxide (TCO) layer 4...separation layer body 112...TCO layer 10...first surface 115...perforated plate 12...reflective layer 135. ..flex board 20...semiconductor body 145...stiffing support plate 30...split plane 150...distribution channel 40...layer body 160...distribution channel 50...temporary carrier 400 ...Crystal assembly 57... Grid 401...Crystal assembly 60...Receptor 402...Crystal assembly 60...Metal branch #Element 405...Porous base plate 62.. Second surface 405...first plate 72...amorphous germanium layer 410...vacuum channel 74...intrinsic or approximate intrinsic amorphous germanium layer 415...second plate 76...amorphous germanium layer 425... Thermal insulation board 80... Photovoltaic assembly 455... Vacuum channel 34 201246301 460...Second group vacuum channel 615...First suction cup board 470...Ring 625...Vacuum channel 475... Three-crystal seat plate 635... rigid arm 500... separation suction cup 645.. fulcrum 515... first suction cup plate 800... crystal seat chamber 520... surface 915 ... brother two crystal seat plate 525... vacuum channel 925... peripheral 535... compliant arm body, flexing arm, flexible plate 955... vacuum channel 5M... support plate 975... disk 555. .. channel 35

Claims (1)

201246301 七、申請專利範圍: 1. 一種用以由施體製成層體的方法,該方法包含下列步 驟: a. 用一離子劑量植入一施體之一第一表面以形成一分 裂平面; b. 在植入期間加熱該施體至一植入溫度; c. 使該施體之該第一表面與一晶座總成之第一表面可 分離地接觸,其中該施體之該第一表面與該晶座總 成之該第一表面係直接接觸; d. 施加一脫層溫度於該施體,以使一層體與該施體在 該分裂平面脫層,其中該施體之該第一表面包含該 層體之第一表面; e. 使該層體與該施體分離;以及 f. 調整劑量、植入溫度、脫層溫度及脫層壓力的組合, 以最大化該層體中實質無物理缺陷的面積。 2. 如申請專利範圍第1項之方法,其中該晶座總成係定位 於該施體下方,以及其中該施體之該第一表面與該晶座 總成之該第一表面的可分離接觸只包括:由該施體之重 量提供的力。 3. 如申請專利範圍第1項之方法,其中該施體之該第一表 面與該晶座總成之該第一表面的可分離接觸包括:施加 一真空力於該晶座。 4. 如申請專利範圍第1項之方法,其中該脫層溫度分佈在 •A 該施體之該第一表面上呈實質均勻。 36 S 201246301 如申凊專利範圍第1項之方法’其_該脫潛溫度分佈包 括··以至少rc/秒升高至在600、100(rc之間的尖峰溫 度。 6. 如申請專利範圍第!項之方法,其中施加脫層溫度的步 驟包括:使該施體從有第一溫度的一地區移到有第二溫 度的一地區,其中該第二溫度高於該第一溫度。 7. 如申請專利範圍第旧之方法,其中該等物理缺陷係選 自由下列各項組成之群:波前缺陷、放射條紋、片落、 撕裂、孔或彼等之任何組合。 8. 如申請專利範圍第丨項之方法,其中該植人溫度在如至 250°C之間。 9. 如申請專利範圍第!項之方法,其中該層體的厚度在約i 至20微米之間。 讥如申請專利範圍第旧之方法,其中該層體之該第一表 面有百刀之90以上的表面積無該等物理缺陷,以及其中 該層體之該表面積大體等於該施體之該第一表面的表 面積。 U.如申請專利範圍第1項之方法,其中該脫層是在大氣壓 力下發生。 12·如申請專利範圍第1項之方法,其更包含以下步驟:在 使該層體與該施體分離後,再使用該晶座。 13.如申請專利範圍第1項之方法,其中該晶座總成之該第 表面包含能夠與該施體接觸的第一板,其中該第—板 包含真空壓力可渗透它的—多孔材料。 37 201246301 14. 如申請專利範圍第13項之方法,其中該第一板包含多孔 石墨、多孔氮化硼、多孔矽、多孔碳化矽、雷射鑽孔矽、 雷射鑽孔碳化矽、氧化鋁、氮化鋁、或氮化矽或彼等之 任何組合。 15. 如申請專利範圍第13項之方法,其中該第一板有第一熱 膨脹係數,以及該施體有第二熱膨脹係數,以及其中該 第一及該第二熱膨脹係數實質相等。 16. 如申請專利範圍第13項之方法,其中該晶座總成更包含 與該第一板毗鄰的第二板,以及其中該第二板有熱各向 互異性。 17. 如申請專利範圍第16項之方法,其中該第二板包含熱解 石墨。 18. 如申請專利範圍第13項之方法,其中該第一板包含其熱 容低於該施體之熱容的一材料。 19. 如申請專利範圍第1項之方法,其中使該層體與該施體 分離的步驟包括:施加一力於該施體之第二表面的一部 份,其中該第二表面與該層體之該第一表面相反,以及 其中該施體以遠離該層體的方式變形。 20. 如申請專利範圍第1項之方法,其中使該層體與該施體 分離的步驟包括:施加一力於該層體之該第一表面的一 部份,以及其中該層體以遠離該施體的方式變形。 21. 如申請專利範圍第1項之方法,其更包含下列步驟: • a·使該層體與該晶座總成分離;以及 b.製造一光伏胞元,其中該光伏胞元有與該層體之該 38 S 2〇12463〇i 弟一表面直接接觸的第一非晶石夕層,以及與該層體 之該第二表面直接接觸的第二非晶石夕層。 22.—種用以由施體製成層體的方法,其係包含下列步驟: a. 用一離子劑量植入一施體之一第一表面以形成一分 裂平面; b. 使该施體與一晶座總成之一第一表面可分離地接 觸,其中該施體與該晶座總成之該第一表面直接接 觸; c. 使一層體與該施體在該分裂平面脫層,其中該施體 之該第一表面包含該層體之一第一表面;以及 d. 藉由施加一變形力於該層體之該第一表面或該施體 之該第二表面,使該層體之該第一表面或該施體之 第二表面變形以使該層體與該施體分離,其中該施 體之該第二表面與該施體之該第一表面相反。 .如申凊專利範圍第22項之方法,其中使該施體之該第二 表面變形的步驟包括: a•使第一吸盤板耦合至該施體之該第二表面,其中該 吸盤板係柄合至一撓曲裝置;以及 b.施加該變形力於該撓曲裝置,其中該變形力使該撓 曲裝置及該第一吸盤板及該施體變形離開該層體。 24.如申請專利範圍第22項之方法,其中使該層體之該第一 表面變形的步驟包括: a•使第一吸盤板耦合至該層體之該第一表面,其中該 吸盤板係搞合至一撓曲裝置;以及 39 S 201246301 b.施加該變形力於該撓曲裝置,其中該變形力使該撓 曲裝置及該第一吸盤板及該層體變形離開該施體。 25. 如申請專利範圍第23及24項之方法,其中該第一吸盤板 包含真空壓力可滲透它的一多孔材料,以及其中該方法 更包含下列步驟:施加一真空壓力於該第一吸盤板與該 施體之間,其中該真空壓力使得該施體與該第一吸盤板 能夠耦合。 26. 如申請專利範圍第25項之方法,其中該多孔材料係選自 由下列各物組成之群:多孔石墨、多孔氮化硼、多孔矽、 多孔碳化矽、雷射鑽孔矽、雷射鑽孔碳化矽、氧化鋁、 氮化鋁、及氮化矽。 27. 如申請專利範圍第23及24項之方法,其更包含附著至該 撓曲裝置之周邊的一支承板,以及其中施加該變形力的 步驟包括:在該撓曲裝置與該支承板之間形成一壓力容 積。 28. 如申請專利範圍第22項之方法,其中使該施體變形的步 驟包括:使該施體之一部份移位離開該層體之該第一表 面1至3毫米。 29. 如申請專利範圍第22項之方法,其更包含以下步驟:使 該層體由該晶座總成轉移至一轉移吸盤,其中該轉移吸 盤包含真空壓力可滲透它的一多孔轉移板,以及其中該 層體之第二表面與該多孔轉移板之第一表面係可分離 地接觸。 40 S201246301 VII. Patent application scope: 1. A method for forming a layer body from a donor body, the method comprising the steps of: a. implanting a first surface of a donor body with an ion dose to form a split plane; b. Heating the donor body to an implantation temperature during implantation; c. detachably contacting the first surface of the donor body with a first surface of a crystal holder assembly, wherein the first surface of the donor body and the crystal holder The first surface of the assembly is in direct contact; d. applying a delamination temperature to the donor body such that the layer body and the donor body are delaminated in the split plane, wherein the first surface of the donor body comprises the layer body a surface; e. separating the layer from the donor; and f. adjusting the combination of dose, implantation temperature, delamination temperature, and delamination pressure to maximize the area of the layer that is substantially free of physical defects. 2. The method of claim 1, wherein the crystal holder assembly is positioned below the donor body, and wherein the first surface of the donor body is separable from the first surface of the crystal holder assembly Includes: the force provided by the weight of the donor. 3. The method of claim 1, wherein the detachable contact of the first surface of the donor body with the first surface of the crystal holder assembly comprises applying a vacuum force to the crystal holder. 4. The method of claim 1, wherein the delamination temperature distribution is substantially uniform on the first surface of the donor body. 36 S 201246301 The method of claim 1 of the patent scope 'the _ the de-migration temperature distribution includes increasing the peak temperature to between 600 and 100 (rc) at least rc/sec. The method of item </RTI> wherein the step of applying a delamination temperature comprises: moving the donor from an area having a first temperature to an area having a second temperature, wherein the second temperature is higher than the first temperature. The method of claim 1, wherein the physical defects are selected from the group consisting of wavefront defects, radiation stripes, flakes, tears, holes, or any combination thereof. The method of claim 3, wherein the implanting temperature is between, for example, up to 250 ° C. 9. The method of claim 2, wherein the layer has a thickness of between about i and 20 microns. The method of claim </ RTI> wherein the first surface of the layer has a surface area greater than 90% without such physical defects, and wherein the surface area of the layer is substantially equal to the surface area of the first surface of the donor body U. If applying for a patent The method of claim 1, wherein the delamination occurs under atmospheric pressure. 12. The method of claim 1, further comprising the step of: separating the layer from the donor and then using the layer 13. The method of claim 1, wherein the first surface of the crystal holder assembly comprises a first plate capable of contacting the donor body, wherein the first plate comprises a vacuum pressure permeable to it - porous 37. The method of claim 13, wherein the first plate comprises porous graphite, porous boron nitride, porous tantalum, porous tantalum carbide, laser drilled tantalum, laser drilled tantalum carbide, Alumina, aluminum nitride, or tantalum nitride or any combination thereof. 15. The method of claim 13, wherein the first plate has a first coefficient of thermal expansion and the donor has a second coefficient of thermal expansion, And the method of claim 13, wherein the crystal holder assembly further comprises a second plate adjacent to the first plate, and wherein the second Board has The method of claim 16, wherein the second plate comprises pyrolytic graphite. 18. The method of claim 13, wherein the first plate comprises a heat capacity lower than 19. The method of claim 1, wherein the step of separating the layer from the donor comprises: applying a force to a portion of the second surface of the donor, wherein The second surface is opposite to the first surface of the layer body, and wherein the donor body is deformed away from the layer body. 20. The method of claim 1, wherein the layer body is separated from the donor body The step includes applying a force to a portion of the first surface of the layer, and wherein the layer is deformed away from the donor. 21. The method of claim 1, further comprising the steps of: • a) separating the layer from the crystal assembly; and b. fabricating a photovoltaic cell, wherein the photovoltaic cell has The first amorphous layer of the layer directly contacting the surface of the layer, and the second layer of amorphous layer directly contacting the second surface of the layer. 22. A method for forming a layer body from a donor body, comprising the steps of: a. implanting a first surface of a donor body with an ion dose to form a split plane; b. causing the donor body to a first surface of the crystal holder assembly is detachably contactable, wherein the donor body is in direct contact with the first surface of the crystal holder assembly; c. delaminating a layer of the body from the donor body at the split plane, wherein the donor body The first surface includes a first surface of the layer; and d. the first surface of the layer is applied by applying a deforming force to the first surface of the layer or the second surface of the layer Or deforming the second surface of the donor body to separate the layer body from the donor body, wherein the second surface of the donor body is opposite the first surface of the donor body. The method of claim 22, wherein the step of deforming the second surface of the donor body comprises: a: coupling a first suction cup plate to the second surface of the donor body, wherein the suction cup plate is shank To a flexing device; and b. applying the deforming force to the flexing device, wherein the deforming force deforms the flexure device and the first chucking plate and the donor body away from the layer body. 24. The method of claim 22, wherein the step of deforming the first surface of the layer body comprises: a: coupling a first chucking plate to the first surface of the layer body, wherein the chucking plate is Cooperating to a flexing device; and 39 S 201246301 b. applying the deforming force to the flexing device, wherein the deforming force deforms the flexing device and the first chucking plate and the layer body away from the donor body. 25. The method of claim 23, wherein the first chucking plate comprises a porous material through which vacuum pressure can penetrate, and wherein the method further comprises the step of applying a vacuum pressure to the first suction cup Between the plate and the donor body, wherein the vacuum pressure enables the donor body to be coupled to the first chuck plate. 26. The method of claim 25, wherein the porous material is selected from the group consisting of porous graphite, porous boron nitride, porous tantalum, porous tantalum carbide, laser drilled helium, laser drill The pores are niobium carbide, aluminum oxide, aluminum nitride, and tantalum nitride. 27. The method of claim 23, wherein the method further comprises a support plate attached to the periphery of the flexure means, and wherein the step of applying the deforming force comprises: at the flexing means and the support plate A pressure volume is formed between them. 28. The method of claim 22, wherein the step of deforming the donor body comprises: shifting a portion of the donor body away from the first surface of the layer body by 1 to 3 millimeters. 29. The method of claim 22, further comprising the step of transferring the layer from the crystal holder assembly to a transfer chuck, wherein the transfer tray comprises a porous transfer plate having vacuum pressure permeable thereto And wherein the second surface of the layer is in detachable contact with the first surface of the porous transfer plate. 40 S
TW100149202A 2010-12-29 2011-12-28 A method and apparatus for forming a thin lamina TWI552205B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US12/980,424 US8173452B1 (en) 2010-12-29 2010-12-29 Method to form a device by constructing a support element on a thin semiconductor lamina
US201161510478P 2011-07-21 2011-07-21
US201161510475P 2011-07-21 2011-07-21
US201161510476P 2011-07-21 2011-07-21
US201161510477P 2011-07-21 2011-07-21

Publications (2)

Publication Number Publication Date
TW201246301A true TW201246301A (en) 2012-11-16
TWI552205B TWI552205B (en) 2016-10-01

Family

ID=46383810

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149202A TWI552205B (en) 2010-12-29 2011-12-28 A method and apparatus for forming a thin lamina

Country Status (6)

Country Link
EP (1) EP2659521A4 (en)
JP (1) JP2014506008A (en)
KR (1) KR20140004120A (en)
CN (1) CN103370800A (en)
TW (1) TWI552205B (en)
WO (1) WO2012092026A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102281607B1 (en) * 2012-11-14 2021-07-26 지티에이티 코포레이션 A mobile electronic device comprising an ultrathin sapphire cover plate
WO2015040907A1 (en) 2013-09-17 2015-03-26 株式会社村田製作所 Method for manufacturing vertical-cavity surface-emitting laser
CN103646990A (en) * 2013-11-28 2014-03-19 青岛蓝图文化传播有限公司市南分公司 Cleavage method
WO2016081391A1 (en) * 2014-11-19 2016-05-26 Corning Incorporated Apparatus and method of peeling a multi-layer substrate
JP6687829B2 (en) * 2015-08-17 2020-04-28 シンフォニアテクノロジー株式会社 Induction heating device
TWI632982B (en) * 2017-07-03 2018-08-21 陽程科技股份有限公司 Plate retaining device
CN111244015B (en) * 2020-01-20 2023-07-21 杭州立昂东芯微电子有限公司 Wafer bonding-releasing auxiliary carrier disc, bonding-releasing machine and bonding-releasing method
TWI749783B (en) * 2020-09-24 2021-12-11 鴻績工業股份有限公司 Air chamber suction module

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176482A (en) * 1991-05-31 1995-07-14 At & T Corp Method and apparatus for epitaxial growth
JPH08254392A (en) * 1995-03-17 1996-10-01 Fujitsu Ltd Method and apparatus for heat treatment of substrate
JPH10223496A (en) * 1997-02-12 1998-08-21 Ion Kogaku Kenkyusho:Kk Single-crystal wafer and manufacture thereof
JP2000077287A (en) * 1998-08-26 2000-03-14 Nissin Electric Co Ltd Manufacture of crystal thin-film substrate
JP4452789B2 (en) * 1999-09-01 2010-04-21 独立行政法人 日本原子力研究開発機構 Method for producing silicon crystal thin plate and method for producing substrate for photoelectric conversion element
FR2839385B1 (en) * 2002-05-02 2004-07-23 Soitec Silicon On Insulator PROCESS FOR TAKING OFF MATERIAL LAYERS
CN100579333C (en) * 2003-01-23 2010-01-06 东丽株式会社 The manufacture method of member for circuit board, circuit substrate and the manufacturing installation of circuit substrate
TW200607023A (en) * 2004-08-04 2006-02-16 Tien-Hsi Lee A method to fabricate a thin film on a substrate
CN101467245A (en) * 2006-05-31 2009-06-24 康宁股份有限公司 Thin film photovoltaic structure and fabrication
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
JP2008062476A (en) * 2006-09-06 2008-03-21 Disco Abrasive Syst Ltd Machining apparatus and chuck table
US9362439B2 (en) * 2008-05-07 2016-06-07 Silicon Genesis Corporation Layer transfer of films utilizing controlled shear region
JP5065748B2 (en) * 2007-04-27 2012-11-07 信越化学工業株式会社 Manufacturing method of bonded wafer
JP2008294080A (en) * 2007-05-22 2008-12-04 Sanyo Electric Co Ltd Solar cell and manufacturing method of same
JP5248994B2 (en) * 2007-11-30 2013-07-31 株式会社半導体エネルギー研究所 Method for manufacturing photoelectric conversion device
US8481845B2 (en) * 2008-02-05 2013-07-09 Gtat Corporation Method to form a photovoltaic cell comprising a thin lamina
JP2009283582A (en) * 2008-05-21 2009-12-03 Shin Etsu Handotai Co Ltd Bonded wafer manufacturing method and bonded wafer
US7858430B2 (en) * 2008-12-18 2010-12-28 Twin Creeks Technologies, Inc. Method for making a photovoltaic cell comprising contact regions doped through a lamina
CN102171745B (en) * 2009-02-06 2014-10-08 旭硝子株式会社 Method for manufacturing electronic device and separation apparatus used therefor
JP2010244864A (en) * 2009-04-07 2010-10-28 Shin-Etsu Chemical Co Ltd Substrate heating structural body

Also Published As

Publication number Publication date
CN103370800A (en) 2013-10-23
EP2659521A4 (en) 2015-05-13
JP2014506008A (en) 2014-03-06
WO2012092026A3 (en) 2012-10-11
KR20140004120A (en) 2014-01-10
WO2012092026A2 (en) 2012-07-05
EP2659521A2 (en) 2013-11-06
TWI552205B (en) 2016-10-01

Similar Documents

Publication Publication Date Title
US8435804B2 (en) Method and apparatus for forming a thin lamina
TWI552205B (en) A method and apparatus for forming a thin lamina
US8268645B2 (en) Method and apparatus for forming a thin lamina
TWI719051B (en) SiC composite substrate and manufacturing method thereof
US6597039B2 (en) Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof
US6448155B1 (en) Production method of semiconductor base material and production method of solar cell
RU2728484C2 (en) Method of making composite substrate from sic
EP3349237B1 (en) Method for manufacturing sic composite substrate, and method for manufacturing semiconductor substrate
JP2001284622A (en) Method for manufacturing semiconductor member and method for manufacturing solar cell
US20060021565A1 (en) GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer
EP2128891B1 (en) Process for producing laminated substrate
TW201218312A (en) Semiconductor on glass substrate with stiffening layer and process of making the same
TW200814341A (en) Thin film photovoltaic structure and fabrication
TW202141582A (en) PROCESS FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINESiC ON A CARRIER SUBSTRATE MADE OF SiC
JP2015119062A (en) SiC WAFER MANUFACTURING METHOD, SiC SEMICONDUCTOR MANUFACTURING METHOD AND GRAPHITE SILICON CARBIDE COMPOSITE SUBSTRATE
JP4035862B2 (en) Manufacturing method of semiconductor substrate
JP2015512149A (en) Multilayer metal support
JP2000349066A (en) Method for manufacturing semiconductor substrate and solar battery, and anodization device
CN114864424A (en) Preparation method of silicon carbide substrate and silicon carbide substrate
CN110690175B (en) Method for improving quality of stripping Si-based and SOI-based Ge films
JP2001089291A (en) Liquid phase growth method, method of producing semiconductor member and method of producing solar battery
TW201101387A (en) Method for the local polishing of a semiconductor wafer
JP2015513214A (en) Multilayer metal support
An et al. Fabrication of Crystalline Si Thin Films for Photovoltaics
JPH10270728A (en) Thin film semiconductor and production of semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees