TW200814341A - Thin film photovoltaic structure and fabrication - Google Patents

Thin film photovoltaic structure and fabrication Download PDF

Info

Publication number
TW200814341A
TW200814341A TW096119237A TW96119237A TW200814341A TW 200814341 A TW200814341 A TW 200814341A TW 096119237 A TW096119237 A TW 096119237A TW 96119237 A TW96119237 A TW 96119237A TW 200814341 A TW200814341 A TW 200814341A
Authority
TW
Taiwan
Prior art keywords
layer
photovoltaic
semiconductor
insulator
wafer
Prior art date
Application number
TW096119237A
Other languages
Chinese (zh)
Inventor
Francis Dawson-Elli David
Purushottam Gadkaree Kishor
Merchant Walton Robin
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/511,041 external-priority patent/US20070277875A1/en
Priority claimed from US11/511,040 external-priority patent/US20070277874A1/en
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW200814341A publication Critical patent/TW200814341A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/02Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing by fusing glass directly to metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Novel photovoltaic structures comprising an insulator structure bonded to an exfoliation layer, preferably of a substantially single-crystal donor semiconductor wafer, and at least one photovoltaic device layer, such as a conducive layer, and systems and methods of production of a photovoltaic device, comprising creating on a donor semiconductor wafer an exfoliation layer and transferring the exfoliation layer to an insulator substrate.

Description

200814341 九、發明說明: 【發明崎 本發明係關於薄膜光伏打結構之製造系統,方法及產 物,其優先地具有單晶薄膜,其使用改良處理過程包含特別 地轉移光伏打結構基礎或部份完成光伏打結構至絕緣體基 板上以及陽極黏接至絕緣體基板。 【先前技術】 φ 結構(PVS)為將光子轉變為電流之特別型式半 、, 導體結構。基本上,裝置需要實施兩種功能:在吸收光線材 料中光產生電荷載體(電子及電洞),以及分離電荷載體至 傳送電流之導電接觸。該轉變稱為光伏打(PV)效應以及使 - 用於太陽能電池中,其將光能轉變為電能,以及太陽能電池 相關之研究領域已知為光伏打。一些pVS為半導體在絕緣 體(SOI)上結構。 參考圖1,2及3,方塊圖分別地顯示出單接面,雙接面, 春 以及二接面之光伏打結構。在這些附圖中參考數字具有下200814341 IX. INSTRUCTIONS: [Inventives The invention relates to a manufacturing system, method and product for a thin film photovoltaic structure, which preferably has a single crystal film, and the use of the improved process comprises a special transfer of photovoltaic structure or partial completion The photovoltaic structure is bonded to the insulator substrate and the anode is bonded to the insulator substrate. [Prior Art] The φ structure (PVS) is a special type of semi-conductor that converts photons into current. Basically, the device needs to perform two functions: light-generating charge carriers (electrons and holes) in the absorbing light material, and separating the charge carriers to the conductive contacts that carry the current. This transformation is known as the photovoltaic (PV) effect and enables - for use in solar cells, which converts light energy into electrical energy, and the research field associated with solar cells is known as photovoltaic. Some pVS are semiconductor structures on insulators (SOI). Referring to Figures 1, 2 and 3, the block diagram shows the photovoltaic structure of the single junction, the double junction, the spring and the two junctions, respectively. In these figures the reference numbers have the following

• 列意義 A101 Ge 基板;A103/105 1· 4eV GaAs 電池;A107 栅 , 極接觸;A201 Ge 基fcA203 L4eV GaAs 電池;A207 AlGaLnP 或 AlGaAs 牙隧接面;Α209/2Π L9eV InGaP 電池;A213 柵 極接觸;A301 0.7eV Ge電池及基板;A305 GaAs穿隧接面; A307/309 L4eVGaAs 電池;A311 穿隧接面;A313/315 1.9 eV InGaP電池;A317柵極接觸。所顯示Ge基板為單晶鍺晶 片。雖然在過去數年每一年效率提高1%一3· 5%,較大提高效 率來自於接面之增加,每一額外接面增加大約4· 5%。該額 200814341 外接面之優點為由於pVS裝置吸收跨越不同頻帶間隙光線 以線轉變為電流之能力所致,更有致利用可使甫之 光線 存在機械性強固,大面積,較便宜太陽能電池之需求。 GaAs為主太陽能電池為改善轉換效率以及改善戶外可靠性 之方法。GaAs具有1· 42eV頻帶間隙,其接近於太陽能電池 轉換之頻帶間隙能量最佳數值(1· 5eV)。不像石夕電池,GaAs 電池對熱相當靈敏。砷化鎵以及其合金作為PV電池材料另 外一項主要優點為對廣泛範圍設計能夠作改正。最主要為 高效率多接面太陽能電池,其能夠利用GaAs薄膜或其他ΙΠ -V為主材料例如為GainP2以及GalnAs於大快Ge單晶基板上 ° GaAs多接面太陽能電池之最高驗證效率為大於37%。Ge基 板以使用於這些電池,由於GaAs及Ge在晶格間距及熱膨脹性 方面十分相匹配。• column meaning A101 Ge substrate; A103/105 1· 4eV GaAs battery; A107 gate, pole contact; A201 Ge-based fcA203 L4eV GaAs battery; A207 AlGaLnP or AlGaAs tunnel interface; Α209/2Π L9eV InGaP battery; A213 gate contact A301 0.7eV Ge battery and substrate; A305 GaAs tunneling junction; A307/309 L4eVGaAs battery; A311 tunneling junction; A313/315 1.9 eV InGaP battery; A317 gate contact. The Ge substrate shown is a single crystal germanium wafer. Although efficiency has increased by 1% to 5% per year over the past few years, the greater efficiency has increased from the junction, with each additional junction increasing by approximately 4.5%. The advantage of the external junction of the 200814341 is due to the ability of the pVS device to absorb light across different frequency bands and convert it into a current, which makes it possible to use a mechanically strong, large-area, less expensive solar cell. GaAs is the main method for improving conversion efficiency and improving outdoor reliability. GaAs has a band gap of 1.42 eV, which is close to the optimum value of the band gap energy of the solar cell conversion (1.5 eV). Unlike the Shi Xi battery, GaAs batteries are quite sensitive to heat. Another major advantage of gallium arsenide and its alloys as PV cell materials is the ability to make corrections for a wide range of designs. The most important is the high efficiency multi-junction solar cell, which can utilize GaAs film or other ΙΠ-V as the main material, such as GainP2 and GalnAs on the large fast Ge single crystal substrate. The highest verification efficiency of GaAs multi-junction solar cells is greater than 37%. Ge substrates are used in these batteries because GaAs and Ge match very well in lattice spacing and thermal expansion.

價格低於晶質矽包含玻璃及陶瓷礬土之基板已研究作 為III-V化合物半導體太陽能電池應用。在一些範例中,塗 覆厚Ge薄膜之溶融矽石以及陶瓷礬土使用作為塗覆之代 用基板作為外延成長高性能之GaAs/InGaP太陽能電池。Ge 薄膜(微米)沉積於熱膨脹相匹配多晶礬土 (p 一 Al2〇3)上。Substrates with a price lower than that of crystalline germanium containing glass and ceramic alumina have been studied as III-V compound semiconductor solar cell applications. In some examples, molten vermiculite coated with a thick Ge film and ceramic alumina are used as a coating substrate for epitaxially growing high performance GaAs/InGaP solar cells. The Ge film (micron) is deposited on a thermally expanded phase matching polycrystalline alumina (p-Al2〇3).

Ge薄膜後續覆蓋不同的金屬及氧化物薄膜以及利用快速熱 處理過私再結晶。可達成平均顆粒尺寸為大於1腿。使用 GSVT技術GaAs外延層成長於這些大顆粒(&gt;1腿)薄(約為2微 米)Ge層上。這些Ga/As/Ge/陶瓷結構已提出作為串接接面 裝置。 200814341 在覆蓋玻璃上具有HI_V半導體薄膜太陽能電池非常有 益於減少-基板重量以及減少整合處理過程費用。太陽能電 池實際上可採用入射太陽輻射線於覆蓋玻璃基板侧邊上之 構造。 研究已調查沉積出多晶薄膜於玻璃基板作為太陽能電 池應用。結晶品質限制具有單晶薄膜之ΠΙ—ν太陽能電池 性能。先前所提及並無低價格玻璃基板上結構已導致具有 φ 高效率(&gt;30%)之GaAs電池。因而,依靠低價格以及透明玻 、 璃基板之處理過程以及產物為需要的,其將克服相關先前 技術問題。 • 作為微電子半導體附圖以及為了容易呈現出,下列說 • 明係關於半導體在絕緣體(SOI)上結構。以該特別型式S0I 結構作說明將使本發明解釋變為容易以及並不預期及視為 對本發明任何情況之限制。在此簡稱s〇I 一般係指半導體 在絕緣體上結構,包含非限制性之石夕在絕緣體上結構例如 • 為矽在玻璃(Si〇G)結構。同樣地,簡稱為Si〇G —般係指半 、 $體在玻璃上結樣包含非限制性之梦在玻璃上結構。 沿沉名詞預期亦包含半導體在玻璃陶瓷上,包含非限制性 之石夕在玻璃陶瓷上結構。簡稱S0I包含Si〇G結構。 達成SOI結構之各種方法包含G)外延成長Si於晶格相 匹配之基板上;(2)黏接早晶梦晶片至另一梦晶片上,在該 夕日日片上成長出Si〇2氧化層,接著拋光或钕刻上部晶片向 下至例如0· 05至〇· 3微米(50-300通)層單晶石夕;以及⑶離 子植入法,其中離子(例如為氫或氧離子)被植入,在氧離子 200814341 植入情況中將形成例如埋嵌氧化物層於被&amp;覆蓋之石夕晶片 申植入情況中由矽晶片分離(外延)薄的汾·層作 為另一 Si晶片與氧化物層黏接。 在薄的梦溥膜由石夕材料晶片外延出之後,亦能夠使用 化學機械拋光(CMP)來處理SOI結構。不過不利地,Qip無法 在拋光過程中在整個薄的矽薄膜表面均勻地去除材料。一 般表面非均勻性(標準偏差/平均去除厚度)為半導體薄膜 • 之3—5%範圍内。由於更多矽薄膜厚度被去除,薄膜厚度之 、 變化相對地變為更差。 與SOI結顧電子應用作比較,光伏打結構 較大财受性,雖然該缺陷仍然負面地會影響光伏打結構電 、 池之性此。雖然該修飾技術例如為CMP可改善表面特性光 伏打結構缺陷耐受性會造成其價格為過高的。因而需要將 SOI結構製造進步之優點加入於光伏打結構製造之規格,同 時使得相關SOI結構製造先進技術之缺點減為最低。 藝 【發明内容】 ' 依據本發明一個或多個實施例,形成光伏打結構之系 - 統,方法及裝置包含產生外延^以及將其轉移至絕緣體結 構。外延層可由施體半導體晶片產生。施體半導 及外_優先地可由單晶半導體材料所構成。外觸優先 地包含一個或多個光伏打裝置層例如為導電層,其在轉移 至絕緣體紐之前產生。轉移外關優先地包含藉由電解 以及外骑與絕緣層絲間之陽極黏接而形成,以及再使 用熱機械應力由施體半導體分離外縣。在外延層轉移至 200814341 、’g緣體基^反後,一個或多個光伏打裝置亦可產生於外縣 -赃方。在赫外麟之前或魏可猶戴麵修 飾處理過知,及修飾處理過程進行可產生光伏打裝置層。 依據本_—項或乡項實補,形絲偷半導體在 絕緣體上結構之系統,方法及裝置包挪成光伏打結構基 __半導體晶狂轉移光伏打結構基礎至絕緣體基 板,以及沉積一組多個光伏打結構層於ρν基礎上。轉移可 φ 包含光伏打結構基礎陽極黏接至絕緣體結構,以及由施體 、 半導體晶片分離光伏打結構。 在本發明實施例中,形成光伏打半導體在絕緣體上結 - 構之系統,方法及裝置包含產生部份地完成光伏打電池於 • 施體半導體晶片上,以及轉移部份地完成光伏打結齡絕 緣體基板上。轉移包含將部份完成光伏打電池陽極黏接至 絕緣體結橡以及由施體半導體晶片分離部份完成之光伏 打電池。 _ 依據本發明一項或多項實施例,形成光伏打半導體在 \ 結構之系統,方法及裝置包含形成一組多個光伏 • 打電池於部份完成施體半導體晶片上,以及轉移部份完成 至絕緣體基板。轉移包含將部份完成光伏 打電池陽極黏接至絕緣體結構,以及由施體半導體晶片分 離部份完成之光伏打電池。 依據本發明一項或多項實施例,形成光伏打裝置之系 統,方法及裝置包含:將施體半導體晶片施以離子植入處理 過程以產生外延層於施體半導體晶片中;黏接外延層至絕 200814341 緣體基板;由施體半導體晶片分離外延層,外延層作為光伏 孖結構墓礎;苡夏產生二組多個光伏打結構廣於先伏打結 構基礎上。 依據本發明一項或多項實施例,形成光伏打裝置之系 統,方法及裝置包含:將施體半導體晶片施以離子植入處理 過程以產生外延層於施體半導體晶片中;黏接外延層至絕 緣體基板;產生部份完成之光伏打電池於外延層上;黏接外 • 延層至絕緣體紙由施體半導體晶片分離具有部份完成 ^ 光伏打電池之外延層,因而暴露出至少一個分裂之表面;以 及將至少一個分裂表面作修飾處理。 • 依據本發明一項或多項實施例,形成光伏打裝置之系 • 統,方法及裝置包含:形成部份完成光伏打電池於施體半導 體晶片上;將部份完成光伏打電池以及施體半導體晶片處 理之5也體表面施以離子植入處理過程在施體半導體晶片中 產生外延層;將外延層黏接至絕緣體基板;由施體半導體晶 _ 片分離具有部份完成光伏打電池之外延層,因而暴露出至 ' 少一個分裂之表面;及將至少一個分裂表面作修飾處理。 在項或夕項貝施例中,黏接步驟包含:加熱至少一個 絕緣體基板以及施體半導體晶片;促使絕緣體基板直接或 間接地接觸施體半導體晶片之外延層;以及施加電壓於絕 緣體級與施體半導體晶片兩端以產生黏接。絕緣體級 以及施體半導體晶片之溫度可提高至絕緣體勤聽變點之 150C内。絕緣體基板及施體半導體晶片之溫度可提高至 不同的數值。絕緣體基板與施體半導體晶片兩端之電壓約 第10 頁 200814341 為100至10000伏特。應力藉由冷卻黏接之絕緣體勤反,外 延層以及施體半導體晶片產生,餅在離子缺贿發生破 裂’該離子缺陷相在施體半導體晶片内界定出外關之邊 界。加熱以及離子缺陷相與外圍之晶片之不同的敎膨服係 數促使外延層麵子缺陷處純。其產生料體薄膜黏接 至絕緣體。 至少一個分裂表面包含施體半導體晶片之第一分裂表 參 ®二及外赌之第二分裂表面。關於施體半導體晶片相關 、 之第一分裂表面,修飾處理過程可包含處理施體半導體晶 片以作為再使用。關於外延層相關之第二分裂表面,修飾 • 處理過程可包含完成部份完成之光伏打電池。 ‘ 依據本發明一項或多項優先實施例,新的太陽能電池 主要為單晶Ge,Si或GaAs薄膜於透明玻璃或玻璃陶瓷基板 上。在GaAs為主之電池情況中,一項附力^優點為以層可存 在於基板與單晶GaAs層之間。Ge層可加以摻雜以使用基板 _ 作為多接面太陽能電池之底層(即後侧接觸層)。玻璃或玻 ' 璃陶兗基板膨脹性與Ge,Si,GaAs或Ge/GaAs相匹配。Ge,Si ,GaAs或Ge/GaAs薄膜強固黏接單晶層可經由說明於美國第 2004/022944號專利之陽極黏接處理過程形成於玻璃或玻 璃陶瓷上。 處理過程首先包含氫或氫與氦植入Ge,Si或GaAs晶片, 以及在GaAs情況中,可接續沉積鍺薄膜於GaAs晶片之表面 上。Ge,Si或塗覆Ge之GaAS晶片再黏接至玻璃基板,接著分 離Ge, Si,GaAs或GaAs/Ge薄膜結構。所得到s〇G結構進行拋 第η 頁 200814341 光以去除受損區域以及暴露出良好品質單晶半導體層。能 夠使用讓S0G結構作為後續外延成長多層—SivGe;也你 GalnAs等之模板以形成太陽能電池。玻璃除了膨服性與半’ 導體層相匹配,其具有相當高應變點足以承受後續之沉積 條件。 一般光伏打電池結構包含P型式—本質半導體-n型式(P +n),金屬-絕緣體-半導體(MIS),所謂串列接面電池^多 接面電池,以及複合p-n多層結構,但是本發明並不受限於 這些結構。光伏打業界熟知此技術者能夠依據所需要產物 特性例如單接面與多接面產生部份完成之光伏打電池於施 體半導體晶片上。同樣地^不論在離子植入之前或之後形 成部份完成光伏打電池可由熟知此技術者決定,其考慮在 半導體材料中適當的離子植入深度。 人們了解施體半導體晶片為包含單晶施體半導體晶片 之部份結構以及選擇性地包含沉積於施體半導體晶片上之 外延半導體層。外延層(例如黏接至絕緣體基板以及由施 體半導體結構分離之層)可由單晶施體半導體晶片材料形 成。可加以_匕,外延層可由外延半導體層形成以及亦可 包含一些單晶施體半導體晶片材料)。 在閱讀詳細技術說明以及相關現存SOI處理過程將能 夠最佳地了解本發明一項或多項實施例之優點。儘管如此 ,主要優點包含··光伏打結構變化;較薄矽薄膜;具有較高品 質之較均勻矽薄膜;較快速製造產量;改良製造產量;減少 污染及可擴大至大型基板。這些優點自然地將降低費用。 200814341 當複雜光伏打結構經由高溫處理過程开^成於施體半導 體晶爿· 土,—光伏打結構(pvs)可加以變化。所形成高性能 PVS可轉移至低價格玻璃基板上以及完成沉積其餘層以及 完成線路所需要之任何圖案化。 本發明允許只使用所需要之半導體厚度(石夕情況大約 為10-30微米,以及直接頻帶間隙半導體例如為GaAs約為卜 3微米)。與將較厚矽薄膜轉移至絕緣體基板以及再進行抛 • 光以去除受損表面作比較,其對於非常薄之薄幽_以控 、, 制,在本發明所說明處理過程中去除少量材料,其允許薄的 石夕薄膜直接地轉移,而後再沉積或成長額外的厚度。 均勻薄膜為非常需要的。由於處理過程中去除少量材 ' 料,石夕薄膜厚度由離子植入決定。在特定實施例中顯示為 十分均勻的,其標準偏差為lnm。加以對比,拋光通常導致 偏差為去除薄膜厚度數量之5%。 由於需求持續地提昇,快速的生產能力為重要的。不 _ 過,製造SiOG之拋光處理時間約為數十分鐘,以及高溫爐退 ' 火需要數小時。對於更加均勻薄膜,光伏打電池拋光或高 - 溫爐退火之需求將減小。 改善製造產量對廢棄及價格減少亦為重要的。藉由避 免線鑛切口損耗,材料廢棄可顯著地減少。同樣地,昂貴的 施體半導體晶片可加以拋光再使用多次。藉由使用薄膜, 材料耗損同樣地顯著地減少。假如避免抛光S〇i結構,整體 製造產量預期改善。假如拋光處理過程為低產量步驟,該 改善預期特別地顯著。由於薄膜結晶特性,處理窗預期為 第13 頁 200814341 大的,以及因而產量預期為高的。 由於SOI靈敏特性所導致,污染會負面地影響性能,因 而減小污染為高度需要的。為了避免需要利用研磨泥漿拋 光以減少層之厚度,其將減小污染之可能。除此,避免需要 回溫退火亦防止污染擴散,該污染在長時間熱退火處理過 転中需要的。其對光伏打裝置之鱗扮演重要的角色。 處理過程可擴錢大_積。當客戶絲尺寸規格增 加日守,該擴充性可能延長產物之壽命。太陽能電池通常為 大的以達到最大利肖可使用空間,因而光伏打電池變為越 大,需要連接較少光伏打結電池以產生大的太陽能電池。 作為比較,對練大絲尺寸,絲抛歧冑溫爐退火將增 加困難度。 特別地,本發明優先實施例主要優點包含:i )使用低價 才^脹性相匹配之玻璃或玻璃陶瓷基板,該價格與其他更 卬貴半導體^板(例如先前所說明矽作為Ge層以及後續 GaAs成長)或先前技術之熱膨脹不相匹配陶瓷基板比較;2) 存在單晶樣板Si,Ge層或讀GaAs/Ge於雜基板上,其使 用作為樣板以產生晶格相隨非常低缺陷半導體層作為高 效率之太陽能電池,碑辅技射所使狀乡晶樣板⑶ 基板透明允許模組製造具有彈性。 熟知此技術者P辆麵參考本發8辦細朗將清楚地 了解本發明其他項目,特性及優點。 【實施方式】 除非另有說明’在制書及申請翻細巾所使用特 胃14頁 200814341 定物理特性之數值,尺寸,以及成份之重量百分比所有以大 約表示_目宽夠加以變化。人們了解在在說明書及申請 專利範射職珊教數目形了 已作嘗試以確保範例巾所揭示數目讀確性。任何量測之 數值能夠本質性地含有特定誤差,其由於在各別量測技術 中所產生之標準偏差。The Ge film subsequently covers different metal and oxide films and is subjected to rapid recrystallization by rapid thermal processing. An average particle size of greater than 1 leg can be achieved. The GaAs epitaxial layer was grown on these large (&gt;1 leg) thin (about 2 micrometers) Ge layers using GSVT technology. These Ga/As/Ge/ceramic structures have been proposed as tandem junction devices. 200814341 HI_V semiconductor thin film solar cells on cover glass are very beneficial for reducing the weight of the substrate and reducing the cost of the integrated process. The solar cell can in fact be constructed with incident solar radiation on the side of the cover glass substrate. Research has investigated the deposition of polycrystalline films on glass substrates for solar cell applications. The crystal quality limits the performance of the ΠΙ-ν solar cell with a single crystal film. As previously mentioned, there is no low cost structure on a glass substrate that has resulted in a GaAs cell with high efficiency (&gt; 30%). Thus, relying on low cost and processing of transparent glass and glass substrates and products as needed will overcome the related prior art problems. • As a microelectronic semiconductor drawing and for ease of presentation, the following is a description of the structure of a semiconductor on an insulator (SOI). The description of the particular form of the S0I structure will make the explanation of the invention easier and is not intended to be construed as limiting the scope of the invention. In this context, s〇I generally refers to a semiconductor-on-insulator structure, including a non-limiting structure on the insulator, such as a germanium-on-glass (Si〇G) structure. Similarly, the abbreviation for Si〇G is generally a semi-finished, and the body is formed on a glass containing an unrestricted dream structure on the glass. Along the sinking term, it is also expected that the semiconductor will be on the glass ceramic, including the unrestricted stone structure on the glass ceramic. The abbreviation S0I contains a Si〇G structure. Various methods for achieving the SOI structure include G) epitaxially growing Si on a lattice-matched substrate; (2) bonding the early crystal dream wafer to another dream wafer, and growing an Si 〇 2 oxide layer on the eve. Then polishing or engraving the upper wafer down to, for example, 0·05 to 3·3 μm (50-300 pass) layer of single crystal; and (3) ion implantation, in which ions (for example, hydrogen or oxygen ions) are implanted In the case of oxygen ion 200814341 implantation, for example, a buried oxide layer is formed in the case of being implanted, and the thin wafer layer is separated (epitaxial) from the germanium wafer as another Si wafer. The oxide layer is bonded. After the thin nightmare film is epitaxially grown from the Shixi material wafer, chemical mechanical polishing (CMP) can also be used to process the SOI structure. Unfortunately, Qip is unable to evenly remove material throughout the thin tantalum film surface during polishing. The general surface non-uniformity (standard deviation / average removal thickness) is in the range of 3 - 5% of the semiconductor film. As more enamel film thickness is removed, the film thickness changes relatively worse. Compared with SOI's consideration of electronic applications, the photovoltaic structure is more financially constrained, although this defect still negatively affects the photovoltaic structure and the nature of the pool. Although this modification technique such as CMP can improve the surface characteristics of the voltamate structural defect tolerance, the price is too high. Therefore, it is necessary to add the advantages of the manufacturing progress of the SOI structure to the specifications of the photovoltaic structure manufacturing, and at the same time minimize the disadvantages of the advanced technology of the related SOI structure manufacturing. SUMMARY OF THE INVENTION In accordance with one or more embodiments of the present invention, a system for forming a photovoltaic structure, the method and apparatus includes generating an epitaxy and transferring it to an insulator structure. The epitaxial layer can be produced from a donor semiconductor wafer. The donor semiconductor and the outer layer are preferentially composed of a single crystal semiconductor material. The external contact preferentially comprises one or more photovoltaic device layers, such as conductive layers, which are produced prior to transfer to the insulator. The transfer external seal preferentially includes formation by electrolysis and anodic bonding between the outer ride and the insulating layer filament, and the use of the thermomechanical stress to separate the outer county from the donor semiconductor. After the epitaxial layer is transferred to 200814341, the 'g edge base is reversed, one or more photovoltaic devices can also be produced in the outer county-赃fang. Before the treatment of He Wailin or Wei Keju, the surface of the photovoltaic device can be produced by modifying the process and modifying the process. According to the _-item or the rural item, the system, the method and the device for stealing the semiconductor on the insulator structure are transferred into the photovoltaic structure base __the semiconductor crystal mad transfer photovoltaic structure foundation to the insulator substrate, and a set of deposition A plurality of photovoltaic structures are based on ρν. The transfer can be φ including the photovoltaic structure, the anode is bonded to the insulator structure, and the photovoltaic structure is separated from the donor and semiconductor wafers. In an embodiment of the invention, a system for forming a photovoltaic semiconductor on an insulator, the method and apparatus include partially generating a photovoltaic cell on a semiconductor wafer, and transferring partially completing the photovoltaic junction age On the insulator substrate. The transfer includes a photovoltaic cell that partially bonds the photovoltaic cell to the insulator and the photovoltaic cell is separated from the donor semiconductor wafer. </ RTI> According to one or more embodiments of the present invention, a system, method and apparatus for forming a photovoltaic semiconductor structure comprises forming a plurality of photovoltaic cells on a partially completed donor semiconductor wafer, and transferring the portion to Insulator substrate. The transfer involves the partial bonding of the photovoltaic cell to the insulator structure and the photovoltaic cell completed by the separation of the donor semiconductor wafer. In accordance with one or more embodiments of the present invention, a system, method, and apparatus for forming a photovoltaic device includes: applying a donor semiconductor wafer to an ion implantation process to produce an epitaxial layer in a donor semiconductor wafer; bonding the epitaxial layer to The 200811341 edge body substrate; the epitaxial layer is separated by the donor semiconductor wafer, and the epitaxial layer is used as the tomb base of the photovoltaic structure; the summer generation produces two sets of multiple photovoltaic structures on the basis of the first voltaic structure. In accordance with one or more embodiments of the present invention, a system, method, and apparatus for forming a photovoltaic device includes: applying a donor semiconductor wafer to an ion implantation process to produce an epitaxial layer in a donor semiconductor wafer; bonding the epitaxial layer to An insulator substrate; generating a partially completed photovoltaic cell on the epitaxial layer; bonding the outer layer to the insulator paper separated by the donor semiconductor wafer and having a portion of the completed photovoltaic cell, thereby exposing at least one split a surface; and modifying at least one of the split surfaces. In accordance with one or more embodiments of the present invention, a system, method, and apparatus for forming a photovoltaic device includes: forming a partially completed photovoltaic cell on a donor semiconductor wafer; partially completing a photovoltaic cell and a donor semiconductor The surface of the wafer is also subjected to an ion implantation process to produce an epitaxial layer in the donor semiconductor wafer; the epitaxial layer is bonded to the insulator substrate; and the semiconductor wafer is separated by a portion of the semiconductor wafer. The layer is thus exposed to a surface that is less than one split; and at least one split surface is modified. In the item or the embodiment, the bonding step includes: heating at least one of the insulator substrate and the donor semiconductor wafer; causing the insulator substrate to directly or indirectly contact the outer layer of the donor semiconductor wafer; and applying a voltage to the insulator level and applying Both ends of the bulk semiconductor wafer are bonded to each other. The insulator level and the temperature of the donor semiconductor wafer can be increased to within 150C of the insulator hearing change point. The temperature of the insulator substrate and the donor semiconductor wafer can be increased to different values. The voltage across the insulator substrate and the donor semiconductor wafer is approximately 10 to 10,000 volts for 200814341. The stress is generated by cooling the bonded insulator, the epitaxial layer, and the donor semiconductor wafer, and the cake breaks in the ionic brittleness. The ion-deficient phase defines a boundary of the external seal in the donor semiconductor wafer. The different heating and ion-defective phases of the ion-defective phase and the peripheral wafer promote the purity of the epitaxial layer sub-defects. It produces a film of the body bonded to the insulator. At least one of the split surfaces includes a first split surface of the donor semiconductor wafer and a second split surface of the outer bet. Regarding the first split surface associated with the donor semiconductor wafer, the finishing process can include processing the donor semiconductor wafer for reuse. Regarding the second split surface associated with the epitaxial layer, the modification process may include completing a partially completed photovoltaic cell. According to one or more preferred embodiments of the present invention, the new solar cell is primarily a single crystal Ge, Si or GaAs film on a transparent glass or glass ceramic substrate. In the case of a GaAs-based battery, an advantage is that a layer can exist between the substrate and the single-crystal GaAs layer. The Ge layer can be doped to use the substrate _ as the underlayer of the multi-junction solar cell (ie, the backside contact layer). The glass or glass glazing substrate is swellable to match Ge, Si, GaAs or Ge/GaAs. The Ge, Si, GaAs or Ge/GaAs film strongly bonded single crystal layer can be formed on a glass or glass ceramic by an anodic bonding process as described in U.S. Patent Application Serial No. 2004/022944. The process begins with the implantation of hydrogen or hydrogen and helium into a Ge, Si or GaAs wafer, and in the case of GaAs, the tantalum film can be deposited on the surface of the GaAs wafer. The Ge, Si or Ge-coated GaAS wafer is then bonded to the glass substrate, followed by separation of the Ge, Si, GaAs or GaAs/Ge film structures. The resulting s〇G structure is polished to remove the damaged area and expose a good quality single crystal semiconductor layer. It is possible to use the S0G structure as a subsequent epitaxial growth multilayer—SivGe; also a template for your GalnAs to form a solar cell. In addition to the bulkability of the glass, the glass has a relatively high strain point sufficient to withstand subsequent deposition conditions. A typical photovoltaic cell structure includes a P-type-essential semiconductor-n-type (P+n), a metal-insulator-semiconductor (MIS), a so-called tandem junction cell, a multi-junction cell, and a composite pn multilayer structure, but the present invention It is not limited to these structures. Those skilled in the art of photovoltaics are able to produce partially completed photovoltaic cells on a donor semiconductor wafer in accordance with desired product characteristics such as single junctions and multiple junctions. Similarly, the formation of a partially completed photovoltaic cell prior to or after ion implantation can be determined by those skilled in the art, which takes into account the appropriate ion implantation depth in the semiconductor material. It is understood that the donor semiconductor wafer is part of the structure comprising the single crystal donor semiconductor wafer and optionally comprises an epitaxial semiconductor layer deposited on the donor semiconductor wafer. The epitaxial layer (e.g., bonded to the insulator substrate and the layer separated by the donor semiconductor structure) can be formed from a single crystal donor semiconductor wafer material. Alternatively, the epitaxial layer may be formed of an epitaxial semiconductor layer and may also comprise some single crystal donor semiconductor wafer material. The advantages of one or more embodiments of the present invention will be best understood from a review of the detailed description of the <RTIgt; Nonetheless, the main advantages include • photovoltaic structural changes; thinner tantalum films; more uniform tantalum films with higher quality; faster manufacturing yields; improved manufacturing yields; reduced contamination and expansion to large substrates. These advantages will naturally reduce costs. 200814341 When a complex photovoltaic structure is opened to the donor semiconductor wafer and soil via a high temperature process, the photovoltaic structure (pvs) can be varied. The resulting high performance PVS can be transferred to a low cost glass substrate and any patterning required to deposit the remaining layers and complete the wiring. The present invention allows the use of only the desired semiconductor thickness (about 10-30 microns for the case of a stone, and a direct band gap semiconductor such as GaAs for about 3 microns). In contrast to transferring a thicker tantalum film to an insulator substrate and then polishing to remove the damaged surface, it is very thin and thin, and a small amount of material is removed during the process described in the present invention. It allows the thin Shishi film to be transferred directly and then deposited or grown to an extra thickness. A uniform film is highly desirable. Due to the removal of a small amount of material during processing, the thickness of the film is determined by ion implantation. It is shown to be quite uniform in certain embodiments with a standard deviation of 1 nm. In contrast, polishing typically results in a deviation of 5% of the thickness of the film removed. Rapid production capacity is important as demand continues to increase. No, the polishing time for the manufacture of SiOG is about tens of minutes, and the high temperature furnace is required to take off for several hours. For more uniform films, the need for photovoltaic cell polishing or high-temperature furnace annealing will be reduced. Improving manufacturing production is also important for disposal and price reduction. Material waste can be significantly reduced by avoiding wire cut loss. Similarly, expensive donor semiconductor wafers can be polished and used multiple times. By using a film, the material consumption is likewise significantly reduced. If the polishing of the S〇i structure is avoided, the overall manufacturing yield is expected to improve. This improvement is expected to be particularly significant if the polishing process is a low throughput step. Due to the crystalline nature of the film, the processing window is expected to be large on page 13 200814341, and thus the yield is expected to be high. Due to the sensitive nature of SOI, contamination can negatively impact performance, so reducing pollution is highly desirable. In order to avoid the need to use abrasive slurry polishing to reduce the thickness of the layer, it will reduce the possibility of contamination. In addition, avoiding the need for temperature annealing and preventing the spread of contamination, which is required in the long-term thermal annealing treatment. It plays an important role in the scale of photovoltaic devices. The process can expand the amount of money. This expandability may extend the life of the product as the customer's wire size specification increases. Solar cells are usually large to achieve the maximum available space, so the larger the photovoltaic cell becomes, the less photovoltaic cells need to be connected to create a large solar cell. As a comparison, for the size of the processed large wire, the annealing of the wire throwing furnace will increase the difficulty. In particular, the main advantages of the preferred embodiment of the present invention include: i) the use of low-cost swell-matched glass or glass-ceramic substrates at a price comparable to other more expensive semiconductor boards (eg, previously described as a Ge layer and Subsequent GaAs growth) or prior art thermal expansion mismatched ceramic substrates; 2) single crystal Si, Ge layer or read GaAs/Ge on a hetero-substrate, which is used as a template to produce a lattice-dependent very low-defect semiconductor The layer is used as a high-efficiency solar cell, and the substrate is made of a transparent crystal substrate. (3) The transparency of the substrate allows the module to be manufactured with elasticity. Those skilled in the art will be able to clearly understand other items, features and advantages of the present invention with reference to the present invention. [Embodiment] Unless otherwise stated, the numerical values, dimensions, and weight percentages of the physical properties of the materials used in the manufacture of the book and the application of the smear are all expressed by the approximate width. People understand that in the specification and application of the patent model, the number of students has been tried to ensure the correctness of the number revealed by the sample towel. Any measured value can inherently contain a particular error due to the standard deviation produced in the respective measurement technique.

所謂&quot;晶胖導體娜”健材料為完全結晶或實質上 結晶的,刻意地或非刻親或意外地加入缺陷及/或摻雜劑 f其中。因而其包含⑴前身產物材料,半導體或非半導體 曰產物材料形成為半導體讀料。晶質半導體材料可為單 :曰或夕晶材料。確實地半導性材料通常含有至少一些内 部或表面缺陷或刻意地加上例如晶顧赋顆粒邊 口月貝貝上結晶”亦反應出特定摻雜劑會扭曲或影響半導體 材料之晶體結構。 &quot; :H 4,5及6(圖4-6),其分別地顯示出依據本發明一 =多項實施例光伏打S0I結構之pvs變化醜,麵及 100。光伏打S〇1結構100可表示為Pv soi結構100,或PVS W j考這些附圖,結構1GG亦可以SiOG作為範例。 1姓結構1〇〇可包含*玻璃製造出之絕緣體級1〇1,光伏 1Q2(® 4),離子植入區域103,後侧細層1〇4, Hi導體層觸,&amp;形式半導體層雇,及導電朗110 1(^去構100具有與光伏打結裝置相關之適當用途。 '、%囪層110為作為歐姆接觸之導電材料層。導電窗 第15 頁 200814341 層為半透明的,或透明的。範例性材料為銦錫氧化物材料, 其通常藉窗在氧化性大氣中喷塗反應性乜翁標鞋而形成 。銦錫氧化物替代物可包含例如摻雜銘之氧化辞,換雜蝴 之氧化鋅,或甚至於碳奈米管。銦錫氧化物GT〇,或換雜錫 之氧化銦)為銦(ΠI)氧化物(I·)以及錫(^ v)氧化物類 (SnO〇,通常為90%重量比In2〇s,10%重量比sn〇2。其薄層 為透明以及無色的。在大塊形式中,其為淡黃至灰色的。 # 銦錫氧化物主要特性為結合導電及光學透明性。不過,在 ^膜沉積過程巾將折衷,高濃度電荷载體將提高材料之導 包性,但疋降低其透明度。銦錫氧化物之薄膜 子束蒸發,物理汽相沉積法,或喷塗技術沉積於其表面上。 層106及⑽半導體材料實質上可為單晶材料形式。所 ’實質上&quot;在於說明層106,1〇8考慮半導體材料通常含有 至少-些_絲面缺陷本讎地_意地加上例如晶格 • 界。所謂實質上亦反麟 體材料之晶體結構场-形式半導體層二 =p-形式摻雜劑,其中p_形式半導體層⑽包含n_形式推 意在所有情況中P'形式層⑽比形式層潮厚, ”中要求大部份電洞配對形成於?—形式層雇中。The so-called &quot;Chen fat conductor" material is completely crystalline or substantially crystalline, deliberately or non-intimately or accidentally added to the defect and / or dopant f. Therefore it contains (1) precursor material, semiconductor or non- The semiconductor germanium product material is formed as a semiconductor read material. The crystalline semiconductor material may be a single: germanium or a solar crystal material. Indeed, the semiconductive material usually contains at least some internal or surface defects or deliberately added, for example, a crystalline particle edge. Crystallization on the moonshell also reflects the specific dopant that can distort or affect the crystal structure of the semiconductor material. &quot; : H 4, 5 and 6 (Fig. 4-6), which respectively show the pvs change ugly, face and 100 of the photovoltaic S0I structure according to one embodiment of the present invention. The photovoltaic device S〇1 structure 100 can be represented as a Pv soi structure 100, or PVS W j. These structures can also be exemplified by the structure 1GG. 1 Surname structure 1〇〇 can include *Insulator grade 1〇1 made of glass, Photovoltaic 1Q2(® 4), Ion implantation region 103, Rear side fine layer 1〇4, Hi conductor layer contact, &amp; Form semiconductor layer Employed, and conductive Lang 110 1 (^ destructive 100 has the appropriate use related to photovoltaic knotting device. ',% of the layer 110 is a layer of conductive material as an ohmic contact. Conductive window page 15 200814341 layer is translucent, Or transparent. The exemplary material is an indium tin oxide material, which is usually formed by spraying a reactive smear in an oxidizing atmosphere. The indium tin oxide substitute may include, for example, an oxidized word of doping. Change the zinc oxide of the butterfly, or even the carbon nanotubes. Indium tin oxide GT 〇, or indium oxide substituted for tin) is indium (ΠI) oxide (I·) and tin (^ v) oxide (SnO〇, usually 90% by weight of In2〇s, 10% by weight of sn〇2. Its thin layer is transparent and colorless. In bulk form, it is pale yellow to gray. # Indium tin oxide The main characteristic is the combination of electrical and optical transparency. However, the film deposition process will be compromised, and the high concentration of charge carriers will improve the material. The conductivity is reduced, but the transparency is reduced. Thin film sub-beam evaporation of indium tin oxide, physical vapor deposition, or spray coating is deposited on the surface. Layer 106 and (10) semiconductor material may be substantially single crystal material. Form. The term "substantially" lies in the description of layers 106, 1 〇 8 considering that the semiconductor material usually contains at least some of the stencil defects _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Crystal structure field-form semiconductor layer two = p-form dopant, wherein the p_ form semiconductor layer (10) contains the n_ form. In all cases, the P' form layer (10) is thicker than the formal layer, "most of the requirements The hole pairing is formed in the ?-form layer employment.

非另ίίΓ用途,假設半導體層1〇6,108由石夕所構成,除 :過人們了解半導體材料可為石夕為主半導體 半導體式之轉體’·為ΠΜ,IIMV等種類之 ,及 InP、材料之範例包含:Si,SiGe,Sic,Ge,GaAs’GaP 第16 頁 200814341 後侧接麟104可解導騎,·鱗賴金屬為主 或金屬勉之層。-後侧接觸層為歐姆接觸,即半導體裝置 上被處理之區域,使得裝置之電流-電壓α-ν)鱗為線性 及對稱的。後侧翻支撐可加以選擇作為熱穩定雌觸si ,如,後侧支撑層104可為鋁或矽化物,例如為二^化欽, m例將細於底下。雜物多石夕 化物組合具有雛導電雛而優於單獨之乡及_ 會在後續處理過程中熔融。 可藉由 &gt;儿積例如LED, CVD或PECVD產生後侧接觸層i 〇4 。亦能夠使用内延(MeS0taxy)或外延法。聽外延法為成 長相匹配晶相於絲表面上,内延法為成長結晶相匹配晶 相於宿晶體表_下。在該處理過程中,離子以相當高能 ,及量劑植入至材料以產生一層第与目,以及控制溫度使 得標靶晶體結構並*會受到破壞。層之晶體指向能夠加工 以與標鞋相匹配,甚至於確實之晶體結構及晶格常數可為 不同的。例如,在鎳離子植入至矽晶片後,能夠成長一層矽 化鎳,其中石夕化物結晶指向與石夕之結晶指向相匹配。 使用外延或内延法以形成後侧接觸層104視為圖4結構 100A細5及6中結構麵與10GC目之概念性界面,只要顯 示於圖7-9以及Π t外骑122包含外延或内_,形成後 侧接觸104,以及半導體層在其上面。由於半導體層可作為 圖4中光伏打結構之基礎(pvsF)1〇2,半導體層及接觸層1〇4 &amp;合可視為部份地完成Pvs 124,其說明於圖8及13中。因 而,在陽極黏接(步驟2〇8)之前使用外延或内延法或離子植 200814341 入形成後侧接觸層104產生部份完成之PVS丨24以形成後侧 200Β ^2000-^##^ 在接續處理過程200A之外延分離(步驟)之後,使用外延或 内延法或離子植入轉移PVSF 102以及形成後侧接觸層1〇4 〇同樣地,後侧接觸層104可在外延分離後藉由重度摻雜 PVSF 102形成。該重度摻雜通常藉由離子植入方式實施。 除此,假如後侧接觸層1〇4在外延分離(步驟21〇)之後 沉積於PVSF 102結構上,將產生PVS 1〇〇之變化。可加以變 化’叙如PVSF 102在内延法之前或之後摻雜,當p-形式半導 體以及後側接觸層104藉由内延法形成,會產生類似於變化 100A或100B之PVS 100。假如後侧接觸層1〇4之内延成長深 度在PVSF 102中間内,-層PVSF 102可殘留於後侧細層 104底下,如變化結構100A。假如後侧接觸層1〇4内延成長 之深度達到PVSF 102之黏接表面126,少量或無pvsf 1〇2層 保留在後侧接觸層1〇4底下,如變化結構ι〇〇Β情況。 由於導電層形成於外_ 122上面或之中,無論由外延 ,内延,離子植入,摻雜,汽相傳送,汽相沉積等形成,導電層 與外_ 122整體形成。假如導電層在外職122黏接i絕 緣體絲101之前形成於外觸上或之中,當外縣122黏接 至基板101時導電層鄰近於絕緣體基板1〇1。換言之,導電層 將形成接近外骑職邊,該外延層面對著絕緣體基柄二 得所形成之導電層在絕緣體絲與外縣之間。假如外延 層122首先黏接至絕緣體絲1〇1以及導電層在形成於外延 層上或之中,導電層在或接近相對於絕緣體雜而之外延 第18 頁 200814341 層122側邊上以及因而遠離絕緣體基板1〇卜同樣地,形成於 外延層Ί2Ζ之申,或其上面或高於外延層之隹何光伏打裝置 層在外延層122已黏接至絕緣體基板1〇1之後將遠離絕緣體 基板101 〇 參考圖15-17將更詳細說明,離子植入區域103形成於 絕緣體基板101及黏接至絕緣體基板101層間之陽極黏接任 何一侧上;該層在變化結構100A中為PVS基礎102,在變化結 構100B中為後侧接觸層1〇4;或在變化結構100A中為導電窗 11〇。離子植入區域103並不存在於先前技術之光伏打結構 中0 • 與圖5及6中變化結構100B及100C中比較,圖4中變化結 構100A包含PV結構基礎102。當外延層122在不存在任何額 外層情況時,轉移至絕緣體基板101而產生部份完成pVS 124 (PCOVS)將產生光伏打結構基礎1〇2。基本上,外延層122由 於黏接至絕緣體基板101可視為變為PVSF 102 〇因而,PVSF _ 102可由單晶半導體層所構成,由於其由圖7及1〇所顯示之 ^ 施體晶片120產生。 目前玻璃基板之絕緣體基板101可由氧化物玻璃或氧 化物玻璃陶瓷形成。雖然並不要求,在此所說明實施例可 包含氧化物玻璃或玻璃陶曼,其應變點呈現出小於10001 。如傳統玻璃製造業界,應變點溫度為玻璃或玻璃陶甍黏 滯係數為10146泊(10ia6Pa· s)之溫度。由於在氧化物玻 璃或氧化物玻璃陶瓷之間,玻璃具有較為簡單製造之優點, 因而像得玻璃更廣泛地利用以及較為便宜。 第19 頁 200814341 例如,玻璃基板101可由含有鹼土金屬離子之玻璃基板 形成,例如為由本公司玻璃編说1737及Eagle 2000形成之 基板。些玻璃材料具有其他用途,特別是例如製造液晶 顯示器。 玻璃基板厚度在〇· 1mm至10麵範圍内,例如在〇· 5麵至3 咖範圍内。對於一些SOI結構,厚度大於或等於}微米(例如 為〇· 001咖或lOOOmO之絕緣層為需要的以防止寄生電容效 應’ ¥具有Si/SiCfe/Si構造之標準SOI結構在高頻率下操作 時將產生該效應。過去難以達成該厚度。依據本發明,具 有絕緣層厚度大於1微米之S0I結構可單純地使用厚度大於 或專於1微米之玻璃基板1〇1立即地達成。玻璃基板皿厚 度之下限約為1微米,即lOOOnm。 通系’玻璃基板101厚度應該在整個黏接處理步驟中以 及在光伏打SiOG結構100進行後續處理中足以支撐半導體 層106,108 〇雖然玻璃基板1〇1厚度並無理論之上限,超越 支撐功能需求之厚度或最終光伏打Si〇G結構所需要厚度並 非有益的,因為絲絲1()1厚度越大,越難以在形成光伏 打SiOG結構1〇〇中完成至少一些處理步驟。 氧化物玻璃或氧化物玻璃陶瓷1〇1可為石夕石為主的。 因而,在氧化物玻璃或氧化物玻璃陶瓷中Si&amp;莫耳百分比 可大於30%莫耳比以及可大於概莫耳比。在玻璃陶竟情況 中,晶相能夠為莫來石,堇青石,石,尖晶石或其他業界 熟知之玻璃陶变晶相。非石夕石為主玻璃或玻璃陶究可使用 於實施本發明i或多項實施例,但是通常為較不有益的, 第20 頁 200814341 因為其較高價格及/或不良性能特性。 —樣的;:對於二些應用例如採用非矽石為主之半導體 材料的SOI結構,需要非氧化物為主例如非氧化物玻璃之玻 璃基板,但是通常並非有益的,因為其價格較高。如底下更 詳細說明,在一項或多項實施例中,玻璃或玻璃陶瓷基板101 設計成與一種或多種層(主要為1〇2,1〇4,106,108或110等) 半導體材料之熱膨脹係數相匹配(例如Si,Ge等),該層直接 φ 地或間接地黏接至基板。熱膨脹係數相匹配確保在沉積處 理過程加熱循環過程中所需要之機械特性。 對於光伏打應用,玻璃或玻璃陶瓷101在可見光,近紫 外線,及/或紅外線波長範圍内為透明的,例如玻璃或玻璃 . 陶瓷101在35〇nm至2微米波長範圍内為透明的。特別是在 100CL结構中具有透明或至少半透明的玻璃為重要的, 其中光線在到達其餘PV結構騰之前進入絕緣體舰1〇1 。不過在變化結構醜及麵中,光線並不會進入絕緣體 ⑩勤反101,因而其與絕緣體魏1〇1是否為透明的無關,在該 . 情況下選擇絕緣體基板101係依據其他標準特別是埶膨服 係氣而非只依據價格決定出。 … 雖然玻璃紐101可由單一玻璃或玻璃陶究層所構成 假如需要情況下可個疊層結構。當_疊層結構時最, =黏接其中(例如跟104或110)之疊層具有在此所綱 由早一玻璃或玻璃陶瓷所構成玻璃基板之特性。 層之層亦具有這些特性,但是可具有較為緩和特性因為直 並不直接地與黏接層相互作用。在後者情況中,當玻璃基 200814341 板101不再滿足特定特性時,玻璃基板視為無法再使用。參 考圖7,8及9,其顯示出進行處理步驟以依據本發明一項或 多項實施例製造出PV結構1〇〇。處理過程2〇_示於圖 ,處理過程蓮顯示於圖8中,處理過程2GGC _示於圖9中。 在這些模組圖中各別作用(步驟)具有下列意義: 202:處理施體半導體晶片之表面; 203·將施體半導體晶片施以離子植入處理過程; 204:將施體半導體晶片施以中度氧化; , 205:產生部份完成之光伏打結構; 206 :將部份完成Pvs以及施體晶片施以離子植入處理過For other purposes, it is assumed that the semiconductor layer 1〇6,108 is composed of Shixi, except that people know that the semiconductor material can be a turn-based semiconductor semiconductor-type turn-body, such as ΠΜ, IIMV, etc., and InP, materials. Examples include: Si, SiGe, Sic, Ge, GaAs'GaP Page 16 200814341 The rear side of the lining 104 can be used to decouple the ride, the scale is mainly metal or the layer of metal enamel. The back side contact layer is an ohmic contact, i.e., the area being processed on the semiconductor device, such that the current-voltage α-ν scale of the device is linear and symmetrical. The back roll support can be selected as a thermally stable female touch si. For example, the back side support layer 104 can be aluminum or a telluride, such as a bismuth, and the m case will be finer than the bottom. The combination of debris and polylithic compounds has a younger conductive chick and is superior to the individual town and _ will melt during subsequent processing. The backside contact layer i 〇 4 can be produced by &gt; chiral product such as LED, CVD or PECVD. It is also possible to use the internal extension (MeS0taxy) or the epitaxial method. The epitaxial method is to match the crystal phase to the surface of the filament, and the internal extension method is to grow the crystal phase to match the crystal phase to the sink crystal table. During this process, ions are implanted into the material at a relatively high energy, and the dose is applied to create a layer of the object, and the temperature is controlled to cause the target crystal structure to be destroyed. The crystal orientation of the layer can be machined to match the shoe, and even the exact crystal structure and lattice constant can be different. For example, after nickel ions are implanted into the germanium wafer, a layer of germanium oxide can be grown, wherein the crystals of the stone crystals are aligned with the crystallographic orientation of the stone. The use of an epitaxial or internal extension method to form the backside contact layer 104 is considered to be a conceptual interface between the structural planes of 10 and 6 in the structure 100A of FIG. 4, as long as it is shown in FIGS. 7-9 and the outer ride 122 contains epitaxy or Inner _, forming a back side contact 104, and a semiconductor layer thereon. Since the semiconductor layer can serve as the basis (pvsF) 1 〇 2 of the photovoltaic structure in Fig. 4, the semiconductor layer and the contact layer 1 〇 4 &amp; can be regarded as partially completing the Pvs 124, which are illustrated in Figs. Thus, the epitaxial or internal extension method or ion implantation 200814341 is used to form the partially completed PVS 丨 24 to form the back side 200 Β ^ 2000 - ^ ##^ before the anodic bonding (step 2 〇 8). After the extension process (step) of the subsequent process 200A, the PVSF 102 is transferred using epitaxial or internal extension or ion implantation and the back side contact layer 1〇4 is formed. Similarly, the back side contact layer 104 can be borrowed after the epitaxial separation. Formed by heavily doped PVSF 102. This heavy doping is usually carried out by ion implantation. In addition, if the backside contact layer 1〇4 is deposited on the PVSF 102 structure after epitaxial separation (step 21A), a change in PVS 1〇〇 will occur. The change can be made as described before or after the PVSF 102 internal extension method. When the p-form semiconductor and the back side contact layer 104 are formed by the internal extension method, a PVS 100 similar to the change 100A or 100B is produced. If the inner extension depth of the back side contact layer 1〇4 is in the middle of the PVSF 102, the -layer PVSF 102 may remain under the back side fine layer 104, such as the varying structure 100A. If the depth of the back side contact layer 1〇4 reaches the bonding surface 126 of the PVSF 102, a small amount or no pvsf 1〇2 layer remains under the back side contact layer 1〇4, as in the case of varying structures. Since the conductive layer is formed on or in the outer layer 122, whether formed by epitaxy, internal extension, ion implantation, doping, vapor phase transport, vapor deposition or the like, the conductive layer is integrally formed with the outer layer 126. If the conductive layer is formed on or in the external contact before the external member 122 is bonded to the insulating filament 101, the conductive layer is adjacent to the insulator substrate 1〇1 when the outer county 122 is bonded to the substrate 101. In other words, the conductive layer will form close to the outer riding edge, and the conductive layer formed by the epitaxial layer facing the insulator shank is between the insulator wire and the outer county. If the epitaxial layer 122 is first bonded to the insulator filament 1〇1 and the conductive layer is formed on or in the epitaxial layer, the conductive layer is on or near the side of the layer 122 of the 200814341 layer 122 and thus away from the insulator The insulator substrate 1 is similarly formed on the epitaxial layer, or above or above the epitaxial layer, the photovoltaic device layer will be away from the insulator substrate 101 after the epitaxial layer 122 has been bonded to the insulator substrate 1〇1. Referring to FIGS. 15-17 in more detail, the ion implantation region 103 is formed on either side of the insulator substrate 101 and the anodic bonding between the layers of the insulator substrate 101; the layer is the PVS substrate 102 in the variation structure 100A, In the variation structure 100B, it is the back side contact layer 1〇4; or in the variation structure 100A, it is the conductive window 11〇. The ion implantation region 103 is not present in the prior art photovoltaic structure. 0. In contrast to the variation structures 100B and 100C of Figs. 5 and 6, the variation structure 100A of Fig. 4 includes a PV structure foundation 102. When the epitaxial layer 122 is in the absence of any outer layer, transfer to the insulator substrate 101 to produce a partially completed pVS 124 (PCOVS) will result in a photovoltaic structure basis 1〇2. Basically, the epitaxial layer 122 can be regarded as becoming PVSF 102 by being bonded to the insulator substrate 101. Therefore, the PVSF_102 can be composed of a single crystal semiconductor layer, which is produced by the wafer 120 shown in FIGS. 7 and 1B. . The insulator substrate 101 of the present glass substrate can be formed of oxide glass or oxide glass ceramic. Although not required, the embodiments described herein may comprise oxide glass or glass Tauman with strain points exhibiting less than 10001. For example, in the traditional glass manufacturing industry, the strain point temperature is the temperature at which the glass or glass ceramics has a viscosity coefficient of 10,146 poise (10 ia6 Pa·s). Since glass has a relatively simple manufacturing advantage between oxide glass or oxide glass ceramics, glass is more widely used and cheaper. Page 19 200814341 For example, the glass substrate 101 may be formed of a glass substrate containing alkaline earth metal ions, for example, a substrate formed by our company's glass styling 1737 and Eagle 2000. Some glass materials have other uses, such as, for example, the manufacture of liquid crystal displays. The thickness of the glass substrate is in the range of 〇·1 mm to 10, for example, in the range of 〇·5 faces to 3 咖. For some SOI structures, the thickness is greater than or equal to μm (for example, an insulating layer of 〇 001 00 or 100 Ω is required to prevent parasitic capacitance effects' ¥ Standard SOI structure with Si/SiCfe/Si construction operating at high frequencies This effect will be produced. It has been difficult to achieve this thickness in the past. According to the present invention, an SOI structure having an insulating layer thickness of more than 1 μm can be achieved immediately by simply using a glass substrate 1〇1 having a thickness greater than or exclusively for 1 μm. The lower limit is about 1 micron, that is, 100om. The thickness of the glass substrate 101 should be sufficient to support the semiconductor layer 106, 108 整个 in the entire bonding process step and in the subsequent processing of the photovoltaic SiOG structure 100, although the thickness of the glass substrate is 1〇1 and Without the theoretical upper limit, it is not beneficial to exceed the thickness of the support function or the thickness required for the final photovoltaic Si〇G structure, because the larger the thickness of the filament 1()1, the more difficult it is to form in the formation of the photovoltaic SiOG structure. At least some of the processing steps. Oxide glass or oxide glass ceramics 1〇1 may be dominated by Shi Xishi. Thus, in oxide glass or oxide The percentage of Si&amp; molars in glass ceramics can be greater than 30% molar ratio and can be greater than the general molar ratio. In the case of glass ceramics, the crystalline phase can be mullite, cordierite, stone, spinel or other well known in the industry. Glass-ceramic crystalline phase. Non-stone-stone-based glass or glass can be used to practice one or more embodiments of the invention, but is generally less beneficial, page 20, 200814341 because of its higher price and/or Poor performance characteristics. - For two applications, such as SOI structures using non-mercite-based semiconductor materials, non-oxide based glass substrates such as non-oxide glass are required, but are generally not beneficial because of their The price is higher. As explained in more detail below, in one or more embodiments, the glass or glass ceramic substrate 101 is designed to thermally expand with one or more layers (mainly 1〇2, 1〇4, 106, 108 or 110, etc.) semiconductor material. The coefficients are matched (eg, Si, Ge, etc.) and the layer is bonded directly or indirectly to the substrate. The coefficients of thermal expansion match to ensure the mechanical properties required during the heating cycle of the deposition process. For photovoltaic applications, glass or glass-ceramic 101 is transparent in the visible, near-ultraviolet, and/or infrared wavelength range, such as glass or glass. Ceramic 101 is transparent in the 35 〇 nm to 2 μm wavelength range. It is important to have a transparent or at least translucent glass in the 100CL structure, where the light enters the insulator ship 1〇1 before reaching the rest of the PV structure. However, in the ugly surface of the change structure, the light does not enter the insulator 10 101, and thus it is irrelevant whether or not the insulator Wei 1〇1 is transparent. In this case, the selection of the insulator substrate 101 is determined according to other standards, in particular, depending on the price. ... Although the glass New 101 can be composed of a single glass or glass ceramic layer, a laminated structure can be used if necessary. When the laminate structure is the most, the laminate to which it is bonded (for example, with 104 or 110) has the characteristics of a glass substrate composed of glass or glass ceramics as described herein. The layers of the layer also have these characteristics, but may have a more moderate nature because they do not directly interact with the bonding layer. In the latter case, when the glass-based 200814341 plate 101 no longer satisfies certain characteristics, the glass substrate is considered to be unusable. Referring to Figures 7, 8 and 9, it is shown that a processing step is performed to fabricate a PV structure in accordance with one or more embodiments of the present invention. The process 2〇 is shown in the figure, the process lotus is shown in Figure 8, and the process 2GGC_ is shown in Figure 9. The respective roles (steps) in these module diagrams have the following meanings: 202: processing the surface of the donor semiconductor wafer; 203) applying the donor semiconductor wafer to the ion implantation process; 204: applying the donor semiconductor wafer Moderate oxidation; , 205: Partially completed photovoltaic structure; 206: Partially completed Pvs and donor wafers are ion implanted

207:將部份完成光伏打結翻^中度氧化; 208:在光伏打結構(或部份完成光伏打)基礎與玻璃之 間形成陽極黏接; 210:由施體半導體晶片分離玻璃層/PVSF/外延層;以及 212 ·將知體半導體晶片及/或pw基礎施以修整處理。 圖10-18顯示出中間以及接近最終之結構,其可實施圖 7’8 &amp; 9 理過程形成。在圖10巾,箭頭顯示表面處理操 =。在圖11中,箭頭代表依據本發明一項或多項實施例之 離子流(例如氫離子)被植入以及一般方向 。在圖12中,箭 依據本發明特定實施例外延層之奉面修整步驟中 &amp;電毁或其他材料或操作以及其一般方向。在圖13中 則,代表在本發明特定實施例中形成後侧接觸層及/或導 電_材料及/或操作,以及一般沉積方向。在圖14中箭頭代 第22 頁 200814341 表摻雜各別層材料(例如摻雜劑)及/或操作(換雜處理過程 ),-从+及其:rn身免方命.'.......... 在圖7-10步驟202中,施體半導體晶片12〇 ^施體 表面121藉由拋光,清理等方式處理以產生相當平坦以及均 勻處理樣體表面121而適合作為黏接至pvs搞。處理之 %體表面121將形成PV結構基礎1〇2或半導體層1〇6,1〇8之 底侧。作為說明目的,半導體晶片12〇可換雜(n—形式或 φ 形式)單晶矽晶片,然而可採用上述所說明任何適當之半導 、、 體材料。 ' 處理過程200A及200B之步驟203或處理過程2〇〇C之步 ‘ 驟206亦顯示於圖11中,外延層122藉由將離子植入表面121 即處理之施體表面121或任何形成於處理之施體表面12丨上 之層施以一種或多種離子植入處理過程以產生弱化區域於 施體半導體晶片120之處理施體表面121底下。雖然本發明 實施例並不受限於任何特定形成外延層122之方法,一種適 ⑩ 當的方法要求施體半導體晶片120之處理施體表面121施以 〜 氫離子植入處理過程以至少啟始在施體半導體晶片120中 _ 產生外延層122。 植入能量使用傳統技術力π以調整以達成適當厚度之外 延層122。例如,可採用氫離子植入,雖然可採用其他離子 或其多種離子,例如硼+氫,氦+氫,或其他外延文獻中已知 的離子。任何其他已知的或在此發展適合形成外延層122 之技術可加以採用而並不會脫離本發明之精神及範圍。 決定於PV SOI結構100之參數,在處理施體表面121頂 第23 頁 200814341 部上層之厚度及數目,及任何中間處理步驟可能之用途例 如CMP或FA,外觀|—Γ22—可製造為所需要及7或吾理乏厚度。 #又如各種設計限制要求外延層122比所需要還厚,例如使用 於微電子中,可使用質量去除之已知的方法例如CMp或撤光 以在步驟210中外延出之後減小層122之厚度。不過,使用 質1去除步驟將使整體製造處理過程增加時間以及費用以,207: partially completing the photovoltaic knotting and moderate oxidation; 208: forming an anodic bond between the photovoltaic structure (or partially completing photovoltaic) and the glass; 210: separating the glass layer from the donor semiconductor wafer/ PVSF/epitaxial layer; and 212. The trim semiconductor wafer and/or the pw base are subjected to a trimming process. Figures 10-18 show the intermediate and near-final structure that can be implemented in Figures 7'8 &amp; In Figure 10, the arrow shows the surface treatment =. In Figure 11, the arrows represent ion currents (e.g., hydrogen ions) implanted in a general orientation in accordance with one or more embodiments of the present invention. In Fig. 12, arrows are in accordance with a particular embodiment of the present invention in which the epitaxial layer is subjected to a trimming step &amp; electrical destruction or other material or operation and its general orientation. In Fig. 13, there is shown the formation of a backside contact layer and/or conductive material and/or operation, and a general deposition direction in a particular embodiment of the invention. In Figure 14, the arrow on page 22, 200814341 is doped with individual layer materials (such as dopants) and / or operation (replacement process), - from + and its: rn body free life. '... In step 202 of FIG. 7-10, the donor semiconductor wafer 12 is processed by polishing, cleaning, etc. to produce a relatively flat and uniform processing of the sample surface 121 suitable for use as a paste. Connected to pvs. The treated body surface 121 will form the PV structure base 1〇2 or the bottom side of the semiconductor layers 1〇6, 1〇8. For illustrative purposes, the semiconductor wafer 12 can be replaced with a (n-form or φ-form) single crystal germanium wafer, although any suitable semiconductor and body materials described above can be employed. The step 203 of the process 200A and 200B or the step of the process 2〇〇C step 206 is also shown in FIG. 11, and the epitaxial layer 122 is formed by implanting ions into the surface 121, ie, the processed donor surface 121 or any The treated layer on the body surface 12 is subjected to one or more ion implantation processes to create a weakened region beneath the treated donor surface 121 of the donor semiconductor wafer 120. Although embodiments of the present invention are not limited to any particular method of forming epitaxial layer 122, a suitable method requires that donor body surface 121 of donor semiconductor wafer 120 be subjected to a hydrogen ion implantation process to at least initiate An epitaxial layer 122 is created in the donor semiconductor wafer 120. The implant energy is adjusted using conventional techniques force π to achieve an appropriate thickness of the outer layer 122. For example, hydrogen ion implantation may be employed, although other ions or multiple ions thereof may be employed, such as boron + hydrogen, helium + hydrogen, or other ions known in the art. Any other technique known or suitable for forming epitaxial layer 122 may be employed without departing from the spirit and scope of the invention. Depending on the parameters of the PV SOI structure 100, the thickness and number of the upper layer of the 200814341 portion of the top surface of the processing body surface 121, and any intermediate processing steps possible such as CMP or FA, the appearance | - 22 can be manufactured as needed And 7 or I lack thickness. Further, as various design constraints require that the epitaxial layer 122 be thicker than desired, such as for use in microelectronics, a known method of mass removal, such as CMp or evacuation, may be used to reduce the layer 122 after epitaxy in step 210. thickness. However, using the mass 1 removal step will increase the overall manufacturing process time and expense.

及對pvs 1〇〇並非必需的。例如,在變化結構1〇〇A中,PVSF φ 1〇2層並不需要為薄的或厚的,PVSF 102厚度足以作為後續 - 麵,但是儘可能細以節省材料 以及因而減少費用。 ‘ 相反情況更容易產生於PV結構100中,即外延層太薄。 在變化結構麵及l〇〇c中厚的Si層對於pvs 1〇〇為需要的 ,因為厚的Si層將吸收更多光線以及增加其效率。產生所 需要厚度外延層所需要之能量需要超過可利用設備之參數 ,以及因而在外延層122形成後需要沉積或外延成長額外之 _ Si在外延層轉移至玻璃基板IQ!之前或之後,額外的&amp;可 * 增加於外騎122。假如在之前增加,添加Si變為產生部份 一 70成124之部份,然而在之後增加,添加Si變為修整處 理過程之部份。同樣地,在PVSF102以及後侧接觸層1〇4在 基板101上之後半導體層加入至PVS 100A。 在處理過程2〇〇A及200B之步驟203或處理過程2〇〇c之 步驟206處,其亦顯示於圖11中,離子植入表面121即處理之 %體表面121,以及形成於處理施體表面121上或施體半導 體晶片上任何層可加以處理以減少例如離子植入表面121i 第24 頁 200814341 上之氫離子濃度。例如,麵半導體晶片丨 及清理:TO_ 122球接表面伽施以。中 度氧化可包含在氧電聚中處理,臭、氧處理,利用過氧化氮, 過氧化氫與氨,過氧化氫與酸處理或這些處理過程之组合 。預齡這些處理過程中,終端氫表面基氡化為氫氧基其 126 mcL氧電漿可在室溫下 可在25_15忙溫度下進行處And not necessary for pvs 1〇〇. For example, in the variation structure 1A, the PVSF φ 1 〇 2 layer does not need to be thin or thick, and the PVSF 102 is thick enough to be a follow-up surface, but as thin as possible to save material and thus reduce cost. ‘The opposite situation is more likely to occur in the PV structure 100, ie the epitaxial layer is too thin. A thick Si layer in varying structural planes and l〇〇c is desirable for pvs 1〇〇 because a thick Si layer will absorb more light and increase its efficiency. The energy required to produce the desired thickness of the epitaxial layer needs to exceed the parameters of the available device, and thus the deposition or epitaxial growth after the epitaxial layer 122 is formed. Additional Si is added before or after the epitaxial layer is transferred to the glass substrate IQ! &amp; can be added to the outer ride 122. If it is increased before, the addition of Si becomes part of the generation of 70%, but afterwards, the addition of Si becomes part of the finishing process. Likewise, the semiconductor layer is added to the PVS 100A after the PVSF 102 and the backside contact layer 1〇4 are on the substrate 101. At step 206 of process 2A and 200B or step 206 of process 2〇〇c, which is also shown in FIG. 11, ion implantation surface 121 is the treated body surface 121, and is formed in the treatment Any layer on the body surface 121 or on the donor semiconductor wafer can be treated to reduce, for example, the hydrogen ion concentration on the ion implantation surface 121i page 24 200814341. For example, the face wafer 丨 and the cleaning: the TO_122 ball joint surface is applied. Moderate oxidation can be included in the treatment of oxygen electropolymerization, odor, oxygen treatment, use of nitrogen peroxide, hydrogen peroxide and ammonia, hydrogen peroxide and acid treatment or a combination of these treatments. During the pre-age treatment, the terminal hydrogen surface is deuterated to a hydroxyl group, and 126 mcL of oxygen plasma can be carried out at a room temperature of 25_15 at a busy temperature.

理。 在圖8及9中及亦顯不於圖13與14之步驟2〇5包含產生 :完成PVS 124於施體半導體晶請上。部份完成pvs 120可在處理過程200B中外賴122產生後或在處理過程 200C中外_ 122產生之前形成。在外騎122以及部份完 = PVS 124兩者產生之後,夕_實際地形成部份完成挪 124之部份。部份完成PVS改之外露表面將為黏接表面 126以在步驟2〇8巾黏接至玻璃絕緣體魏如。 參考圖13及14,施體半導體晶片12〇可進行處理為產生 124之部份。圖13_14顯示出當進行產生部份 儿成S 124步驟時更進一步外觸122形成於施體半導體 ^20已處理域體表面121上。在產生部份完成挪124 Γ進行許多不同的步驟。例如,產生部份完成rn m包 含如顯示糊13巾她说構麵巾增加後爾_⑽ ,或在變化結構應中增加導電窗層11〇,或在顯示於圖14 中使用中間摻雜步驟。 圖13顯示出依據本發明—項或多項實施例在變化結構 第25 頁 200814341 接觸層1〇4或在變化結構跳中增加導電 自層Π0。處爾程高程度地類似足以研二爾【 圖』不出。雖然顯示簡單化沉積處理過程例如為⑽或 PECVD,圖係指代表任何可能之處理過糊如上述所說明之 外延及内延。優先地後側細刚或導電窗層no分別地沉 積_份完成PVS 124上,而非直接齡玻璃基板上,只 要在系列過程巾步驟2〇8之陽極黏接處理過程呈現出良好 # =作。沉積該層在部份完成PVS 124上同時黏接至施體 〜 料體晶片120之優點將緩和直接沉積這些層於玻璃絲 101上所需要處理過程之限制,其對極端條件為錄的。 • 圖14顯不出沉積外延層122離子植入表面121 i,產生次Reason. Steps 2 and 5 of FIGS. 8 and 9 and also showing FIGS. 13 and 14 include: completing PVS 124 on the donor semiconductor crystal. The partially completed pvs 120 may be formed after the generation of the external processing 122 in the process 200B or before the generation of the external process 122 in the process 200C. After the outer ride 122 and the partial finish = PVS 124 are both generated, the portion of the finished portion 124 is actually formed. Part of the completed PVS modification of the exposed surface will be the bonding surface 126 to adhere to the glass insulator in step 2〇8. Referring to Figures 13 and 14, the donor semiconductor wafer 12 can be processed to produce a portion of 124. Figure 13_14 shows that further external contacts 122 are formed on the body surface 121 of the donor semiconductor ^20 processed domain when the step of generating portions is performed. There are many different steps in the process of generating a partial completion. For example, the partial finish rn m is included as shown by the paste 13 she said that the face towel is increased _ (10), or the conductive window layer 11 增加 is added in the change structure, or the intermediate doping step is used in FIG. . Figure 13 illustrates the addition of a conductive self-layer Π0 in a contact structure 1〇4 or in a varying structure jump in accordance with the present invention, or in a plurality of embodiments. The degree is similar to the high degree of research and development. Although the simplification of the deposition process is, for example, (10) or PECVD, the drawings are meant to represent any possible processing of the epitaxial and internal extensions as described above. Preferably, the back side fine or conductive window layer no is deposited separately on the PVS 124 instead of the direct-aged glass substrate, as long as the anodic bonding process in the series process towel step 2〇8 is good. . The advantage of depositing this layer on the partially completed PVS 124 while bonding to the donor-body wafer 120 will alleviate the limitations of the processing required to deposit these layers directly onto the glass filament 101, which is recorded for extreme conditions. • Figure 14 shows the deposition of epitaxial layer 122 ion implantation surface 121 i, resulting in

表面η p接面128。決定於變化結構1麵或i〇〇c是否為需要 的,半導體層106,108可由摻雜Si之晶塊製造出,其承受相 反的摻雜劑於其表面上。在變化結構讎範例性實施例中 ,η-形式摻雜施體半導體層120可以p—形式摻雜劑換雜於其 馨 表面上,因而產生次表面n—p接面。相反地,在變化結構⑽C , 中,p—形式摻雜施體半導體晶片120可利用η-形式摻雜劑摻 雜於其表面上,因而產生η-ρ接面。 在圖7-9及15步驟208中,玻璃基板101可黏接至外延層 122/PVSF 102/部份完成PVS 124之黏接表面126。適當的 黏接處理過程說明於美國第2004/0229444號公告專利案中 ,該專利之說明在此加入作為參考。部份該處理過程已知 為1¼極黏接,電解作用,藉由電解之黏接,及/或藉由電解形 成陽極黏接說明於底下。在陽極黏接/電解處理過程中,玻 第26 頁 200814341 璃基板101(以及黏接表面126/外延層122,假如並未完成) 可率疗適鞏的表面清理。因而中間結構促使真接或間接接 觸以達成圖15-16示意性地所顯示之排列。 在接觸之前或之後,由施體半導體晶片120,外延層122 /PVSF 102/部份完成PVS 124,以及玻璃基板101所構成之 結構在不同溫度梯度下加熱。玻璃基板101可力口熱至較高 溫度而南於施體半導體晶片120以及外延層;[22/PVSF 102/ 部份完成PVS 124。例如,玻璃基板與施體半導體晶片 120(以及外延層122/PVSF 102/部份完成pvs 124)間之溫 度差值至少為1°C,雖然差值可高達l〇〇°c至i5〇°c。溫度差 值對於熱膨脹係數與施體半導體晶片120相匹配(與石夕熱膨 服係數相匹配)之玻璃為需要的,因為其將使後續之外延層 122由半導體晶片120分離變為容易,其由於熱應力所導致 。玻璃基板101及施體半導體晶片120溫度可在玻璃基板 101應變點150°C内。 一旦玻璃基板101與施體半導體晶片120間之溫度差值 為穩定的,施力σ機械應力於中間組件。其壓力在1至5〇pSi 範圍内。由製造參數例如所使用材料以及其厚度能夠決定 出適當的壓力。 其次,電壓施加於中間組件兩端例如施體半導體晶片 120為正極以及玻璃基板101為負極。施加電壓促使玻璃美 板101中鹼金屬或鹼土金屬離子由半導體/玻璃界面移動離 開而更進一步進入玻璃基板101。此完成兩種功能:(i)產 生無鹼金屬或鹼土金屬離子之界面;以及(i i i)玻璃基板 第27 頁 200814341 101變為判反應性以及細邮接至施體半導體晶片12〇 之外延赛私… ’ ~ * j&quot;-~*--· — — — —»-™-—. .~-,'·__ 1 丄_ - 凡,&quot;及15之步驟中,在中間組件保持在上述條件下 段守間後(例如大約}小時或更少),移除電壓以及使中間 組件冷部至室溫。而後分馳體半導體晶片120與玻璃基 板101,假如尚未變為完全獨立,其可包含一些剝離以得到 玻璃級101具有相當薄的外關122/PVSF 102/部份完成 PVS 124,其由黏接至其上面之施體半導體層12Q的半導體 材料形成。分離可藉由熱應力所導致分裂離子植入區域而 達成。可加以變化或附加上使用機械應力,例如水柱或雷 射切割,或化學兹刻使分離變為容易。 參考圖16,圖4-6所提及離子植入區域103將更詳細地 顯示出❶結構詳細部份特別地屬於位於玻璃基板1〇1與鄰 接其上面層界面處之陽極黏接區域,在圖4中為外延層122 之PVSF 102,在圖5中為後侧接觸層1〇4,或在圖6中導電窗 層110。黏接處理過程(步驟)將外延層122與玻璃基板皿 間之界面轉移至界面區域3〇〇。界面區域3〇〇優先地包含 混合區域160以及空乏區域230。界面區域3〇〇優先地包含 一種或多種正離子堆積區域於空乏區域遠端邊緣附近。 混合區域160為厚度T160提昇氧濃度區域。當黏接導 電窗層110 B夺,該混合區域16〇提昇係藉由啟始組成份化學 計量缺乏氧以由玻璃基板提昇氧之轉移。厚度可以外延層 122/PVSF 102/部份完成PVS 124内界面170處之氧參考濃 度界定出。參考表面170實質上平行於玻璃基板1〇1與外延 第28 頁 200814341 層122/PVSF 102/部份完成PVS 124間之黏接表面以及與該 表面·分離距離為DSI。使用參考表面混合區域郷-之厚度. T160通常滿足下列關係:T160涵0nm,其中T16〇為黏= 面126與表面間之距離,該表面為:(i)實質上平行於黏接表 面126,以及(ii)為離黏接表面最遠之表面,其滿足下列關 係:C0(x)-C0/REF纖,〇把測,其中⑴⑴為氧濃度 為離黏接表面126距離X之函氣C0/Ref為在高於參考^面 φ 處氧濃度,以及C000及C0/Ref為原子百分比。 通常,T160實質上小於·ηιη,例如約為50至1〇〇聰。人 們了解CO/Ref通常為零,因而上述關係在大部份情況中簡 • 化為:CO(x)^50%,〇Sx$T160。 與工乏 230相關,氧化物玻璃或氧化物玻璃陶究基板 101優先地包含至少-些正離子,其以所施加電場方向移動 ,即遠雜接表面126以及進从璃絲1〇Γ。驗金屬離子 例如Li+1,Na+1,及/或Κ41離子為該用途之適當正離子,因 • 為其通常具有較高移動速率高於包含於氧化物玻璃或氧化 、 物玻璃喊中其他種類正離子例如為驗土金屬離子。 不過,氧化物玻璃或氧化物玻璃陶瓷具有異於鹼金屬 離子U料,修氧錄_魏錄玻軸兗只具有 鹼土金屬離子,其能夠使用於實施本發明。鹼金屬及鹼土 金屬離子濃度麟在叙範_變化,代紐濃度以氧化 «基準在0.1及鄕重量比之間。優先 屬離子濃度以氧化物為基準,鹼金屬離子情況為!至⑽ 重量比,驗土金屬離子情況為2—25%重量比。 〇 第29 200814341 在黏接步驟(步驟208)施加電場移動正離子(陽離子) 更進一步進入玻璃基板101形成空乏區域23〇。當氧化物玻 璃或氧化物玻璃陶瓷含有鹼金屬離子時,形成空乏區域23〇 為特別地需要,因為該離子已知將干擾半導體裝置之操作 。鹼土金屬離子例如為Mg+2, Ca+2, Sr+2,及/或Ba+2亦會干 擾半導體裝置之操作以及因而空乏區域亦優先地具有這些 離子為減少濃度的。 已發現一旦形成空乏區域230長時間為穩定的,甚至於 PV結構加熱至高溫,相較於或甚至於某種程度高於黏接處 理過程所使用之溫度。在高溫下形成,空乏區域在pv結構 操作及形成溫度下為特別地穩定。這些考慮確保玻璃 璃陶瓷離子在使用過程中或更進一步裝置處理過程中不會 由氧化物玻璃或氧化物玻璃陶瓷擴散回到半導體材料1〇4, 其為使用電場為部份處理過程所產生之重要優點。 由於利用選擇操作參數以達成強固黏抵達成所需要 寬度以及所需要減小所有所關切正離子之正離子濃度空乏 區域130所需要操作參數能夠由熟知此技術者依據^明 内容立即地決定出。當存在時,空乏11域咖為依據本發明 一項或多項實施例製造出PV結構1〇〇之特性。 如圖17所顯示,在分離後,所形成結構可包含玻璃絲 ιοί及黏接至其上面之半導體材料外延層122。在外延作用 後,SOI結構之分裂表面123呈現出過度表面她度_(顯 示於圖17中),過度的矽層厚度(可能作為微電子應用),以 及矽層找入損壞(例如由於氫離子導致以及形成非晶質 第30 頁 200814341 矽層)。 S圏f §及之步驟M2中,施體軍導邊晶月1如,ρνπ 102,及/或部份完成pvs 124施以一項或多項修整處理過程 130 °修整處理過程130可包含例如一項或多項次處理過程 。例如’修整處理過程130可包含不_劃線步驟,其為產 生m不同結構麵及100C之表面高度所需要的。為業界 所热知之該劃線步驟可在其他修整處理過程伽之前之後 . 或同時完成。 ’ 參 2 - ^另一修整處理過程130可包含擴大外延層122之半導體 厚度。在變化結構麵情況中,半導體材料可在内延成長 前增加。在欺實施辦要求半導體層 1 及⑽之隶終合併厚度應該超過例如1 〇微米(即1咖咖) 以及小於30微米。因而,應該產生適當厚度之外縣122以 及以頜外半導體層132(例如Si)增加持續到達成所需要之 厚度利用額外半導體層132(例如Si)增加亦可包含換雜 • 步驟:過去非晶質石夕層厚度約為50-150服,以及決定於植 、 入能量以及植入時間,外_⑵厚度約為500而。作為電 子SOI結橡較薄外_122可形成作為簡跟非晶質石夕 層必需亦為較薄的,在修整處理過程中增加更多半導體材、 料。 同時依據步驟212,分裂表面123可施以後分裂處理過 程,其可包含將分裂表面123施以拋光或退火處理過程以減 少織度123A。除此為了達成變化結構麵之範例性實施 例’修整處理過程可包含塗覆導電窗層u_如為沉積銦錫 200814341 氧化物。相反地,為了達成變化結構100C之範例性實施例, 修整處理過程可包含藉由LPE,CVD或PECVD沉積出之塗覆後 侧接觸層104,導電金屬為主或金屬氧化物為主之層,例如 鋁為主之薄膜。如先前所說明,後侧接觸層1〇4亦藉由例如 石夕化鎳外延或内延成長形成。 部份完成PVS 124某一程度預期最終產物具有更多特 性,少數修整處理過程為必需的。藉由比較,單獨形成呢? φ 102於絕緣體基板101上無法區分基板101-PVSF 102組合為 ” 光伏打結構而優於美國第2004/0229444號專利案之任何其 他半導體在絕緣體上結構,數個PVS—特定修整處理過程為 ‘ 必需的。不過,在繼續進行修整處理過程中,單晶層作為光 • 伏打結構基礎102將放寬一些參數,在該參數内將操作及擴 大選項以及在所選擇結果之範圍。 八 102或部份完成pvs 124允許較大彈 性形成進步多接面之pvs裝置。例如,Si晶體之PVSF 1〇2上 馨 之構建,製造商能夠開拓不同特定熱容量之Si晶體對以如, ^ Ge,以及GaIn?2以產生GaAs,Ge以及Galnh之不同的多個接 一 面層。選擇性池如圖21優先實施例所示,PVSF 1〇2可包含Surface η p junction 128. Depending on whether a change in structure 1 or i〇〇c is desired, the semiconductor layers 106, 108 may be fabricated from doped Si blocks that are subjected to opposing dopants on their surface. In a variant structure, an exemplary embodiment, the n-type doped donor semiconductor layer 120 can be p-type dopant mixed with its eccentric surface, thereby creating a subsurface n-p junction. Conversely, in the variant structure (10)C, the p-form doped donor semiconductor wafer 120 can be doped on its surface using an η-form dopant, thus creating an η-ρ junction. In steps 208 of Figures 7-9 and 15, the glass substrate 101 can be bonded to the epitaxial layer 122/PVSF 102/portion of the bonding surface 126 of the PVS 124. A suitable bonding process is described in U.S. Patent Application Publication No. 2004/0229444, the disclosure of which is incorporated herein by reference. Some of this process is known as 11⁄4 pole bonding, electrolysis, bonding by electrolysis, and/or anodic bonding by electrolysis to illustrate the bottom. During the anodic bonding/electrolysis process, the glass substrate 101 (and the bonding surface 126/epitaxial layer 122, if not completed) can be used to cure the surface of the stalk. Thus the intermediate structure causes a true or indirect contact to achieve the arrangement shown schematically in Figures 15-16. The structure formed by the donor semiconductor wafer 120, the epitaxial layer 122 / PVSF 102 / portion of the PVS 124 , and the glass substrate 101 is heated at different temperature gradients before or after the contact. The glass substrate 101 can be heated to a higher temperature and is souther than the donor semiconductor wafer 120 and the epitaxial layer; [22/PVSF 102/ partially completes the PVS 124. For example, the temperature difference between the glass substrate and the donor semiconductor wafer 120 (and the epitaxial layer 122/PVSF 102/partially completed pvs 124) is at least 1 ° C, although the difference can be as high as l 〇〇 ° c to i 5 〇 ° c. The temperature difference is desirable for a glass having a coefficient of thermal expansion that matches the donor semiconductor wafer 120 (matching the thermal expansion coefficient) because it will facilitate subsequent separation of the subsequent outer layer 122 from the semiconductor wafer 120. Due to thermal stress. The temperature of the glass substrate 101 and the donor semiconductor wafer 120 can be within 150 ° C of the strain point of the glass substrate 101. Once the temperature difference between the glass substrate 101 and the donor semiconductor wafer 120 is stable, the applied force σ is mechanically stressed to the intermediate assembly. The pressure is in the range of 1 to 5 〇 pSi. The appropriate pressure can be determined by manufacturing parameters such as the materials used and their thickness. Next, a voltage is applied to both ends of the intermediate member, for example, the donor semiconductor wafer 120 is a positive electrode and the glass substrate 101 is a negative electrode. The application of a voltage causes the alkali metal or alkaline earth metal ions in the glass plate 101 to move away from the semiconductor/glass interface and further into the glass substrate 101. This accomplishes two functions: (i) creating an interface free of alkali metal or alkaline earth metal ions; and (iii) glass substrate page 27, 200814341 101 becoming reactive and fine mailing to the donor semiconductor wafer 12〇 Private... ' ~ * j&quot;-~*--· — — — —»-TM-—. .~-,'·__ 1 丄 _ - Where, &quot; and 15 steps, the intermediate components remain in the above After the condition of the lower segment (for example, about hours or less), the voltage is removed and the intermediate component is cooled to room temperature. Then, the semiconductor wafer 120 and the glass substrate 101 are separated, and if they have not become completely independent, they may include some peeling to obtain the glass grade 101 having a relatively thin outer seal 122/PVSF 102/partially completed PVS 124, which is bonded by A semiconductor material of the donor semiconductor layer 12Q is formed thereon. Separation can be achieved by thermal stress causing the split ion implantation region. Mechanical stresses such as water column or laser cutting, or chemical chemistry can be varied or added to make separation easier. Referring to Figure 16, the ion implantation region 103 referred to in Figures 4-6 will show in more detail that the detailed portion of the ruthenium structure particularly belongs to the anodic adhesion region at the interface between the glass substrate 〇1 and the adjacent layer. 4 is a PVSF 102 of epitaxial layer 122, in FIG. 5 a back side contact layer 1〇4, or in FIG. 6 a conductive window layer 110. The bonding process (step) transfers the interface between the epitaxial layer 122 and the glass substrate to the interface region 3〇〇. The interface area 3 〇〇 preferentially includes a mixed area 160 and a depleted area 230. The interface region 3 〇〇 preferentially includes one or more positive ion accumulation regions near the distal edge of the depletion region. The mixing zone 160 is a thickness T160 that raises the oxygen concentration zone. When the conductive window layer 110B is bonded, the mixed region 16〇 is depleted of oxygen by the starting component stoichiometry to promote oxygen transfer from the glass substrate. The thickness can be defined by the epitaxial layer 122/PVSF 102/partially completing the oxygen reference concentration at interface 170 within PVS 124. The reference surface 170 is substantially parallel to the glass substrate 1〇1 and the epitaxial surface of the layer 122/PVSF 102/part of the PVS 124 and the separation distance from the surface is DSI. The thickness of the reference surface mixing region 郷- is used. T160 generally satisfies the following relationship: T160 0 0 nm, where T16 〇 is the viscosity = the distance between the surface 126 and the surface, the surface is: (i) substantially parallel to the bonding surface 126, And (ii) is the surface farthest from the bonding surface, which satisfies the following relationship: C0(x)-C0/REF fiber, which is measured, wherein (1) (1) is a gas C0 whose oxygen concentration is the distance X from the bonding surface 126. /Ref is the oxygen concentration above the reference plane φ, and C000 and C0/Ref are atomic percentages. Typically, T160 is substantially less than ηιη, for example about 50 to 1 〇〇. It is known that CO/Ref is usually zero, so the above relationship is simplified in most cases: CO(x)^50%, 〇Sx$T160. In connection with the depletion 230, the oxide glass or oxide glass ceramic substrate 101 preferentially contains at least some positive ions that move in the direction of the applied electric field, i.e., the far-hybrid surface 126 and the incoming filaments. Metal ions such as Li+1, Na+1, and/or Κ41 ions are suitable positive ions for this purpose, because they usually have higher mobility rates than those contained in oxide glass or oxide, glass The type of positive ions is, for example, a soil metal ion. However, the oxide glass or the oxide glass ceramic is different from the alkali metal ion material, and the oxygen-removing glass has only an alkaline earth metal ion, which can be used in the practice of the present invention. Alkali and Alkaline Earth Metal ion concentrations in the syllabary _ change, the dynasty concentration to oxidize «the benchmark between 0.1 and 鄕 weight ratio. The preferred ion concentration is based on the oxide, and the alkali metal ion is in the range of ! to (10) by weight, and the soil metal ion is in the range of 2 to 25% by weight. 〇 29th 200814341 Applying an electric field to the positive electrode (cation) in the bonding step (step 208) further enters the glass substrate 101 to form a depletion region 23〇. When the oxide glass or oxide glass ceramic contains an alkali metal ion, the formation of a depletion region 23 is particularly desirable because the ion is known to interfere with the operation of the semiconductor device. Alkaline earth metal ions such as Mg+2, Ca+2, Sr+2, and/or Ba+2 also interfere with the operation of the semiconductor device and thus the depleted regions also preferentially have these ions at reduced concentrations. It has been found that once the depleted region 230 is formed to be stable for a long period of time, even the PV structure is heated to a high temperature, as compared to or even somewhat higher than the temperature used in the bonding process. Formed at high temperatures, the depleted regions are particularly stable at pv structure operation and formation temperatures. These considerations ensure that the frit ceramic ions do not diffuse back into the semiconductor material 1/4 by the oxide glass or oxide glass ceramic during use or further processing of the device, which is the use of an electric field for partial processing. Important advantages. The operational parameters required to achieve the required width by the selection of operational parameters to achieve a strong adhesion and to reduce the positive ion concentration of all positive ions of interest can be immediately determined by those skilled in the art. When present, the depletion 11 domain is characterized by the fabrication of a PV structure in accordance with one or more embodiments of the present invention. As shown in Figure 17, after separation, the resulting structure can comprise a glass filament and an epitaxial layer 122 of semiconductor material bonded thereto. After epitaxy, the split surface 123 of the SOI structure exhibits an excessive surface _ (shown in Figure 17), excessive ruthenium thickness (possibly as a microelectronic application), and ruthenium formation damage (eg due to hydrogen ions) Causes and formation of amorphous page 30, 200814341 矽 layer). In step S2 of S圏f § and </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> </ RTI> <RTIgt; Multiple times of processing. For example, the trimming process 130 can include a non-scribe step that is required to produce m different structural faces and a surface height of 100C. This scribing step, which is well known to the industry, can be done after the other trimming process, or at the same time. Another trimming process 130 can include expanding the semiconductor thickness of the epitaxial layer 122. In the case of varying structural planes, the semiconductor material can increase before the internal growth. The thickness of the termination of the semiconductor layer 1 and (10) should be greater than, for example, 1 〇 micrometer (ie, 1 café) and less than 30 micrometers. Thus, the appropriate thickness should be generated in addition to the county 122 and the increase in the thickness of the outer semiconductor layer 132 (e.g., Si) continues to achieve the desired thickness. The additional semiconductor layer 132 (e.g., Si) can also be modified to include inclusions. The thickness of the stone layer is about 50-150, and it depends on the planting, energy input and implantation time. The outer _(2) thickness is about 500. As the electronic SOI bond, the thinner outer layer _122 can be formed as a thinner amorphous austenite layer and must be thinner, adding more semiconductor materials and materials during the trimming process. At the same time, in accordance with step 212, the splitting surface 123 can be subjected to a subsequent splitting process which can include applying a splitting surface 123 to a polishing or annealing process to reduce the texture 123A. In addition to this, in order to achieve an exemplary embodiment of varying structural planes, the trimming process may include coating a conductive window layer u_ such as a deposited indium tin 200814341 oxide. Conversely, in order to achieve an exemplary embodiment of the varying structure 100C, the trimming process may include a coated back side contact layer 104 deposited by LPE, CVD or PECVD, a conductive metal-based or metal oxide-based layer, For example, an aluminum-based film. As previously explained, the backside contact layer 1〇4 is also formed by, for example, epitaxial or epitaxial growth of the nickel-plated nickel. Partial completion of PVS 124 is expected to have more characteristics of the final product to some extent, and a few finishing processes are necessary. By comparison, formed separately? φ 102 is incapable of distinguishing between the substrate 101-PVSF 102 on the insulator substrate 101 as a "photovoltaic structure" and superior to any other semiconductor on the insulator structure of the US Patent No. 2004/0229444, several PVS - specific trimming process is ' Required. However, during the continuation of the trimming process, the single crystal layer as the base of the voltaic structure 102 will relax some parameters within which the operation and expansion options will be selected and within the range of selected results. Completion of pvs 124 allows for greater flexibility to form progressively multi-junction pvs devices. For example, the construction of SiSF's PVSF 1〇2, the manufacturer is able to develop Si crystal pairs of different specific heat capacities such as ^ Ge, and GaIn 2 to produce a plurality of layers of GaAs, Ge, and Galnh. The selective cell is as shown in the preferred embodiment of FIG. 21, and the PVSF 1〇2 may include

Ge,或GaAs,或者PCPVS 124可包含摻雜Ge/GaAs層。 本發明其他上視圖針對先前所提及Si〇G處理過程在底 下詳細地加以說明。例如,由施體半導體晶# 12()分離外延 層122結果可產生施體半導體晶片12〇之第一分裂表面以及 外觸122之第二分裂表面。如先前所說明,修整處理過程 130可翻於外_ 122之第二分裂表面123。除此,修整處 第32 頁 200814341 理過程130可適用於施體半等體晶片i2〇之第一分裂表面( ^斥說明_種或多種技術),·例如拖光處泰______________ 在本發明另一項實施例中,施體半導體晶片12〇可為部 伤方&amp;體結構,其包含實質上單晶施體半導體晶片12〇,外^ 半導體層位於施體半導體晶片120上。(在SOi中外延成長 半導體層之詳細說明可參考2005年6月23日申請之相關^ 國第11/159889號專利申請案中)。因而外延層122可由外 # 延半導體層形成(以及亦可包含來自晶片120之單晶施體半 ^ 導體材料)。因而,先前所提及修整處理過程可適用於外延 層122之分裂表面123,其由外延半導體材料及/或外延半導 ‘ 體材料與單晶半導體材料組合形成。 ’ ” 本發明一項或多項實施例之光伏打電池產生處理過程 在‘ie光伏打結構糸統中能夠自動化。系統能夠包含PM 操作組件,其操作PV結構1〇〇作為處理,以及光伏打處理組 件。光伏打處理組件包含各種次系統,例如使用於製造pv _ 基板100之調理或修整系統以及轉移或黏接系統,其藉由 、 PV半導體在絕緣體操作組件來操作。 - 例如,當調理外延層122 B夺,其包含PVSF 102或部份完 成PV結構124,操作組件能夠運送以及定位pv結構1〇〇在pvs 處理過程内完成所需要的以允許陽極黏接發生。更進一步 €^定位基板1〇1,黏接至PVSF 102或部份完成PVS 124 於PVS處理組件内可使外延及修整步驟210及212分別地發 參考圖19,其顯示出依據本發明一項或多項實施例之 第33 頁 200814341 PVS 100D簡化多接面變化結構i〇〇D。多接面PVS 100D類似 於圖令之fVS;但是具有一些不同,例如玻璃基极4 〇i •替代晶 體Ge晶片基板,具有外延結晶Ge薄膜於玻璃基板頂部。厚 度為500微米電阻為〇· 〇1—〇· 〇4歐姆公分p-形式Ge或GaAs晶 片可利用100KeV以及量劑為8xl016氫離子植入。晶片而後 利用化學方式清理以及施以氧電漿處理以氧化表面基。在 清理後,GaAs晶片可插入至沉積槽以及塗覆一層摻雜或未 摻雜Ge薄膜,其厚度決定於裝置之設計。Ge沉積於GaAs晶 片上可利用不同的方式達成,其包含電漿提昇化學汽相沉 積法,離子束輔助喷塗沉積,蒸發或化學汽相沉積外延法。 摻雜(p-形式)Ge層能夠利用As或P達成。驗金屬礬土棚石夕 酸鹽玻璃晶片熱膨脹性與Ge相匹配以及1咖厚度可利用標 準清洗技術例如利用清潔劑及蒸餾水接著稀釋酸清洗表面 進行清洗。兩個晶片促使接觸以及放置於黏接系統中。 1000V電壓施加於晶片兩端歷時2〇分鐘,玻璃以及鍺晶片溫 度分別為450°C及400°C,而後冷卻以及移除電壓。黏接至 玻璃之多層GaAs/Ge或Ge薄膜可由母晶片分離,其能夠達成 非常強固^黏接至玻璃。因而在圖19中,參考數目代表意 義如下:104摻雜Ge薄膜作為後侧接觸層;1〇5 GaAs穿隧接 面;106邛-形式0^3;108 11-形式0—3或〇3111?;107 4168八3 牙隧接面;110導電窗層。 具有Ge或GaAs/Ge薄膜之玻璃晶片再選擇性地加以拋 光,退火或恢復以去除受損Ge或GaAS頂層以及良好品質層 之表面。該晶片能夠使用作為基板以成長外延結構以形成 第34 頁 200814341 太陽能電池。材料範例包含GaAs,GalnP/GaAs,GaJnyP/Gac ,業界所熟知之材料。能病Μ各種I 理過程以沉積外延薄膜,其包含CVST(閉合空間蒸氣傳送) M0CVD(有機金屬化學汽相沉積),臓(分子束外延)以及其 他業界已知的方法。一絲面鈍化窗層例如A1GaAs,InGap 或ZnSe之寬廣頻帶間隙上層可加以使用以及其他包封或純 化層以及表面處理可加以使用以完成電池。 • 歐姆接觸可應用於不同的構造中,其決定於裝置設計, 一 但疋主要規格為由一個接觸至下一接觸以完成線路將能夠 產生電流,一旦線路完成,裝置之兩個電極引線將連接至負 - 載,如圖6所示。例如後側接觸104能夠靠在半導體層1〇6頂 • 部而非底下,假如適當的分隔將產生適當的線路及電流構 造〇 雖然本發明已對特定實施例加以說明,人們了解這些 實施例只作為綱本發明之原理及應用。人們了解這些列 ⑩ 舉實施例能夠作許多變化及設計έΒ其他排列而並不會脫離 ^ 下列申請專利範圍界定出之本發明之精神及範園。 【圖式簡單說明】 為了列舉本發明各項,其中相同的數字代表相同的元 件,附圖顯示出優先簡化之形式,人們了解本發明並不會受 _所顯示讀確排列及組合,而本發明只受·所提出 之申轉。棚並雜照丨働,晒各元件彼此 亦非按照比例的。 第-圖,第二圖及第三圖為模組圖,其分別地顯示出單 第35 頁 200814341 接面,雙接面,及二接面之光伏打結$ 〇 第西圖,第五圖及第六圖為模組圖,其分別地顯示出依 據本發明一項或多項實施例之光伏。 第七圖,第八圖及第九圖為流程圖,其可進行製造出依 據本發明一項或多項實施例之光伏打結構。 第十圖至第十八圖為流程圖,其顯示出使用依據本發 明一項或多項實施例處理過程形成中間及接近最終之光伏 打結構。 第十九圖顯示出使用依據本發明一項或多項實施例之 簡化多接面光伏打結構。 附圖元件數字符號說明:Ge, or GaAs, or PCPVS 124 may comprise a doped Ge/GaAs layer. Other top views of the present invention are described in detail below for the previously mentioned Si〇G process. For example, separating the epitaxial layer 122 from the donor semiconductor crystal #12() results in a first split surface of the donor semiconductor wafer 12 and a second split surface of the outer contact 122. As previously explained, the trimming process 130 can be flipped over the second splitting surface 123 of the outer 126. In addition, the trimming process on page 32 of 200814341 can be applied to the first splitting surface of the donor semiconductor wafer i2, or the like, for example, the dragging light ______________ in the present invention In another embodiment, the donor semiconductor wafer 12A can be a partial wound &amp; body structure comprising a substantially single crystal donor semiconductor wafer 12, the outer semiconductor layer being disposed on the donor semiconductor wafer 120. (Extension of the semiconductor layer in the SOi. For a detailed description of the semiconductor layer, refer to the patent application No. 11/159889, filed on Jun. 23, 2005). Thus, the epitaxial layer 122 can be formed of an outer semiconductor layer (and can also comprise a single crystal donor semiconductor material from the wafer 120). Thus, the previously mentioned trimming process can be applied to the splitting surface 123 of the epitaxial layer 122, which is formed from an epitaxial semiconductor material and/or an epitaxial semiconductor material in combination with a single crystal semiconductor material. The photovoltaic cell generation process of one or more embodiments of the present invention can be automated in the 'ie photovoltaic system. The system can include a PM operation component that operates the PV structure as a process, and a photovoltaic process. The photovoltaic processing assembly comprises various subsystems, such as conditioning or trimming systems for manufacturing the pv_substrate 100, and transfer or bonding systems, which are operated by the PV semiconductor in an insulator operating component. - For example, when conditioning epitaxial Layer 122 B, which includes PVSF 102 or partially completed PV structure 124, the operational components are capable of transporting and positioning the pv structure 1 完成 required to complete the pvs process to allow anodic bonding to occur. Further positioning the substrate 1〇1, Bonding to PVSF 102 or Partially Composing PVS 124 In a PVS processing assembly, extension and finishing steps 210 and 212 can be separately referenced to FIG. 19, which shows a first embodiment in accordance with one or more embodiments of the present invention. Page 33 200814341 PVS 100D simplifies the multi-join variation structure i〇〇D. Multi-join PVS 100D is similar to the fVS of the diagram; but with some differences, such as glass-based 4 〇i • Replaces the crystalline Ge wafer substrate with an epitaxial crystalline Ge film on top of the glass substrate. The thickness is 500 μm and the resistance is 〇·〇1—〇·〇4 ohm cm p-form Ge or GaAs wafer can use 100KeV and dose Implanted with 8xl016 hydrogen ions. The wafer is then chemically cleaned and subjected to oxygen plasma treatment to oxidize the surface groups. After cleaning, the GaAs wafer can be inserted into the deposition bath and coated with a doped or undoped Ge film. The thickness is determined by the design of the device. Ge deposition on GaAs wafers can be achieved in different ways, including plasma lift chemical vapor deposition, ion beam assisted spray deposition, evaporation or chemical vapor deposition epitaxy. The p-form) Ge layer can be achieved by using As or P. The thermal expansion of the metal silicate silicate glass wafer is matched with Ge and the thickness of the coffee can be cleaned by standard cleaning techniques such as using detergent and distilled water followed by dilute acid. Cleaning is performed. Two wafers are brought into contact and placed in the bonding system. A voltage of 1000 V is applied to both ends of the wafer for 2 minutes, and the temperature of the glass and the germanium wafer are divided. At 450 ° C and 400 ° C, the voltage is then cooled and removed. The multilayer GaAs/Ge or Ge film bonded to the glass can be separated by the mother wafer, which can achieve very strong adhesion to the glass. Thus, in Figure 19, The reference number represents the following meaning: 104 doped Ge film as backside contact layer; 1〇5 GaAs tunneling junction; 106邛-form 0^3; 108 11-form 0-3 or 〇3111?; 107 4168 八3 Tunneling interface; 110 conductive window layer. The glass wafer with Ge or GaAs/Ge film is then selectively polished, annealed or recovered to remove the damaged Ge or GaAS top layer and the surface of the good quality layer. The wafer can be used as a substrate to grow an epitaxial structure to form a solar cell of page 34 200814341. Examples of materials include GaAs, GalnP/GaAs, GaJnyP/Gac, materials well known in the art. Various processes can be used to deposit epitaxial films, including CVST (closed space vapor transport) M0CVD (organometallic chemical vapor deposition), germanium (molecular beam epitaxy), and other methods known in the art. A wide area of the passivation window layer such as A1GaAs, InGap or ZnSe can be used as well as other encapsulation or purification layers and surface treatments can be used to complete the cell. • Ohmic contacts can be used in different configurations depending on the device design, but the main specification is that the current will be generated from one contact to the next to complete the line. Once the line is completed, the two electrode leads of the device will be connected. To negative - load, as shown in Figure 6. For example, the backside contact 104 can rest on the top of the semiconductor layer 〇6 rather than underneath, provided that proper separation will result in proper line and current construction. Although the invention has been described with respect to specific embodiments, it is understood that these embodiments are only As a principle and application of the invention. It is to be understood that the various embodiments of the present invention can be varied and designed in other ways without departing from the spirit and scope of the invention as defined by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS In order to enumerate the various elements in the present invention, the same numerals represent the same elements, and the drawings show the form of the preferred simplification, and it is understood that the present invention will not be read and combined by the reading. The invention is only subject to the proposed transfer. The sheds are mixed with each other, and the components are not proportional to each other. The first, second and third figures are module diagrams showing the single page of the 200814341 junction, the double junction, and the two junction photovoltaic knots. And a sixth diagram is a block diagram showing photovoltaics in accordance with one or more embodiments of the present invention, respectively. Seventh, eighth and ninth are flow diagrams for fabricating a photovoltaic structure in accordance with one or more embodiments of the present invention. Tenth through eighteenth are flow diagrams showing the formation of an intermediate and near-final photovoltaic structure using a process in accordance with one or more embodiments of the present invention. The nineteenth diagram shows the use of a simplified multi-junction photovoltaic structure in accordance with one or more embodiments of the present invention. Description of the numerical symbols of the components of the drawings:

Ge 基板 A101;1.4eV GaAs 電池 Α103/105;栅極接觸 A107;Ge 基板 A201;1.4eV GaAs 電池 A203;AlGaLnP 或 AlGaAs 穿隨接面 A2〇7;L9eV InGaP 電池 A209/211;柵極 接觸A213;0· 7eV Ge電池及基板A301;GaAs穿随接面 A305; 1· 4eV GaAs 電池 A307/309;穿隧接面 A311; 1. 9eV InGaP電池A313/315;柵極接觸A317;光伏打SOI結構100 ;PVS變化l〇〇A,l〇〇B,l〇〇C;絕緣體基板101;光伏打結構 基礎102;離子植入區域1〇3;後侧接觸層104;GaAs穿隧 接面105;p-形式半導體層l〇6;AlGaAs穿隧接面107;n-形 式半導體層108;導電窗層110;施體晶片120;處理施體表 面121;離子植入表面i21i;外延層122;分裂表面123; 表面粗糙度123A;部份地完成PVS 124;黏接表面126;次 表面η-p接面128;空乏區域130;半導體層132;混合區域 第36 頁 200814341 160;界面ι7〇;處理過程2〇〇A 2〇〇b,2〇〇c;處理施體半導 體曰日片之表面_ 2〇2;將施體半導體晶片施以離子植入處理 =203;將施體半導體晶片施以中度氧化耻產生部份 結構2〇5;將部份完成pvs以及施體晶片施以 理過程2〇6;將部份完成光伏打結獅以中度 氧化207;在光伏打結構(或部份完成光伏打)基礎與玻璃 之間形成陽極黏接208;由施體半導體晶片分離玻璃層/ • PVSF/外延層21Q;將施體轉體晶片及/或PVS基礎施以修 — 整處理212;空乏區域23G;界面區域綱。Ge substrate A101; 1.4eV GaAs battery Α103/105; gate contact A107; Ge substrate A201; 1.4eV GaAs battery A203; AlGaLnP or AlGaAs pass-through surface A2〇7; L9eV InGaP battery A209/211; gate contact A213; 0· 7eV Ge battery and substrate A301; GaAs pass-through surface A305; 1· 4eV GaAs battery A307/309; tunneling junction A311; 1. 9eV InGaP battery A313/315; gate contact A317; photovoltaic SOI structure 100 PVS variation l〇〇A, l〇〇B, l〇〇C; insulator substrate 101; photovoltaic structure base 102; ion implantation region 1〇3; back contact layer 104; GaAs tunnel junction 105; - Form semiconductor layer 101; AlGaAs tunnel junction 107; n-form semiconductor layer 108; conductive window layer 110; donor wafer 120; treated donor surface 121; ion implantation surface i21i; epitaxial layer 122; 123; surface roughness 123A; partially completed PVS 124; bonding surface 126; subsurface η-p junction 128; depletion region 130; semiconductor layer 132; mixed region page 36 200814341 160; interface ι7 〇; 2〇〇A 2〇〇b, 2〇〇c; treating the surface of the donor semiconductor wafer _ 2〇2; applying the donor semiconductor wafer to the ion implantation treatment = 203; The conductor wafer is subjected to a moderate oxidation shame to produce a partial structure 2〇5; the part of the completed pvs and the donor wafer is applied to the process 2〇6; the partially completed photovoltaic knotted lion is moderately oxidized 207; Forming (or partially completing photovoltaic) forming an anodic bond between the base and the glass; separating the glass layer from the donor semiconductor wafer / • PVSF/epitaxial layer 21Q; applying the body-transferred wafer and/or PVS foundation – Entire treatment 212; depletion area 23G; interface area outline.

第37 頁Page 37

Claims (1)

200814341 十、申請專利範圍: 1· rr種患伏— 紅装置,其包含·'................ * ' ^ V**— 1 .. . —. · ' ~ ♦ 絕緣體結構; 外延層; 導電層與外延層形成整體以及鄰近於絕緣體結構;以及 連接,將絕緣體結構黏接至導電層以及外延層, 其中外延層由單晶施體半導體晶片之單晶外延層所構成。 2·依據申請專利範圍第丨項之光伏打裝置,其中外延層主要 為單晶材料,其由Si,摻雜Ge之Si(SiGe),Sic, Ge,Ga^,&amp;P ,以及InP選取出。 3·依據申請專利範圍第1或2項之光伏打裝置,其中連接將 絕緣體結構黏接至導電層以及外延層為界面區域所構成之 1¼才虽黏接。 4·依據申請專利範圍第3項之光伏打裝置,其中界面區域包 含混合區域以及空乏區域。 5·依據申請專利範圍先前任何一項之光伏打裝置,其中更 進一步包含: 第一離子植入區域於絕緣體中;以及 弟一離子植入區域跨越導電層及外延層。 6·依據申請專利範圍先前任何一項之光伏打裝置,其中導 電層由金屬為主之材料或金屬氧化物為主之材料所構&lt;。 7·依據申請專利範圍先前任何一項之光伏打裝置,其中外 延層由摻雜半導體層所構成以及導電層由後侧接觸層或導 電窗層所構成。 第38 頁 200814341 8·依據申請專利範圍第7項之光伏打裝置,其中摻雜半導體 廣式半導體層,ρ_形式半導體層,或真:有ρ形式及 Ρ-形式摻雜區域之半導體接面層。 9·依據申請專利範圍第7項之光伏打裝置,其中 後側接觸層由 Al,Ti,M,W,In,Mo, Au,Pt,Pd,Ga,Sn,Sb, Ag,Ge或矽化物所構成;以及 導電窗層由摻雜錫之氧化铟,掺雜I呂之氧化鋅,摻雜蝴之 氧化鋅或碳奈米管所構成。 10·依據申凊專利範圍先前任何一項之光伏打裝置,其中更 進一步包含一組多個光伏打裝置層,其形成於外延層中或 上面以及遠離〇 11·依據申請專利範圍第1〇項之光伏打裝置,其中一組多個 光伏打裝置層包含至少一層半導體層,至少一層導電層,以 及至少一層鈍化層。 12·依據申請專利範圍第10項之光伏打裝置,其中一組多個 光伏打裝置層包含外延成長結晶層。 13·依據申請專利範圍第1項之光伏打裝置,其中更進一步 包含至少一層增加之光伏打裝置層與外延詹整體形成以及 鄰近於絕緣體級。 11依據申請專利範圍先前任何一項之光伏打裝置,其中包 含: 絕緣體結構; 外延層鄰近於絕緣體結構; 陽極黏接,其黏接絕緣體結構及外延層;以及 第39 頁 200814341 及在物I中 —. . 其中賴由單晶施體半導體晶片之單晶夕_所 =據申請專利範圍第14項之光伏打震置射更進一成步 第-離子植入區域於絕緣體中; 第二離子植入區域於外延層中。 16.依據申請專利範圍第1〇或15項之光伏 黏接由界面區域所彳^。 :人依據人申請專利範圍㈣項之光伏打裝置,其中界面區域 包含混合_及歧區域。 18. 依據申請專利細第1〇至17項任何一項之光伏 其中-組多個光伏城置層包含半導體層及導電層。、, 19. 依據申請專利範圍第18項之光伏打裝置其中—組 光伏打裝置層包含至少—層或多層半導體層,至少一 多層導電層,以及至少一層純化層。 ^ 20. 依據申請專利範圍第18項之光伏打裝置,其中導電層包 含金屬為主之材料或金屬氧化物為主之材料。 曰匕 21·依據申請專利細第14項之光伏打裝置,其中—組多層 光伏打裝置層包含摻雜之半導體層,後側接觸層以及曰 窗層。 ,毛 22·依據申請專利範圍第21項之光伏打裝置,其中接雜之半 導體層包含n—形式半導體層,P-形式半導體層,或具有n〜摻 雜及P-形式摻雜區域之半導體接面層。 第40 頁 200814341 23·依據申請專利範圍第21項之光伏打裝置,其中 Φ ΑΓ, T1, Ni, W, In, Mo, Au, Pt, Pd, Ga, Sn;Sb Ag,Ge或###所構成;以及 丨之 導電窗層由摻雜錫之氧化銦,摻雜鋁之氧化辞,推雜爛 氧化鋅或碳奈米管所構成。 24·依據申請專利範圍第21項之光伏打裝i其中至少—組 多個光伏打裝置層由外延成長結晶層所構成。 25· —種形成光伏打結構之方法,該方法包含: 在施體半導體晶片上產生外麵,其具有導電層;及 轉移外延層至絕緣體基板。 26. 依據f請專利範圍第25項之方法,其中更進一步包含: 將施體半導體糾施_子植人處理過觀產 丰 導體晶片之外延層; + 將外延層黏接至絕緣體基板;以及 由施體半導體晶片分離外延層,因而暴露出至少 裂之表面。 27. 依據申請專利範圍第26項之方法,其中更進一步包 至少-個分絲面進行―、够讎魏理驗。 、 28. 依據申^專利_ 27項之方法其中$ =體撫晶片之第-分—之第: 29·依據申請專利範圍第28 理過程至少施加於外闕之;== 中一組多種修整處 30.依據申請專利範圍帛28項 ^ ° 、方去,/、中一組多種修整處 第41 頁 200814341 理過程至少施加於施體料體晶片之第—分裂表面 礼依據申鞠_第27項之方法,其中一組多種修整處 理主過程由紙產生後繼觸,產生導電級贼退火 外的半導體材 32·依據申請專利細第26項之方法,其中黏接步驟包含. 及施辭導體晶片;. ^體晶片之 外延看; 將絕緣體紐與外骑緊壓在一起·以及 接施加於絕緣體雜與施體半導體晶片兩端以產生黏 33. 依據申請專利範圍第25至32項任何一項之方法 由單晶施體半導體晶片所構成,該《半導&amp; 體曰曰片由矽,鍺,或砷化鍺所構成。 34. 依據申請專利範圍第25至32項任何一項之方法 晶片由Sl’购,沉,以,祕,GaP,及1逆選取出。 體半導體晶片包含單晶施體半導體7 法,其中轭 爲i -曰一 W曰曰片,以及分離之外延 層由早曰曰知體半導體晶片材料形成。 36.依據申請專利範圍第25至3 體半導體晶片包含單晶施體半導體晶片以及中施 ==導體晶片上,以及分離之^__ 第42 頁 200814341 37.依據申請專利細第25至32項任何—項' 生昇有專電層之-外延層包含一種或多曰、^方去,其中產 汽相運送,汽相沉積,離子植人,以及氧化作 38·依據申請專利細第25至32項任何。 電層包含金屬為主讀料或金屬氧化物為主其中導 39.依據申請專利範_ 25至32項任何—才科。 Φ =娜之半一導電層包含後侧接 =外 40·依據申請專利範圍第25至32項任何一項 雜之半導騎岭―導軏請辑導Hi中摻 有η-摻雜及P-形式摻雜區域之半導體接面層。、Ό、具 41·依據申請專利範圍第39項之方法其中θ 後侧接觸層由 Al,Ti,Ni,W,In,M(Uu;pt,pd,Ga Ag,Ge或石夕化物所構成;以及 ,,b, 導電,由摻雜錫之氧化銦,摻雜鋁之氧化鋅,摻 氧化鋅或碳奈米管所構成。 〃、硼之 42·依據申請專利細第25至41項任何 :打結構由單-接面先伏打結構或多接面光伏打結_:先 43. 依據t請專利範圍第25至41項任何一項之方 轉料繼絕緣鶴反之前更進一步包“施在 至少一種修整處理過程。 曰施以 44. 依據申請專利範圍第43項之方法其中至少—種修 理過程在轉移外至絕緣體鍅之前產生至少一個附 200814341 之光伏打裝置層。 45. -種形成申請專利範圍第25純項任何一項光 構之方法,該方法包含: … 將施體半導體晶片施以離子植入處理過程 於施體半導體晶片上; 藉由電解方式形成陽極黏接於外爾絕緣體馳之間. 由施體半導體晶片分離外延層,因而暴露出至少一個分裂 之表面;以及 形成-組多個光伏打結構層鄰近外縣以及雜絕緣體 基板。 46. 依據申請專利範圍第45項之方法,其中更進一步包含將 至少-個分絲祕種健處理触,其中產生 -組多個光伏打結構包含至少—種修整 47. 依據申請專利細第46項之方法其中至少一個分 面包含_半軸⑼之第_分縣砂及外骑之第^ 分裂表面。 48‘依據申請專利範圍第47項之方法,其中-組多種修整處 理過程至少施加於外延層之第二分裂表面。 姐依據申請專利麵第47項之方Γ其中-組多種修整處 理過程至少施加於施辭導體晶片之第一分裂表面。 5〇.依據申請專利麵第46項之方法,其中-組多種修整處 ^程由紙產娜_層,產生導獅,拋光,退火 生鈍化層’產生包封層’以及增加額外的半導體材 料選取出。 200814341 方式形 51.依據申請專利細第45項之 成陽極黏接之步驟包含: 、中糟由電解 之 加熱至少一個絕緣體基板及施體半導體曰 外:絕緣體編接地或間接轉觸施:半導體晶片 一起;以及 半導體晶片兩端以產生陽 將絕緣體基板與外延層緊—在200814341 X. Patent application scope: 1· rr kind of volt-red device, which contains ·'................ * ' ^ V**-1 .. . · ' ♦ insulator structure; epitaxial layer; conductive layer and the epitaxial layer are formed integrally and adjacent to the insulator structure; and connection, bonding the insulator structure to the conductive layer and the epitaxial layer, wherein the epitaxial layer is a single crystal semiconductor wafer The crystal epitaxial layer is composed of. 2. The photovoltaic device according to the scope of the patent application, wherein the epitaxial layer is mainly a single crystal material selected from the group consisting of Si, Ge-doped Si (SiGe), Sic, Ge, Ga^, &amp; P, and InP. Out. 3. The photovoltaic device according to claim 1 or 2, wherein the connection is made by bonding the insulator structure to the conductive layer and the epitaxial layer is the interface region. 4. The photovoltaic device according to item 3 of the patent application scope, wherein the interface region comprises a mixed region and a depleted region. 5. The photovoltaic device of any of the preceding claims, further comprising: a first ion implantation region in the insulator; and a first ion implantation region spanning the conductive layer and the epitaxial layer. 6. A photovoltaic device according to any of the preceding claims, wherein the conductive layer is made of a metal-based material or a metal oxide-based material. 7. A photovoltaic device according to any of the preceding claims, wherein the epitaxial layer is comprised of a doped semiconductor layer and the conductive layer is comprised of a backside contact layer or a conductive window layer. Page 38 200814341 8. The photovoltaic device according to claim 7 of the patent application, wherein the doped semiconductor wide semiconductor layer, the ρ_form semiconductor layer, or the true: semiconductor junction having a p-type and a Ρ-form doped region Floor. 9. The photovoltaic device according to claim 7, wherein the back contact layer is composed of Al, Ti, M, W, In, Mo, Au, Pt, Pd, Ga, Sn, Sb, Ag, Ge or Telluride. And the conductive window layer is composed of tin-doped indium oxide, doped with zinc oxide of Ilu, doped with zinc oxide or carbon nanotubes. The photovoltaic device according to any one of the preceding claims, further comprising a plurality of photovoltaic device layers formed in or on the epitaxial layer and away from the 〇11. The photovoltaic device, wherein the plurality of photovoltaic devices comprises at least one semiconductor layer, at least one conductive layer, and at least one passivation layer. 12. A photovoltaic device according to claim 10, wherein the plurality of photovoltaic devices comprises an epitaxially grown crystalline layer. 13. The photovoltaic device according to claim 1 of the patent application, further comprising at least one layer of the increased photovoltaic device layer integrally formed with the epitaxial layer and adjacent to the insulator level. The photovoltaic device according to any one of the preceding claims, comprising: an insulator structure; an epitaxial layer adjacent to the insulator structure; an anodic bonding, a bonded insulator structure and an epitaxial layer; and page 39, 200814341 and in object I -. . which is based on the single crystal of the single crystal donor semiconductor wafer = the photovoltaic shock according to the scope of the patent application of the 14th item is further inserted into the step - ion implantation region in the insulator; the second ion implant The input area is in the epitaxial layer. 16. Photovoltaic bonding according to item 1 or item 15 of the patent application area is determined by the interface area. : The person according to the patent application scope (4) of the photovoltaic device, wherein the interface area contains mixed _ and ambiguous areas. 18. Photovoltaic according to any one of claims 1 to 17, wherein the plurality of photovoltaic layers comprise a semiconductor layer and a conductive layer. 19. The photovoltaic device according to claim 18, wherein the photovoltaic device layer comprises at least one or more semiconductor layers, at least one multilayer conductive layer, and at least one purification layer. ^ 20. The photovoltaic device according to claim 18, wherein the conductive layer comprises a metal-based material or a metal oxide-based material. The photovoltaic device according to claim 14, wherein the multi-layer photovoltaic device layer comprises a doped semiconductor layer, a back side contact layer and a germanium window layer. The invention relates to a photovoltaic device according to claim 21, wherein the semiconductor layer to be mixed comprises an n-type semiconductor layer, a P-type semiconductor layer, or a semiconductor having n-doped and P-type doped regions. Conjoining layer. Page 40 200814341 23· Photovoltaic device according to claim 21, wherein Φ ΑΓ, T1, Ni, W, In, Mo, Au, Pt, Pd, Ga, Sn; Sb Ag, Ge or ### The conductive window layer is composed of tin-doped indium oxide, doped aluminum oxidized, or pulverized zinc oxide or carbon nanotube. 24. Photovoltaic clothing according to claim 21 of the patent application, wherein at least one of the plurality of photovoltaic devices is composed of an epitaxially grown crystalline layer. 25. A method of forming a photovoltaic structure, the method comprising: creating an outer surface on a donor semiconductor wafer having a conductive layer; and transferring the epitaxial layer to the insulator substrate. 26. According to the method of claim 25 of the patent scope, which further comprises: modifying the donor semiconductor _ sub-planting to treat the outer layer of the ferroconductor wafer; + bonding the epitaxial layer to the insulator substrate; The epitaxial layer is separated by the donor semiconductor wafer, thereby exposing at least the cracked surface. 27. According to the method of claim 26, the method further includes at least one-filament surface to carry out the test. 28. According to the method of claim _27, where $ = the first branch of the wafer - the first: 29 · at least according to the scope of the patent application, the process is applied to at least the outer rim; == 30. According to the scope of patent application 帛 28 items ^ °, Fang go, /, a group of multiple dressings, page 41 200814341 process at least applied to the body of the body wafer - split surface ceremony according to the application _ 27 The method of the item, wherein a plurality of the main processes of the trimming process are successively touched by the paper to generate the semiconductor material outside the annealing of the conductive grade thief. 32. According to the method of claim 26, wherein the bonding step comprises: and the conductor film of the conductor ;. ^ outside the body wafer; the insulator and the outer ride are pressed together and applied to the insulator and the ends of the donor semiconductor wafer to produce adhesion 33. According to any of the scope of claims 25 to 32 The method consists of a single crystal donor semiconductor wafer consisting of tantalum, niobium, or tantalum arsenide. 34. The method according to any one of claims 25 to 32, wherein the wafer is purchased by Sl's, Shen, Yi, Mi, GaP, and 1 counter. The bulk semiconductor wafer comprises a single crystal donor semiconductor 7 method in which the yoke is an i - 曰 曰曰 曰曰 ,, and the separation delamination layer is formed from the early 曰曰 曰曰 semiconductor wafer material. 36. According to the patent application, the 25th to 3rd semiconductor wafers comprise a single crystal donor semiconductor wafer and the intermediate application == conductor wafer, and the separation of the ^__ page 42 200814341 37. According to any of the patent applications 25 to 32 - Item 'shengsheng has a special electric layer--the epitaxial layer contains one or more 曰, ^ Fang, where vapor phase transport, vapor deposition, ion implantation, and oxidation 38. According to the patent application fines 25 to 32 any. The electrical layer contains metal as the main read material or metal oxide as the main guide. 39. According to the patent application _ 25 to 32 any - talent. Φ = Na's semi-conducting layer contains the back side connection = the outer 40. According to the patent application range No. 25 to 32, any one of the semi-guided riding ridges - guide 軏 辑 Hi Hi Hi Hi Hi Hi Hi η η η a semiconductor junction layer of a form doped region. Ό, 41. According to the method of claim 39, wherein the θ rear contact layer is composed of Al, Ti, Ni, W, In, M (Uu; pt, pd, Ga Ag, Ge or Shi Xi compound) And, b, conductive, consisting of tin-doped indium oxide, aluminum-doped zinc oxide, doped with zinc oxide or carbon nanotubes. 〃, boron 42. According to any patent application Nos. 25-41 : The structure is composed of single-joint first voltaic structure or multi-junction photovoltaic knotting _: first 43. According to t, please refer to any of the patent scopes 25 to 41 for the conversion of the material after the insulation crane is reversed. Applying at least one finishing process. 曰 44 44. According to the method of claim 43, wherein at least one of the repair processes produces at least one photovoltaic device layer with 200814341 before transferring to the insulator 。. Forming a method of any one of the optical structures of claim 25, wherein the method comprises: applying an ion implantation process to the donor semiconductor wafer; and forming an anode bonded by electrolysis Between the insulation and the body. The bulk wafer separates the epitaxial layer, thereby exposing at least one split surface; and forming a plurality of photovoltaic structures adjacent to the outer county and the hetero-insulator substrate. 46. According to the method of claim 45, further including At least one of the plurality of filaments, wherein the plurality of photovoltaic structures comprises at least one type of trimming 47. According to the method of claim 46, at least one of the facets comprises a _th axis (9) The second split surface of the county sand and the outer ride. 48' According to the method of claim 47, wherein a plurality of trimming processes are applied to at least the second split surface of the epitaxial layer. The plurality of trimming processes of the group-group are applied to at least the first splitting surface of the conductor wafer. 5〇. According to the method of claim 46, wherein the plurality of trimming processes are made of paper, Produce a lion, polish, anneal the raw passivation layer 'to create an encapsulation layer' and add additional semiconductor material to be selected. 200814341 Mode shape 51. According to the patent application The 45-step anodic bonding step comprises: illuminating at least one insulator substrate and donor semiconductor by electrolysis: insulator grounding or indirect switching: semiconductor wafer together; and semiconductor wafer ends to produce yang Tight the insulator substrate to the epitaxial layer - at 施加電壓於絕緣體基板與施體 極黏接。 52·依據申請專利範圍第45項之方法,其中施體半導體 由早晶施體半導體晶片所構成,該施體半導體晶片由石夕i ,或砷化鍺所構成。 53. 依射請專利範圍第45項之方法其中 由si,驗,Sic, Ge,GaAs,GaP,* Inp選取出。㈣曰曰片 54. 依據申請專利細第45項之方法,其中施體轉體曰片 包含單晶施體半導體晶片,以及分離之外縣由單晶施2 半導體晶片材料形成。 55·依射請專利範圍第45項之方法其中施體半導體晶片 包含單晶施體半導體晶片以及外延半導體層位於施體半導 體晶片上,以及分離之外延層由外延半導體層形成。 见依據申請專利範圍第45項之方法,其中產生具有導電層 之外延層包含一種或多種遙晶,外延,内延,汽相運送,汽相 沉積,離子植入,以及氧化作用。 町·依據申請專利範圍第45項之方法,其中一組多個光伏打 結構層包含半導體層及導電層。 第45 頁 200814341 58. 依據申請專利細第33項之方法, 為爾科或金屬祕物為主續料:、中㈣包湖 59. 依據申請專利細第45項之方法其中一电 ^構層包含獅之料親伽购相及‘ 60. 依據申請專利範圍第35項之方法 &lt; 崎物,她 形式摻雜區域之半導體接面層。 PA voltage is applied to the insulator substrate to adhere to the donor electrode. 52. The method according to claim 45, wherein the donor semiconductor is composed of an early-crystal donor semiconductor wafer, the donor semiconductor wafer being composed of a stone or a arsenide. 53. According to the method of the 45th patent range, it is selected by si, inspection, Sic, Ge, GaAs, GaP, * Inp. (4) A wafer 54. The method of claim 45, wherein the donor transfer wafer comprises a single crystal donor semiconductor wafer, and the separation is formed by a single crystal semiconductor wafer material. 55. The method of claim 45, wherein the donor semiconductor wafer comprises a single crystal donor semiconductor wafer and the epitaxial semiconductor layer is on the donor semiconductor wafer, and the separation extension layer is formed of an epitaxial semiconductor layer. See the method of claim 45, wherein the epitaxial layer having the conductive layer comprises one or more of a remote crystal, epitaxy, internal extension, vapor phase transport, vapor deposition, ion implantation, and oxidation. The method according to claim 45, wherein a plurality of photovoltaic layers comprise a semiconductor layer and a conductive layer. Page 45 200814341 58. According to the method of applying for patents, item 33, for the main material of Erke or metal secrets: Zhong (4) Baohu 59. According to the method of applying for patents, item 45, one of the layers Contains the material of the lion and the purchase of the gamma and '60. According to the method of claim 35 of the patent application &lt; Saki, the semiconductor junction layer of her form doped region. P 61 ·依據申請專利範圍第35項之方法,其中 ^侧接觸層由 A1,Ti,Ni,w,In,M(Uu;pt,pd,Ga,Sn,sb, Ag,Ge或矽化物所構成;以及 導電窗層由摻雜錫之氧化銦,摻雜鋁之氧化鋅,摻雜硼之 氧化鋅或碳奈来管所構成。 •依據申請專利範圍第45項之方法,其中光伏打結構由單 -接面光伏打結構或乡接絲伏打結構所構成。 63· -種形成光伏打結構之系統,該系統包含: 光伏打結構操作組件,以及 光伏打結構處理組件; 其中光伏打結構處理組件包含調理系統以及轉移系統, 其中雛系統調理外骑藉由光伏打結構操作組件 以及轉移系統將外延層轉移至絕緣體基板。 64·依據申請專利細第63項之系統,其中在轉移絕緣體 基板之前每一外延層具有導電層。 65·依據申請專利範圍第63或64項之系統,其中更進一步包 含黏接系統,其中黏接系統組構藉由電解方式形成陽極黏 第46 頁 200814341 接於絕緣體基板與外延層之間。 紙―银據生請專利範圍第63至65項任何一項之系統龙 進一步包含修整系統,其中修整系統組構實施至少、_種修更 整處理過程,其由劃線,產生後側接觸層,產生導電窗層,拋 光,退火,清理,產生鈍化層,產生包封層,以及增加額外的 半導體材料選取出。61. According to the method of claim 35, wherein the contact layer is composed of A1, Ti, Ni, w, In, M (Uu; pt, pd, Ga, Sn, sb, Ag, Ge or bismuth) And the conductive window layer is composed of tin-doped indium oxide, aluminum-doped zinc oxide, boron-doped zinc oxide or carbon nanotubes. • According to the method of claim 45, wherein the photovoltaic structure is composed of The single-junction photovoltaic structure or the rural wire volt structure constitutes 63. - a system for forming a photovoltaic structure, the system comprises: a photovoltaic structure operation component, and a photovoltaic structure processing component; wherein the photovoltaic structure treatment The assembly includes a conditioning system and a transfer system, wherein the young system is conditioned by the photovoltaic structure operating component and the transfer system to transfer the epitaxial layer to the insulator substrate. 64. The system according to claim 63, wherein before transferring the insulator substrate Each epitaxial layer has a conductive layer. 65. The system according to claim 63 or 64, further comprising a bonding system, wherein the bonding system structure is formed by electrolysis Extremely sticky page 46 200814341 is connected between the insulator substrate and the epitaxial layer. The paper-silver according to any one of the patent scopes 63 to 65 further includes a finishing system, wherein the finishing system is implemented at least, The finishing process is performed by scribing, creating a backside contact layer, creating a conductive window layer, polishing, annealing, cleaning, creating a passivation layer, creating an encapsulation layer, and adding additional semiconductor material to be selected. 第47 頁Page 47
TW096119237A 2006-05-31 2007-05-29 Thin film photovoltaic structure and fabrication TW200814341A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81006106P 2006-05-31 2006-05-31
US11/511,041 US20070277875A1 (en) 2006-05-31 2006-08-28 Thin film photovoltaic structure
US11/511,040 US20070277874A1 (en) 2006-05-31 2006-08-28 Thin film photovoltaic structure

Publications (1)

Publication Number Publication Date
TW200814341A true TW200814341A (en) 2008-03-16

Family

ID=38801981

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096119237A TW200814341A (en) 2006-05-31 2007-05-29 Thin film photovoltaic structure and fabrication

Country Status (5)

Country Link
EP (1) EP2022097A2 (en)
JP (1) JP2009539255A (en)
KR (1) KR20090028581A (en)
TW (1) TW200814341A (en)
WO (1) WO2007142865A2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080070340A1 (en) * 2006-09-14 2008-03-20 Nicholas Francis Borrelli Image sensor using thin-film SOI
EP2075850A3 (en) * 2007-12-28 2011-08-24 Semiconductor Energy Laboratory Co, Ltd. Photoelectric conversion device and manufacturing method thereof
US7967936B2 (en) 2008-12-15 2011-06-28 Twin Creeks Technologies, Inc. Methods of transferring a lamina to a receiver element
WO2010108151A1 (en) * 2009-03-20 2010-09-23 Solar Implant Technologies, Inc. Advanced high efficiency crystalline solar cell fabrication method
US20100244108A1 (en) * 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
TW201119019A (en) * 2009-04-30 2011-06-01 Corning Inc CMOS image sensor on stacked semiconductor-on-insulator substrate and process for making same
US8749053B2 (en) 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
CN103597614B (en) * 2011-06-15 2017-03-01 3M创新有限公司 There is the solaode of the conversion efficiency of improvement
EP2777069A4 (en) 2011-11-08 2015-01-14 Intevac Inc Substrate processing system and method
MY178951A (en) 2012-12-19 2020-10-23 Intevac Inc Grid for plasma ion implant

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152535A (en) * 1976-07-06 1979-05-01 The Boeing Company Continuous process for fabricating solar cells and the product produced thereby
US5395481A (en) * 1993-10-18 1995-03-07 Regents Of The University Of California Method for forming silicon on a glass substrate
JPH114008A (en) * 1997-06-11 1999-01-06 Nippon Telegr & Teleph Corp <Ntt> Manufacture of thin film solar battery
US6306729B1 (en) * 1997-12-26 2001-10-23 Canon Kabushiki Kaisha Semiconductor article and method of manufacturing the same
JP2000349264A (en) * 1998-12-04 2000-12-15 Canon Inc Method for manufacturing, use and utilizing method of semiconductor wafer
US7176528B2 (en) * 2003-02-18 2007-02-13 Corning Incorporated Glass-based SOI structures
JP4115859B2 (en) * 2003-02-28 2008-07-09 株式会社日立製作所 Anodic bonding method and electronic device
US7410883B2 (en) * 2005-04-13 2008-08-12 Corning Incorporated Glass-based semiconductor on insulator structures and methods of making same

Also Published As

Publication number Publication date
EP2022097A2 (en) 2009-02-11
WO2007142865A3 (en) 2008-05-08
KR20090028581A (en) 2009-03-18
JP2009539255A (en) 2009-11-12
WO2007142865A2 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
TW200814341A (en) Thin film photovoltaic structure and fabrication
US20070277874A1 (en) Thin film photovoltaic structure
US20070277875A1 (en) Thin film photovoltaic structure
US10686090B2 (en) Wafer bonded solar cells and fabrication methods
CN106796965B (en) Semiconductor structure and its manufacturing method
CN104937727B (en) Photovoltaic cell and photovoltaic cell manufacture method
US8129612B2 (en) Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar cell
US20060021565A1 (en) GaInP / GaAs / Si triple junction solar cell enabled by wafer bonding and layer transfer
EP3469119A1 (en) Engineered substrate structure for power and rf applications
TW200849574A (en) Image sensor using thin-film SOI
CN107408532A (en) Thermostabilization electric charge capture layer for the manufacture of semiconductor-on-insulator structure
JP6410362B2 (en) Photoactive device having a low bandgap active layer configured to improve efficiency and related methods
TW201041164A (en) Photovoltaic cell
JP2006228867A (en) Chalcopyrite solar cell and manufacturing method thereof
TW201003943A (en) Solar cell having a high quality rear surface spin-on dielectric layer
TW201108452A (en) Photovoltaic devices including zinc
TW201246301A (en) A method and apparatus for forming a thin lamina
WO2015196767A1 (en) Manufacturing method for four-junction solar cell
WO2011151968A1 (en) Method for manufacturing bonded wafer
JP2010123916A (en) METHOD FOR FORMING GexSi1-x BUFFER LAYER OF SOLAR ENERGY CELL ON SILICON WAFER
CN102832160A (en) Preparation method of SOI (silicon on insulator) silicon wafer
Pitera et al. Coplanar Integration of Lattice-Mismatched Semiconductors with Silicon by Wafer Bonding Ge/Si1− x Ge x/Si Virtual Substrates
CN101467245A (en) Thin film photovoltaic structure and fabrication
TW201138130A (en) Multi-junction solar cell strucrure
An et al. Fabrication of Crystalline Si Thin Films for Photovoltaics