TW201142841A - Semiconductor device and method of driving semiconductor device - Google Patents

Semiconductor device and method of driving semiconductor device Download PDF

Info

Publication number
TW201142841A
TW201142841A TW100102655A TW100102655A TW201142841A TW 201142841 A TW201142841 A TW 201142841A TW 100102655 A TW100102655 A TW 100102655A TW 100102655 A TW100102655 A TW 100102655A TW 201142841 A TW201142841 A TW 201142841A
Authority
TW
Taiwan
Prior art keywords
transistor
source
semiconductor device
potential
gate
Prior art date
Application number
TW100102655A
Other languages
Chinese (zh)
Other versions
TWI496142B (en
Inventor
Daisuke Kawae
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201142841A publication Critical patent/TW201142841A/en
Application granted granted Critical
Publication of TWI496142B publication Critical patent/TWI496142B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4068Voltage or leakage in refresh operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Semiconductor Memories (AREA)
  • Dram (AREA)
  • Non-Volatile Memory (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Static Random-Access Memory (AREA)

Abstract

The number of wirings per unit memory cell is reduced by sharing a bit line by a writing transistor and a reading transistor. Data is written by turning on the writing transistor so that a potential of the bit line is supplied to a node where one of a source electrode and a drain electrode of the writing transistor and a gate electrode of the reading transistor are electrically connected, and then turning off the writing transistor so that a predetermined amount of charge is held in the node. Data is read by using a reading signal line connected to one of a source electrode and a drain electrode of the reading transistor so that a predetermined reading potential is supplied to the reading signal line, and then detecting a potential of the bit line.

Description

201142841 六、發明說明: 【發明所屬之技術領域】 在此揭露的本發明有關於使用半導體元件之半導體裝 置及驅動半導體裝置之方法。 ' 【先前技術】 使用半導體元件的記憶體裝置廣泛分成兩種:當電源 停止時喪失記憶體資料的揮發性記憶體裝置,以及當未供 應電力時保持已儲存資料的非揮發性記憶體裝置。 揮發性記憶體裝置的典型範例爲動態隨機存取記憶體 (DRAM) 。DRAM以選擇包括在記憶體元件中之電晶體 並在電容器中保持電荷的方式儲存資料。 當從DRAM讀取資料時,根據上述原理喪失電容器 中之電荷;因此,每當讀出資料時需要另一寫入操作。此 外,包括在記憶體元件中之電晶體即使在不選擇電晶體時 會有漏電流且電荷流入或流出電容器,所以資料(資訊) 儲存時間很短。有鑑於此,在預定間隔需要另一寫入資料 (更新操作),且這難以充分減少耗電量。此外,由於電 源停止時會喪失記憶體資料,需要使用磁性材料或光學材 ' 料的另一記憶體裝置來長時間儲存資料。 揮發性記憶體裝置的另一範例爲靜態隨機存取記憶體 (SRAM ) » SRAM藉由使用諸如正反器的電路儲存記憶 體資料且無需更新操作。這意味著SRAM比DRAM更具 優勢。然而,因爲使用了諸如正反器的電路增加每記憶體 -5- 201142841 容量的成本。此外,如同在DRAM中般,當電源停止時 喪失SRAM中之記憶體資料。 非揮發性記憶體裝置的一典型範例爲快閃記憶體。快 閃記憶體包括於電晶體中之在閘極電極與通道形成區域之 間的浮置閘極,並藉由在浮置閘極中保持電荷來儲存資料 。因此,快閃記憶體具有資料保持時間極長(幾乎永久) 且不需要揮發性記憶體裝置所必要的更新操作(例如,專 利文獻1 )。 然而,包括在記憶體元件中之閘極絕緣層會因在寫入 時流動的穿隧電流而退化,所以記憶體在預定次數的寫入 操作之後停止其之功能。爲了減少此問題之不利影響,採 用一種方法,其中等化記億體元件之寫入操作的次數。然 而,額外需要複雜的輔助電路來實現此方法。此外,採用 這種方法不會解決壽命之根本問題。換言之,快閃記億體 不適合其中頻繁重寫資料的應用。 此外,在浮置閘極中保持電荷或移除電荷需要高電壓 ,且亦需要產生高電壓的電路。此外,保持或移除電荷會 花上頗長的時間,且難以用較高速度執行寫入及抹除。 [引用] [專利文獻] [專利文獻1]日本公開專利申請案號S5 7- 1 05 8 8 9 【發明內容】201142841 VI. Description of the Invention: [Technical Field] The invention disclosed herein relates to a semiconductor device using a semiconductor element and a method of driving the semiconductor device. [Prior Art] Memory devices using semiconductor components are broadly classified into two types: volatile memory devices that lose memory data when power is turned off, and non-volatile memory devices that retain stored data when power is not supplied. A typical example of a volatile memory device is dynamic random access memory (DRAM). The DRAM stores data in a manner that selects the transistors included in the memory elements and holds the charge in the capacitors. When reading data from the DRAM, the charge in the capacitor is lost according to the above principle; therefore, another write operation is required each time the data is read. In addition, the transistor included in the memory element has a short drain time when the transistor is not selected and the charge flows into or out of the capacitor, so the data (information) storage time is short. In view of this, another write data (update operation) is required at a predetermined interval, and it is difficult to sufficiently reduce the power consumption. In addition, since the memory data is lost when the power is stopped, it is necessary to use a magnetic material or another memory device of the optical material to store the data for a long time. Another example of a volatile memory device is a static random access memory (SRAM). The SRAM stores memory data by using a circuit such as a flip-flop without the need for an update operation. This means that SRAM has an advantage over DRAM. However, because of the use of circuits such as flip-flops, the cost per capacity of -5 - 201142841 is increased. In addition, as in DRAM, the memory data in the SRAM is lost when the power is stopped. A typical example of a non-volatile memory device is a flash memory. The flash memory includes a floating gate in the transistor between the gate electrode and the channel formation region, and stores data by holding a charge in the floating gate. Therefore, the flash memory has an extremely long data retention time (almost permanent) and does not require the update operation necessary for the volatile memory device (for example, Patent Document 1). However, the gate insulating layer included in the memory element is degraded by the tunneling current flowing at the time of writing, so the memory stops its function after a predetermined number of writing operations. In order to reduce the adverse effects of this problem, a method is employed in which the number of write operations of the billion element is equalized. However, additional complex auxiliary circuits are required to implement this method. In addition, using this method does not solve the fundamental problem of life. In other words, Flash Flash is not suitable for applications where data is frequently rewritten. In addition, holding a charge or removing a charge in a floating gate requires a high voltage, and a circuit that generates a high voltage is also required. In addition, it takes a long time to hold or remove the charge, and it is difficult to perform writing and erasing at a higher speed. [Citation] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Application No. S5 7- 1 05 8 8 9 [Summary of the Invention]

S -6- 201142841 有鑑於上述問題,所揭露之本發明的一實施例之一目 的在於提供具有新穎結構的半導體裝置,其中即使當不供 應電力時可儲存記億體資料’且其中對於寫入次數無限制 0 另一目的在於提供具有較高整合度及較高記憶體容量 的半導體裝置。 另一目的在於提供具有穩定操作之高度可靠的半導體 裝置。 另一目的在於提供能夠高速操作之半導體裝置。 另一目的在於提供消耗低功率的半導體裝置。 在此說明書中所揭露的本發明之一實施例達成上述目 的的至少一者。 本發明之一實施例爲一種半導體裝置,包含非揮發性 記億胞、讀取信號線、位元線、及字線。非揮發性記憶胞 包括讀取電晶體及包括氧化物半導體的寫入電晶體。在半 導體裝置中,讀取電晶體之源極電極及汲極電極之一電連 接至讀取信號線,且寫入電晶體之源極電極及汲極電極之 一電連接至讀取電晶體的閘極電極。此外,讀取電晶體之 源極電極及汲極電極之另一者及寫入電晶體之源極電極及 汲極電極之另一者電連接至位元線,且寫入電晶體的閘極 電連接至字線。 本發明之另一實施例爲一種半導體裝置,包含非揮發 性記憶胞、第一佈線、第二佈線、及第三佈線。非揮發性 記憶胞包括第一電晶體及第二電晶體。在半導體裝置中, 201142841 第一電晶體之源極電極及汲極電極之一電連接至第一 ,且第二電晶體之源極電極及汲極電極之一電連接至 電晶體的値及電極。此外,第一電晶體之源極電極及 電極之另一者及第二電晶體之源極電極及汲極電極之 者電連接至電連接至第二佈線,且第二電晶體之閘極 電連接至第三佈線。 在任何半導體裝置中,使用包括氧化物半導體的 體作爲寫入電晶體或第二電晶體,藉此更新操作的頻 極低。 在任何半導體裝置中,寫入電晶體或第二電晶體 閉狀態電流較佳低於讀取電晶體或第一電晶體的關閉 電流。 在任何半導體裝置中,第二電晶體較佳包括具有 3 eV的能隙之材料。 在任何半導體裝置中,第一電晶體的切換率較佳 第二電晶體的切換率。 在半導體裝置中,以下列方式執行資料寫入。當 電晶體處於關閉狀態中時,啓通第二電晶體。透過第 晶體’供應第二佈線的高位準電位或低位準電位至第 晶體的源極電極及汲極電極之一連接至第一電晶體的 電極的節點,旦關閉第二電晶體,藉此在節點中保持 電荷量。 在半導體裝置中’以下列方式讀取節點中保持之 。當第二電晶體處於關閉狀態中時,供應電荷至第二 佈線 第一 汲極 另一 電極 電晶 率可 之關 狀態 大於 高於 第一 二電 二電 閘極 預定 資料 佈線S -6- 201142841 In view of the above problems, it is an object of an embodiment of the present invention to provide a semiconductor device having a novel structure in which a memory can be stored even when power is not supplied and in which The number of times is unlimited. Another purpose is to provide a semiconductor device with higher integration and higher memory capacity. Another object is to provide a highly reliable semiconductor device with stable operation. Another object is to provide a semiconductor device that can operate at high speed. Another object is to provide a semiconductor device that consumes low power. An embodiment of the invention disclosed in this specification achieves at least one of the above objects. One embodiment of the present invention is a semiconductor device comprising a non-volatile cell, a read signal line, a bit line, and a word line. The non-volatile memory cell includes a read transistor and a write transistor including an oxide semiconductor. In the semiconductor device, one of the source electrode and the drain electrode of the read transistor is electrically connected to the read signal line, and one of the source electrode and the drain electrode of the write transistor is electrically connected to the read transistor. Gate electrode. In addition, the other of the source electrode and the drain electrode of the read transistor and the other of the source electrode and the drain electrode of the write transistor are electrically connected to the bit line and written to the gate of the transistor. Electrically connected to the word line. Another embodiment of the present invention is a semiconductor device comprising a non-volatile memory cell, a first wiring, a second wiring, and a third wiring. The non-volatile memory cell includes a first transistor and a second transistor. In the semiconductor device, 201142841 one of the source electrode and the drain electrode of the first transistor is electrically connected to the first, and one of the source electrode and the drain electrode of the second transistor is electrically connected to the electrode and the electrode of the transistor. . In addition, the other of the source electrode and the electrode of the first transistor and the source electrode and the drain electrode of the second transistor are electrically connected to the second wiring, and the gate of the second transistor is electrically Connect to the third wiring. In any semiconductor device, a body including an oxide semiconductor is used as the write transistor or the second transistor, whereby the frequency of the update operation is low. In any semiconductor device, the write transistor or the second transistor is preferably in a closed state current lower than the off current of the read transistor or the first transistor. In any semiconductor device, the second transistor preferably comprises a material having an energy gap of 3 eV. In any semiconductor device, the switching rate of the first transistor is preferably the switching rate of the second transistor. In the semiconductor device, data writing is performed in the following manner. The second transistor is turned on when the transistor is in the off state. Passing the high level potential or the low level potential of the second wiring to the node of the electrode of the first transistor and one of the gate electrodes of the first transistor, the second transistor is turned off, thereby The amount of charge is held in the node. In the semiconductor device, the read node is held in the following manner. When the second transistor is in the off state, the charge supply to the second drain of the second drain and the other electrode of the other electrode may be turned off to be higher than the first two electric two gates.

S -8 - 201142841 (此操作稱爲預先充電)使第二佈線具有第二電位。接著 ,供應第一電位作爲讀取電位至第一步線’並檢測第二佈 線之電位。 注意到在此說明書及之類中,非揮發性半導體裝置意 指即使當不供電至其可儲存資料一給定時期或更久(1X 1〇4秒或更久,較佳lxio6秒或更久)的半導體裝置。 注意到在此說明書及之類中,諸如「上方」或「下方 」的術語並非一定指一構件設在另一構件的「直接上方J 或「直接下方」。例如,詞句「閘極電極在閘極絕緣層上 方」不排除在閘極絕緣層與閘極電極之間有額外構件的情 況。此外,諸如「上方」或「下方」的術語僅爲了方便敘 述而加以使用且可包括構件關係爲顛倒的情況’除非另有 所指。 另外,在此說明書及之類中,諸如「電極」或「佈線 」的術語不限制構件的功能。例如,「電極」有時用爲「 佈線」之一部分,且反之亦然。此外,「電極」或「佈線 」的術語可包括以積體方式形成複數「電極」或「佈線J 的情況。 當例如使用相反極性的電晶體時或當電流流動方向在 電路操作中改變時,「源極」及「汲極」的功能有時可互 換。因此,在此說明書中可相互取代術語「源極」及「汲 極」。 此外,在此說明書及之類中,術語「電連接」包括構 件經由「具有任何電功能的物體」連接之情況。對於「具 -9 - 201142841 有任何電功能的物體」無特別限制,只要可在經由該物體 所連接的構件之間傳送並接收電信號。 「具有任何電功能的物體」之範例爲如電晶體之切換 元件、電阻器、電感器、電容器,及具有各式各樣的功能 之元件,還有電極及佈線。 藉由本發明之一實施例,可減少半導體裝置的面積。 因此,可提供具有較高整合度及較高記憶體容量的半導體 裝置。 由於本發明之資料寫入無需高電壓,不會輕易發生諸 如閘極絕緣層退化的問題:因此,大幅增加可重寫資料的 次數,且大幅增加可靠度。 此外,根據電晶體的啓通狀態及關閉狀態寫入資料, 並無需抹除資料的操作,藉此可實現高速操作。 使用包括氧化物半導體的電晶體作爲記億胞,藉此可 儲存記憶體資料頗長的一段時間。換言之,可減少半導體 裝置的耗電量,因爲更新操作變得不必要或更新操作的頻 率可爲極低。此外,即使當不供應電力仍可長時間儲存記 憶體資料。 藉由使用包括氧化物半導體之電晶體及可以高速操作 且包括非氧化物半導體之材料的電晶體的結合,可有利地 實現需以高速操作之.各種電路(諸如邏輯電路及驅動器電 路)。 【實施方式】S-8 - 201142841 (This operation is called pre-charging) causes the second wiring to have a second potential. Next, the first potential is supplied as the read potential to the first line ' and the potential of the second wiring is detected. It is noted that in this specification and the like, a non-volatile semiconductor device means that even when power is not supplied to the storable material for a given period of time or longer (1X 1 〇 4 seconds or longer, preferably lxio 6 seconds or longer) Semiconductor device. It is noted that in this specification and the like, terms such as "above" or "below" do not necessarily mean that one component is located "directly above J" or "directly below". For example, the phrase "gate electrode above the gate insulating layer" does not exclude the presence of additional components between the gate insulating layer and the gate electrode. In addition, terms such as "above" or "below" are used for convenience of description only and may include instances where the relationship of the components is reversed unless otherwise indicated. In addition, in this specification and the like, terms such as "electrode" or "wiring" do not limit the function of the member. For example, "electrode" is sometimes used as part of "wiring" and vice versa. In addition, the term "electrode" or "wiring" may include a case where a plurality of "electrodes" or "wiring J" are formed in an integrated manner. When, for example, a transistor of opposite polarity is used or when a direction of current flow changes during circuit operation, The functions of "source" and "bungee" are sometimes interchangeable. Therefore, the terms "source" and "polar" can be replaced by each other in this specification. Moreover, in this specification and the like, the term "electrical connection" includes the case where the components are connected via "objects having any electrical function". There is no particular limitation on "an object having any electrical function with -9 - 201142841" as long as an electrical signal can be transmitted and received between members connected via the object. Examples of "objects with any electrical function" are switching elements such as transistors, resistors, inductors, capacitors, and components having various functions, as well as electrodes and wiring. With an embodiment of the present invention, the area of the semiconductor device can be reduced. Therefore, a semiconductor device having higher integration and higher memory capacity can be provided. Since the writing of the present invention does not require a high voltage, problems such as deterioration of the gate insulating layer do not easily occur: therefore, the number of times of rewritable data is greatly increased, and the reliability is greatly increased. In addition, the data is written according to the turn-on state and the off state of the transistor, and the operation of erasing the data is not required, thereby realizing high-speed operation. A transistor including an oxide semiconductor is used as a memory cell, whereby the memory data can be stored for a long period of time. In other words, the power consumption of the semiconductor device can be reduced because the update operation becomes unnecessary or the frequency of the update operation can be extremely low. In addition, the memory data can be stored for a long time even when power is not supplied. By using a combination of a transistor including an oxide semiconductor and a transistor which can operate at high speed and including a material of a non-oxide semiconductor, various circuits (such as a logic circuit and a driver circuit) which are required to operate at a high speed can be advantageously realized. [Embodiment]

S -10- 201142841 將於下參考附圖敘述本發明之實施例。注意到本發明 不限於下列說明,且熟悉此技藝人士將輕易了解到可以各 種方式修改模式及細節而不背離本發明之精神與範疇。因 此,本發明不應解釋成限於下列實施例模式中的說明。 電晶體爲一種半導體元件並可實現電流或電壓之放大 、控制導通或不導通的切換操作、或之類。在此說明書中 之電晶體包括絕緣閘極場效電晶體(IGET )及薄膜電晶 體(TFT )。 爲了便於了解,在某些情況中在圖及之類中所示之各 個構件的位置、大小、範圍、及之類並非實際者。因此, 所揭露的本發明不一定限於圖中所揭露的位置、大小、範 圍、或之類。注意到在每一個電路圖中,在電晶體旁可能 會寫上「OS」以表示電晶體包括氧化物半導體。 在此說明書及之類中,使用諸如「第一」、「第二」 '及「第三」的順序數以避免混淆構件,且這些術語不意 味著構件數量的限制。 (實施例1 ) 在此實施例中,參照第1A及1B圖、第2A.及2B圖 '及第3圖敘述爲揭露的本發明之一實施例的半導體裝置 之電路結構及操作。在此實施例中,將敘述使用n通道電 晶體的情況。 在第1Α圖中,繪示在此實施例中所揭露的半導體裝 置之電路結構。第1Α圖中所示的半導體裝置包括包括第 -11 - 201142841 一電晶體2 0 1及第二電晶體2 0 2的非揮發性記憶胞2 0 0。 在第1 Α圖中,第一佈線2 1 1 (亦稱爲讀取信號線rl )及 第一電晶體201 (亦稱爲電晶體TRr)的源極電極及汲極 電極之一互相電連接。第二電晶體2 0 2 (亦稱爲電晶體 TRw)的源極電極及汲極電極之一及第一電晶體201的閘 極電極互相電連接。第二佈線2 1 2 (亦稱爲位元線B L ) 、第一電晶體201的源極電極及汲極電極之另一者、第二 電晶體202的源極電極及汲極電極之另一者互相電連接。 第三佈線2 1 3 (亦稱爲字線WL )及第二電晶體202的閘 極電極互相電連接。第一電晶體201作用爲讀取電晶體, 且第二電晶體202作用爲寫入電晶體。第1 A圖中所示的 半導體裝置爲三端子半導體裝置,其中三條佈線連接至一 記憶胞。 第二電晶體202 (其爲寫入電晶體)的關閉狀態電流 在環境溫度(例如25°C)爲1〇〇 zA(lxlO_19A)或更低 :較佳 10 zA(1x10_2QA)或更低;更佳 1 ζΑ(1χ10·21Α )或更低。雖難以用包括一般矽半導體的電晶體達成這種 低關閉狀態電流,可用包括氧化物半導體的電晶體達成, 其係在適當條件下加以處理並具有3.0 eV至3.5 eV的大 能隙。因此,包括氧化物半導體之電晶體較佳用爲寫入電 晶體。 此外,藉由使用包括氧化物半導體之電晶體作爲寫入 電晶體,可因爲小次臨界擺幅(S値)導致至記憶胞的寫 入脈衝的上升非常陡峭。S-10-201142841 Embodiments of the present invention will be described below with reference to the accompanying drawings. It is to be understood that the invention is not to be construed as being limited by the scope of the invention. Therefore, the present invention should not be construed as being limited to the description in the following embodiment modes. The transistor is a semiconductor element and can realize amplification of current or voltage, switching operation of controlling conduction or non-conduction, or the like. The transistor in this specification includes an insulated gate field effect transistor (IGET) and a thin film transistor (TFT). For the sake of understanding, the position, size, extent, and the like of the various components shown in the figures and the like are not actual in some cases. Therefore, the invention disclosed is not necessarily limited to the location, size, scope, or the like disclosed in the drawings. Note that in each circuit diagram, "OS" may be written next to the transistor to indicate that the transistor includes an oxide semiconductor. In this specification and the like, the order numbers such as "first", "second", and "third" are used to avoid obscuring members, and these terms do not imply a limitation on the number of components. (Embodiment 1) In this embodiment, reference is made to Figs. 1A and 1B, Figs. 2A and 2B, and Fig. 3 for describing the circuit configuration and operation of a semiconductor device according to an embodiment of the present invention. In this embodiment, the case of using an n-channel transistor will be described. In the first drawing, the circuit structure of the semiconductor device disclosed in this embodiment is shown. The semiconductor device shown in Fig. 1 includes a non-volatile memory cell 200 including a transistor 011 - 201142841 and a second transistor 2 0 2 . In the first diagram, the first wiring 2 1 1 (also referred to as the read signal line rl) and the source electrode and the drain electrode of the first transistor 201 (also referred to as the transistor TRr) are electrically connected to each other. . One of the source electrode and the drain electrode of the second transistor 2 0 2 (also referred to as transistor TRw) and the gate electrode of the first transistor 201 are electrically connected to each other. The second wiring 2 1 2 (also referred to as bit line BL), the other of the source electrode and the drain electrode of the first transistor 201, the source electrode of the second transistor 202, and the other of the drain electrode They are electrically connected to each other. The third wiring 2 1 3 (also referred to as word line WL) and the gate electrode of the second transistor 202 are electrically connected to each other. The first transistor 201 acts as a read transistor and the second transistor 202 acts as a write transistor. The semiconductor device shown in Fig. 1A is a three-terminal semiconductor device in which three wirings are connected to a memory cell. The off state current of the second transistor 202 (which is a write transistor) is 1 〇〇 zA (lx10_19A) or lower at an ambient temperature (for example, 25 ° C): preferably 10 zA (1x10_2QA) or lower; Good 1 ζΑ (1χ10·21Α) or lower. Although it is difficult to achieve such a low off-state current with a transistor including a general germanium semiconductor, it can be achieved by a transistor including an oxide semiconductor which is processed under appropriate conditions and has a large energy gap of 3.0 eV to 3.5 eV. Therefore, a transistor including an oxide semiconductor is preferably used as a write transistor. Further, by using a transistor including an oxide semiconductor as the write transistor, the rise of the write pulse to the memory cell due to the small-order critical swing (S値) is very steep.

S -12- 201142841 在此實施例中,作爲第二電晶體202,其爲寫入電晶 體,使用包括氧化物半導體之電晶體。包括氧化物半導體 之電晶體具有在關閉狀態中在源極與汲極之間的極低漏電 流(關閉狀態電流)的特性。因此,藉由關閉第二電晶體 202,可長時間保持節點281 (亦稱爲節點ND )中之電荷 。在節點ND中,第二電晶體2 02的源極電極及汲極電極 之一及第一電晶體201的閘極電極互相電連接。 作爲第一電晶體201,其爲讀取電晶體,較佳使用在 高速操作之電晶體以增加讀取率。例如,較佳使用具有1 奈秒或更少之切換率的電晶體作爲讀取電晶體。 第一電晶體2 0 1的關閉狀態電流不需如第二電晶體 202般低。可使用比第二電晶體202具有更高切換率之電 晶體(如具有更高場效遷移率的電晶體)作爲第一電晶體 201以增加記憶胞的操作速度。亦即,作爲第一電晶體 201,可使用包括非氧化物半導體之半導體材料的電晶體 。注意到在一些情況中,根據選擇的半導體材料,第一電 晶體20 1的關閉狀態電流高於第二電晶體202的關閉狀態 電流。作爲用爲第一電晶體201之半導體材料,可使用, 例如,矽、鍺、矽鍺、碳化矽、砷化鎵、或之類。替代地 ’可使用有機半導體材料或之類》可以夠高速度操作包括 這種半導體材料之第一電晶體201,所以其可以高速執行 儲存資料之讀取。亦即,可以高速操作半導體裝置。 注意到當第二電晶體202在關閉狀態中時,節點28 1 可視爲嵌入嵌入絕緣體中(所謂的浮置狀態)並因此保持 -13- 201142841 電荷。亦即,節點2 8 1具有與用爲非揮發性記憶體元件之 浮置閘極電晶體的浮置閘極相同的效果。包括氧化物半導 體之第二電晶體202的關閉狀態電流量小於或等於包括矽 半導體或之類的電晶體之關閉狀態電流量的十萬分之一; 因此,因第二電晶體202的漏電流所造成之累積於節點 281中的電荷之喪失是微不足道。亦即,藉由包括氧化物 半導體之第二電晶體202,可實現非揮發性記憶胞。 只要第二電晶體202的關閉狀態電流實質上爲例如0 ,可無需或較不經常地執行(如約一個月或一年一次)傳 統DRAM所需之更新操作。據此,可充分減少半導體裝 置的耗電量。 此外,在此實施例中揭露的半導體裝置中,可藉由重 寫新資料至記憶胞來直接重寫資料。因此,無需快閃記憶 體或之類所需的抹除操作,所以可防止因於抹除操作導致 之操作速度的降低。亦即,可以高速操作半導體裝置。另 外’無需傳統浮置閘極電晶體中之寫入及抹除資料所需之 高電壓;故可進一步減少半導體裝置之耗電量。 接下來’將敘述至記億胞200的資料之寫入(重寫) 操作。首先’將連接至記憶胞200 (其被選爲將寫入資料 至其的記憶胞)之第三佈線2 1 3 (字線w L )的電位設定 成會啓通第二電晶體2〇2 (其馬寫入電晶體)的電位,以 啓通第二電晶體202。在此提供高位準電位vWLH至第三 佈線2 1 3。據此’將連接至選定的記憶胞2 〇 〇之第二佈線 2 1 2 (位兀線B L )的電位供應至節點2 8 1 (節點N D )。S -12- 201142841 In this embodiment, as the second transistor 202, which is a write transistor, a transistor including an oxide semiconductor is used. A transistor including an oxide semiconductor has a characteristic of extremely low leakage current (off state current) between a source and a drain in a closed state. Therefore, by turning off the second transistor 202, the charge in the node 281 (also referred to as the node ND) can be maintained for a long time. In the node ND, one of the source electrode and the drain electrode of the second transistor 206 and the gate electrode of the first transistor 201 are electrically connected to each other. As the first transistor 201, which is a read transistor, it is preferably used in a transistor operating at a high speed to increase the read rate. For example, a transistor having a switching rate of 1 nanosecond or less is preferably used as the reading transistor. The off state current of the first transistor 210 is not required to be as low as the second transistor 202. A transistor having a higher switching rate than the second transistor 202 (e.g., a transistor having a higher field effect mobility) can be used as the first transistor 201 to increase the operating speed of the memory cell. That is, as the first transistor 201, a transistor including a semiconductor material of a non-oxide semiconductor can be used. It is noted that in some cases, the off state current of the first transistor 20 1 is higher than the off state current of the second transistor 202, depending on the selected semiconductor material. As the semiconductor material used as the first transistor 201, for example, ruthenium, osmium, iridium, ruthenium carbide, gallium arsenide, or the like can be used. Alternatively, the first transistor 201 including such a semiconductor material can be operated at a high speed by using an organic semiconductor material or the like, so that it can perform reading of stored data at a high speed. That is, the semiconductor device can be operated at high speed. It is noted that when the second transistor 202 is in the off state, the node 28 1 can be considered to be embedded in the embedded insulator (so-called floating state) and thus maintain the charge of -13 - 201142841. That is, the node 281 has the same effect as the floating gate of the floating gate transistor used as the non-volatile memory element. The off-state current amount of the second transistor 202 including the oxide semiconductor is less than or equal to one-hundredth of a millionth of the off-state current amount of the transistor including the germanium semiconductor or the like; therefore, the leakage current due to the second transistor 202 The resulting loss of charge accumulated in node 281 is negligible. That is, a non-volatile memory cell can be realized by the second transistor 202 including an oxide semiconductor. As long as the off-state current of the second transistor 202 is substantially zero, for example, the update operation required to transfer the DRAM may be performed or less frequently (e.g., about one month or once a year). According to this, the power consumption of the semiconductor device can be sufficiently reduced. Further, in the semiconductor device disclosed in this embodiment, the data can be directly rewritten by rewriting new data to the memory cell. Therefore, the erase operation required for the flash memory or the like is not required, so that the operation speed due to the erase operation can be prevented from being lowered. That is, the semiconductor device can be operated at high speed. In addition, the high voltage required for writing and erasing data in a conventional floating gate transistor is not required; therefore, the power consumption of the semiconductor device can be further reduced. Next, the writing (rewriting) operation of the data to the billion cell 200 will be described. First, 'the potential of the third wiring 2 1 3 (word line w L ) connected to the memory cell 200 (which is selected as the memory cell to which data is to be written) is set to turn on the second transistor 2 〇 2 The potential of the horse is written to the transistor to turn on the second transistor 202. Here, a high level potential vWLH is supplied to the third wiring 2 1 3 . Accordingly, the potential of the second wiring 2 1 2 (bit line B L ) connected to the selected memory cell 2 供应 is supplied to the node 2 8 1 (node N D ).

S -14- 201142841 在此供應低位準電位vBLL或高位準電位VBLH。之後,將 第三佈線2 1 3的電位設定在會關閉第二電晶體202的電位 ,以關閉第二電晶體2 0 2 ;因此,節點2 8 1在浮置狀態中 ,且預定電荷維持成保持在節點281中。在上述方式中, 藉由在節點281中累積並保持預定電荷量,記億胞200可 儲存資料(寫入節點)。 在整個寫入操作將第一電晶體20 1 (其爲讀取電晶體 )保持在關閉狀態中是很重要的。若當供應VBLl或VBLH 至節點281時啓通第一電晶體201,第二佈線212及第一 佈線2 1 1 (讀取信號線RL )會經由第一電晶體20 1而被 帶到導通中。據此,第二佈線2 1 2及第一佈線2 1 1之電位 互相干擾,且無法提供準確的資料至節點281» 供應低位準電位VRLL或高位準電位VRLH至第一佈線 21 1。在整個寫入操作中,持續供應高位準電位VRLH至第 —佈線21 1。當第一電晶體201的臨限電壓表示爲Vth|時 ’爲了在寫入操作中保持第一電晶體2 0 1的關閉狀態,將 VbLH、VrLH、及Vthl設定成滿足式子1。S -14- 201142841 Here, a low level potential vBLL or a high level potential VBLH is supplied. Thereafter, the potential of the third wiring 2 13 is set at a potential that turns off the second transistor 202 to turn off the second transistor 20 2; therefore, the node 2 8 1 is in a floating state, and the predetermined charge is maintained Stay in node 281. In the above manner, by accumulating and maintaining a predetermined amount of charge in the node 281, the cell 200 can store data (write node). It is important to keep the first transistor 20 1 (which is the read transistor) in the off state throughout the write operation. If the first transistor 201 is turned on when VBL1 or VBLH is supplied to the node 281, the second wiring 212 and the first wiring 2 1 1 (read signal line RL) are brought into conduction via the first transistor 20 1 . . Accordingly, the potentials of the second wiring 2 1 2 and the first wiring 2 1 1 interfere with each other, and the accurate data cannot be supplied to the node 281» to supply the low level potential VRLL or the high level potential VRLH to the first wiring 21 1 . In the entire write operation, the high level potential VRLH is continuously supplied to the first wiring 21 1 . When the threshold voltage of the first transistor 201 is expressed as Vth|, in order to maintain the off state of the first transistor 210 in the write operation, VbLH, VrLH, and Vth1 are set to satisfy Equation 1.

Vblh - Vrlh < Vthi [式子 1 ] 在一些情況中,在非選定記憶胞的節點281中保持 V b LH。在那些情況中,爲了選擇與非選定.記憶胞共享第二 佈線2 1 2的另一記憶胞並供應vB至選定記憶胞,供應 VBLL至第二佈線2 1 2。此時,爲了保持非選定記憶胞的第 —電晶體201之關閉狀態’將VBLH、VBLl、及Vthl及設 定成滿足式子2。式子2顯示供應至位元線的高位準電位 -15- 201142841 及低位準電位之間的差需小於第一電晶體20 1的臨限電壓 〇Vblh - Vrlh < Vthi [Formula 1] In some cases, V b LH is maintained in node 281 of the unselected memory cell. In those cases, in order to select another memory cell sharing the second wiring 2 1 2 with the unselected memory cells and supplying vB to the selected memory cell, VBLL is supplied to the second wiring 2 1 2 . At this time, in order to maintain the closed state of the first transistor 201 of the unselected memory cell, VBLH, VBL1, and Vthl are set to satisfy the expression 2. Equation 2 shows that the difference between the high level potential supplied to the bit line -15- 201142841 and the low level potential is less than the threshold voltage of the first transistor 20 1 〇

Vblh - Vbll < Vth| [式子 2 ] 在此實施例中所述的半導體裝置中,不像浮置閘極電 晶體,在寫入(重寫)操作中不會導致閘極絕緣膜(隧道 絕緣膜)中之電荷行進,而是由第二電晶體202之切換操 作導致電荷行進。因此,原則上對於寫入操作次數並無限 制,且對重寫的電阻極高。另外,無需浮置閘極電晶體中 的寫入及抹除所需之高電壓;故可減少半導體裝置之耗電 量。 接下來,將敘述其中讀取記憶胞中儲存之資料的讀取 操作。首先,將第三佈線2 1 3的電位設定成會關閉第二電 晶體202 (其爲寫入電晶體)的電位,以關閉第二電晶體 202。在此供應低位準電位VWLL至第三佈線213。接下來 ,提供電荷(預先充電)至第二佈線2 1 2,所以第二佈線 212的電位爲VBLH。接著,供應低位準電位VRLL作爲讀 取電位至從其讀取資料之記憶胞的第一佈線2 1 1,並在此 時檢測第二佈線2 1 2之電位,所以可讀取記憶胞中儲存之 資料(讀取模式)。注意到藉由預先充電供應至第二佈線 2 1 2的電位不限於上述電位,只要該電位與保持在節點 281中之電位之間的差小於Vthl且該電位與讀取電位不同 〇 將第一佈線211的低位準電位VRLL設定成滿足式子 3及式子4。Vblh - Vbll < Vth| [Form 2] In the semiconductor device described in this embodiment, unlike the floating gate transistor, the gate insulating film is not caused in the writing (rewriting) operation ( The charge in the tunnel insulating film) travels, but the switching operation of the second transistor 202 causes the charge to travel. Therefore, in principle, the number of write operations is unlimited, and the resistance to rewriting is extremely high. In addition, the high voltage required for writing and erasing in the floating gate transistor is not required; therefore, the power consumption of the semiconductor device can be reduced. Next, a reading operation in which the data stored in the memory cell is read will be described. First, the potential of the third wiring 2 1 3 is set to a potential at which the second transistor 202 (which is a write transistor) is turned off to turn off the second transistor 202. Here, the low level potential VWLL is supplied to the third wiring 213. Next, charge (precharge) is supplied to the second wiring 2 1 2, so the potential of the second wiring 212 is VBLH. Then, the low-level potential VRLL is supplied as the read potential to the first wiring 2 1 1 of the memory cell from which the data is read, and at this time, the potential of the second wiring 2 1 2 is detected, so that the memory can be read in the memory. Information (read mode). It is noted that the potential supplied to the second wiring 2 1 2 by the precharge is not limited to the above potential as long as the difference between the potential and the potential held in the node 281 is smaller than Vth1 and the potential is different from the read potential, and will be first The low level potential VRLL of the wiring 211 is set to satisfy Equation 3 and Equation 4.

S -16- 201142841S -16- 201142841

Vblh - VrLL> νΛΙ [式子 3 ]Vblh - VrLL> νΛΙ [Formula 3]

Vbll - Vrll< Vthj [式子 4 ] 亦即,式子3顯示在節點281中保持VBIjH的情況中 當供應VRLL至第一佈線21 1時,第一電晶體201的閘極 電極與第一佈線2 1 1連接至其的第一電晶體2 0 1之源極電 極及汲極電極之一之間的電位差大於臨限電壓,所以啓通 第一電晶體201。當啓通第一電晶體201時,經由第一電 晶體201供應第一佈線21 1之低位準電位VRL1_至第二佈 線 2 1 2。 另外,式子4顯示在節點2 8 1中保持V b u的情況中 即使當供應Vr1_l至第一佈線21 1時,第一電晶體201的 閘極電極與第一佈線211連接至其的第一電晶體201之源 極電極及汲極電極之一之間的電位差小於臨限電壓,所以 第一電晶體201維持在關閉狀態中。亦即,第二佈線212 之電位維持爲預先充電的電位(在此VBI^)。 從式子3及式子4,可將低位準電位Vr1_l (其爲讀取 電位)設定在滿足式子5之範圍中。Vbll - Vrll < Vthj [Expression 4] That is, Equation 3 shows that when the VRLL is supplied to the first wiring 21 1 in the case where the VBIjH is held in the node 281, the gate electrode of the first transistor 201 and the first wiring The potential difference between the source electrode and the one of the drain electrodes of the first transistor 210 connected thereto is greater than the threshold voltage, so that the first transistor 201 is turned on. When the first transistor 201 is turned on, the low level potential VRL1_ to the second wiring 2 1 2 of the first wiring 21 1 are supplied via the first transistor 201. In addition, Equation 4 shows that the gate electrode of the first transistor 201 and the first wiring 211 are connected thereto even when Vr1_1 is supplied to the first wiring 21 1 in the case where V bu is held in the node 281 The potential difference between the source electrode and one of the drain electrodes of the transistor 201 is less than the threshold voltage, so the first transistor 201 is maintained in the off state. That is, the potential of the second wiring 212 is maintained at a precharged potential (here, VBI^). From Equation 3 and Equation 4, the low level potential Vr1_1 (which is the read potential) can be set to satisfy the range of Equation 5.

Vbll - Vthi < Vrll < Vblh-Vthi [式子 5 ] 另外,較佳設定讀取電位VRI^以滿足式子6。Vbll - Vthi < Vrll < Vblh-Vthi [Equation 5] Further, it is preferable to set the reading potential VRI^ to satisfy Equation 6.

Vrll = (Vblh + Vbll)/2 - Vthi [式子 6 ] 第三佈線2 1 3 (字線WL )供應有會啓通第二電晶體 202之高位準電位VWLH或會關閉第二電晶體202之低位 準電位Vw^。當將第二電晶體202的臨限電壓表示成 乂1112時,設定高位準電位VWL_H及低位準電位Vwu以分別 -17- 201142841 滿足式子7及式子8。Vrll = (Vblh + Vbll) / 2 - Vthi [Equation 6] The third wiring 2 1 3 (word line WL) is supplied with a high level potential VWLH that turns on the second transistor 202 or turns off the second transistor 202. The low potential potential Vw^. When the threshold voltage of the second transistor 202 is expressed as 乂1112, the high level potential VWL_H and the low level potential Vwu are set to satisfy Equation 7 and Equation 8 respectively from -17 to 201142841.

VwLH > Vth2 + VbLH [式子 7 ]VwLH > Vth2 + VbLH [Equation 7]

VwLL < Vth2 + VblL [式子 8 ] 注意到當在讀取模式中供應低位準電位VRLL至第一 佈線2 1 1時,在連接至第一佈線2 1 1的其他記億胞之中, 亦啓通其中節點28 1具有VBLH之記憶胞的第一電晶體 2 01 ;然而,節點2 8 1在浮置狀態中,所以保持在節點 281中之電荷維持保持。 在此,參照第2A及213圖中之時序圖更詳細敘述在 寫入模式及讀取模式中之上述三端子半導體裝置的操作。 第2A及2B圖中之時序圖顯示圖中之每一部分的電位或 狀態隨時間之改變。在第2A及2B圖中,顯示有數個範 例,在其之每一者中’ TRW及TRr的每一者之臨限電壓爲 2 V、電位VWLH爲4 V、電位VWLL爲〇 V、電位VBLH爲 1 V、電位VBLL爲0V、電位VRLH爲1 V、電位VRLL爲 -1 · 5 V、且在讀取模式中供應至位元線的預先充電電壓爲 Vblh ° 第2A圖爲敘述在寫入模式中之操作的時序圖。在此 ,敘述在節點ND中保持筒位準電位vBLH之操作。首先 ,作爲第一操作,將字線WL之電位設定成vWLH,所以 啓通電晶體TRW。接下來,作爲第二操作,將位元線b L 的電位設定成VBLH ’所以經由電晶體TRW供應VBLH至節 點ND。接著’作爲第三操作’將字線WL之電位設定成 Vwll ’所以關閉電晶體TRW。在TRW關閉之後保持供應VwLL < Vth2 + VblL [Equation 8] Note that when the low level potential VRLL is supplied to the first wiring 2 1 1 in the read mode, among other cells connected to the first wiring 2 1 1 , The first transistor 201 in which the node 28 1 has the memory cell of VBLH is also activated; however, the node 281 is in the floating state, so the charge held in the node 281 is maintained. Here, the operation of the above-described three-terminal semiconductor device in the write mode and the read mode will be described in more detail with reference to the timing charts in Figs. 2A and 213. The timing diagrams in Figures 2A and 2B show the change in potential or state of each portion of the graph over time. In the 2A and 2B diagrams, there are several examples in which each of the 'TRW and TRr' has a threshold voltage of 2 V, a potential VWLH of 4 V, a potential VWLL of 〇V, and a potential VBLH. It is 1 V, the potential VBLL is 0 V, the potential VRLH is 1 V, the potential VRLL is -1 · 5 V, and the pre-charge voltage supplied to the bit line in the read mode is Vblh °. Timing diagram of the operation in the mode. Here, the operation of holding the cylinder potential potential vBLH in the node ND will be described. First, as the first operation, the potential of the word line WL is set to vWLH, so that the transistor TRW is turned on. Next, as a second operation, the potential of the bit line b L is set to VBLH ', so VBLH is supplied to the node ND via the transistor TRW. Then, as the third operation, the potential of the word line WL is set to Vwll', so that the transistor TRW is turned off. Keep supply after TRW is turned off

S -18- 201142841 至節點N D的電荷。 注意到在其中位元線B L之電位在關閉電晶體T R w之 前變化的情況中準確電位可能不會保持在節點ND中。在 其中使位元線B L的電位變化之情況中,必須在電晶體 TRw關閉之後才執行變化。即使當位元線B L的電位在第 三操作之後變化,保持在節點ND中電荷維持成被保持。 注意到可以顛倒的順序執行第一操作及第二操作》 在整個寫入模式中,讀取信號線RL的電位保持成 VRLH,所以電晶體TRr保持在關閉狀態中。由於VRLH爲 1 V ’在此電位VBLH爲1 V,且電位Vbll爲0 V,滿足了 式子1且電晶體TRr維持在關閉狀態中》 注意到可藉由在第2A圖中以VBLL取代VBLH來敘述 在節點ND中保持低位準電位VBLl之操作。 第2B圖爲敘述在讀取模式中之操作的時序圖。在此 ’敘述在節點ND中保持高位準電位VBLH之情況的操作 。首先,作爲第一操作,將字線WL之電位設定成VWLL ,所以關閉電晶體TRW。接下來,作爲第二操作,提供電 荷(預先充電)至位元線B L,所以位元線B L的電位與 VrLL不同。在此.實施例中,將位元線Bl預先充電以具有 電位VBLH ( 1 V )。接著’作爲第三操作,將讀取信號線 RL之電位設定成vRLl。由於電位VBLH爲1 V且電位 VRLL爲-1.5 V’滿足了式子3並啓通電晶體TRr。當電晶 體TRr在啓通狀態中時,經由電晶體TRr供應VRLL至位 元線B L。 -19- 201142841 在低位準電位VBLL保持在節點ND中之情況中’未 滿足式子3但滿足式子4,所以位元線B L並未供應有 VRLL而有由預先充電設定之電位,其在此情況中爲vBLH 。在上述方式中,藉由在當II取信號線RL之電位設定成 VRLL時檢測位元線BL之電位,可讀取儲存在節點ND中 之資料。 保持在節點ND中之電荷維持被保持直到在寫入模式 中供應新的電荷,不受到讀取模式中的操作期間及之後影 輕。由於包括氧化物半導體之電晶體TRW的關閉狀態電 流極低,可長時間保持節點ND中之電荷。 順帶一提,在所謂快閃記憶體的情況中,必須在胞之 間維持適當距離以防止控制閘極的電位影響相鄰胞的浮置 閘極。這是阻礙半導體裝置之高整合度的因素之一。此因 素歸咎於快閃記憶體的基本原理,其中在施加高電場時穿 隧電流會流動。 此外,由於快閃記憶體的上述原理,閘極絕緣膜的退 化會繼續並因此發生重寫次數之限制(約1 〇〇〇〇次)的另 一問題。 爲所揭露的本發明之一實施例的半導體裝置係藉由切 換包括氧化物半導體之電晶體且不使用藉由穿隧電流注入 電荷之上述原理來操作。亦即,不像快閃記憶體,無需用 於電荷注入之高電場。據此,無需考慮來自相鄰胞上的控 制閘極之高電場的影響,其促進高整合》 此外,不利用藉由穿隧電流之電荷注入,這意味著沒S -18- 201142841 The charge to node N D . It is noted that the exact potential may not remain in the node ND in the case where the potential of the bit line B L changes before the transistor T R w is turned off. In the case where the potential of the bit line B L is changed, the change must be performed after the transistor TRw is turned off. Even when the potential of the bit line B L changes after the third operation, the charge remaining in the node ND is maintained to be maintained. It is noted that the first operation and the second operation can be performed in an inverted order. In the entire write mode, the potential of the read signal line RL is maintained at VRLH, so the transistor TRr is kept in the off state. Since VRLH is 1 V ' at this potential VBLH is 1 V, and the potential Vb11 is 0 V, Equation 1 is satisfied and the transistor TRr is maintained in the off state. Note that VBLH can be replaced by VBLL in FIG. 2A The operation of maintaining the low level potential VBL1 in the node ND will be described. Figure 2B is a timing diagram illustrating the operation in the read mode. Here, the operation of the case where the high level potential VBLH is maintained in the node ND will be described. First, as the first operation, the potential of the word line WL is set to VWLL, so the transistor TRW is turned off. Next, as a second operation, a charge (precharge) is supplied to the bit line B L , so the potential of the bit line B L is different from VrLL. In this embodiment, the bit line B1 is precharged to have a potential VBLH (1 V ). Next, as the third operation, the potential of the read signal line RL is set to vRL1. Since the potential VBLH is 1 V and the potential VRLL is -1.5 V', the equation 3 is satisfied and the transistor TRr is turned on. When the transistor TRr is in the on state, the VRLL is supplied to the bit line B L via the transistor TRr. -19- 201142841 In the case where the low potential potential VBLL is held in the node ND, 'the equation 3 is not satisfied but the equation 4 is satisfied, so the bit line BL is not supplied with the VRLL and has the potential set by the precharge, which is In this case, it is vBLH. In the above manner, by detecting the potential of the bit line BL when the potential of the signal line RL is set to VRLL, the data stored in the node ND can be read. The charge held in the node ND is maintained until a new charge is supplied in the write mode, and is not affected during and after the operation in the read mode. Since the closed state current of the transistor TRW including the oxide semiconductor is extremely low, the charge in the node ND can be maintained for a long time. Incidentally, in the case of so-called flash memory, it is necessary to maintain an appropriate distance between cells to prevent the potential of the control gate from affecting the floating gate of the adjacent cell. This is one of the factors hindering the high integration of semiconductor devices. This factor is due to the basic principle of flash memory where the tunneling current flows when a high electric field is applied. In addition, due to the above principle of the flash memory, the degradation of the gate insulating film continues and thus another problem of the number of rewrites (about 1 〇〇〇〇) is caused. The semiconductor device of one embodiment of the present invention disclosed is operated by switching the transistor including an oxide semiconductor without using the above principle of injecting charges by a tunneling current. That is, unlike flash memory, there is no need for a high electric field for charge injection. Accordingly, there is no need to consider the influence of the high electric field from the control gates on adjacent cells, which promotes high integration. Furthermore, the charge injection by the tunneling current is not utilized, which means that

S -20- 201142841 有記憶胞退化的因素。亦即,爲所揭露的本發明之一實施 例的半導體裝置比快閃記憶體具有較高耐久性及可靠度。 另外’相較於快閃記憶體,不需高電場及大周邊電路 (如升壓電路)亦爲有利。 注意到在上述說明中,使用其中電子爲主要載子的η 通道電晶體;當然’可使用其中電洞爲主要載子之ρ通道 電晶體來取代η通道電晶體。在使用ρ通道電晶體之情況 中’可依據上述操作原理設定供應至個別佈線的電位。 第1Β圖爲其中使用第ία圖中所示的半導體裝置之 具有mx”位元的記憶體容量之半導體裝置的電路圖之一 範例。第1 B圖爲所謂的NOR半導體裝置之電路圖,其中 並聯連接記憶胞1 2 0 0。 第1 B圖中所示的半導體裝置包括記憶胞陣列及諸如 第一驅動器電路1211、第二驅動器電路1212、及第三驅 動器電路1 2 1 3之周邊電路。記憶胞陣列包括m字線WL 、m讀取信號線RL、《位元線B L、及配置在m (列)( 配置在垂直方向中)xn (行)(配置在水平方向中)(m 及η爲自然數)矩陣中之複數記億胞1200。在此,施加 第1Α圖中所示之結構至記憶胞1 200。 亦即,每一記憶胞1 200包括作用爲讀取電晶體之第 —電晶體1201及作用爲寫入電晶體之第二電晶體1 202。 第一電晶體1201的閘極電極及第二電晶體1 202之源極電 極及汲極電極之一互相電連接。讀取信號線RL及第一電 晶體1 20 1的源極電極及汲極電極之一互相電連接。位元 -21 - 201142841 線BL、第一電晶體1201的源極電極及汲極電極之另一者 、及第二電晶體1 202的源極電極及汲極電極之另一者互 相電連接。字線WL及第二電晶體1 202的閘極電極互相 電連接。 另外,第/列及第7行(i爲大於或等於1且小於或 等於m的整數•爲大於或等於1且小於或等於„的整數 )的記憶胞1 200 ( U)連接至讀取信號線RL(/)、位元線 BL⑴、及字線WL(〇。 位元線B L連接至第二驅動器電路1 2 1 2。讀取信號線 RL連接至第一驅動器電路1211。字線WL連接至第三驅 動器電路 1213。注意到在此獨立設置第二驅動器電路 1212、第一驅動器電路丨211、及第三驅動器電路1213; 然而,亦可使用具有一或更多功能之解碼器。 注意到在上述說明中,使用其中電子爲主要載子的η 通道電晶體;當然,可使用其中電洞爲主要載子之ρ通道 電晶體來取代η通道電晶體。在使用ρ通道電晶體之情況 中,可依據上述操作原理設定供應至個別佈線的電位。 揭露在此實施例中之半導體裝置不一定得包括DRAM 所需之電容器;因此,可減少每單位記憶胞的面積並可增 加記憶胞的整合。另外,藉由由寫入電晶體及讀取電晶體 共享位元線B L,可減少每單位記憶胞的寫入次數。因此 ’可進一步減少每單位記億胞的面積並可進一步增加記憶 胞的整合。例如,假設最小處理尺寸爲F,則一記億胞所 佔之面積可爲15F2至25F2。S -20- 201142841 There are factors of memory cell degradation. That is, the semiconductor device of one embodiment of the present invention disclosed has higher durability and reliability than the flash memory. In addition, it is advantageous to have no high electric field and large peripheral circuits (such as booster circuits) compared to flash memory. Note that in the above description, an n-channel transistor in which electrons are the main carriers is used; of course, a p-channel transistor in which a hole is a main carrier can be used instead of the n-channel transistor. In the case of using a p-channel transistor, the potential supplied to the individual wiring can be set in accordance with the above operational principle. 1 is a diagram showing an example of a circuit diagram of a semiconductor device having a memory capacity of mx" bits of the semiconductor device shown in the figure λ. FIG. 1B is a circuit diagram of a so-called NOR semiconductor device in which parallel connections are made. Memory cell 1 200. The semiconductor device shown in FIG. 1B includes a memory cell array and peripheral circuits such as a first driver circuit 1211, a second driver circuit 1212, and a third driver circuit 1 2 1 3. Memory cells The array includes m word line WL, m read signal line RL, "bit line BL, and arrangement in m (column) (arranged in the vertical direction) xn (row) (arranged in the horizontal direction) (m and η are The number in the matrix is 1200. Here, the structure shown in the first figure is applied to the memory cell 1 200. That is, each memory cell 1 200 includes the first function of reading the transistor. The crystal 1201 and the second transistor 1 202 functioning as a write transistor. The gate electrode of the first transistor 1201 and one of the source electrode and the drain electrode of the second transistor 1 202 are electrically connected to each other. Line RL and the source of the first transistor 1 20 1 One of the pole and the drain electrode is electrically connected to each other. Bit 21 - 201142841 line BL, the other of the source electrode and the drain electrode of the first transistor 1201, and the source electrode of the second transistor 1 202 and The other of the drain electrodes is electrically connected to each other. The word lines WL and the gate electrodes of the second transistor 1 202 are electrically connected to each other. In addition, the columns / 7 and 7 (i is greater than or equal to 1 and less than or equal to m The memory cell 1 200 ( U) of the integer • is greater than or equal to 1 and less than or equal to „ is connected to the read signal line RL(/), the bit line BL(1), and the word line WL (〇. bit line BL is connected to the second driver circuit 1 2 1 2. The read signal line RL is connected to the first driver circuit 1211. The word line WL is connected to the third driver circuit 1213. Note that the second driver circuit 1212 is separately provided here. Driver circuit 丨211, and third driver circuit 1213; however, a decoder having one or more functions may also be used. Note that in the above description, an n-channel transistor in which electrons are the main carriers is used; Use a p-channel transistor in which the hole is the main carrier Instead of the n-channel transistor, in the case of using a p-channel transistor, the potential supplied to the individual wiring can be set according to the above-described operational principle. The semiconductor device disclosed in this embodiment does not necessarily have to include a capacitor required for the DRAM; The area per unit cell can be reduced and the integration of memory cells can be increased. In addition, by sharing the bit line BL by the write transistor and the read transistor, the number of writes per unit of memory cell can be reduced. Further reducing the area per unit of cells can further increase the integration of memory cells. For example, assuming that the minimum processing size is F, the area occupied by a billion cells can be 15F2 to 25F2.

S -22- 201142841 注意到雖在上述說明中使用氧化物半導體形成具有小 關閉狀態電流之寫入電晶體,所揭露的本發明不限於此。 可使用能實現與氧化物半導體材料的那些等效之關閉狀態 電流特性的材料,諸如像碳化矽般之寬隙材料(其中Eg > 3 eV )。 注意到在此實施例中所述之結構、方法、及之類可與 在其他實施例中所述之結構、方法、及之類適當結合。 在第3圖中,繪示用於讀取儲存在記憶胞中之資料的 讀取電路之示意圖。讀取電路包括電晶體及感測放大器電 路。 在資料讀取中’端子A連接至位元線BL,該位元線 B L連接至將從其讀取資料之記憶胞。此外,供應偏壓電 位Vbi as至電晶體的閘極電極以控制端子a之電位。 當端子A之電位高於參考電位Vref (如0 V)時,感 測放大器電路輸出高資料,且當端子A之電位低於參考 電位Vref時,感測放大器電路輸出低資料。首先,啓通 電晶體’且將連接至端子A的位元線B L預先充電以具有 電位VBLH。接下來’將從其讀取資料之記憶胞設定成讀 取模式,且連接至端子A的位元線BL的電位與參考電位 Vref相比較。因此,根據儲存在記憶胞中之資料輸出高 資料或低資料。 藉由以上述方式使用讀取電路,可讀取儲存在記憶胞 中之資料。注意到此實施例之讀取電路僅爲範例之一。替 代地’可使用另一已知的電路. -23- 201142841 注意到在此實施例中所述之結構、方法、及之類可與 在其他實施例中所述之結構、方法、及之類適當結合。 (實施例2 ) 在此實施例中,將參照第4A及4B圖、第5A至5H 圖、及第6A至6E圖敘述根據所揭露的本發明之一實施 例的半導體裝置之結構及製造方法。 <半導體裝置之剖面結構及平面結構> 第4A及4B圖繪示半導體裝置之結構的一範例。第 4A圖爲半導體裝置的剖面圖,且第4B圖爲半導體裝置的 平面圖。在此,第4A圖對應沿著至第4B圖中之線A1-A2及線B1-B2的剖面。第4A及4B圖中所示之半導體裝 置設有包括非氧化物半導體之半導體材料的電晶體1〇1’ 及包括氧化物半導體之電晶體102。包括非氧化物半導體 的半導體材料之電晶體可輕易以高速操作。另一方面’包 括氧化物半導體的電晶體由於其之特性可長時間保持電荷 。注意到電晶體1 〇 1充當讀取電晶體TRr,且電晶體1 02 充當寫入電晶體TRW。 雖在電晶體兩者在此皆爲η通道電晶體,當然,可使 用ρ通道電晶體。此外,無需將半導體裝置之特定結構限 制在於此所述之結構。 第4Α及4Β圖中之電晶體101包括設置在包括半導 體材料(如矽)之基板1〇〇中的通道形成區域116、設置S -22-201142841 It is noted that although the oxide semiconductor is used in the above description to form a write transistor having a small off-state current, the disclosed invention is not limited thereto. A material capable of realizing the off-state current characteristics equivalent to those of the oxide semiconductor material, such as a wide-gap material such as ruthenium carbide (where Eg > 3 eV ) can be used. It is to be noted that the structures, methods, and the like described in this embodiment can be combined as appropriate with the structures, methods, and the like described in the other embodiments. In Fig. 3, a schematic diagram of a read circuit for reading data stored in a memory cell is shown. The read circuit includes a transistor and a sense amplifier circuit. In the data reading, the terminal A is connected to the bit line BL, and the bit line B L is connected to the memory cell from which the data is to be read. Further, a bias voltage Vbi as is supplied to the gate electrode of the transistor to control the potential of the terminal a. When the potential of the terminal A is higher than the reference potential Vref (e.g., 0 V), the sense amplifier circuit outputs high data, and when the potential of the terminal A is lower than the reference potential Vref, the sense amplifier circuit outputs low data. First, the transistor ' is turned on' and the bit line B L connected to the terminal A is precharged to have the potential VBLH. Next, the memory cell from which the data is read is set to the read mode, and the potential of the bit line BL connected to the terminal A is compared with the reference potential Vref. Therefore, high or low data is output based on the data stored in the memory cells. By using the read circuit in the above manner, the data stored in the memory cell can be read. It is noted that the read circuit of this embodiment is only one of the examples. Alternatively, another known circuit can be used. -23- 201142841 It is noted that the structures, methods, and the like described in this embodiment can be combined with the structures, methods, and the like described in other embodiments. Properly combined. (Embodiment 2) In this embodiment, a structure and a manufacturing method of a semiconductor device according to an embodiment of the disclosed invention will be described with reference to FIGS. 4A and 4B, FIGS. 5A to 5H, and FIGS. 6A to 6E. . <Sectional Structure and Planar Structure of Semiconductor Device> FIGS. 4A and 4B illustrate an example of the structure of a semiconductor device. Fig. 4A is a cross-sectional view of the semiconductor device, and Fig. 4B is a plan view of the semiconductor device. Here, FIG. 4A corresponds to a section along the line A1-A2 and the line B1-B2 in the FIG. 4B. The semiconductor device shown in Figs. 4A and 4B is provided with a transistor 1?1' including a semiconductor material of a non-oxide semiconductor and a transistor 102 including an oxide semiconductor. A transistor including a semiconductor material of a non-oxide semiconductor can be easily operated at a high speed. On the other hand, a transistor including an oxide semiconductor can retain a charge for a long time due to its characteristics. It is noted that the transistor 1 〇 1 serves as the read transistor TRr, and the transistor 102 functions as the write transistor TRW. Although both of the transistors are here n-channel transistors, of course, a p-channel transistor can be used. Moreover, it is not necessary to limit the specific structure of the semiconductor device to the structure described herein. The transistor 101 in Figs. 4 and 4 includes a channel formation region 116 disposed in a substrate 1A including a semiconductor material such as germanium, and a setting

S -24- 201142841 以在其之間夾住通道形成區域1 1 6之雜質區域1 1 4和高濃 度雜質區域1 2 0 (這些區域簡單統稱爲雜質區域)、設置 在通道形成區域1 1 6上方之閘極絕緣層1 0 8、設置在閘極 絕緣層108上方之閘極電極110、及電連接至雜質區域的 源極或汲極電極1 3 0a和源極或汲極電極1 3 Ob。此外’佈 線142c及佈線142d分別設置在源極或汲極電極130a及 源極或汲極電極130b上方。 側壁絕緣層1 1 8設置在閘極電極1 1 0的側表面上。高 濃度雜質區域120及金屬化合物區域124設置在當從與基 板1 00的表面垂直之方向看去不與側壁絕緣層1 1 8重疊之 基板1 00的區域中。金屬化合物區域1 24設置成接觸高濃 度雜質區域1 20。此外,在基板1 00上方形成元件隔離絕 緣層1 06以圍繞電晶體1 0 1,且形成層間絕緣層1 26及層 間絕緣層128以覆蓋電晶體101»源極或汲極電極130a 及源極或汲極電極130b經由形成在層間絕緣層126及 128中的開口電連接至金屬化合物區域124。亦即,源極 或汲極電極130a及源極或汲極電極130b經由金屬化合物 區域124電連接至高濃度雜質區域120及雜質區域114。 此外,電極1 3 0 c經由形成在層間絕緣層1 2 6及1 2 8中的 開口電連接至閘極電極1 1 0。注意到在爲了整合電晶體 1〇1或之類的某些情況中不形成側壁絕緣層118。 第4A及4B圖中之電晶體102包括設置在層間絕緣 層128上方之源極或汲極電極142a及源極或汲極電極 l42b、電連接至源極或汲極電極142a及源極或汲極電極 -25- 201142841 142b的氧化物半導體層144、覆蓋源極或汲極電極142a 、源極或汲極電極142b、及氧化物半導體層144的閘極 絕緣層146、及設置在閘極絕緣層146上方重疊氧化物半 導體層144的閘極電極148。 在此,氧化物半導體層1 44較佳爲藉由充分從其移除 如氫之雜質或藉由充分供應氧至其而高度純化的氧化物半 導體層。詳言之,氧化物半導體層144中之氫濃度爲5x 1019 atoms/cm3 或更低;較桂 5xl018 atoms/cm3 或更低: 更佳5xl017 atoms/cm3或更低。注意到藉由二次離子質譜 (SIMS )來測量氧化物半導體層144的氫濃度。 在其中充分減少氫濃度而高度純化且其中藉由供應充 分量的氧而減少因氧缺乏所導致之能隙中的缺陷程度的氧 化物半導體層M4中,載子濃度低於lxlO12 /cm3;較佳 低於1 xl 01 1 /cm3 ;更佳低於1.45x1 01() /cm3。例如,在室 溫(2 5 °C )電晶體1 02的關閉狀態電流(在此,每單位通 道寬度)爲100 zA/ymCl zA((賽普托安培 (zeptoampere)爲 lxlO·21 A)或更少,較佳 10 zA/ym 或更少。電晶體102的關閉狀態電流在85°C爲100 zA/ //m(lxl0_19A),較佳 10zA///m(lxl0_2°A)或更少 。藉由使用這類i型(本質)或實質i型的氧化物半導體 ,可獲得具有優異的關閉狀態電流特性之電晶體1 02。 注意到由於在第4A及4B圖中之電晶體102中,氧 化物半導體層144並未處理成島狀,可防止因圖案化之蝕 刻所導致之氧化物半導體層M4的污染。S -24- 201142841 is disposed in the channel formation region 1 1 6 with the impurity region 1 1 4 and the high-concentration impurity region 1 2 0 sandwiching the channel formation region 1 16 and the high-concentration impurity region 1 2 0 (these regions are collectively referred to as impurity regions) Upper gate insulating layer 108, gate electrode 110 disposed over gate insulating layer 108, and source or drain electrode 1 3 0a and source or drain electrode 1 3 Ob electrically connected to the impurity region . Further, the wiring 142c and the wiring 142d are respectively disposed above the source or drain electrode 130a and the source or drain electrode 130b. A sidewall insulating layer 1 18 is disposed on a side surface of the gate electrode 110. The high-concentration impurity region 120 and the metal compound region 124 are disposed in a region of the substrate 100 which does not overlap the sidewall insulating layer 1 18 when viewed from a direction perpendicular to the surface of the substrate 100. The metal compound region 1 24 is disposed in contact with the high concentration impurity region 110. In addition, an element isolation insulating layer 106 is formed over the substrate 100 to surround the transistor 110, and an interlayer insulating layer 126 and an interlayer insulating layer 128 are formed to cover the transistor 101»source or drain electrode 130a and the source. Or the drain electrode 130b is electrically connected to the metal compound region 124 via openings formed in the interlayer insulating layers 126 and 128. That is, the source or drain electrode 130a and the source or drain electrode 130b are electrically connected to the high concentration impurity region 120 and the impurity region 114 via the metal compound region 124. Further, the electrode 1 30 c is electrically connected to the gate electrode 110 by via openings formed in the interlayer insulating layers 1 2 6 and 1 2 8 . It is noted that the sidewall insulating layer 118 is not formed in some cases for integrating the transistor or the like. The transistor 102 of FIGS. 4A and 4B includes a source or drain electrode 142a and a source or drain electrode 142a disposed above the interlayer insulating layer 128, electrically connected to the source or drain electrode 142a, and a source or NMOS. The electrode semiconductor layer 144 of the electrode electrode-25-201142841 142b, the gate insulating layer 146 covering the source or drain electrode 142a, the source or drain electrode 142b, and the oxide semiconductor layer 144, and the gate insulating layer A gate electrode 148 of the oxide semiconductor layer 144 is overlaid over the layer 146. Here, the oxide semiconductor layer 144 is preferably an oxide semiconductor layer which is highly purified by sufficiently removing impurities such as hydrogen therefrom or by sufficiently supplying oxygen thereto. In detail, the concentration of hydrogen in the oxide semiconductor layer 144 is 5 x 1019 atoms/cm3 or less; more preferably 5xl018 atoms/cm3 or less: more preferably 5xl017 atoms/cm3 or less. It is noted that the hydrogen concentration of the oxide semiconductor layer 144 is measured by secondary ion mass spectrometry (SIMS). In the oxide semiconductor layer M4 in which the hydrogen concentration is sufficiently reduced to be highly purified and in which the degree of defects in the energy gap due to oxygen deficiency is reduced by supplying a sufficient amount of oxygen, the carrier concentration is lower than lxlO12 /cm3; Preferably lower than 1 xl 01 1 /cm3; better than 1.45x1 01() /cm3. For example, at room temperature (25 ° C), the off-state current of the transistor 102 (here, the width per unit channel) is 100 zA/ymCl zA ((zeptoampere is lxlO·21 A) or Less, preferably 10 zA/ym or less. The off state current of the transistor 102 is 100 zA / //m (lxl0_19A) at 85 ° C, preferably 10 zA / / / m (lxl0 2 ° A) or less. By using such an i-type (essential) or substantially i-type oxide semiconductor, a transistor 102 having excellent off-state current characteristics can be obtained. Note that in the transistor 102 in FIGS. 4A and 4B The oxide semiconductor layer 144 is not processed into an island shape, and contamination of the oxide semiconductor layer M4 due to the patterned etching can be prevented.

S -26- 201142841 注意到在電晶體1 0 2之中,源極或汲極電極! 4 2 a及 源極或汲極電極1 42b的邊緣部較佳爲錐形。在此,錐角 例如較佳大於或等於30°並少於或等於60°。注意到錐角 意指,當從與層之剖面垂直(與基板表面垂直之平面)之 方向看去,由具有錐形形狀之層(例如源極或汲極電極 1 42a )的側表面及底表面所形成之傾斜角度。當源極或汲 極電極142a及源極或汲極電極142b的邊緣部爲錐形時, 可改善以氧化物半導體層144對源極或汲極電極〗42a及 源極或汲極電極l42b之邊緣部的覆蓋並可防止斷連。 此外,在電晶體1 02上方設置層間絕緣層1 5 0,並在 層間絕緣層150上方設置層間絕緣層152。 <半導體裝置之製造方法> 接下來,將敘述製造半導體裝置之方法的一範例。首 先,將參照第5A至5H圖來於下敘述電晶體101的製造 方法,並接著將參照第6A至6E圖來敘述製造電晶體102 的製造方法。 <電晶體101之製造方法〉 首先,備置包括半導體材料之基板1〇〇 (參見第5A 圖)。作爲包括半導體材料之基板1〇〇,可使用採用矽.、 碳化矽、或之類形成之單晶半導體基板或多晶半導體基板 、採用矽鍺或之類形成的化合物半導體基板、SOI基板、 或之類。在此,敘述使用單晶矽基板作爲包括半導體材料 -27- 201142841 之基板1 00的一範例。注意到一般而言,術語「SOI基板 」意指其中矽半導體層設置在絕緣表面上之基板。在此說 明書及之類中,術語「SOI基板」在其類別中也意指其中 在絕緣表面上設置使用非矽的材料形成之半導體層的基板 。亦即,包括在「SOI基板」中之半導體層不限於矽半導 體層。SOI基板之範例包括一基板,其在如玻璃基板的絕 緣基板上方具有半導體層的,且絕緣層設置在半導體層與 絕緣基板之間。 在基板1 00上方形成充當用於形成元件隔離絕緣層之 遮罩的保護層105(參見第5A圖)。作爲保護層105, 可例如使用諸如氧化矽、氮化矽、氧氮化矽、或之類所形 成之絕緣層。注意到在此步驟之前或之後,可將提供η型 傳導性之雜質元素或提供Ρ型傳導性之雜質元素添加至基 板1 〇〇以控制電晶體之臨限電壓。當包括在基板1 00之半 導體材料爲矽時,可使用磷、砷、或之類作爲提供η型傳 導性之雜質。可使用硼、鋁、鎵、或之類作爲提供ρ型傳 導性之雜質。 接下來,藉由使用保護層105作爲遮罩之蝕刻來移除 未被保護層105覆蓋之區域(亦即暴露區域)中之基板 100的部分。因此,形成自另一半導體區域分離的半導體 區域1 04 (參見第5Β圖)。作爲蝕刻,較佳採用乾蝕刻 ’但可執行濕鈾刻。可根據被蝕刻層的材料適當選擇蝕刻 氣體及蝕刻劑。 接著,形成絕緣層以覆蓋半導體區域1 04,並選擇性S -26- 201142841 Note that among the transistors 1 0 2, the source or the drain electrode! The edge portion of the 4 2 a and source or drain electrode 1 42b is preferably tapered. Here, the taper angle is, for example, preferably greater than or equal to 30 and less than or equal to 60. It is noted that the taper angle means a side surface and a bottom of a layer having a tapered shape (for example, a source or a drain electrode 1 42a) when viewed from a direction perpendicular to a cross section of the layer (a plane perpendicular to the surface of the substrate). The angle of inclination formed by the surface. When the edge portions of the source or drain electrode 142a and the source or drain electrode 142b are tapered, the source or drain electrode 42a and the source or drain electrode l42b may be improved by the oxide semiconductor layer 144. Covering the edges and preventing disconnection. Further, an interlayer insulating layer 150 is disposed over the transistor 102, and an interlayer insulating layer 152 is disposed over the interlayer insulating layer 150. <Manufacturing Method of Semiconductor Device> Next, an example of a method of manufacturing a semiconductor device will be described. First, a method of manufacturing the transistor 101 will be described below with reference to Figs. 5A to 5H, and a method of manufacturing the transistor 102 will be described with reference to Figs. 6A to 6E. <Manufacturing Method of Transistor 101 First, a substrate 1A including a semiconductor material is prepared (see Fig. 5A). As the substrate 1 including a semiconductor material, a single crystal semiconductor substrate or a polycrystalline semiconductor substrate formed using tantalum, tantalum carbide, or the like, a compound semiconductor substrate formed using tantalum or the like, an SOI substrate, or such as. Here, an example in which a single crystal germanium substrate is used as the substrate 100 including the semiconductor material -27-201142841 will be described. Note that in general, the term "SOI substrate" means a substrate in which a germanium semiconductor layer is disposed on an insulating surface. In the specification and the like, the term "SOI substrate" also means, in its category, a substrate in which a semiconductor layer formed using a material other than germanium is provided on an insulating surface. That is, the semiconductor layer included in the "SOI substrate" is not limited to the germanium semiconductor layer. An example of an SOI substrate includes a substrate having a semiconductor layer over an insulating substrate such as a glass substrate, and an insulating layer disposed between the semiconductor layer and the insulating substrate. A protective layer 105 serving as a mask for forming an element isolation insulating layer is formed over the substrate 100 (see Fig. 5A). As the protective layer 105, for example, an insulating layer such as hafnium oxide, tantalum nitride, hafnium oxynitride, or the like can be used. Note that before or after this step, an impurity element providing n-type conductivity or an impurity element providing germanium conductivity may be added to the substrate 1 to control the threshold voltage of the transistor. When the semiconductor material included in the substrate 100 is germanium, phosphorus, arsenic, or the like can be used as an impurity which provides n-type conductivity. Boron, aluminum, gallium, or the like can be used as an impurity for providing p-type conductivity. Next, a portion of the substrate 100 in the region not covered by the protective layer 105 (i.e., the exposed region) is removed by etching using the protective layer 105 as a mask. Therefore, a semiconductor region 104 (separated from Fig. 5) separated from another semiconductor region is formed. As the etching, dry etching is preferably employed, but wet uranium engraving can be performed. The etching gas and the etchant can be appropriately selected depending on the material of the layer to be etched. Next, an insulating layer is formed to cover the semiconductor region 104, and is selective

S -28- 201142841 移除與半導體區域104重疊之一區域中的絕緣層(參見第 5 B圖)。使用氧化砂、氮化砂、氧氮化砂、或之類來形 成絕緣層。作爲移除絕緣層的一種方法,可採用任何蝕刻 處理及如CMP之硏磨處理。注意到在半導體區域1〇4的 形成之後或在元件隔離絕緣層106的形成之後移除保護層 105 ° 接下來,在半導體區域104上方形成絕緣層,並且在 絕緣層上方形成包括導電材料之層》 絕緣層將成爲閘極絕緣層,且較佳具有藉由CVD方 法、濺鍍方法、或之類獲得的使用包括氧化矽、氧氮化矽 、氮化矽、氧化給 '氧化鋁、氧化鉬、氧化釔、矽酸鈴( HfSixOy - ( x>0,y>0 ))、添加氮至其之矽酸給(S -28- 201142841 The insulating layer in a region overlapping the semiconductor region 104 is removed (see FIG. 5B). An insulating layer is formed using oxidized sand, nitriding sand, oxynitride sand, or the like. As a method of removing the insulating layer, any etching treatment and honing treatment such as CMP can be employed. It is noted that the protective layer 105 is removed after the formation of the semiconductor region 1〇4 or after the formation of the element isolation insulating layer 106. Next, an insulating layer is formed over the semiconductor region 104, and a layer including a conductive material is formed over the insulating layer. The insulating layer will be a gate insulating layer, and preferably has a CVD method, a sputtering method, or the like, including use of yttrium oxide, yttrium oxynitride, tantalum nitride, oxidation to 'alumina, molybdenum oxide , yttrium oxide, strontium sulphate (HfSixOy - (x>0, y> 0)), adding nitrogen to its citric acid (

HfSixOy,( X>0,y>〇 ))、添加氮至其之鋁鈴(HfAlxOy ’ (X>0,y>0 ))、或之類的膜之單層結構或分層結構。 替代地,可以一種方式形成絕緣層使得藉由高密度電漿處 理或熱氧化處理來氧化或氮化半導體區域104之一表面。 可例如使用諸如He ' Ar、Kr、或Xe之稀有氣體與諸如氧 '氮氧化物、氨、或氫的氣體之混合氣體來執行高密度電 發處理。絕緣層可具有例如大於或等於1 nm並少於或等 於100 nm且較佳大於或等於10 nm並少於或等於50 nm 的厚度。 可使用諸如鋁、銅、鈦、鉅、或鎢之金屬材料來形成 包括導電材料之層。可使用諸如多晶矽的半導體材料來形 成包括導電材料之層。對於形成包括導電材料之層的方法 -29- 201142841 並無特別限制,且可採用諸如蒸發方法、CVD方法、濺 鍍方法、或旋塗方法的各種膜形成方法。注意到在此實施 例中’敘述其中使用金屬材料來形成包括導電材料之層的 情況之一範例。 之後,選擇性蝕刻絕緣層及包括導電材料之層,以形 成閘極絕緣層1 0 8及閘極電極1 1 〇 (參見第5 C圖)。 接下來’形成覆蓋閘極電極1 1 0的絕緣層1 1 2 (參見 第5C圖)。接著,藉由添加磷(Ρ)、砷(As)、或之 類到半導體區域104來形成具有淺接面深度之雜質區域 1 1 4 (參見第5 C圖)。注意到在此添加磷或砷以形成η通 道電晶體;可在形成ρ通道電晶體的情況中添加諸如硼( Β)或鋁(Α1)之雜質。藉由形成雜質區域114,在閘極 絕緣層1 0 8下方的半導體區域1 〇4中形成通道形成區域 116(參見第5C圖)。在此’可適當設定所添加之雜質的 濃度,當半導體兀件之大小縮小很多時,較佳增加濃度。 在此採用其中於絕緣層1 1 2形成之後形成雜質區域〗丨4的 步驟;替代地,可在雜質區域1 1 4之形成後形成絕緣層 112° 形’部 。 刻 佳 } 触較 圖生, D 異時 5 向此 第各。 見高18 參到 1 彳受層 18著緣 1 接絕 層並壁 緣12側 絕11成 壁層形 側緣式 成絕方 形蓋準 , 覆對 來以自 下層以 接緣可 絕此 成藉 分蝕刻絕緣層1 1 2以暴露出閘極電極1 1 〇的頂表面及雜質 區域Π 4的頂表面。注意到在某些情況中不形成側壁絕緣 層1 1 8以實現高整合。HfSixOy, (X>0, y> 〇)), a monolayer structure or a layered structure of a film to which an aluminum ring (HfAlxOy ' (X> 0, y > 0 )) or a nitrogen is added. Alternatively, the insulating layer may be formed in such a manner as to oxidize or nitride one surface of the semiconductor region 104 by high-density plasma treatment or thermal oxidation treatment. The high density electric power treatment can be performed, for example, using a mixed gas of a rare gas such as He 'Ar, Kr, or Xe with a gas such as oxygen 'nitrogen oxide, ammonia, or hydrogen. The insulating layer may have a thickness of, for example, greater than or equal to 1 nm and less than or equal to 100 nm and preferably greater than or equal to 10 nm and less than or equal to 50 nm. A metal material such as aluminum, copper, titanium, giant, or tungsten may be used to form a layer including a conductive material. A semiconductor material such as polysilicon can be used to form a layer comprising a conductive material. The method for forming a layer including a conductive material is not particularly limited, and various film forming methods such as an evaporation method, a CVD method, a sputtering method, or a spin coating method can be employed. It is noted that in this embodiment, an example in which a metal material is used to form a layer including a conductive material is described. Thereafter, the insulating layer and the layer including the conductive material are selectively etched to form the gate insulating layer 108 and the gate electrode 1 1 〇 (see FIG. 5C). Next, an insulating layer 1 1 2 covering the gate electrode 1 10 is formed (see Fig. 5C). Next, an impurity region 1 1 4 having a shallow junction depth is formed by adding phosphorus (germanium), arsenic (As), or the like to the semiconductor region 104 (see Fig. 5C). It is noted that phosphorus or arsenic is added here to form an η-channel transistor; impurities such as boron (yttrium) or aluminum (lanthanum 1) may be added in the case of forming a p-channel transistor. The channel formation region 116 is formed in the semiconductor region 1 〇 4 under the gate insulating layer 108 by forming the impurity region 114 (see Fig. 5C). Here, the concentration of the added impurities can be appropriately set, and when the size of the semiconductor element is greatly reduced, the concentration is preferably increased. Here, a step in which the impurity region 丨4 is formed after the formation of the insulating layer 112 is employed; alternatively, the insulating layer 112' portion may be formed after the formation of the impurity region 112. Engraved } Touching the picture, D is different 5 to this first. See the height 18 to 1 彳 the layer 18 edge 1 is connected to the layer and the wall edge 12 side 11 wall layer-shaped side edge into a square shape, the opposite layer to the bottom layer to the edge can be borrowed The insulating layer 1 1 2 is etched to expose the top surface of the gate electrode 1 1 及 and the top surface of the impurity region Π 4 . It is noted that the sidewall insulating layer 1 18 is not formed in some cases to achieve high integration.

S -30- 201142841 接著,形成絕緣層以覆蓋閘極電極1 1 ο、雜質區域 1 1 4、側壁絕緣層1 1 8、及之類。接下來,添加諸如磷(Ρ )、砷(As)、或之類至雜質區域114的一部分,以形成 接觸雜質區域114之高濃度雜質區域120(參見第5E圖 )。此後,移除絕緣層,並形成金屬層1 22以覆蓋閘極電 極1 1 0、側壁絕緣層1 1 8、高濃度雜質區域1 20、及之類 (參見第5E圖)。可採用諸如真空蒸發方法、濺鍍方法 、或旋塗方法之任何膜形成方法來形成金屬層122。較佳 使用與包括在半導體區域104中之半導體材料起反應而成 爲低電阻金屬化合物的金屬材料來形成金屬層122。這類 金屬材料之範例爲鈦、鉬、鎢、鎳、鈷、及鉑。 接下來,執行熱處理使金屬層122與半導體材料起反 應。因此,形成接觸高濃度雜質區域1 20之金屬化合物區 域1 24 (參見第5F圖)。注意到當使用多晶矽或之類來 形成閘極電極1 1 0時,亦在與金屬層1 22接觸之閘極電極 110的一部分中形成金屬化合物區域。 作爲熱處理,可例如採用以閃光燈之照射。雖當然可 使用另一熱處理,較佳使用可實現極短時間之熱處理的方 法以改善金屬化合物之形成中的化學反應的可控性。注意 到藉由金屬材料與半導體材料之反應形成金屬化合物區域 ’且其具有充分高的傳導性。金屬化合物區域的形成可充 分減少電I®並改善元件特性。注意到在形成金屬化合物區 域124之後移除金屬層122。 接著’形成層間絕緣層丨26及1 28以覆蓋於上述步驟 -31 - 201142841 中形成之構件(參見第5 G圖)。可使用包括諸如氧化矽 、氧氮化矽、氮化矽、氧化給、氧化鋁、或氧化鉬的無機 絕緣材料之材料來形成層間絕緣層1 2 6及1 2 8 »此外,可 使用諸如聚醯亞胺或丙烯酸類之有機絕緣材料來形成層間 絕緣層1 26及1 28。注意到雖在此採用層間絕緣層1 26及 1 28的分層結構;然而,所揭露的本發明之一實施例不限 於此結構。亦可使用單層結構或包括三或更多層的分層結 構。在形成層間絕緣層1 2 8之後,較佳以C Μ P、蝕刻、 或之類來平面化層間絕緣層1 28之表面。 接著,在層間絕緣層中形成到達金屬化合物區域1 24 的開口,並在開口中形成源極或汲極電極1 3 0a及源極或 汲極電極130b (參見第5H圖)。可以例如藉由PVC方 法、C V D方法、或之類在包括開口的區域中形成導電層 ,並接著藉由蝕刻處理、CMP處理、或之類移除導電層 之一部分的方式形成源極或汲極電極130a及130b。 詳言之,可採用一種方法,例如,其中藉由PVD方 法在包括開口的區域中形成薄鈦膜,並藉由CVD方法形 成薄氮化鈦膜,並接著,形成鎢膜,以塡充開口中。在此 ,由PVD方法所形成薄鈦膜具有還原形成在其上形成鈦 膜之表面上的氧化物膜(諸如原生氧化物膜)的功能,以 降低與下電極或之類(在此,金屬化合物區域124)的接 觸電阻。在鈦膜形成之後所形成之氮化鈦膜具有防止導電 材料擴散的阻障功能。可在形成鈦、氮化鈦、或之類的阻 障膜之後藉由鍍覆方法形成銅膜。S -30- 201142841 Next, an insulating layer is formed to cover the gate electrode 1 1 , the impurity region 1 14 , the sidewall insulating layer 1 18 , and the like. Next, a portion such as phosphorus (?), arsenic (As), or the like to the impurity region 114 is added to form the high concentration impurity region 120 contacting the impurity region 114 (see Fig. 5E). Thereafter, the insulating layer is removed, and a metal layer 1 22 is formed to cover the gate electrode 110, the sidewall insulating layer 118, the high-concentration impurity region 120, and the like (see Fig. 5E). The metal layer 122 can be formed by any film forming method such as a vacuum evaporation method, a sputtering method, or a spin coating method. The metal layer 122 is preferably formed using a metal material which reacts with a semiconductor material included in the semiconductor region 104 to form a low-resistance metal compound. Examples of such metallic materials are titanium, molybdenum, tungsten, nickel, cobalt, and platinum. Next, heat treatment is performed to cause the metal layer 122 to react with the semiconductor material. Therefore, the metal compound region 1 24 contacting the high-concentration impurity region 1 20 is formed (see Fig. 5F). It is noted that when a gate electrode 1 10 is formed using polysilicon or the like, a metal compound region is also formed in a portion of the gate electrode 110 in contact with the metal layer 1 22 . As the heat treatment, for example, irradiation with a flash lamp can be employed. Although it is of course possible to use another heat treatment, it is preferred to use a method which can realize heat treatment for a very short time to improve the controllability of the chemical reaction in the formation of the metal compound. Note that the metal compound region is formed by the reaction of the metal material with the semiconductor material and it has sufficiently high conductivity. The formation of metal compound regions can fully reduce electrical I® and improve component characteristics. It is noted that the metal layer 122 is removed after the formation of the metal compound region 124. Next, interlayer insulating layers 26 and 128 are formed to cover the members formed in the above-mentioned step -31 - 201142841 (see Fig. 5G). The interlayer insulating layer 1 2 6 and 1 2 8 may be formed using a material including an inorganic insulating material such as yttrium oxide, lanthanum oxynitride, tantalum nitride, oxidized, alumina, or molybdenum oxide. An interlayer insulating layer 1 26 and 1 28 is formed of an organic insulating material of yttrium or acrylic. It is noted that a layered structure of interlayer insulating layers 1 26 and 1 28 is employed herein; however, one embodiment of the disclosed invention is not limited to this structure. A single layer structure or a layered structure including three or more layers may also be used. After the interlayer insulating layer 1 2 8 is formed, the surface of the interlayer insulating layer 128 is preferably planarized by C Μ P, etching, or the like. Next, an opening reaching the metal compound region 1 24 is formed in the interlayer insulating layer, and a source or drain electrode 1 30a and a source or drain electrode 130b are formed in the opening (see Fig. 5H). The conductive layer may be formed, for example, by a PVC method, a CVD method, or the like in a region including the opening, and then formed by etching, CMP, or the like to form a source or a drain. Electrodes 130a and 130b. In detail, a method may be employed, for example, in which a thin titanium film is formed in a region including an opening by a PVD method, and a thin titanium nitride film is formed by a CVD method, and then a tungsten film is formed to fill the opening in. Here, the thin titanium film formed by the PVD method has a function of reducing an oxide film (such as a native oxide film) formed on the surface on which the titanium film is formed to lower the lower electrode or the like (here, metal Contact resistance of compound region 124). The titanium nitride film formed after the formation of the titanium film has a barrier function of preventing diffusion of the conductive material. The copper film can be formed by a plating method after forming a barrier film of titanium, titanium nitride, or the like.

S -32- 201142841 注意到在藉由移除導電層之一部分形成源極或汲極電 極1 3 0a及源極或汲極電極1 3 Ob的情況中,較佳執行步驟 以平面化表面。例如,當在包括開口的一區域中形成薄鈦 膜或薄氮化鈦膜並接著形成鎢膜以塡充開口時,可移除多 餘的鎢、多餘的鈦、多餘的氮化鈦、或之類並可藉由後續 的CMP處理來改善表面的平坦度》減少源極或汲極電極 130a及源極或汲極電極130b之表面的不平坦,藉此在後 續步驟中形成之電極、佈線、絕緣層、半導體層、及之類 可有利地覆蓋表面。 注意到僅在此顯示接觸金屬化合物區域1 24之源極或 汲極電極130a及源極或汲極電極130b;然而,亦可在此 步驟中形成接觸閘極電極110及之類的電極。對於用於源 極或汲極電極130a及源極或汲極電極130b之材料並無特 別限制’且可使用各種導電材料。例如,可使用諸如鉬、 鈦、鉻、鉬、鎢、鋁、銅、钕、或銃之導電材料。在考慮 到稍後執行的熱處理,較佳使用具有夠高耐熱性以承受熱 處理的材料來形成源極或汲極電極130a及源極或汲極電 極 1 30b。 經由上述步驟,形成使用包括半導體材料之基板1〇〇 的電晶體101 (參見第5H圖)。使用非氧化物半導體的 半導體材料之電晶體101可以高速操作。 注意到在上述步驟之後可進一步形成電極、佈線、絕 緣層、或之類。當佈線具有包括一層間絕緣層及一導電層 之分層結構的多層結構時,可提供高度整合的半導體裝置 -33- 201142841 <電晶體102的製造方法> 接下來’將參照第6A至6E圖敘述在層間絕緣層128 上方之電晶體102的製程。注意到第6A至6E圖繪示在 層間絕緣層1 2 8上方之電極、電晶體1 〇 2、及之類的製程 ;故省略電晶體101及之類。 首先,在層間絕緣層1 2 8上方形成導電層,並選擇性 加以蝕刻’以形成源極或汲極電極1 4 2 a及源極或汲極電 極142b (參見第6A圖)。 可藉由諸如濺鍍方法之PVD方法或諸如電漿CVD方 法的CVD方法來形成導電層。作爲導電層的材料,可使 用選自鋁、鉻、銅、鉅、鈦、鉬、及鎢之元素;包括任何 這些元素作爲成分之合金;或之類。此外,可使用選自鐘 、鎂、銷、及鈹的一或更多材料。替代地,可使用與選自 鈦、鉅、鎢、鉬、鉻、銨、及钪的一或更多元素結合的鋁 〇 導電層可具有單層結構或包括兩或更多層之分層結構 。例如,可提供鈦膜或氮化鈦膜之單層結構、包括矽之鋁 膜的單層結構、其中鈦膜堆疊在鋁膜之上的兩層結構、其 中鈦膜堆疊在氮化鈦膜之上的兩層結構、或其中鈦膜、鋁 膜、及鈦膜以此順序堆疊的三層結構。注意到在導電層具 有鈦膜或氮化鈦膜之單層結構的情況中,有可輕易將導電 層處理成具有錐形形狀之源極或汲極電極1 42 a及源極或 -34- 201142841 汲極電極142b的優點》 替代地,可使用導電金屬氧化物來形成導電層。作爲 導電金屬氧化物,可使用氧化銦(Ιη203 )、氧化錫( Sn02 )、氧化鋅(ZnO )、氧化銦—氧化錫合金(Ιη203-Sn02,其在某些情況中簡稱爲ITO )、氧化銦-氧化鋅合 金(Ιη203-Ζη0 )、或其中包括矽或氧化矽的這些金屬氧 化物材料的任何者。 較佳蝕刻導電層,使源極或汲極電極1 42a及源極或 汲極電極142b的邊緣部呈錐形。在此,錐角例如較佳大 於或等於3 0 °並少於或等於60°。蝕刻源極或汲極電極 142a及源極或汲極電極142b的邊緣部以變成錐形,藉此 可改善以後續形成之閘極絕緣層1 46對源極或汲極電極 142a及源極或汲極電極142b的邊緣部之覆蓋並可防止斷 連。 藉由源極或汲極電極142a之下邊緣部與源極或汲極 電極142b之下邊緣部之間的距離來決定電晶體之通道長 度(L )。注意到在形成具有小於25 nm的通道長度(L )之電晶體的情況中,較佳以極紫外線執行用於形成遮罩 之曝光,極紫外線之波長短如數奈米至數十奈米。以極紫 外線之曝光的解析度爲高且焦深爲大。有鑑於這些原因, 後續形成之電晶體的通道長度(L)可在大於或等於1〇 nm並少於或等於1000 nm(l/zm)之範圍中,且因此, 可以高速操作電路。此外,微小化可導致半導體裝置之低 耗電量。 -35- 201142841 注意到充當基底的絕緣層可設置在層間絕緣層128的 上方。可藉由PVD方法、CVD方法、或之類形成絕緣層 〇 此外,可在源極或汲極電極142a及源極或汲極電極 1 4 2b的上方形成絕緣層。藉由絕緣層,可減少形成在後 續形成之閘極電極與源極或汲極電極1 42a之間及閘極電 極與源極或汲極電極14 2b之間的寄生電容。 接下來,形成氧化物半導體層144以覆蓋源極或汲極 電極l42a及源極或汲極電極l42b(參見第6B圖)。 可使用任何下列氧化物半導體來形成144:如In-Sn-Ga-Ζη-Ο爲基的氧化物半導體之四成分金屬氧化物;如 In-Ga-Zn-Ο爲基的氧化物半導體、In-Sn-Zn-Ο爲基的氧 化物半導體、In-Al-Ζη-Ο爲基的氧化物半導體、Sn-Ga-Ζη-0爲基的氧化物半導體、Al-Ga-Zn-O爲基的氧化物半 導體、及Sn-Al-Zn-Ο爲基的氧化物半導體之三成分金屬 氧化物;Ιη-Ζη-0爲基的氧化物半導體、Sn-Zn-O爲基的 氧化物半導體、Al-Ζη-Ο爲基的氧化物半導體、Zn-Mg-0 爲基的氧化物半導體、Sn-Mg-Ο爲基的氧化物半導體、 In-Mg-Ο爲基的氧化物半導體、及In-Ga-Ο爲基的氧化物 半導體之兩成分金屬氧化物;以及諸如In-Ο爲基的氧化 物半導體、Sn-Ο爲基的氧化物半導體、及Ζη-0爲基的氧 化物半導體之單成分金屬氧化物。 氧化物半導體層144較佳包括In且更佳包括In及 Ga。後續執行之脫水或脫氫處理能有效使氧化物半導體層S-32-201142841 It is noted that in the case where the source or drain electrode 1 30a and the source or drain electrode 13 Ob are formed by removing a portion of the conductive layer, it is preferred to perform the steps to planarize the surface. For example, when a thin titanium film or a thin titanium nitride film is formed in a region including the opening and then a tungsten film is formed to fill the opening, excess tungsten, excess titanium, excess titanium nitride, or And the surface flatness can be improved by subsequent CMP treatment. The unevenness of the surface of the source or drain electrode 130a and the source or drain electrode 130b is reduced, thereby forming electrodes, wiring, and subsequent steps. The insulating layer, the semiconductor layer, and the like may advantageously cover the surface. Note that only the source or drain electrode 130a and the source or drain electrode 130b of the contact metal compound region 1 24 are shown here; however, the contact gate electrode 110 and the like may be formed in this step. There is no particular limitation on the material used for the source or drain electrode 130a and the source or drain electrode 130b' and various conductive materials can be used. For example, a conductive material such as molybdenum, titanium, chromium, molybdenum, tungsten, aluminum, copper, ruthenium, or iridium may be used. The source or drain electrode 130a and the source or drain electrode 1 30b are preferably formed using a material having high heat resistance to withstand heat treatment in consideration of a heat treatment to be performed later. Through the above steps, a transistor 101 using a substrate 1A including a semiconductor material is formed (see Fig. 5H). The transistor 101 using a semiconductor material of a non-oxide semiconductor can be operated at a high speed. It is noted that electrodes, wiring, insulating layers, or the like can be further formed after the above steps. When the wiring has a multilayer structure including a layered insulating layer and a conductive layer, a highly integrated semiconductor device can be provided - 33 - 201142841 <Method of Manufacturing the Oxide 102 > Next 'will refer to Section 6A 6E illustrates the fabrication of the transistor 102 above the interlayer insulating layer 128. It is noted that the 6A to 6E diagram shows the electrode above the interlayer insulating layer 128, the transistor 1 〇 2, and the like; therefore, the transistor 101 and the like are omitted. First, a conductive layer is formed over the interlayer insulating layer 128 and selectively etched to form a source or drain electrode 14 2 a and a source or drain electrode 142b (see Fig. 6A). The conductive layer can be formed by a PVD method such as a sputtering method or a CVD method such as a plasma CVD method. As the material of the conductive layer, an element selected from the group consisting of aluminum, chromium, copper, giant, titanium, molybdenum, and tungsten; an alloy including any of these elements as a component; or the like can be used. Further, one or more materials selected from the group consisting of a bell, a magnesium, a pin, and a crucible may be used. Alternatively, an aluminum tantalum conductive layer combined with one or more elements selected from the group consisting of titanium, giant, tungsten, molybdenum, chromium, ammonium, and hafnium may have a single layer structure or a layered structure including two or more layers. . For example, a single layer structure of a titanium film or a titanium nitride film, a single layer structure including an aluminum film of tantalum, a two layer structure in which a titanium film is stacked on an aluminum film, in which a titanium film is stacked on a titanium nitride film, may be provided. The upper two-layer structure, or a three-layer structure in which a titanium film, an aluminum film, and a titanium film are stacked in this order. Note that in the case where the conductive layer has a single layer structure of a titanium film or a titanium nitride film, the conductive layer can be easily processed into a tapered or shaped source or drain electrode 1 42 a and a source or -34- 201142841 Advantages of the Bipolar Electrode 142b" Alternatively, a conductive metal oxide can be used to form the conductive layer. As the conductive metal oxide, indium oxide (?n203), tin oxide (Sn02), zinc oxide (ZnO), indium oxide-tin oxide alloy (?n203-Sn02, which is abbreviated as ITO in some cases), indium oxide can be used. Any of these zinc oxide alloys (Ιη203-Ζη0), or those metal oxide materials including ruthenium or iridium oxide therein. Preferably, the conductive layer is etched such that the edge portions of the source or drain electrode 142a and the source or drain electrode 142b are tapered. Here, the taper angle is, for example, preferably greater than or equal to 30 ° and less than or equal to 60 °. Etching the source or drain electrode 142a and the edge portion of the source or drain electrode 142b to be tapered, thereby improving the subsequently formed gate insulating layer 146 to the source or drain electrode 142a and the source or The edge portion of the drain electrode 142b is covered and can be prevented from being disconnected. The channel length (L) of the transistor is determined by the distance between the lower edge portion of the source or drain electrode 142a and the lower edge portion of the source or drain electrode 142b. It is noted that in the case of forming a crystal having a channel length (L) of less than 25 nm, exposure for forming a mask is preferably performed with extreme ultraviolet rays, and the wavelength of the extreme ultraviolet rays is as short as several nanometers to several tens of nanometers. The resolution of the exposure with the extreme ultraviolet rays is high and the depth of focus is large. For these reasons, the channel length (L) of the subsequently formed transistor can be in the range of greater than or equal to 1 〇 nm and less than or equal to 1000 nm (l/zm), and thus, the circuit can be operated at high speed. In addition, miniaturization can result in low power consumption of semiconductor devices. -35- 201142841 It is noted that an insulating layer serving as a substrate may be disposed above the interlayer insulating layer 128. The insulating layer can be formed by a PVD method, a CVD method, or the like. Further, an insulating layer can be formed over the source or drain electrode 142a and the source or drain electrode 14 2b. By the insulating layer, the parasitic capacitance formed between the subsequently formed gate electrode and the source or drain electrode 1 42a and between the gate electrode and the source or drain electrode 14 2b can be reduced. Next, an oxide semiconductor layer 144 is formed to cover the source or drain electrode l42a and the source or drain electrode l42b (see Fig. 6B). Any of the following oxide semiconductors may be used to form 144: a four-component metal oxide such as an In-Sn-Ga-Ζη-Ο-based oxide semiconductor; an In-Ga-Zn-germanium-based oxide semiconductor, In -Sn-Zn-germanium-based oxide semiconductor, In-Al-Ζη-Ο-based oxide semiconductor, Sn-Ga-Ζη-0-based oxide semiconductor, and Al-Ga-Zn-O Oxide semiconductor, and a three-component metal oxide of a Sn-Al-Zn-germanium-based oxide semiconductor; an 氧化物η-Ζη-0-based oxide semiconductor, a Sn-Zn-O-based oxide semiconductor, Al-Ζη-Ο-based oxide semiconductor, Zn-Mg-0 based oxide semiconductor, Sn-Mg-germanium-based oxide semiconductor, In-Mg-germanium-based oxide semiconductor, and In a two-component metal oxide of a -Ga-germanium-based oxide semiconductor; and an oxide semiconductor such as an In-ruthenium-based oxide, a Sn-germanium-based oxide semiconductor, and a Ζn-0-based oxide semiconductor Single component metal oxide. The oxide semiconductor layer 144 preferably includes In and more preferably includes In and Ga. Subsequent dehydration or dehydrogenation treatment can effectively make the oxide semiconductor layer

S -36- 201142841 144變成i型(本質)。 尤其’ In-Ga-Zn-Ο爲基的氧化物半導體材料在當無 電場時具有夠高的電阻且因此可充分減少關閉狀態電流。 另外’藉由高場效遷移率,In-Ga-Zn-Ο爲基的氧化物半 導體材料適合作爲半導體裝置中所使用之半導體材料。 作爲In-Ga-Zn-Ο爲基的氧化物半導體材料之一典型 範例,提供由InGa03(Zn0),„ ( ;n>0 )所表示者。氧化物半 導體材料之另一範例由InMOdZnOU ( m>0 )所表示,其 中使用Μ來取代Ga。例如,Μ表示選自鎵(Ga)、鋁( A1 )、鐵(Fe )、鎳(Ni )、錳(Μη )、鈷(Co )及之 類的一或更多金屬元素。例如,Μ可爲Ga、Ga及Al、Ga 及Fe、Ga及Ni、Ga及Μη、Ga及Co、或之類。注意到 上述組成衍生自氧化物半導體材料可有之晶體結構並僅爲 範例。 作爲藉由濺鍍方法形成氧化物半導體層144用之靶材 ,較佳使用具有In:Ga:Zn=l:x:少(X爲0或更多,且少大 於或等於0.5並少於或等於5 )的組成比例之靶材。例如 ,可使用具有ln203: Ga2〇3 :ZnO = 1 :1 :1 [莫耳比率]之組成 比例的靶材、具有In203:Ga203:Zn0=l : 1 :2 [莫耳比率]之 組成比例的靶材、具有In203:Ga203:Zn0 = 2:2:l [莫耳比率 ]之組成比例的靶材、具有In203:Ga203:Zn0=l:l:4 [莫耳 比率]之組成比例的靶材、或之類。替代地,可使用具有 In2O3:Ga2O3:ZnO = 2:0:l [莫耳比率]之組成比例的靶材。 在此實施例中,可藉由使用In-Ga-Zn-Ο爲基的金屬 -37- 201142841 氧化物靶材之濺鍍方法來形成具有非晶結構的氧化物半導 體層1 44。 金屬氧化物靶材中所含的金屬氧化物較佳具有80% 或更高之相對密度;較佳95%或更高;更佳99.9%或更 高。藉由使用具有高相對密度之金屬氧化物靶材,可形成 具有密實結構的氧化物半導體層144。 形成氧化物半導體層144之濺鍍氣體較佳爲稀有氣體 (典型爲氬)、氧、或含有稀有氣體(典型爲氬)及氧之 混合氣體。此外,較佳使用高純度氣體,其中移除掉諸如 氫、水、羥基、或氫化物之雜質,使濃度降至1 ppm或更 少(較佳10 ppb或更少)。 在形成氧化物半導體層144中,將物體保持在維持於 減壓之處理室中且予以加熱,使物體之溫度高於或等於 100°C並低於5 5 0°C,且較佳高於或等於200°C並低於或等 於400°C的溫度。替代地,在形成氧化物半導體層144中 之物體之溫度可在室溫。接著,在移除處理室中之濕氣的 同時,引進從其移除掉氫、水、或之類的濺鍍氣體,藉此 使用上述的靶材來形成氧化物半導體層144。在加熱物體 的同時形成氧化物半導體層1 44,以減少氧化物半導體層 1 44中包括之雜質。此外,可減少濺鍍所造成的破壞。爲 了移除處理室中的濕氣’較佳使用捕集真空泵。例如,可 使用低溫泵、離子泵、或鈦昇華泵。可使用設有冷阱的渦 輪泵。藉由以低溫泵或之類來抽空,可從處理室移除氫、 水、及之類,藉此可減少氧化物半導體層1 44中所包括的S -36- 201142841 144 becomes i-type (essential). In particular, the 'In-Ga-Zn-germanium-based oxide semiconductor material has a sufficiently high electric resistance when there is no electric field and thus can sufficiently reduce the off-state current. Further, an In-Ga-Zn-germanium-based oxide semiconductor material is suitable as a semiconductor material used in a semiconductor device by high field-effect mobility. A typical example of an In-Ga-Zn-germanium-based oxide semiconductor material is provided by InGa03(Zn0), „( ;n>0). Another example of an oxide semiconductor material is InMOdZnOU (m&gt) ???), wherein Μ is used instead of Ga. For example, Μ represents a selected from the group consisting of gallium (Ga), aluminum (A1), iron (Fe), nickel (Ni), manganese (Μη), cobalt (Co), and One or more metal elements of the class. For example, lanthanum may be Ga, Ga and Al, Ga and Fe, Ga and Ni, Ga and Μη, Ga and Co, or the like. Note that the above composition is derived from an oxide semiconductor material. The crystal structure may be merely an example. As a target for forming the oxide semiconductor layer 144 by a sputtering method, it is preferable to use In:Ga:Zn=l:x: less (X is 0 or more, And a target having a composition ratio of less than or equal to 0.5 and less than or equal to 5). For example, a target having a composition ratio of ln203: Ga2〇3: ZnO = 1 : 1 : 1 [mole ratio] may be used, A target having a composition ratio of In203:Ga203:Zn0=l:1:2 [molar ratio], a target having a composition ratio of In203:Ga203:Zn0 = 2:2:1 [molar ratio], having In203 :Ga203: Zn0=l:l:4 [molar ratio] composition of the target, or the like. Alternatively, a composition having In2O3:Ga2O3:ZnO = 2:0:l [mole ratio] may be used. a ratio of the target material. In this embodiment, the oxide semiconductor layer 1 having an amorphous structure can be formed by a sputtering method using an In-Ga-Zn-germanium-based metal-37-201142841 oxide target. 44. The metal oxide contained in the metal oxide target preferably has a relative density of 80% or more; preferably 95% or more; more preferably 99.9% or more. By using a high relative density The metal oxide target can form the oxide semiconductor layer 144 having a dense structure. The sputtering gas forming the oxide semiconductor layer 144 is preferably a rare gas (typically argon), oxygen, or a rare gas (typically argon). And a mixed gas of oxygen. Further, it is preferred to use a high-purity gas in which impurities such as hydrogen, water, hydroxyl, or hydride are removed to reduce the concentration to 1 ppm or less (preferably 10 ppb or less). In forming the oxide semiconductor layer 144, the object is held in a processing chamber maintained under reduced pressure. Heating is performed such that the temperature of the object is higher than or equal to 100 ° C and lower than 550 ° C, and preferably higher than or equal to 200 ° C and lower than or equal to 400 ° C. Alternatively, in the formation of oxidation The temperature of the object in the semiconductor layer 144 may be at room temperature. Then, while removing moisture in the processing chamber, a sputtering gas from which hydrogen, water, or the like is removed is introduced, thereby using the above The target is used to form the oxide semiconductor layer 144. The oxide semiconductor layer 1 44 is formed while heating the object to reduce impurities included in the oxide semiconductor layer 1 44. In addition, the damage caused by sputtering can be reduced. A trapping vacuum pump is preferably used in order to remove moisture from the processing chamber. For example, a cryopump, ion pump, or titanium sublimation pump can be used. A turbo pump with a cold trap can be used. Hydrogen, water, and the like can be removed from the process chamber by evacuation with a cryopump or the like, thereby reducing the inclusion of oxide semiconductor layer 144

S -38- 201142841 雜質濃度。 可以下列條件形成氧化物半導體層1 44,例如:物體 與靶材間的距離爲170 mm;壓力爲0.4 Pa;直流(DC) 功率爲0.5 kW;且周圍環境爲氧(氧:100%)周圍環境 、氬(氬:100%)周圍環境、或含氧及氬之混合周圍環 境。注意到脈衝式直流(DC )電源爲較佳,因爲可減少 粉末物質(亦稱爲粒子或塵埃)並且厚度分佈可爲均句。 氧化物半導體層M4的厚度大於或等於1 nm並少於或等 於50 nm,且較佳大於或等於1 nm並少於或等於10 nm。 使用具有這種厚度之氧化物半導體層1 44可抑制微小化所 造成的短通道效應。注意到適當的厚度隨所使用之氧化物 半導體材料、半導體裝置之用途、或之類而變;因此,可 根據使用的材料、用途、或之類來適當設定厚度。 注意到在以濺鍍方法形成氧化物半導體層1 44之前, 較佳藉由其中引進氬氣體並產生電漿的反向濺鍍來移除附 著至其上將形成氧化物半導體層1 44的表面(如,層間絕 緣層128的表面)之物質。在此,相較於離子衝擊濺鍍靶 材之正常濺鍍,反向濺鍍爲一種使離子衝擊欲處理之表面 以修改表面的方法。使離子衝擊欲處理之表面的方法之一 範例爲其中在氬周圍環境中施加高頻電壓至表面以在物體 附近產生電漿的方法。注意到取代氬周圍環境,可使用氮 周圍環境、氦周圍環境、氧周圍環境、或之類。 之後,較佳於氧化物半導體層144上執行熱處理(第 一熱處理)。可藉由第一熱處理移除包括在氧化物半導體 -39- 201142841 層144中之多餘的氫(包括水及羥基),故可改善氧化物 半導體層之結構’並可減少能隙中的缺陷程度。第一熱處 理之溫度爲例如高於或等於300 °C且低於550 °C,或高於 或等於400°C且低於或等於5 00°C。 可以例如將物體引進到其中使用電阻式加熱元件或之 類的電爐中,並且接著在4 5 0°C於氮周圍環境下加熱一小 時之一種方式來執行熱處理。在熱處理期間,氧化物半導 體層144不暴露至空氣,所以可防止水或氫的進入。 熱處理設備不限於電爐且可爲藉由熱輻射或熱傳導從 諸如加熱氣體的一媒介加熱物體之設備。例如,可使用諸 如氣體迅速熱退火(GRTA)設備或燈迅速熱退火(LRTA )設備的迅速熱退火(RTA )設備》LRTA設備爲藉由從 諸如鹵素燈、金屬鹵化物、氙弧燈、碳弧燈、高壓鈉燈、 或高壓汞燈的燈所發射之光的輻射(電磁波)加熱物體之 設備。GRTA設備爲使用高溫氣體來執行熱處理的設備。 作爲氣體,使用不藉由熱處理與物體起反應之例如氮的惰 性氣體或諸如氬之稀有氣體。 例如,作爲第一熱處理,可如下般執行GRTA程序。 將物體放置在已加熱之惰性氣體周圍環境中,加熱數分鐘 ,並從惰性氣體周園環境中取出。GRTA程序允許短時的 高溫加熱處理。此外,即使溫度超過物體的溫度上限時, 仍可採用GRTA程序。注意到惰性氣體可在處理期間切換 成含氧之氣體。這是因爲可藉由在含氧的周圍環境中執行 第一熱處理減少氧缺乏所造成之能隙中的缺陷程度。S -38- 201142841 Impurity concentration. The oxide semiconductor layer 1 44 may be formed under the following conditions, for example, a distance between the object and the target of 170 mm; a pressure of 0.4 Pa; a direct current (DC) power of 0.5 kW; and an ambient environment of oxygen (oxygen: 100%). Ambient, argon (argon: 100%) ambient, or a mixture of oxygen and argon. It is noted that a pulsed direct current (DC) power source is preferred because powder material (also known as particles or dust) can be reduced and the thickness distribution can be a uniform sentence. The thickness of the oxide semiconductor layer M4 is greater than or equal to 1 nm and less than or equal to 50 nm, and preferably greater than or equal to 1 nm and less than or equal to 10 nm. The use of the oxide semiconductor layer 1 44 having such a thickness suppresses the short channel effect caused by miniaturization. It is noted that the appropriate thickness varies depending on the oxide semiconductor material to be used, the use of the semiconductor device, or the like; therefore, the thickness can be appropriately set depending on the material to be used, the use, or the like. Note that before the oxide semiconductor layer 1 44 is formed by a sputtering method, the surface to which the oxide semiconductor layer 144 is to be formed is preferably removed by reverse sputtering in which an argon gas is introduced and plasma is generated. A substance such as the surface of the interlayer insulating layer 128. Here, reverse sputtering is a method of modifying the surface by impacting the surface to be treated by ion impacting compared to normal sputtering of an ion impact sputtering target. One example of a method of causing an ion to strike a surface to be treated is a method in which a high frequency voltage is applied to a surface in an environment surrounding argon to generate a plasma in the vicinity of an object. It is noted that instead of the argon surrounding environment, a nitrogen surrounding environment, a surrounding environment, an oxygen surrounding environment, or the like can be used. Thereafter, heat treatment (first heat treatment) is preferably performed on the oxide semiconductor layer 144. The excess hydrogen (including water and hydroxyl groups) included in the oxide semiconductor-39-201142841 layer 144 can be removed by the first heat treatment, thereby improving the structure of the oxide semiconductor layer and reducing the degree of defects in the energy gap. . The temperature of the first heat treatment is, for example, higher than or equal to 300 ° C and lower than 550 ° C, or higher than or equal to 400 ° C and lower than or equal to 500 ° C. The heat treatment can be performed, for example, by introducing an object into an electric furnace in which a resistance heating element or the like is used, and then heating at 450 ° C for one hour under a nitrogen atmosphere. During the heat treatment, the oxide semiconductor layer 144 is not exposed to the air, so the entry of water or hydrogen can be prevented. The heat treatment apparatus is not limited to an electric furnace and may be a device that heats an object from a medium such as a heated gas by heat radiation or heat conduction. For example, rapid thermal annealing (RTA) equipment such as gas rapid thermal annealing (GRTA) equipment or lamp rapid thermal annealing (LRTA) equipment can be used, by means of equipment such as halogen lamps, metal halides, xenon arc lamps, carbon A device for heating an object by radiation (electromagnetic waves) of light emitted by an arc lamp, a high-pressure sodium lamp, or a lamp of a high-pressure mercury lamp. The GRTA device is a device that performs high temperature treatment using a high temperature gas. As the gas, an inert gas such as nitrogen or a rare gas such as argon which does not react with an object by heat treatment is used. For example, as the first heat treatment, the GRTA program can be executed as follows. Place the object in the environment surrounding the heated inert gas, heat it for a few minutes, and remove it from the inert gas environment. The GRTA program allows for short-term high temperature heat treatment. In addition, the GRTA program can be used even when the temperature exceeds the upper temperature limit of the object. It is noted that the inert gas can be switched to an oxygen-containing gas during processing. This is because the degree of defects in the energy gap caused by oxygen deficiency can be reduced by performing the first heat treatment in the oxygen-containing surrounding environment.

S -40- 201142841 注意到作爲惰性氣體周圍環境,較佳使用含有氮或稀 有氣體(如氨、氖、或氬)作爲其主成分且不含水、氫、 及之類的周圍環境。例如,引進熱處理設備中之氮或諸如 氮 '氖、或氬之稀有氣體的純度爲6N ( 99.9999% )或更 高,較佳7N (99.99999%)或更高(亦即’雜質濃度爲1 ppm或更少,較佳〇. 1 ppm或更少)。 在任何情況中’形成其中藉由第一熱處理減少雜質的 i型(本質)或實質上i型的氧化物半導體層M4,其可 實現具有優異特性之電晶體。 上述熱處理(第一熱處理)可稱爲脫水處理、脫氫處 理、或之類’因其具有移除氫、水、及之類的效果。可在 例如形成氧化物半導體層之後,在形成閘極絕緣層之後、 或在形成閘極電極之後執行脫水處理或脫氫處理。可執行 這類脫水處理或脫氫處理一次或數次。 接下來,形成接觸氧化物半導體層144的閘極絕緣層 1斗6(參見第6C圖)。可藉由CVD方法、濺鍍方法、或 之類形成閘極絕緣層1 46。較佳形成閘極絕緣層1 46以包 括氧化矽、氮化矽、氧氮化矽、氧化鋁、氧化鉅、氧化耠 、氧化釔、矽酸給(HfSixOy ’ ( x>〇,y>〇 ))、添加氮 至其之矽酸耠(HfSixOy, ( x>0,y>0 ))、添加氮至其 之鋁給(HfAlxOy, ( x>〇 ’ y>〇 ))、或之類。閘極絕緣 層1 46可爲單層結構或分層結構。對於厚度並無特別限制 :然而,在半導體裝置微型化的情況中,厚度較佳爲小以 保障電晶體的操作。例如,在使用氧化矽的情況中,厚度 -41 - 201142841 可設定成大於或等於1 nm並少於或等於1〇〇 nm ,且較佳 大於或等於10 nm並少於或等於5〇 nm。 如上述’當閘極絕緣層爲薄時,會導致因穿隧效應或 之類造成的閘極漏電之問題。爲了解決閘極漏電之問題, 較佳使用尚介電常數(高k )材料來作爲閘極絕緣層1 4 6 ’諸如氧化飴、氧化钽、氧化釔、矽酸給(HfSix〇y,( Χ>〇 ’ y>0))、添加氮至其之矽酸铪(HfSix〇y,( x>0, y>0))、添加氮至其之鋁給(HfAixoy,( x>〇,y>〇)) 、或之類。藉由使用高k材料作爲閘極絕緣層146,可確 保電氣特性且厚度可爲大以防止閘極漏電。注意到可採用 包括高k材料之膜及包括氧化矽、氮化矽、氧氮化矽、氮 氧化矽、氧化鋁、及之類的任一者之膜的分層結構。 在形成閘極絕緣層1 4 6之後,較佳在惰性惰性氣體周 圍環境或氧周圍環境中執行第二熱處理。該熱處理之溫度 設定成高於或等於2 0 0 °C並低於或等於4 5 0。(:,且較佳高 於或等於250°C至並低於或等於3 50°C。例如,在250°C 於氮周圍環境中執行該熱處理一小時。第二熱處理可減少 電晶體之電氣特性中的變動。此外,在閘極絕緣層1 46包 括氧的情況中,可供應氧至氧化物半導體層144以彌補氧 化物半導體層144中之氧缺乏,所以可形成i型(本質) 或實質上i型的氧化物半導體層。 注意到在此實施例中係在形成閘極絕緣層M6之後執 行第二熱處理;然而,第二熱處理之時序不限於此。例如 ,可在形成閘極電極之後執行第二熱處理。此外,可接續S-40-201142841 It is noted that as an inert gas surrounding environment, it is preferred to use nitrogen or a rare gas such as ammonia, helium or argon as its main component and not containing water, hydrogen, and the like. For example, the nitrogen introduced into the heat treatment equipment or the rare gas such as nitrogen '氖 or argon has a purity of 6N (99.9999%) or higher, preferably 7N (99.99999%) or higher (ie, the impurity concentration is 1 ppm). Or less, preferably 1. 1 ppm or less). In any case, an i-type (essential) or substantially i-type oxide semiconductor layer M4 in which impurities are reduced by the first heat treatment is formed, which can realize a transistor having excellent characteristics. The above heat treatment (first heat treatment) may be referred to as dehydration treatment, dehydrogenation treatment, or the like, as it has effects of removing hydrogen, water, and the like. The dehydration treatment or the dehydrogenation treatment may be performed after, for example, formation of the oxide semiconductor layer, after formation of the gate insulating layer, or after formation of the gate electrode. This type of dehydration treatment or dehydrogenation treatment can be performed one or several times. Next, a gate insulating layer 1 of the contact oxide semiconductor layer 144 is formed (see Fig. 6C). The gate insulating layer 146 can be formed by a CVD method, a sputtering method, or the like. Preferably, the gate insulating layer 1 46 is formed to include hafnium oxide, tantalum nitride, hafnium oxynitride, aluminum oxide, oxidized giant, cerium oxide, cerium oxide, or ceric acid (HfSixOy ' ( xgt; 〇, y > 〇) And adding nitrogen to the bismuth ruthenate (HfSixOy, (x>0, y> 0)), adding nitrogen to the aluminum (HfAlxOy, (x> 〇' y> 〇)), or the like. The gate insulating layer 1 46 may be a single layer structure or a layered structure. The thickness is not particularly limited: however, in the case of miniaturization of the semiconductor device, the thickness is preferably small to secure the operation of the transistor. For example, in the case of using yttrium oxide, the thickness -41 - 201142841 may be set to be greater than or equal to 1 nm and less than or equal to 1 〇〇 nm, and preferably greater than or equal to 10 nm and less than or equal to 5 〇 nm. As described above, when the gate insulating layer is thin, it causes a problem of gate leakage due to tunneling or the like. In order to solve the problem of gate leakage, it is preferable to use a dielectric constant (high-k) material as the gate insulating layer 1 4 6 ' such as yttrium oxide, ytterbium oxide, ytterbium oxide, or lanthanum acid (HfSix〇y, ( Χ gt ;〇' y>0)), adding nitrogen to the bismuth citrate (HfSix〇y, (x>0, y> 0)), adding nitrogen to the aluminum (HfAixoy, (x>〇, y>) 〇)), or the like. By using a high-k material as the gate insulating layer 146, electrical characteristics can be ensured and the thickness can be made large to prevent gate leakage. It is noted that a film comprising a high-k material and a layered structure comprising a film of any of cerium oxide, cerium nitride, cerium oxynitride, cerium oxynitride, aluminum oxide, and the like may be employed. After the formation of the gate insulating layer 146, the second heat treatment is preferably performed in an environment surrounding the inert inert gas or in an environment surrounding the oxygen. The temperature of the heat treatment is set to be higher than or equal to 200 ° C and lower than or equal to 4500. (:, and preferably higher than or equal to 250 ° C to and lower than 3 50 ° C. For example, the heat treatment is performed in a nitrogen atmosphere at 250 ° C for one hour. The second heat treatment can reduce the electrical conductivity of the transistor Further, in the case where the gate insulating layer 1 46 includes oxygen, oxygen can be supplied to the oxide semiconductor layer 144 to compensate for the oxygen deficiency in the oxide semiconductor layer 144, so that i-type (essential) can be formed or A substantially i-type oxide semiconductor layer. Note that in this embodiment, the second heat treatment is performed after the formation of the gate insulating layer M6; however, the timing of the second heat treatment is not limited thereto. For example, a gate electrode may be formed Then performing a second heat treatment. In addition, it can be connected

S -42- 201142841 執行第一熱處理及第二熱處理,第一熱處理亦可充當第二 熱處理,或第二熱處理亦可充當第一熱處理。 接下來,在閘極絕緣層146上方,在重疊氧化物半導 體層M4之區域中形成閘極電極M8 (參見第6D圖)。 可以在閘極絕緣層146上方形成導電層並接著選擇性加以 蝕刻的方式形成閘極電極148。可藉由諸如濺鍍方法之 PVD方法或諸如電漿CVD方法的CVD方法形成即將成爲 閘極電極148的導電層。細節與源極或汲極電極142a或 之類的相同或實質上相同;故可參照其之說明。 接下來,在閘極絕緣層1 46及閘極電極1 48上方形成 層間絕緣層150及152(參見第6E圖)。可藉由PVD方 法、CVD方法、或之類形成層間絕緣層150及152»可使 用包括諸如氧化矽、氧氮化矽、氮化矽、氧化給、氧化鋁 、或氧化钽的無機絕緣材料之材料來形成層間絕緣層1 50 及152。注意到在此實施例中使用層間絕緣層150及152 的分層結構;然而,所揭露之本發明之一實施例不限於此 。亦可使用單層結構或包括三或更多層的分層結構。替代 地,可採用其中未設置層間絕緣層之結構。 注意到較佳形成層間絕緣層1 52以具有平面化的表面 。這是因爲即使在例如微型化半導體裝置之情況中,可在 層間絕緣層1 5 2上方有利地形成電極、佈線、或之類。可 使用諸如化學機械硏磨(CMP )之方法來平面化層間絕緣 層 1 5 2。 經由上述步驟,完成包括高度純化氧化物半導體層 -43- 201142841 144的電晶體102 (參見第6E圖)。 第6E圖中所示的電晶體102包括氧化物半導體層 1 44、電連接至氧化物半導體層1 44的源極或汲極電極 142a及源極或汲極電極142b、覆蓋氧化物半導體層144 、源極或汲極電極142a、及源極或汲極電極142b的閘極 絕緣層1 4 6、以及在閘極絕緣層1 4 6上方的閘極電極1 4 8 〇 由於在此實施例中所述的電晶體1 02中之氧化物半導 體層144爲高度純化,氫濃度爲5x1019 atoms/cm3或更少 ;較佳 5xl018 atoms/cm3 或更少;更佳 5xl017 atoms/cm3 或更少。另外,相較於一般矽晶圓的載子密度(近乎lx 1014 /cm3),氧化物半導體層144的載子密度之値夠低( 例如,低於 lxl〇12 /cm3,較佳低於 1.45xl01() /cm3)。因 此,關閉狀態電流夠低。例如,在室溫(25 °C )的電晶體 1 02之關閉狀態電流(在此,每單位通道寬度(1 y m )) 爲 100 zA/#m(l zA((賽普托安培(zeptoampere)爲 1x10_21A)或更少,且較佳10zA//zm或更少。 藉由使用高度純化且變成本質的氧化物半導體層144 ,可充分減少電晶體的關閉狀態電流。藉由使用這種電晶 體,可獲得其中能夠極長時間儲存記憶體資料之半導體裝 置。 在此實施例中所述之結構、方法、及之類可與其他實 施例中所述之任何結構、方法、及之類適當地結合。S - 42 - 201142841 Performing the first heat treatment and the second heat treatment, the first heat treatment may also serve as the second heat treatment, or the second heat treatment may also serve as the first heat treatment. Next, over the gate insulating layer 146, a gate electrode M8 is formed in a region overlapping the oxide semiconductor layer M4 (see Fig. 6D). A gate electrode 148 may be formed by forming a conductive layer over the gate insulating layer 146 and then selectively etching. The conductive layer to be the gate electrode 148 can be formed by a PVD method such as a sputtering method or a CVD method such as a plasma CVD method. The details are the same or substantially the same as the source or drain electrode 142a or the like; therefore, the description thereof can be referred to. Next, interlayer insulating layers 150 and 152 are formed over the gate insulating layer 146 and the gate electrode 1 48 (see Fig. 6E). The inorganic insulating material including, for example, yttrium oxide, yttrium oxynitride, tantalum nitride, oxidized, aluminum oxide, or cerium oxide may be used to form the interlayer insulating layers 150 and 152» by a PVD method, a CVD method, or the like. Materials are used to form interlayer insulating layers 150 and 152. It is noted that the layered structure of the interlayer insulating layers 150 and 152 is used in this embodiment; however, one embodiment of the disclosed invention is not limited thereto. A single layer structure or a layered structure including three or more layers may also be used. Alternatively, a structure in which an interlayer insulating layer is not provided may be employed. It is noted that the interlayer insulating layer 152 is preferably formed to have a planarized surface. This is because electrodes, wiring, or the like can be favorably formed over the interlayer insulating layer 152 even in the case of, for example, a miniaturized semiconductor device. The interlayer insulating layer 15 2 can be planarized using a method such as chemical mechanical honing (CMP). Through the above steps, the transistor 102 including the highly purified oxide semiconductor layer -43 - 201142841 144 is completed (see Fig. 6E). The transistor 102 shown in FIG. 6E includes an oxide semiconductor layer 144, a source or drain electrode 142a electrically connected to the oxide semiconductor layer 144, and a source or drain electrode 142b, and a capping oxide semiconductor layer 144. , the source or drain electrode 142a, and the gate insulating layer 146 of the source or drain electrode 142b, and the gate electrode 1 4 8 上方 above the gate insulating layer 146 because in this embodiment The oxide semiconductor layer 144 in the transistor 102 is highly purified, and has a hydrogen concentration of 5x1019 atoms/cm3 or less; preferably 5xl018 atoms/cm3 or less; more preferably 5xl017 atoms/cm3 or less. In addition, the carrier density of the oxide semiconductor layer 144 is sufficiently low compared to the carrier density of the general germanium wafer (nearly lx 1014 /cm3) (for example, less than lxl 〇 12 /cm 3 , preferably less than 1.45) Xl01() /cm3). Therefore, the off state current is low enough. For example, the closed state current of the transistor 102 at room temperature (25 °C) (here, the width per unit channel (1 ym)) is 100 zA/#m (l zA ((zeptoampere) It is 1x10_21A) or less, and preferably 10zA//zm or less. By using the highly purified and essential oxide semiconductor layer 144, the off-state current of the transistor can be sufficiently reduced. By using such a transistor A semiconductor device in which memory data can be stored for a very long time can be obtained. The structures, methods, and the like described in this embodiment can be appropriately combined with any of the structures, methods, and the like described in other embodiments. Combine.

S -44- 201142841 (實施例3 ) 在此實施例中,將參照第7A及7B圖及第8A至8D 圖來敘述根據所揭露的本發明之另一實施例的半導體裝置 之結構及製造方法,其與實施例2的那些不同》 <半導體裝置之剖面結構及平面結構> 第7A及7B圖繪示半導體裝置之結構的一範例。第 7A圖爲半導體裝置的剖面圖,且第7B圖爲半導體裝置的 平面圖。在此,第7A圖對應沿著至第7B圖中之線A1-A2及線B1-B2的剖面。第7A及7B圖中所示之半導體裝 置設有包括非氧化物半導體之半導體材料的電晶體101, 及包括氧化物半導體之電晶體1 02。包括非氧化物半導體 的半導體材料之電晶體可輕易以高速操作。另—方面,包 括氧化物半導體的電晶體由於其之特性可長時間保持電荷 。注意到電晶體1 0 1充當讀取電晶體,且電晶體1 0 2充當 寫入電晶體。 雖在電晶體兩者在此皆爲η通道電晶體,當然,可使 用Ρ通道電晶體。由於所揭露之本發明的技術本質爲使用 電晶體1 02中之氧化物半導體以儲存資料,無需將半導體 裝置之特定結構限制在於此所述之結構。 第;7Α及7Β圖中所示之電晶體101包括設置在包括 半導體材料(如矽)之基板1 00中的通道形成區域1 1 6、 設置以在其之間夾住通道形成區域1 1 6之雜質區域1 1 4和 高濃度雜質區域1 2 0 (這些區域簡單統稱爲雜質區域)、 -45- 201142841 設置在通道形成區域1 1 6上方之閘極絕緣層1 08、設置在 閘極絕緣層108上方之閘極電極110、及電連接至雜質區 域的源極或汲極電極130a和源極或汲極電極130b。此外 ,佈線142c及佈線142d分別設置在源極或汲極電極 13 0a及源極或汲極電極130b上方。 側壁絕緣層1 1 8設置在閘極電極1 1 0的側表面上。高 濃度雜質區域120設置在當從與基板100的表面垂直之方 向看去不與側壁絕緣層1 1 8重氍之基板1 00的區域中。金 屬化合物區域124設置成接觸高濃度雜質區域120。此外 ,在基板1 00上方形成元件隔離絕緣層1 06以圍繞電晶體 101。設置層間絕緣層126及128以具有設置在閘極電極 1 1 0的開口,並覆蓋電晶體1 0 1。源極或汲極電極1 3 0a及 源極或汲極電極1 30b經由形成在層間絕緣層1 26中的開 口電連接至金屬化合物區域124。亦即,源極或汲極電極 130a及源極或汲極電極130b經由金屬化合物區域124電 連接至高濃度雜質區域120及雜質區域114。注意到在爲 了整合電晶體1 〇 1或之類的某些情況中不形成側壁絕緣層 118。 第7A及7B圖中之電晶體102包括設置在層間絕緣 層128上方之源極或汲極電極142a及源極或汲極電極 14 2b、電連接至源極琛汲極電極142 a及源極或汲極電極 142b的氧化物半導體層M4、覆蓋源極或汲極電極142a 、源極或汲極電極142b、及島狀氧化物半導體層144的 閘極絕緣層146、及設置在閘極絕緣層146上方重疊島狀S-44-201142841 (Embodiment 3) In this embodiment, a structure and a manufacturing method of a semiconductor device according to another embodiment of the disclosed invention will be described with reference to FIGS. 7A and 7B and FIGS. 8A to 8D. This is different from those of Embodiment 2. <Sectional Structure and Planar Structure of Semiconductor Device> FIGS. 7A and 7B illustrate an example of the structure of a semiconductor device. Fig. 7A is a cross-sectional view of the semiconductor device, and Fig. 7B is a plan view of the semiconductor device. Here, the 7A map corresponds to a section along the line A1-A2 and the line B1-B2 in the FIG. 7B. The semiconductor device shown in Figs. 7A and 7B is provided with a transistor 101 including a semiconductor material of a non-oxide semiconductor, and a transistor 102 including an oxide semiconductor. A transistor including a semiconductor material of a non-oxide semiconductor can be easily operated at a high speed. On the other hand, a transistor including an oxide semiconductor can retain a charge for a long time due to its characteristics. It is noted that the transistor 101 acts as a read transistor, and the transistor 102 acts as a write transistor. Although both of the transistors are η-channel transistors here, of course, Ρ channel transistors can be used. Since the disclosed technology of the present invention essentially uses an oxide semiconductor in the transistor 102 to store data, it is not necessary to limit the specific structure of the semiconductor device to the structure described herein. The transistor 101 shown in FIGS. 7A and 7B includes a channel forming region 1 1 6 disposed in a substrate 100 including a semiconductor material such as germanium, and is disposed to sandwich the channel forming region 1 1 6 therebetween. The impurity region 1 1 4 and the high-concentration impurity region 1 2 0 (these regions are collectively referred to as impurity regions), -45- 201142841, the gate insulating layer 108 disposed above the channel formation region 1 16 , and the gate insulating layer A gate electrode 110 above the layer 108, and a source or drain electrode 130a and a source or drain electrode 130b electrically connected to the impurity region. Further, the wiring 142c and the wiring 142d are respectively disposed above the source or drain electrode 130a and the source or drain electrode 130b. A sidewall insulating layer 1 18 is disposed on a side surface of the gate electrode 110. The high-concentration impurity region 120 is disposed in a region of the substrate 100 which is not overlapped with the sidewall insulating layer 1 18 as viewed from a direction perpendicular to the surface of the substrate 100. The metal compound region 124 is disposed in contact with the high concentration impurity region 120. Further, an element isolation insulating layer 106 is formed over the substrate 100 to surround the transistor 101. The interlayer insulating layers 126 and 128 are provided to have an opening provided at the gate electrode 110, and cover the transistor 101. The source or drain electrode 1 30a and the source or drain electrode 1 30b are electrically connected to the metal compound region 124 via an opening formed in the interlayer insulating layer 126. That is, the source or drain electrode 130a and the source or drain electrode 130b are electrically connected to the high concentration impurity region 120 and the impurity region 114 via the metal compound region 124. It is noted that the sidewall insulating layer 118 is not formed in some cases for integrating the transistor 1 〇 1 or the like. The transistor 102 in FIGS. 7A and 7B includes a source or drain electrode 142a and a source or drain electrode 14 2b disposed above the interlayer insulating layer 128, electrically connected to the source drain electrode 142 a and the source Or an oxide semiconductor layer M4 of the drain electrode 142b, a source or drain electrode 142a, a source or drain electrode 142b, and a gate insulating layer 146 of the island-shaped oxide semiconductor layer 144, and a gate insulating layer Overlapping islands above layer 146

S -46- 201142841 氧化物半導體層144的閘極電極148。 在此,源極或汲極電極142a直接形成在聞極電極 110之上,藉此電晶體101及電晶體102互相電連接。亦 即,在此實施例中所述的半導體裝置具有一種結構,其中 ,在實施例2中所述的半導體裝置中,電晶體1 02係形成 在電晶體101的上方,從其移除在閘極電極110的頂表面 上方的一部分。 在此,氧化物半導體層144較佳爲藉由充分從其移除 如氫之雜質或藉由充分供應氧至其而高度純化的氧化物半 導體層。詳言之,氧化物半導體層144中之氫濃度爲5x 1019 atoms/cm3 或更低;較佳 5xl018 atoms/cm3 或更低; 更佳5xl017 atoms/cm3或更低。注意到藉由二次離子質譜 (SIMS )來測量氧化物半導體層M4的氫濃度。在其中 充分減少氫濃度而高度純化且其中藉由供應充分量的氧而 減少因氧缺乏所導致之能隙中的缺陷程度的氧化物半導體 層144中,載子濃度低於lxlO12 /cm3;較佳低於lxlO11 /cm3 ;更佳低於1.45xl01() /cm3。例如,在室溫(25°C ) 電晶體102的關閉狀態電流(在此,每單位通道寬度(1 仁 m))爲 100 zA/y m ( 1 zA ( zeptoampere)爲 lxl(T21 A )或更少,較佳10 zA/ 或更少。藉由使用這類i型 (本質)或實質i型的氧化物半導體,可獲得具有優異的 關閉狀態電流特性之電晶體1 〇2。 注意到在電晶體102之中,源極或汲極電極142a及 源極或汲極電極1 42b的邊緣部較佳爲錐形。在此,錐角 -47- 201142841 例如較佳大於或等於30°並少於或等於60°。注意到錐角 意指,當從與層之剖面垂直(與基板表面垂直之平面)之 方向看去,由具有錐形形狀之層(例如源極或汲極電極 1 42a )的側表面及底表面所形成之傾斜角度。當源極或汲 極電極142a及源極或汲極電極142b的邊緣部爲錐形時, 可改善以氧化物半導體層144對源極或汲極電極142a及 源極或汲極電極142b之邊緣部的覆蓋並可防止斷連。 此外,在電晶體1 02上方設置層間絕緣層1 50,並在 層間絕緣層1 5 0上方設置層間絕緣層1 5 2。 &lt;半導體裝置之製造方法&gt; 接下來,將敘述半導體裝置之製造方法的一範例。將 於下參照第8A至8D圖來敘述在形成電晶體101之後所 執行的步驟,亦即,電晶體1 02的製造方法。藉由與實施 例2中所述相同或實質上相同的方法來製造電晶體101, 並可參照實施例2中的說明。 首先藉由實施例2中所述的方法來形成電晶體101, 並接著,移除在閘極電極1 1 0的頂表面上方之電晶體1 〇 1 的一部分(參見第8A圖)。藉由在電晶體101上執行硏 磨處理(CMP處理)直到暴露出閘極電極1 1 0的頂表面 來移除在閘極電極1 1 0的頂.表面上方的電晶體1 0 1之該部 分。因此,移除在在閘極電極1 1 0上方之層間絕緣層1 26 及128及源極及汲極電極130a及130b之部分。此時,平 面化包括層間絕緣層〗26及128及源極及汲極電極130a -48- 201142841 及1 3 0 b的表面,使得可在後續步驟中有利地形成電極、 佈線、絕緣層、半導體層、及之類。實施例2中所述的電 極130c會被CMP處理完全移除掉,因此無需予以形成。 依照此方式藉由CMP處理暴露出閘極電極110的頂 表面,藉此閘極電極110及源極或汲極電極142a可直接 互相接觸;因此,電晶體101及電晶體102可輕易互相電 連接。 之後,在層間絕緣層1 2 6及1 2 8的上方形成導電層並 加以選擇性蝕刻,以形成源極或汲極電極142a、源極或 汲極電極14 2b、佈線142 c、及佈線142d(參見第8B圖 )。在此,形成源極或汲極電極142a、佈線142c、及佈 線142d,以分別直接接觸閘極電極110、源極或汲極電極 1 3 0 a、及源極或汲極電極1 3 0 b。 在此,針對形成源極或汲極電極142a、源極或汲極 電極142b、佈線142c、及佈線142d之導電層,可使用與 實施例2中所述相同或實質上相同的材料並可參照實施例 2的說明。亦可以和實施例2中所述相同或實質上相同的 方法的方式執行導電層的蝕刻,並可參照實施例2的說明 〇 此外,如同在實施例2的情況中般,在源極或汲極電 極142a及源極或汲極電極142b上方形成絕緣層。藉由絕 緣層,可減少在後續形成的閘極電極與源極及汲極電極 142a及142b之間所形成的寄生電容。 接下來,形成氧化物半導體層以覆蓋源極或汲極電極 -49- 201142841 142a、源極或汲極電極142b、佈線142c、及佈糸 並選擇性蝕刻氧化物半導體層,以形成接觸源極 極142a及源極或汲極電極142b的氧化物半導體 參見第8C圖)。 可用與實施例2中所述的那些相同或實質上 料及方法來形成氧化物半導體層。因此,針對氧 體層之材料及形成方法可參照實施例2。 作爲氧化物半導體層之蝕刻,可採用乾蝕刻 。當然’可結合使用乾蝕刻及濕蝕刻。可根據材 擇蝕刻條件(諸如,蝕刻氣體、蝕刻劑、蝕刻時 度)’以將氧化物半導體層蝕刻成希望的形狀。 此外’較佳以與實施例2中所述者相同或實 之方式使氧化物半導體層144受到熱處理(第一 。可藉由實施例2中所述的方法來執行第一熱處 參照實施例2。可藉由第一熱處理減少雜質,以; (本質)或實質上i型的氧化物半導體層144。 實現具有優異特性的電晶體。注意到可在蝕刻氧 體層之前或在蝕刻氧化物半導體層以處理成島狀 執行第一熱處理。 接下來,形成接觸氧化物半導體層144的閘 146 (參見第8C圖)。 可使用與K施例2中所述那些相同或實質上 料及方法來形成閘極絕緣層1 46。因此,針對閘 146之材料及形成方法,可參照實施例2。 良 142d , 或汲極電 層 144 ( 相同的材 化物半導 或濕蝕刻 料適當選 間、及溫 質上相同 熱處理) 理,並可 蔓得i型 依此,可 化物半導 形狀之後 極絕緣層 相同的材 極絕緣層S-46- 201142841 Gate electrode 148 of oxide semiconductor layer 144. Here, the source or drain electrode 142a is formed directly on the emitter electrode 110, whereby the transistor 101 and the transistor 102 are electrically connected to each other. That is, the semiconductor device described in this embodiment has a structure in which, in the semiconductor device described in Embodiment 2, a transistor 102 is formed over the transistor 101, and the gate is removed therefrom A portion above the top surface of the pole electrode 110. Here, the oxide semiconductor layer 144 is preferably an oxide semiconductor layer which is highly purified by sufficiently removing impurities such as hydrogen therefrom or by sufficiently supplying oxygen thereto. In detail, the concentration of hydrogen in the oxide semiconductor layer 144 is 5 x 1019 atoms/cm3 or less; preferably 5xl018 atoms/cm3 or less; more preferably 5xl017 atoms/cm3 or less. It was noted that the hydrogen concentration of the oxide semiconductor layer M4 was measured by secondary ion mass spectrometry (SIMS). In the oxide semiconductor layer 144 in which the hydrogen concentration is sufficiently reduced to be highly purified and in which the degree of defects in the energy gap due to oxygen deficiency is reduced by supplying a sufficient amount of oxygen, the carrier concentration is lower than lxlO12 /cm3; Preferably lower than lxlO11 /cm3; better than 1.45xl01() /cm3. For example, the closed state current of the transistor 102 at room temperature (25 ° C) (here, the width per unit channel (1 min m)) is 100 zA/ym (1 zA (zeptoampere) is lxl (T21 A ) or more Less, preferably 10 zA/ or less. By using such an i-type (essential) or substantially i-type oxide semiconductor, a transistor 1 〇 2 having excellent off-state current characteristics can be obtained. Among the crystals 102, the edge portions of the source or drain electrode 142a and the source or drain electrode 1 42b are preferably tapered. Here, the taper angle -47 - 201142841 is preferably, for example, greater than or equal to 30° and less. Or equal to 60. Note that the taper angle means that a layer having a tapered shape (for example, a source or a drain electrode 1 42a) when viewed from a direction perpendicular to a cross section of the layer (a plane perpendicular to the surface of the substrate) The inclination angle formed by the side surface and the bottom surface. When the edge portions of the source or drain electrode 142a and the source or drain electrode 142b are tapered, the source or the drain of the oxide semiconductor layer 144 may be improved. The edge of the electrode 142a and the source or drain electrode 142b is covered and can be prevented from being disconnected. An interlayer insulating layer 150 is disposed above the crystal 102, and an interlayer insulating layer 152 is disposed over the interlayer insulating layer 150. <Method of Manufacturing Semiconductor Device> Next, an example of a method of manufacturing a semiconductor device will be described. The steps performed after forming the transistor 101, that is, the method of fabricating the transistor 102, will be described below with reference to FIGS. 8A to 8D. The same or substantially the same method as described in Embodiment 2 The transistor 101 is fabricated and can be referred to the description in Embodiment 2. First, the transistor 101 is formed by the method described in Embodiment 2, and then removed over the top surface of the gate electrode 110. A portion of the transistor 1 〇1 (see Fig. 8A) is removed by performing a honing process (CMP process) on the transistor 101 until the top surface of the gate electrode 110 is exposed to remove the gate electrode 1 1 The top portion of 0. The portion of the transistor 110 above the surface. Therefore, the portions of the interlayer insulating layers 1 26 and 128 and the source and drain electrodes 130a and 130b over the gate electrode 110 are removed. At this time, the planarization includes the interlayer insulating layers 26 and 128 and The surfaces of the pole and drain electrodes 130a - 48 - 201142841 and 1 30 b make it possible to advantageously form electrodes, wirings, insulating layers, semiconductor layers, and the like in a subsequent step. The electrode 130c described in Embodiment 2 Will be completely removed by the CMP process, and therefore need not be formed. In this way, the top surface of the gate electrode 110 is exposed by CMP processing, whereby the gate electrode 110 and the source or drain electrode 142a can directly contact each other; Therefore, the transistor 101 and the transistor 102 can be easily electrically connected to each other. Thereafter, a conductive layer is formed over the interlayer insulating layers 1 2 6 and 1 2 8 and selectively etched to form a source or drain electrode 142a, a source or drain electrode 14 2b, a wiring 142 c, and a wiring 142d. (See Figure 8B). Here, the source or drain electrode 142a, the wiring 142c, and the wiring 142d are formed to directly contact the gate electrode 110, the source or drain electrode 1 30 a, and the source or drain electrode 1 3 0 b, respectively. . Here, for the conductive layer forming the source or drain electrode 142a, the source or drain electrode 142b, the wiring 142c, and the wiring 142d, the same or substantially the same material as described in Embodiment 2 can be used and can be referred to. Description of Embodiment 2. The etching of the conductive layer may also be performed in the same or substantially the same manner as described in Embodiment 2, and may be referred to the description of Embodiment 2. Further, as in the case of Embodiment 2, at the source or the 汲An insulating layer is formed over the electrode electrode 142a and the source or drain electrode 142b. By the insulating layer, the parasitic capacitance formed between the subsequently formed gate electrode and the source and drain electrodes 142a and 142b can be reduced. Next, an oxide semiconductor layer is formed to cover the source or drain electrode -49-201142841 142a, the source or drain electrode 142b, the wiring 142c, and the wiring and selectively etch the oxide semiconductor layer to form a contact source electrode For the oxide semiconductor of 142a and the source or drain electrode 142b, see Fig. 8C). The oxide semiconductor layer can be formed in the same or substantially the same manner as those described in Embodiment 2. Therefore, the material of the oxygen layer and the method of forming the same can be referred to in Example 2. As the etching of the oxide semiconductor layer, dry etching can be employed. Of course, dry etching and wet etching can be used in combination. Etching conditions (such as etching gas, etchant, etching time) can be selected to etch the oxide semiconductor layer into a desired shape. Further, the oxide semiconductor layer 144 is preferably subjected to heat treatment in the same manner as or as described in Embodiment 2 (first. The first heat reference embodiment can be performed by the method described in Embodiment 2) 2. The impurity may be reduced by the first heat treatment to: (essentially) or substantially i-type oxide semiconductor layer 144. A transistor having excellent characteristics is realized. It is noted that the oxide layer may be etched before or during the etching of the oxide layer. The layer performs the first heat treatment in an island shape. Next, a gate 146 contacting the oxide semiconductor layer 144 is formed (see Fig. 8C). The gate may be formed using the same or substantially the same method as those described in K Example 2. The pole insulating layer 1 46. Therefore, for the material and forming method of the gate 146, refer to the embodiment 2. The good 142d, or the gate electrode layer 144 (the same material semi-conductive or wet etching material is appropriately selected, and the temperature is good The same heat treatment is applied, and the i-type can be obtained. According to this, the material insulating layer with the same insulating layer after the semi-conductive shape can be formed.

S -50- 201142841 在形成閘極絕緣層1 46之後,較佳以與實施例2中所 述者相同或實質上相同的的方式在惰性氣體周圍環境或氧 周圍環境中執行第二熱處理。可藉由實施例2中所述之方 法執行第二熱處理,並可參照實施例2。第二熱處理可減 少電晶體之電氣特性中的變動。此外,在閘極絕緣層1 46 包括氧的情況中,供應氧至氧化物半導體層144以彌補氧 化物半導體層144中之氧缺乏,藉此可形成i型(本質) 或實質上i型的氧化物半導體層。 注意到在此實施例中係在形成閘極絕緣層1 46之後執 行第二熱處理:然而,第二熱處理之時序不限於此。例如 ,可在形成閘極電極之後執行第二熱處理。此外,可接續 執行第一熱處理及第二熱處理,第一熱處理亦可充當第二 熱處理,或第二熱處理亦可充當第一熱處理。 接下來,在閘極絕緣層146上方,在重疊氧化物半導 體層144之區域中形成閘極電極148(參見第8D圖)。 可以在閘極絕緣層1 46上方形成導電層並接著選擇性加以 蝕刻的方式來形成閘極電極148。可藉由諸如濺鍍方法之 PVD方法或諸如電漿CVD方法的CVD方法形成即將成爲 閘極電極M8的導電層。細節與源極或汲極電極142a或 之類的那些相同或實質上相同;故可參照其之說明。 接下來,以與實施例2中所述者相同或實質上相同的 方式,在閘極絕緣層1 46及閘極電極1 48上方形成層間絕 緣層1 50及1 52。可使用與實施例2中所述那些相同或實 質上相同的材料及方法來形成層間絕緣層1 50及1 52。因 -51 - 201142841 此,針對層間絕緣層150及152之材料及形成方法,可參 照實施例2。 注意到較佳形成層間絕緣層1 5 2以具有平面化表面。 這是因爲即使在例如微型化半導體裝置之情況中,可在層 間絕緣層1 52上方有利地形成電極、佈線、或之類。可藉 由諸如化學機械硏磨(CMP )之方法來平面化層間絕緣層 152。 經由上述步驟,完成包括高度純化之氧化物半導體層 144的電晶體102 (參見第8D圖)。 第8D圖中所示的電晶體102包括氧化物半導體層 144、電連接至氧化物半導體層144的源極或汲極電極 142a及源極或汲極電極142b、覆蓋氧化物半導體層144 、源極或汲極電極142a、及源極或汲極電極142b的閘極 絕緣層1 4 6、及在閘極絕緣層1 4 6上方的閘極電極1 4 8。 由於在此實施例中所示的電晶體102中之氧化物半導 體層M4爲高度純化,氫濃度爲5xl019 atoms/cm3或更低 ;較佳 5xl018 atoms/cm3 或更低:更佳 5xl017 atoms/cm3 或更低。另外,相較於一般矽晶圓的載子密度(近乎lx 1014 /cm3),氧化物半導體層144的載子密度之値夠低( 例如,低於 lxl〇12 /cm3,較佳低於 1·45χ101() /cm3)。因 此,關閉狀態電流夠低。例如,在室溫(25 °C )的電晶體 102之關閉狀態電流(在此,每通道寬度微米之電流)爲 1 0 0 z A / # m ( 1 z A ( ( z e p t 〇 a m p e r e )爲 1 X 1 (Γ21 A )或更 少,且較佳l〇zA///m或更少。 s -52- 201142841 藉由使用高度純化且變成本質的氧化物半導體層144 ’可充分減少電晶體的關閉狀態電流。藉由使用這種電晶 體’可獲得其中能夠極長時間儲存記億體資料之半導體裝 置。 在此實施例中所述之結構、方法、及之類可與其他實 施例中所述之任何結構、方法、及之類適當地結合。 (實施例4 ) 在此實施例中’將參照第9A及9B圖、第10A至 10C圖、及第11A及11B圖來敘述根據所揭露的本發明 之一實施例的半導體裝置之結構及製造方法,其與實施例 2及3的那些不同。 &lt;半導體裝置之剖面結構及平面結構&gt; 第9A及9B圖繪示半導體裝置之結構的—範例。第 9A圖繪示半導體裝置的剖面圖,且第9B圖繪示半導體裝 置的平面圖。在此,第9 A圖對應沿著至第9 B圖中之線 C1-C2及線D1-D2取得之剖面圖。第9A及9B圖中所示 之半導體裝置設有包括非氧化物半導體之半導體材料的電 晶體1 〇 1,以及包括氧化物半導體之電晶體1 02。包括非 氧化物半導體之半導體材料之電晶體可輕易以高速操作。 另一方面,包括氧化物半導體層的電晶體由於其之特性可 長時間保持電荷。電晶體1 0 1充當讀取電晶體,且電晶體 102充當寫入電晶體。 -53- 201142841 雖所有電晶體在此皆爲n通道電晶體’當然’可使用 p通道電晶體。此外’不需將半導體裝置之特定結構限制 於在此所述之結構。 第9A及9B圖中之半導體裝置與以上實施例中所述 的半導體裝置的差別在於不在電晶體101中設置側壁絕緣 層1 1 8。亦即,第9A及9B圖中之半導體裝置不包括側壁 絕緣層。由於未形成側壁絕緣層,不形成雜質區域114。 因此,在其中不設有側壁絕緣層的情況中,相較於設有側 壁絕緣層的情況,可輕易達成高整合。另外,相較於設有 側壁絕緣層1 1 8的情況,可簡化製程。 第9A及9B圖中之半導體裝置以上實施例中所述的 半導體裝置的差別還在於在電晶體1 〇 1中設有層間絕緣層 125。亦即,第9A及9B圖中之半導體裝置包括層間絕緣 層125。藉由使用包括氫的絕緣層作爲層間絕緣層125, 可供應氫至電晶體1 0 1以改善電晶體1 0 1的特性。作爲層 間絕緣層1 25,例如,可提供包括氫的氮化矽層,其係藉 由電漿CVD方法形成。此外,藉由使用其中充分減少氫 之絕緣層作爲層間絕緣層1 26,可防止將不利影響電晶體 1 02的氫包括在電晶體1 〇2中。作爲層間絕緣層1 2 6,例 如,可提供藉由濺鍍方法所形成的氮化矽層。當採用這種 結構時,可充分改善電晶體i !及1 〇2的特性。 第9A及9B圖中之半導體裝置以上實施例中所述的 半導體裝置的差別還在於在電晶體102中設置絕緣層 143a及絕緣層lUb。亦即,第9A及9B圖中之半導體裝S - 50 - 201142841 After forming the gate insulating layer 1 46, the second heat treatment is preferably performed in an inert gas ambient or oxygen surrounding environment in the same or substantially the same manner as described in Embodiment 2. The second heat treatment can be carried out by the method described in Embodiment 2, and can be referred to Embodiment 2. The second heat treatment reduces variations in the electrical characteristics of the transistor. Further, in the case where the gate insulating layer 1 46 includes oxygen, oxygen is supplied to the oxide semiconductor layer 144 to compensate for oxygen deficiency in the oxide semiconductor layer 144, whereby i-type (essential) or substantially i-type can be formed. An oxide semiconductor layer. Note that in this embodiment, the second heat treatment is performed after the gate insulating layer 1 46 is formed: however, the timing of the second heat treatment is not limited thereto. For example, the second heat treatment may be performed after the gate electrode is formed. Further, the first heat treatment and the second heat treatment may be successively performed, the first heat treatment may also serve as the second heat treatment, or the second heat treatment may also serve as the first heat treatment. Next, over the gate insulating layer 146, a gate electrode 148 is formed in the region of the overlapping oxide semiconductor layer 144 (see Fig. 8D). A gate electrode 148 may be formed by forming a conductive layer over the gate insulating layer 146 and then selectively etching. The conductive layer to be the gate electrode M8 can be formed by a PVD method such as a sputtering method or a CVD method such as a plasma CVD method. The details are the same or substantially the same as those of the source or drain electrode 142a or the like; therefore, the description thereof can be referred to. Next, interlayer insulating layers 150 and 152 are formed over gate insulating layer 146 and gate electrode 1 48 in the same or substantially the same manner as described in Embodiment 2. The interlayer insulating layers 150 and 152 can be formed using the same or substantially the same materials and methods as those described in Embodiment 2. For the material and formation method of the interlayer insulating layers 150 and 152, reference can be made to the embodiment 2 to -51 - 201142841. It is noted that the interlayer insulating layer 152 is preferably formed to have a planarized surface. This is because electrodes, wiring, or the like can be favorably formed over the interlayer insulating layer 152 even in the case of, for example, a miniaturized semiconductor device. The interlayer insulating layer 152 can be planarized by a method such as chemical mechanical honing (CMP). Through the above steps, the transistor 102 including the highly purified oxide semiconductor layer 144 is completed (see Fig. 8D). The transistor 102 shown in FIG. 8D includes an oxide semiconductor layer 144, a source or drain electrode 142a electrically connected to the oxide semiconductor layer 144, and a source or drain electrode 142b, a capping oxide semiconductor layer 144, and a source. The gate or drain electrode 142a, the gate insulating layer 146 of the source or drain electrode 142b, and the gate electrode 148 above the gate insulating layer 146. Since the oxide semiconductor layer M4 in the transistor 102 shown in this embodiment is highly purified, the hydrogen concentration is 5xl019 atoms/cm3 or less; preferably 5xl018 atoms/cm3 or less: more preferably 5xl017 atoms/cm3 Or lower. In addition, the carrier density of the oxide semiconductor layer 144 is sufficiently low compared to the carrier density of the general germanium wafer (nearly lx 1014 /cm3) (for example, less than lxl 〇 12 /cm 3 , preferably less than 1) ·45χ101() /cm3). Therefore, the off state current is low enough. For example, the off-state current of the transistor 102 at room temperature (25 ° C) (here, the current per micrometer width) is 1 0 0 z A / # m ( 1 z A ( ( zept 〇ampere ) is 1 X 1 (Γ21 A ) or less, and preferably l〇zA///m or less. s -52- 201142841 The transistor can be sufficiently reduced by using the highly purified and essential oxide semiconductor layer 144 ' The state current is turned off. By using such a transistor, a semiconductor device in which the data can be stored for a very long time can be obtained. The structures, methods, and the like described in this embodiment can be combined with other embodiments. Any structure, method, and the like are suitably combined. (Embodiment 4) In this embodiment, the disclosure will be described with reference to Figs. 9A and 9B, Figs. 10A to 10C, and Figs. 11A and 11B. The structure and manufacturing method of the semiconductor device according to an embodiment of the present invention are different from those of Embodiments 2 and 3. <Sectional Structure and Planar Structure of Semiconductor Device> FIGS. 9A and 9B illustrate the structure of a semiconductor device. - Example. Figure 9A shows a cross section of a semiconductor device. Figure 9B is a plan view of the semiconductor device. Here, Figure 9A corresponds to a cross-sectional view taken along line C1-C2 and line D1-D2 in Figure 9B. Figures 9A and 9B The semiconductor device shown is provided with a transistor 1 〇1 comprising a semiconductor material of a non-oxide semiconductor, and a transistor 102 comprising an oxide semiconductor. The transistor comprising a semiconductor material of a non-oxide semiconductor can be easily operated at high speed. On the other hand, a transistor including an oxide semiconductor layer can hold a charge for a long time due to its characteristics. The transistor 101 acts as a read transistor, and the transistor 102 functions as a write transistor. -53- 201142841 Although all electricity The crystal is here an n-channel transistor 'of course' a p-channel transistor can be used. Furthermore, it is not necessary to limit the specific structure of the semiconductor device to the structure described herein. The semiconductor device of FIGS. 9A and 9B is implemented with the above The difference in the semiconductor device described in the example is that the sidewall insulating layer 1 18 is not provided in the transistor 101. That is, the semiconductor device in the drawings 9A and 9B does not include the sidewall insulating layer. The layer does not form the impurity region 114. Therefore, in the case where the sidewall insulating layer is not provided, high integration can be easily achieved as compared with the case where the sidewall insulating layer is provided. Further, compared with the sidewall insulating layer 1 In the case of 1 8 , the process can be simplified. The semiconductor device in the above embodiments of FIGS. 9A and 9B differs in that the interlayer insulating layer 125 is provided in the transistor 1 〇1. That is, the 9A The semiconductor device in FIG. 9B includes an interlayer insulating layer 125. By using an insulating layer including hydrogen as the interlayer insulating layer 125, hydrogen can be supplied to the transistor 110 to improve the characteristics of the transistor 101. As the interlayer insulating layer 125, for example, a tantalum nitride layer including hydrogen can be provided, which is formed by a plasma CVD method. Further, by using the insulating layer in which hydrogen is sufficiently reduced as the interlayer insulating layer 126, hydrogen which adversely affects the transistor 102 can be prevented from being included in the transistor 1 〇2. As the interlayer insulating layer 1 2 6, for example, a tantalum nitride layer formed by a sputtering method can be provided. When this structure is employed, the characteristics of the transistors i ! and 1 〇 2 can be sufficiently improved. The semiconductor device described in the above embodiments of Figs. 9A and 9B differs in that the insulating layer 143a and the insulating layer 1Ub are provided in the transistor 102. That is, the semiconductor package in Figures 9A and 9B

S -54- 201142841 置包括絕緣層143a及絕緣層143b。藉由如此設置絕緣層 143a及絕緣層143b,可減少由閘極電極148a及源極或汲 極電極142a (或閘極電極148a及源極或汲極電極142b) 所形成之所謂的閘極電容以增加電晶體1 〇2的操作速度。 注意到如同在實施例3中般,直接在閘極電極1 1 0上 形成源極或汲極電極142a,藉此電晶體101與電晶體102 互相電連接。以這種結構,相較於其中額外設置電極及線 的情況,可增加整合程度。另外,可簡化製程。 雖在此實施例中說明包括所有差異之結構,可採用包 括這些差異的任一者之結構。 &lt;半導體裝置之製造方法&gt; 接下來,將說明半導體裝置之製造方法的一範例。將 參照第10A至10C圖及第11A及11B圖來敘述在形成電 晶體1 01之後所執行的步驟,亦即,電晶體1 02的製造方 法。藉由與實施例2中所述者相同或實質上相同的方法來 製造電晶體1 〇 1。細節可參照實施例2。另外,在此實施 例中之電晶體101的製造程序中並未形成源極或汲極電極 13 0a及源極或汲極電極13 Ob;然而,爲了方便,即使其 中未形成源極或汲極電極130a及源極或汲極電極130b之 結構也稱爲電晶體1 〇 1。 首先藉由與實施例2中所述的方法來製造電晶體1〇1 ,並接著移除在閘極電極110的頂表面上方之電晶體101 的一部分。針對移除步驟,可使用諸如化學機械硏磨( -55- 201142841 CMP )處理之硏磨處理。因此,移除在閘極電極110的頂 表面上方之層間絕緣層1 25、層間絕緣層1 26、及層間絕 緣層1 28的部份。注意到充分平面化已受到硏磨處理之表 面,藉此可在後續步驟中有利地形成電極、佈線、絕緣層 、半導體層、及之類。 接著,在閘極電極1 1 〇、層間絕緣層1 25、層間絕緣 層126、及層間絕緣層128的上方形成導電層,並選擇性 蝕刻導電層,以形成源極或汲極電極142a及源極或汲極 電極142b(參見第10A圖)。在此,形成源極或汲極電 極142a直接接觸閘極電極110。 可使用與實施例2中所述者相同或實質上相同的材料 來形成用於形成源極或汲極電極142 a及源極或汲極電極 142b之導電層。此外,亦可以和實施例2中所述者相同 或實質上相同的方法蝕刻導電層。細節可參照實施例2。 接下來,形成絕緣層以覆蓋源極或汲極電極1 42a及 源極或汲極電極1 4 2 b,並加以選擇性蝕刻,以分別在源 極或汲極電極142a及源極或汲極電極142b上方形成絕緣 層143a及絕緣層143b(參見第10B圖)。 藉由設置絕緣層143a及絕緣層143b,可減少形成在 後續形成之閘極電極與源極及汲極電極142a及142b之間 的寄生電容。 之後,形成氧化物半導體層144以覆蓋源極或汲極電 極142a及源極或汲極電極142b,並在氧化物半導體層 144上方形成閘極絕緣層H6 (參見第10C圖)。S-54-201142841 includes an insulating layer 143a and an insulating layer 143b. By providing the insulating layer 143a and the insulating layer 143b in this manner, the so-called gate capacitance formed by the gate electrode 148a and the source or drain electrode 142a (or the gate electrode 148a and the source or drain electrode 142b) can be reduced. To increase the operating speed of the transistor 1 〇2. It is noted that as in Embodiment 3, the source or drain electrode 142a is formed directly on the gate electrode 110, whereby the transistor 101 and the transistor 102 are electrically connected to each other. With this configuration, the degree of integration can be increased as compared with the case where electrodes and wires are additionally provided. In addition, the process can be simplified. Although the structure including all the differences is explained in this embodiment, the structure including any of these differences may be employed. &lt;Manufacturing Method of Semiconductor Device&gt; Next, an example of a method of manufacturing a semiconductor device will be described. The steps performed after the formation of the transistor 101, that is, the method of manufacturing the transistor 102, will be described with reference to Figs. 10A to 10C and Figs. 11A and 11B. The transistor 1 〇 1 was fabricated by the same or substantially the same method as described in Example 2. For details, refer to Embodiment 2. In addition, the source or drain electrode 13a and the source or drain electrode 13Bb are not formed in the manufacturing process of the transistor 101 in this embodiment; however, for convenience, even if the source or the drain is not formed therein The structure of the electrode 130a and the source or drain electrode 130b is also referred to as a transistor 1 〇1. First, the transistor 101 is fabricated by the method described in Embodiment 2, and then a portion of the transistor 101 above the top surface of the gate electrode 110 is removed. For the removal step, a honing treatment such as chemical mechanical honing (-55-201142841 CMP) treatment may be used. Therefore, portions of the interlayer insulating layer 125, the interlayer insulating layer 126, and the interlayer insulating layer 128 above the top surface of the gate electrode 110 are removed. It is noted that the surface which has been subjected to the honing process is sufficiently planarized, whereby electrodes, wirings, insulating layers, semiconductor layers, and the like can be advantageously formed in the subsequent steps. Next, a conductive layer is formed over the gate electrode 1 1 〇, the interlayer insulating layer 125, the interlayer insulating layer 126, and the interlayer insulating layer 128, and the conductive layer is selectively etched to form the source or drain electrode 142a and the source. The pole or drain electrode 142b (see Figure 10A). Here, the source or drain electrode 142a is formed to directly contact the gate electrode 110. A conductive layer for forming the source or drain electrode 142a and the source or drain electrode 142b may be formed using the same or substantially the same material as described in Embodiment 2. Further, the conductive layer may be etched in the same or substantially the same manner as described in Embodiment 2. For details, refer to Embodiment 2. Next, an insulating layer is formed to cover the source or drain electrode 142a and the source or drain electrode 142b, and is selectively etched to be respectively at the source or drain electrode 142a and the source or drain An insulating layer 143a and an insulating layer 143b are formed over the electrode 142b (see FIG. 10B). By providing the insulating layer 143a and the insulating layer 143b, the parasitic capacitance formed between the subsequently formed gate electrode and the source and drain electrodes 142a and 142b can be reduced. Thereafter, an oxide semiconductor layer 144 is formed to cover the source or drain electrode 142a and the source or drain electrode 142b, and a gate insulating layer H6 is formed over the oxide semiconductor layer 144 (see Fig. 10C).

S -56- 201142841 可用實施例2中所述的材料及方法來形成氧化物半導 體層M4。此外,較佳使氧化物半導體層144受到熱處理 (第一熱處理)。細節可參照實施例2。 可使用實施例2中所述的材料及方法來形成閘極絕緣 層146。在形成鬧極絕緣層146之後,較佳在惰性氣體周 圍環境或氧周圍環境中執行第二熱處理。細節可參照實施 例2。 接著’在閘極絕緣層146上方,在重疊電晶體1〇2之 一區域的區域中形成閘極電極148,其充當通道形成區域 (參見第1 1A圖)。 可以在閘極絕緣層1 4 6上方形成導電層並接著選擇性 加以蝕刻的方式形成閘極電極148。可藉由諸如濺鍍方法 之PVD方法或諸如電漿CVD方法的CVD方法形成即將 成爲閘極電極1 4 8的導電層。細節與源極或汲極電極 142 a或之類的那些相同或實質上相同;故可參照其之說 明。 接下來,在閘極絕緣層1 46及閘極電極1 48上方形成 層間絕緣層1 5 0及1 5 2 (參見第1 1 B圖)。可使用實施例 2中所述的材料及方法來形成層間絕緣層及1 52。細 節可參照實施例2。 注意到較佳形成層間絕緣層1 52以具有平面化表面。 藉由形成層間絕緣層i 52以具有平面化表面,即使在例如 微型化半導體裝置之情況中,可在層間絕緣層1 5 2上方有 利地形成電極 '佈線、或之類。可藉由諸如化學機械硏磨 -57- 201142841 (CMP)之方法來平面化層間絕緣層〗52。 經由上述步驟’完成包括電晶體1 〇 1及電晶體1 02的 半導體裝置。 在此實施例中所述的半導體裝置中,電晶體102重疊 電晶體1 0 1,電晶體1 〇 1不包括側壁絕緣層,且例如在閘 極電極110上直接形成源極或汲極電極142a;因此可有 高整合》此外,可簡化製程。 此外,在此實施例中所述的半導體裝置中,分別使用 含氫之絕緣層及具有充分減少氫濃度之絕緣層作爲層間絕 緣層1 2 5及層間絕緣層1 2 6 ;因此,可改善電晶體1 0 1及 102的特性。由於絕緣層143a及143b的緣故,減少所謂 的閘極電容並因此增加電晶體1 02的操作速度。 在此實施例中所述的上述特徵得以提供具有明顯優異 特性之半導體裝置。 在此實施例中所述之結構、方法、及之類可與其他實 施例中所述之任何結構 '方法、及之類適當地結合。 (實施例5) 在此實施例中,參照第12A至12F圖上述任何實施 例中所述之半導體裝置至電子裝置的應用。在此實施例中 ,敘述上述半導體裝置至諸如電腦、蜂窩式無線電話(亦 稱爲行動電話或行動電話機)、個人數位助理(包括可攜 式遊戲機、音頻再生裝置、及之類)、數位相機、數位視 訊攝影機、電子紙、及電視機(亦稱爲電視或電視接收器S-56- 201142841 The oxide semiconductor layer M4 can be formed using the materials and methods described in Example 2. Further, it is preferable that the oxide semiconductor layer 144 is subjected to heat treatment (first heat treatment). For details, refer to Embodiment 2. The gate insulating layer 146 can be formed using the materials and methods described in Embodiment 2. After the formation of the barrier insulating layer 146, the second heat treatment is preferably performed in an inert gas surrounding environment or an oxygen surrounding environment. For details, refer to Example 2. Next, above the gate insulating layer 146, a gate electrode 148 is formed in a region of one region of the overlapping transistor 1〇2, which serves as a channel forming region (see Fig. 11A). A gate electrode 148 may be formed by forming a conductive layer over the gate insulating layer 146 and then selectively etching. The conductive layer to be the gate electrode 148 can be formed by a PVD method such as a sputtering method or a CVD method such as a plasma CVD method. The details are the same or substantially the same as those of the source or drain electrode 142a or the like; therefore, the description thereof can be referred to. Next, interlayer insulating layers 150 and 125 are formed over the gate insulating layer 146 and the gate electrode 1 48 (see Fig. 1 1 B). The interlayer insulating layer and 152 can be formed using the materials and methods described in Embodiment 2. For details, refer to Embodiment 2. It is noted that the interlayer insulating layer 152 is preferably formed to have a planarized surface. By forming the interlayer insulating layer i 52 to have a planarized surface, even in the case of, for example, a miniaturized semiconductor device, an electrode 'wiring, or the like can be favorably formed over the interlayer insulating layer 15 2 . The interlayer insulating layer 52 can be planarized by a method such as chemical mechanical honing -57-201142841 (CMP). The semiconductor device including the transistor 1 〇 1 and the transistor 102 is completed through the above steps '. In the semiconductor device described in this embodiment, the transistor 102 overlaps the transistor 10, the transistor 1 不1 does not include the sidewall insulating layer, and the source or drain electrode 142a is directly formed, for example, on the gate electrode 110. Therefore, there can be high integration. In addition, the process can be simplified. Further, in the semiconductor device described in this embodiment, an insulating layer containing hydrogen and an insulating layer having a sufficiently reduced hydrogen concentration are respectively used as the interlayer insulating layer 1 25 and the interlayer insulating layer 1 2 6; Characteristics of crystals 1 0 1 and 102. Due to the insulating layers 143a and 143b, the so-called gate capacitance is reduced and thus the operating speed of the transistor 102 is increased. The above features described in this embodiment provide a semiconductor device having significantly superior characteristics. The structures, methods, and the like described in this embodiment can be combined as appropriate with any of the structures 'methods' and the like described in the other embodiments. (Embodiment 5) In this embodiment, reference is made to the application of the semiconductor device to the electronic device described in any of the above embodiments of Figs. 12A to 12F. In this embodiment, the above semiconductor device is described to such as a computer, a cellular radiotelephone (also known as a mobile phone or a mobile phone), a personal digital assistant (including a portable game machine, an audio reproduction device, and the like), and a digital device. Cameras, digital video cameras, electronic paper, and televisions (also known as television or television receivers)

S -58- 201142841 )之電子裝置的應用。 第12A圖顯示膝上型個人電腦,包括殼體701、殻體 7〇2、顯示部703、鍵盤704、及之類。在殼體701及殼體 702的各者中,設置上述任何實施例中所述的半導體裝置 。因此,可實現以高速執行資料的寫入及讀取,長時間儲 存資料,並具有夠低的耗電量之膝上型個人電腦。 第12B圖爲個人數位助理(PDA)。在主體711中, 設有顯示部7 1 3、外部界面7 1 5、操作鈕7 1 4、及之類。 此外,亦設置用於操作個人數位助理的手寫筆712及之類 。在主體711中,設置在上述任何實施例中所示的半導體 裝置。因此,可實現以高速執行資料的寫入及讀取,長時 間儲存資料,並具有夠低的耗電量的個人數位助理。 第12C圖顯示安裝電子紙的電子書讀取器720,其包 括殻體721及殻體723的兩殼體。殼體721及殼體723分 別設有顯示部725及顯示部727。殼體721及723藉由鉸 鍊部73 7連接並以鉸鍊73 7部作軸而予以打開及關閉。殼 體721設有電源鈕731、操作鍵733、揚聲器735、及之 類。殻體721及殼體723之至少一者設有在上述任何實施 例中所示的半導體裝置。因此,可實現以高速執行資料的 寫入及讀取,長時間儲存資料,並具有夠低的耗電量之電 子書讀取器。 第12D圖顯示包括殼體740及殼體741之兩殼體的 行動電話。此外,在於第1 2D圖中所示呈展開狀態的殼 體7 40及殼體741可藉由滑動而位移,使得其中之一重疊 -59- 201142841 在另一者上方;因此,可減少行動電話的尺寸,使行動電 話適合攜帶。殼體741包括顯示板742、揚聲器743、麥 克風744、觸碰螢幕745、指示裝置746、相機透鏡747' 外部連結端子748、及之類。殼體740包括用於充電行動 電話的太陽能電池7 4 9、外部記憶體槽7 5 0、及之類。另 外,天線係納入殻體7 4 1中。殼體7 4 0及7 4 1之至少一者 設有在上述任何實施例中所示的半導體裝置。因此,可實 現以高速執行資料的寫入及讀取,長時間儲存資料,並具 有夠低的耗電量之行動電話。 第12E圖顯示數位相機,其包括主體76 1、顯示部 767、目鏡763、操作開關764、顯示部765、電池766、 及之類。在主體761中,設置上述實施例中所示的半導體 裝置。因此’可實現以高速執行資料的寫入及讀取,長時 間儲存資料,並具有夠低的耗電量之數位相機。 第12F圖顯示電視機770,其包括殻體771、顯示部 773、支架775、及之類。可藉由殻體771之操作開關或 遙控器7 8 0操作電視機7 7 0。上述任何實施例中所示的半 導體裝置設置在殻體771及遙控器780上。因此,可實現 以高速執行資料的寫入及讀取,長時間儲存資料,並具有 夠低的耗電量之電視機。 如上述,在此實施例中所述的電子裝置的每一者上安 裝上述任何實施例中所示的半導體裝置。因此,可實現具 有低耗電量的電子裝置。S-58-201142841) Application of electronic devices. Fig. 12A shows a laptop personal computer including a housing 701, a housing 702, a display portion 703, a keyboard 704, and the like. In each of the case 701 and the case 702, the semiconductor device described in any of the above embodiments is provided. Therefore, it is possible to realize a laptop type personal computer that performs writing and reading of data at high speed, stores data for a long time, and has low power consumption. Figure 12B is a personal digital assistant (PDA). In the main body 711, a display portion 713, an external interface 715, an operation button 711, and the like are provided. In addition, a stylus 712 for operating a personal digital assistant and the like are also provided. In the main body 711, the semiconductor device shown in any of the above embodiments is provided. Therefore, it is possible to realize the writing and reading of data at a high speed, the storage of data for a long time, and the personal digital assistant having a low power consumption. Fig. 12C shows an electronic book reader 720 on which electronic paper is mounted, which includes housing 721 and two housings of housing 723. The housing 721 and the housing 723 are provided with a display unit 725 and a display unit 727, respectively. The housings 721 and 723 are connected by a hinge portion 73 7 and are opened and closed by a hinge 73 7 as an axis. The casing 721 is provided with a power button 731, an operation key 733, a speaker 735, and the like. At least one of the housing 721 and the housing 723 is provided with the semiconductor device shown in any of the above embodiments. Therefore, it is possible to realize an electronic book reader which performs writing and reading of data at a high speed, stores data for a long time, and has low power consumption. Fig. 12D shows a mobile phone including a housing 740 and two housings 741. Further, the housing 740 and the housing 741 in the unfolded state shown in the 1 2D diagram can be displaced by sliding so that one of them overlaps -59-201142841 over the other; therefore, the mobile phone can be reduced The size makes the mobile phone suitable for carrying. The housing 741 includes a display panel 742, a speaker 743, a microphone 744, a touch screen 745, a pointing device 746, a camera lens 747' external connection terminal 748, and the like. The housing 740 includes a solar battery 749 for charging a mobile phone, an external memory slot 750, and the like. In addition, the antenna system is incorporated in the housing 741. At least one of the housings 7 4 0 and 7 4 1 is provided with the semiconductor device shown in any of the above embodiments. Therefore, it is possible to realize the writing and reading of data at a high speed, the storage of data for a long time, and the mobile phone having a low power consumption. Fig. 12E shows a digital camera including a main body 76 1, a display portion 767, an eyepiece 763, an operation switch 764, a display portion 765, a battery 766, and the like. In the main body 761, the semiconductor device shown in the above embodiment is provided. Therefore, it is possible to realize a digital camera that performs writing and reading of data at high speed, stores data for a long time, and has low power consumption. Figure 12F shows a television set 770 that includes a housing 771, a display portion 773, a bracket 775, and the like. The television set 700 can be operated by an operation switch of the housing 771 or a remote controller 780. The semiconductor device shown in any of the above embodiments is disposed on the housing 771 and the remote controller 780. Therefore, it is possible to realize a writing and reading of data at a high speed, a data storage for a long time, and a television having a low power consumption. As described above, the semiconductor device shown in any of the above embodiments is mounted on each of the electronic devices described in this embodiment. Therefore, an electronic device having low power consumption can be realized.

S -60- 201142841 [範例1] 在此範例中,將參照第13圖、第14圖、第15圖、 第1 6圖、及第1 7圖敘述藉由測量包括高度純化氧化物半 導體的電晶體之關閉狀態電流所得之結果。 首先,考量到包括高度純化氧化物半導體的電晶體之 非常小關閉狀態電流而備置具有夠寬的1 m之通道寬度W 的電晶體,並測量關閉狀態電流。第1 3圖顯示藉由測量 具有1 m之通道寬度W的電晶體之關閉狀態電流所得的 結果。在第13圖中,水平軸顯示閘極電壓VG且垂直軸 顯示汲極電流ID。在汲極電壓VD爲+1 V或+1〇 V且閘 極電壓VG在-5 V至-20 V的範圍內的情況中,發現電晶 體之關閉狀態電流小於或等於1 X 1 0 ·13 A,此爲檢測極限 。此外’發現到電晶體之關閉狀態電流(每單位通道寬度 (1/zm))小於或等於1&amp;八///1:1(1&gt;&lt;10-|8八/以111)。 接下來將說明藉由更準確地測量包括高度純化氧化物 半導體的電晶體之關閉狀態電流所得之結果。如上述,發 現到包括高度純化氧化物半導體的電晶體之關閉狀態電流 小於或等於1 X 1 0·13 A,此爲測量設備的測量極限。在此 ’將敘述使用用於特性評估之元件來測量更準確的關閉狀 態電流(該値小於或等於上述測量中之測量設備的檢測極 限)所得的結果》 首先’參照第1 4圖敘述特性評估用的元件。 在第14圖中之特性評估用之元件中,並聯連接三個 測量系統800。測量系統8〇〇包括電容器8 02、電晶體 -61 - 201142841 804、電晶體8 0 5、電晶體8 06、及電晶體808。使用包括 高度純化氧化物半導體的電晶體作爲電晶體804 '電晶體 8 0 5、及電晶體8 0 6的各者。 在測量系統800中,電晶體804之源極端子及汲極端 子之一、電容器8 02的端子之一、電晶體8 05之源極端子 及汲極端子之一電連接至電源(用於供應V2 )。電晶體 804之源極端子及汲極端子之另一者、電晶體808之源極 端子及汲極端子之一、電容器8 02的端子之另一者、電容 器8 05的閘極端子互相電連接。電晶體808之源極端子及 汲極端子之另一者、電晶體8 06之源極端子及汲極端子之 一、及電晶體806之閙極端子電連接至電源(用於供應 VI )。電晶體8 05之源極端子及汲極端子之另一者及電 晶體806之源極端子及汲極端子之另一者各電連接至輸出 端子。 供應用於控制電晶體804之啓通狀態及關閉狀態的電 位Vext_b2至電晶體804的閘極端子。供應用於控制電晶 體808之啓通狀態及關閉狀態的電位Vext_bl至電晶體 808的閘極端子。從輸出端子輸出電位Vout。 接下來,將敘述使用特性評估用之元件來測量電流之 方法。 首先,將槪略敘述其中供應電位差以測量關閉狀態電 流的初始時期。在初始時期中,輸入用於啓通電晶體808 之電位Vext_bl至電晶體8 0 8的閘極端子,並供應電位 VI至節點A ’其爲電連接至電晶體804之源極端子及汲S-60-201142841 [Example 1] In this example, the measurement of the electric power including the highly purified oxide semiconductor will be described with reference to Figs. 13, 14, 14 and 16, and 17 The result of the closed state current of the crystal. First, a transistor having a channel width W of a width of 1 m was prepared in consideration of a very small off-state current of a transistor including a highly purified oxide semiconductor, and a closed state current was measured. Fig. 1 3 shows the result obtained by measuring the off-state current of the transistor having a channel width W of 1 m. In Fig. 13, the horizontal axis shows the gate voltage VG and the vertical axis shows the gate current ID. In the case where the drain voltage VD is +1 V or +1 〇V and the gate voltage VG is in the range of -5 V to -20 V, it is found that the off state current of the transistor is less than or equal to 1 X 1 0 ·13 A, this is the detection limit. Further, the off-state current (per unit channel width (1/zm)) found to the transistor is less than or equal to 1 &amp; 八///1:1 (1 &gt;&lt; 10 - | 8 octave / at 111). Next, the result obtained by more accurately measuring the off-state current of the transistor including the highly purified oxide semiconductor will be explained. As described above, it has been found that the off-state current of the transistor including the highly purified oxide semiconductor is less than or equal to 1 X 1 0·13 A, which is the measurement limit of the measuring device. Here, the result of using a component for characteristic evaluation to measure a more accurate off-state current (which is less than or equal to the detection limit of the measuring device in the above measurement) will be described. First, the characteristic evaluation is described with reference to FIG. Used components. In the component for characteristic evaluation in Fig. 14, three measurement systems 800 are connected in parallel. The measurement system 8A includes a capacitor 802, a transistor -61 - 201142841 804, a transistor 805, a transistor 806, and a transistor 808. A transistor including a highly purified oxide semiconductor is used as each of the transistor 804 'electrode 80 5 5 and the transistor 860. In the measurement system 800, one of the source terminal and the 汲 terminal of the transistor 804, one of the terminals of the capacitor 802, one of the source terminal and the 汲 terminal of the transistor 805 is electrically connected to the power source (for supply) V2). The other of the source terminal and the 汲 terminal of the transistor 804, the source terminal and the 汲 terminal of the transistor 808, the other terminal of the capacitor 802, and the gate terminal of the capacitor 805 are electrically connected to each other. . The source terminal of the transistor 808 and the other of the 汲 terminal, the source terminal and the 汲 terminal of the transistor 806, and the 閙 terminal of the transistor 806 are electrically connected to the power source (for supplying VI). The other of the source terminal and the 汲 terminal of the transistor 085 and the source terminal and the 汲 terminal of the transistor 806 are electrically connected to the output terminal. A potential Vext_b2 for controlling the turn-on state and the off state of the transistor 804 is supplied to the gate terminal of the transistor 804. A potential Vext_bl for controlling the on state and the off state of the transistor 808 is supplied to the gate terminal of the transistor 808. The potential Vout is output from the output terminal. Next, a method of measuring current using an element for characteristic evaluation will be described. First, the initial period in which the potential difference is supplied to measure the off-state current will be briefly described. In the initial period, a gate terminal for energizing the potential Vext_bl of the crystal 808 to the transistor 808 is input, and a potential VI is supplied to the node A' which is electrically connected to the source terminal of the transistor 804 and 汲

S -62- 201142841 極端子之另一者的節點(亦即,電連接至電晶體808之源 極端子及汲極端子之一、電容器802的端子之另一者、及 電容器8 05的閘極端子的節點)。在此,電位V1爲例如 高電位。電晶體804爲關閉。 之後,輸入用於啓通電晶體8 08之電位Vext_bl至電 晶體808的閘極端子,以關閉電晶體80 8。在關閉電晶體 8 08之後,將電位VI設定至低。電晶體804仍然爲關閉 。電位V2與V1爲相同電位。因此,完成初始時期。在 完成初始時期的狀態中,在節點A與電晶體804之源極 端子及汲極端子之一之間產生電位差,並且亦在節點A 與電晶體808之源極端子及汲極端子之另一者之間產生電 位差。因此,電荷梢微流動經過電晶體804及電晶體808 。換言之,產生關閉狀態電流。 接下來,將槪略敘述關閉狀態電流的測量時期。在測 量時期中,將電晶體804之源極端子及汲極端子之一的電 位(亦即,電位V2 )和電晶體808之源極端子及汲極端 子之另一者(亦即,電位V1 )設定至低並加以固定》另 一方面,在測量時期中不固定節點A的電位(節點A在 浮置狀態中依此,隨時間流逝,電荷流經電晶體804 且在節點A保持電荷量會改變。此外,當保持在節點A 之電荷量改變時,節點A之電位會變化。亦即,輸出端 子的輸出電位Vout亦會變化。 第15圖顯示其中施加電位差之初始時期中及在隨後 測量時期中的電位間的關係之細節(時序圖)。 -63- 201142841 在初始時期中,首先,將電位Vext_b2設定至會啓通 電晶體804之電位(高電位)。故,節點A的電位來到 V2,亦即,低電位(VSS )。之後,將電位Vext_b2設定 至會關閉電晶體8 (Η之電位(低電位),藉此關閉電晶體 804。接著,將電位Vext_bl設定至會啓通電晶體8 08之 電位(高電位)。因此,節點A的電位來到V1,亦即, 高電位(VDD)。之後,將電位Vext_bl設定至會關閉電 晶體808之電位。依此,將節點A帶到浮置狀態中並完 成初始時期。 在隨後的測量時期中,將電位V1及電位V2個別設 定至電荷流至節點A或從節點A流出之電位。在此,電 位V 1及電位V2爲低電位(VSS )。注意到在測量輸出電 位Vout時,必須操作輸出電路;因此,在某些情況中暫 時將VI設定至高電位(VDD)。將其中VI爲高電位( VDD )的時期設定爲短,以不影響測量。 當如上述般施加電位差以開始測量時期時,保持在節 點A的電荷量會隨時間流逝而改變,且依此,節點a之 電位會變化。這意味著電晶體805之閘極端子的電位會變 化,並因此輸出端子的輸出電位Vout亦隨時間流逝而變 〇 將於下敘述依據所得的輸出電位Vout來計算關閉狀 態電流之方法。 在計算關閉狀態電流之前預先獲得節點A之電位VA 與輸出電位Vout之間的關係。因此,可依據輸出電位S-62- 201142841 The node of the other of the terminals (ie, electrically connected to one of the source and drain terminals of transistor 808, the other of the terminals of capacitor 802, and the gate terminal of capacitor 085) Child node). Here, the potential V1 is, for example, a high potential. The transistor 804 is off. Thereafter, a gate terminal for turning on the potential Vext_bl of the crystal 8 08 to the transistor 808 is input to turn off the transistor 80 8 . After turning off the transistor 8 08, the potential VI is set to low. The transistor 804 is still off. The potentials V2 and V1 are at the same potential. Therefore, the initial period is completed. In the state in which the initial period is completed, a potential difference is generated between the node A and one of the source terminal and the gate terminal of the transistor 804, and also at the source terminal and the gate terminal of the node A and the transistor 808. A potential difference is generated between the two. Therefore, the charge tip micro flows through the transistor 804 and the transistor 808. In other words, a closed state current is generated. Next, the measurement period of the off-state current will be briefly described. In the measurement period, the potential of one of the source terminal and the 汲 terminal of the transistor 804 (ie, the potential V2) and the other of the source terminal and the 汲 terminal of the transistor 808 (ie, the potential V1) The setting is low and fixed. On the other hand, the potential of the node A is not fixed during the measurement period (the node A is in the floating state, and the charge flows through the transistor 804 and maintains the amount of charge at the node A as time passes. In addition, when the amount of charge held at node A changes, the potential of node A changes. That is, the output potential Vout of the output terminal also changes. Figure 15 shows the initial period in which the potential difference is applied and subsequently Details of the relationship between the potentials in the measurement period (timing chart) -63- 201142841 In the initial period, first, the potential Vext_b2 is set to the potential of the energization crystal 804 (high potential). Therefore, the potential of the node A comes. To V2, that is, low potential (VSS). Thereafter, the potential Vext_b2 is set to turn off the transistor 8 (the potential of Η (low potential), thereby turning off the transistor 804. Then, setting the potential Vext_bl to start The potential of the transistor 8 08 (high potential). Therefore, the potential of the node A comes to V1, that is, the high potential (VDD). Thereafter, the potential Vext_bl is set to the potential which turns off the transistor 808. Accordingly, the node is turned on. A is brought into the floating state and the initial period is completed. In the subsequent measurement period, the potential V1 and the potential V2 are individually set to the potential at which the charge flows to or from the node A. Here, the potential V 1 and the potential V2 It is low (VSS). Note that when measuring the output potential Vout, the output circuit must be operated; therefore, in some cases, the VI is temporarily set to a high potential (VDD). The period in which VI is high (VDD) is set. It is short so as not to affect the measurement. When the potential difference is applied as described above to start the measurement period, the amount of charge held at the node A changes with time, and accordingly, the potential of the node a changes. This means that the transistor The potential of the gate terminal of 805 changes, and therefore the output potential Vout of the output terminal also changes with time. The method of calculating the off-state current based on the obtained output potential Vout will be described below. The relationship between the potential VA of the node A and the output potential Vout of the previously obtained before calculating the off-state current. Thus, the output potential based on

S -64- 201142841S -64- 201142841

Vout獲得節點A之電位Va。從上述關係,可藉由下列等 式表示節點A之電位VA爲輸出電位Vout的函數。 VA = F(y〇ut) 由下列等式’使用節點A之電位VA、電連接至節點 A的電容Ca、及常數(const)來表示節點A之電荷Qa。 在此’電連接至節點A的電容CA爲電容器8 02之電容和 其他電容的總和。Vout obtains the potential Va of the node A. From the above relationship, the potential VA of the node A can be expressed as a function of the output potential Vout by the following equation. VA = F(y〇ut) The charge Qa of the node A is represented by the following equation 'using the potential VA of the node A, the capacitance Ca electrically connected to the node A, and the constant (const). Here, the capacitance CA electrically connected to the node A is the sum of the capacitance of the capacitor 802 and the other capacitance.

Qa=CaVa + const 由於藉由相關於時間微分流至節點A的電荷(或從 節點A流過來之電荷)來獲得節點a的電流IA,藉由下 列等式來表示節點A的電流IA。 j,△么 C/ AFjFout) Λ~ Μ ~ Μ 故可依據電連接至節點Α的電容CA&amp;輸出端子的輸 出電位V 〇 u t獲得節點A的電流IA。 藉由上述方法,可計算出在關閉之電晶體的源極與汲 極之間流動的漏電流(關閉狀態電流)》 在此範例中,使用具有l〇#m之通道長度L及50 之通道寬度W的高度純化氧化物半導體來製造電晶 體804、電晶體8 05、電晶體8 06、及電晶體8 08。在並聯 配置的測量系統800中,電容器802a、802b、及802c的 電容値分別爲1 00 fF、1 pF、及3 pF。 注意到在假設滿足VDD = 5 V且VSS = 0 V下執行根 據此範例之測量。在測量時期中’將電位V 1基本上設定 -65 - 201142841 至VSS並僅在每10至300秒的100 «^^的週期中設定成 V D D,並測量V 0 u t。此外,當電流Ϊ流經元件時所使用的 △ t約爲3 0,0 0 0秒。 第16圖顯示輸出電位Vout及電流測量中經過的時間 Time之間的關係。在大約90小時後可觀察到電位改變。 第1 7圖顯示依據上述電流測量所計算之關閉狀態電 流。注意到第1 7圖顯示源極-汲極電壓V與關閉狀態電 流I之間的關係。根據第1 7圖’當源極—汲極電壓爲4V 時,關閉狀態電流約爲40 zA//z m。當源極-汲極電壓爲 3 V時,關閉狀態電流小於或等於4 ζΑ/ μ m。注意到1 ZA等同於1(Γ21 A。 根據此範例,確認在包括高度純化氧化物半導體的電 晶體中之關閉狀態電流可夠小。 此申請案依據在2010年2月5日向日本專利局申請 之日本專利申請案序號20 1 0-0248 86,其全部內容以引用 方式倂於此。 【圖式簡單說明】 第1A及1B圖爲半導體裝置之電路圖。 第2A及2B圖爲關於半導體裝置之操作的時序圖。 第3圖爲半導體裝置之電路圖。 第4A及4B圖爲半導體裝置之剖面圖及平面圖。 第5A至5H圖爲關於半導體裝置之製造方法的剖面 圖。Qa = CaVa + const Since the current IA of the node a is obtained by the charge associated with the time differential flow to the node A (or the charge flowing from the node A), the current IA of the node A is represented by the following equation. j, △ M / C / AFjFout) Λ ~ Μ ~ Μ Therefore, the current IA of the node A can be obtained according to the output potential V 〇 u t of the capacitor CA&amp; output terminal electrically connected to the node Α. By the above method, the leakage current (off state current) flowing between the source and the drain of the closed transistor can be calculated. In this example, the channel length L and 50 having l〇#m are used. A highly purified oxide semiconductor having a width W is used to fabricate a transistor 804, a transistor 805, a transistor 806, and a transistor 808. In the measurement system 800 arranged in parallel, the capacitances 电容器 of the capacitors 802a, 802b, and 802c are 100 fF, 1 pF, and 3 pF, respectively. Note that the measurement according to this example is performed under the assumption that VDD = 5 V and VSS = 0 V are satisfied. In the measurement period, the potential V 1 is set substantially from -65 to 201142841 to VSS and is set to V D D only in a period of 100 «^^ every 10 to 300 seconds, and V 0 u t is measured. In addition, the Δ t used when the current Ϊ flows through the element is about 30,0 0 seconds. Figure 16 shows the relationship between the output potential Vout and the time Elapsed in the current measurement. A change in potential was observed after about 90 hours. Figure 17 shows the off-state current calculated from the above current measurements. Note that Figure 17 shows the relationship between the source-drain voltage V and the off-state current I. According to Figure 17, when the source-drain voltage is 4V, the off-state current is about 40 zA//z m. When the source-drain voltage is 3 V, the off-state current is less than or equal to 4 ζΑ/ μ m. Note that 1 ZA is equivalent to 1 (Γ21 A. According to this example, it is confirmed that the off-state current in a transistor including a highly purified oxide semiconductor can be small enough. This application is based on application to the Japanese Patent Office on February 5, 2010. Japanese Patent Application Serial No. 20 1 0-0248, the entire disclosure of which is hereby incorporated by reference in its entirety in the the the the the the the the the the the the the the Fig. 3 is a circuit diagram of a semiconductor device. Figs. 4A and 4B are a cross-sectional view and a plan view of a semiconductor device. Figs. 5A to 5H are cross-sectional views showing a method of manufacturing a semiconductor device.

S -66- 201142841 第6A至6E圖爲關於半導體裝置之製造方法的剖面 圖。 第7A及7B圖爲半導體裝置之剖面圖及平面圖。 第8A至8D圖爲關於半導體裝置之製造方法的剖面 圖。 第9A及9B圖爲半導體裝置之剖面圖及平面圖。 第10A至10C圖爲關於半導體裝置之製造方法的剖 面圖。 第11A及11B圖爲半導體裝置之剖面圖及平面圖。 第12A至12F圖各繪示包括半導體裝置的電子裝置 〇 第13圖爲顯示包括氧化物半導體之電晶體的特性之 圖。 第14圖爲用於評估包括氧化物半導體之電晶體的特 性之電路圖。 第15圖爲用於評估包括氧化物半導體之電晶體的特 性之時序圖。 第16圖爲顯示包括氧化物半導體之電晶體的特性之 圖。 第17圖爲顯示包括氧化物半導體之電晶體的特性之 圖。 【主要元件符號說明】 100 :基板 -67- 201142841 1 ο 1 :電晶體 1 ο 2 :電晶體 104 :半導體區域 105 :保護層 1 0 6 :元件隔離絕緣層 1 0 8 :閘極絕緣層 1 1 0 :閘極電極 1 1 2 :絕緣層 1 1 4 :雜質區域 1 1 6 :通道形成區域 1 1 8 :側壁絕緣層 120 :高濃度雜質區域 122 :金屬層 124:金屬化合物區域 1 2 5 :層間絕緣層 1 2 6 :層間絕緣層 1 2 8 :層間絕緣層 130a:源極或汲極電極 130b:源極或汲極電極 1 30c :電極 142a:源極或汲極電極 142b:源極或汲極電極 1 4 2 c :佈線 1 4 2 d :佈線S-66-201142841 FIGS. 6A to 6E are cross-sectional views showing a method of manufacturing a semiconductor device. 7A and 7B are cross-sectional views and plan views of a semiconductor device. 8A to 8D are cross-sectional views showing a method of manufacturing a semiconductor device. 9A and 9B are cross-sectional views and plan views of a semiconductor device. 10A to 10C are cross-sectional views showing a method of manufacturing a semiconductor device. 11A and 11B are cross-sectional views and plan views of a semiconductor device. 12A to 12F each illustrate an electronic device including a semiconductor device. Fig. 13 is a view showing characteristics of a transistor including an oxide semiconductor. Fig. 14 is a circuit diagram for evaluating the characteristics of a transistor including an oxide semiconductor. Fig. 15 is a timing chart for evaluating the characteristics of a transistor including an oxide semiconductor. Fig. 16 is a view showing the characteristics of a transistor including an oxide semiconductor. Fig. 17 is a view showing the characteristics of a transistor including an oxide semiconductor. [Main component symbol description] 100: Substrate-67- 201142841 1 ο 1 : Transistor 1 ο 2 : Transistor 104 : Semiconductor region 105 : Protective layer 1 0 6 : Component isolation insulating layer 1 0 8 : Gate insulating layer 1 1 0 : gate electrode 1 1 2 : insulating layer 1 1 4 : impurity region 1 1 6 : channel formation region 1 1 8 : sidewall insulating layer 120 : high concentration impurity region 122 : metal layer 124 : metal compound region 1 2 5 : interlayer insulating layer 1 2 6 : interlayer insulating layer 1 2 8 : interlayer insulating layer 130a: source or drain electrode 130b: source or drain electrode 1 30c: electrode 142a: source or drain electrode 142b: source Or the drain electrode 1 4 2 c : wiring 1 4 2 d : wiring

S -68- 201142841 1 4 3 a :絕緣層 1 4 3 b :絕緣層 144 :氧化物半導體層 1 4 6 :閘極絕緣層 1 4 8 :閘極電極 1 5 0 :層間絕緣層 1 5 2 :層間絕緣層 200 :記憶胞 2 0 1 :電晶體 2 0 2 :電晶體 2 1 1 :佈線 2 1 2 :佈線 2 1 3 :佈線 2 8 1 :節點 7 0 1 :殻體 702 :殻體 7 03 :顯示部 704 :鍵盤 71 1 :主體 712 :手寫筆 7 1 3 :顯示部 7 1 4 :操作鈕 7 1 5 :外部界面 720:電子書讀取器 201142841 7 2 1 :殼體 723 :殼體 725 :顯示部 7 2 7 :顯不部 73 1 :電源鈕 7 3 3 :操作鍵 73 5 :揚聲器 7 3 7 :鉸鍊部 740 :殻體 741 :殼體 7 4 2 :顯示板 743 :揚聲器 744 :麥克風 745 :觸碰螢幕 7 4 6 :指示裝置 747 :相機透鏡 748 :外部連結端子 749 :太陽能電池 750 :外部記憶體槽 761 :主體 763 :目鏡 764 :操作開關 765 :顯示部 7 6 6 :電池 201142841 76 7 :顯示部 7 7 0 :電視機 771 :殼體 7 7 3 :顯示部 775 :支架 78 0 :遙控器 8 0 0 :測量系統 802a :電容器 8 02b :電容器 8 02c :電容器 8 0 4 :電晶體 8 0 5 :電晶體 8 0 6 :電晶體 8 0 8 :電晶體 1 2 0 0 :記憶胞 1 2 0 1 :電晶體 1 2 0 2 :電晶體 1 2 1 1 :驅動器電路 1 2 1 2 :驅動器電路 1 2 1 3 :驅動器電路 -71S -68- 201142841 1 4 3 a : insulating layer 1 4 3 b : insulating layer 144 : oxide semiconductor layer 1 4 6 : gate insulating layer 1 4 8 : gate electrode 1 5 0 : interlayer insulating layer 1 5 2 : interlayer insulating layer 200: memory cell 2 0 1 : transistor 2 0 2 : transistor 2 1 1 : wiring 2 1 2 : wiring 2 1 3 : wiring 2 8 1 : node 7 0 1 : housing 702 : housing 7 03 : display portion 704 : keyboard 71 1 : main body 712 : stylus 7 1 3 : display portion 7 1 4 : operation button 7 1 5 : external interface 720: electronic book reader 201142841 7 2 1 : housing 723: Housing 725: Display portion 7 2 7: Display portion 73 1 : Power button 7 3 3 : Operation button 73 5 : Speaker 7 3 7 : Hinge portion 740 : Housing 741 : Housing 7 4 2 : Display panel 743 : Speaker 744: Microphone 745: Touch screen 7 4 6 : Indication device 747 : Camera lens 748 : External connection terminal 749 : Solar battery 750 : External memory slot 761 : Main body 763 : Eyepiece 764 : Operation switch 765 : Display portion 7 6 6 : Battery 201142841 76 7 : Display unit 7 7 0 : TV set 771 : Housing 7 7 3 : Display part 775 : Stand 78 0 : Remote control 8 0 0 : Measurement system 802a : Capacitor 8 02b : Capacitor 8 02c : Electricity 8 0 4 : transistor 8 0 5 : transistor 8 0 6 : transistor 8 0 8 : transistor 1 2 0 0 : memory cell 1 2 0 1 : transistor 1 2 0 2 : transistor 1 2 1 1 : Driver circuit 1 2 1 2 : Driver circuit 1 2 1 3 : Driver circuit - 71

Claims (1)

201142841 七、申請專利範圍: 1. —種半導體裝置,包含: 記憶胞,包括第一電晶體及第二電晶體;該第—電晶 體及該第二電晶體之每一者包含閘極、源極、及汲極; 第一佈線,電連接至該第一電晶體之該源極及該汲極 之一; 第二佈線,電連接至該第一電晶體之該源極及該汲極 之另一者及該第二電晶體之該源極及該汲極之一;以及 第三佈線,電連接至該第二電晶體的該閘極, 其中該第二電晶體之該源極及該汲極之另一者電連接 至該第一電晶體的該閘極。 2. 如申請專利範圍第1項所述之半導體裝置, 其中該第二電晶體包含氧化物半導體。 3. 如申請專利範圍第1項所述之半導體裝置, 其中該第二電晶體的關閉狀態電流低於該第一電晶體 的關閉狀態電流。 4-如申請專利範圍第1項所述之半導體裝置, 其中該第一電晶體的切換速度高於該第二電晶體的切 換速度。 5. —種半導體裝置,包含: 讀取信號線; 複數位元線; 字線; 第一驅動電路,電連接至該讀取信號線; S -72- 201142841 第二驅動電路,電連接至該複數位元線; 第三驅動電路,電連接至該字線;以及 複數記憶胞, 該複數記億胞之每一者包含: 第一電晶體及第二電晶體;該第一電晶體及該第 二電晶體之每一者包含閘極、源極、及汲極; 其中該第一電晶體之該源極及該汲極之一電連接 至該讀取信號線; 其中該第二電晶體之該源極及該汲極之一電連接 至該第一電晶體的該閘極; 其中該第一電晶體之該源極及該汲極之另一者及 該第二電晶體之該源極及該汲極之另一者電連接至該複數 位元線之一,以及 其中該第二電晶體的該閘極電連接至該字線。 6. 如申請專利範圍第5項所述之半導體裝置, 其中該第二電晶體包含氧化物半導體。 7. 如申請專利範圍第5項所述之半導體裝置, 其中該第二電晶體的關閉狀態電流低於該第一電晶體 的關閉狀態電流。 8 .如申請專利範圍第5項所述之半導體裝置, 其中該第一電晶體的切換速度高於該第二電晶體的切 換速度。 9. 一種驅動半導體裝置之方法,該半導體裝置包含 -73- 201142841 記憶胞,包括第一電晶體及第二電晶體:該第一電晶 體及該第二電晶體之每一者包含閘極、源極、及汲極; 第一佈線,電連接至該第一電晶體之該源極及該汲極 之一; 第二佈線,電連接至該第一電晶體之該源極及該汲極 之另一者及該第二電晶體之該源極及該汲極之一; 其中該第二電晶體之該源極及該汲極之另一者電連接 至該第一電晶體的該閘極, 該驅動半導體裝置之方法包含下列步驟: 在該第一電晶體處於關閉狀態中之狀態中,啓通 該第二電晶體, 施加供應至該第二佈線的高位準電位或低位準電 位至該第一電晶體的該閘極,以及 關閉該第二電晶體,藉此保持該第一電晶體的該 閘極之電位。 1 〇·如申請專利範圍第9項所述之驅動半導體裝置之 方法, 其中供應至該第二佈線的該高位準電位與該低位準電 位之間的差小於該第一電晶體的臨限電壓。 11. 一種驅動半導體裝置之方法,該半導體裝置包含 記憶胞,包括第一電晶體及第二電晶體;該第一電晶 體及該第二電晶體之每一者包含閘極、源極、及汲極; 第一佈線,電連接至該第一電晶體之該源極及該汲極 S -74- 201142841 之一; 第二佈線,電連接至該第一電晶體之該源極及該汲極 之另一者及該第二電晶體之該源極及該汲極之一;以及 其中該第二電晶體之該源極及該汲極之另一者電連接 至該第一電晶體的該閘極, 該驅動半導體裝置之方法包含下列步驟: 關閉該第二電晶體, 將該第二佈線設定在第二電位並接著將該第一佈 線設定在第一電位;以及 檢測該第一電晶體之啓通或關閉。 1 2.如申請專利範圍第1 1項所述之驅動半導體裝置 之方法, 其中該第一電位與該第二電位不同。 -75-201142841 VII. Patent application scope: 1. A semiconductor device comprising: a memory cell comprising a first transistor and a second transistor; each of the first transistor and the second transistor comprising a gate and a source a first wiring electrically connected to the source of the first transistor and one of the drain electrodes; a second wiring electrically connected to the source of the first transistor and the drain And the other of the source and the drain of the second transistor; and the third wiring electrically connected to the gate of the second transistor, wherein the source of the second transistor The other of the drains is electrically connected to the gate of the first transistor. 2. The semiconductor device of claim 1, wherein the second transistor comprises an oxide semiconductor. 3. The semiconductor device of claim 1, wherein the off state current of the second transistor is lower than the off state current of the first transistor. The semiconductor device of claim 1, wherein the switching speed of the first transistor is higher than the switching speed of the second transistor. 5. A semiconductor device comprising: a read signal line; a complex bit line; a word line; a first driving circuit electrically connected to the read signal line; S-72-201142841 a second driving circuit electrically connected to the a plurality of bit lines; a third driving circuit electrically connected to the word line; and a plurality of memory cells, each of the plurality of cells comprising: a first transistor and a second transistor; the first transistor and the Each of the second transistors includes a gate, a source, and a drain; wherein the source of the first transistor and one of the drains are electrically connected to the read signal line; wherein the second transistor One of the source and the drain is electrically connected to the gate of the first transistor; wherein the source of the first transistor and the other of the drain and the source of the second transistor The other of the pole and the drain is electrically coupled to one of the plurality of bit lines, and wherein the gate of the second transistor is electrically coupled to the word line. 6. The semiconductor device of claim 5, wherein the second transistor comprises an oxide semiconductor. 7. The semiconductor device of claim 5, wherein the off state current of the second transistor is lower than the off state current of the first transistor. 8. The semiconductor device of claim 5, wherein the switching speed of the first transistor is higher than the switching speed of the second transistor. A method of driving a semiconductor device, comprising: -73-201142841 memory cell, comprising a first transistor and a second transistor: each of the first transistor and the second transistor includes a gate, a source and a drain; a first wiring electrically connected to the source of the first transistor and one of the drains; a second wiring electrically connected to the source and the drain of the first transistor And the other of the source and the drain of the second transistor; wherein the source of the second transistor and the other of the drain are electrically connected to the gate of the first transistor The method of driving the semiconductor device comprises the steps of: turning on the second transistor in a state in which the first transistor is in a closed state, applying a high level potential or a low level potential supplied to the second wiring to The gate of the first transistor, and the second transistor being turned off, thereby maintaining the potential of the gate of the first transistor. The method of driving a semiconductor device according to claim 9, wherein a difference between the high level potential and the low level potential supplied to the second wiring is smaller than a threshold voltage of the first transistor . 11. A method of driving a semiconductor device, the semiconductor device comprising a memory cell, comprising a first transistor and a second transistor; each of the first transistor and the second transistor comprising a gate, a source, and a first wiring electrically connected to the source of the first transistor and one of the drains S-74-201142841; a second wiring electrically connected to the source of the first transistor and the anode And the other of the source and the drain of the second transistor; and wherein the source of the second transistor and the other of the drain are electrically connected to the first transistor The gate, the method of driving a semiconductor device, comprising the steps of: turning off the second transistor, setting the second wiring to a second potential and then setting the first wiring at a first potential; and detecting the first The crystal is turned on or off. 1 2. The method of driving a semiconductor device according to claim 11, wherein the first potential is different from the second potential. -75-
TW100102655A 2010-02-05 2011-01-25 Semiconductor device and method of driving semiconductor device TWI496142B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010024886 2010-02-05

Publications (2)

Publication Number Publication Date
TW201142841A true TW201142841A (en) 2011-12-01
TWI496142B TWI496142B (en) 2015-08-11

Family

ID=44353598

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104117153A TWI591628B (en) 2010-02-05 2011-01-25 Semiconductor device and method of driving semiconductor device
TW100102655A TWI496142B (en) 2010-02-05 2011-01-25 Semiconductor device and method of driving semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104117153A TWI591628B (en) 2010-02-05 2011-01-25 Semiconductor device and method of driving semiconductor device

Country Status (5)

Country Link
US (1) US8493766B2 (en)
JP (3) JP5721456B2 (en)
KR (1) KR101862823B1 (en)
TW (2) TWI591628B (en)
WO (1) WO2011096277A1 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011096264A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
KR101822962B1 (en) 2010-02-05 2018-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011114905A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8416622B2 (en) 2010-05-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Driving method of a semiconductor device with an inverted period having a negative potential applied to a gate of an oxide semiconductor transistor
US8779433B2 (en) 2010-06-04 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI524347B (en) 2010-08-06 2016-03-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8422272B2 (en) * 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP5727892B2 (en) 2010-08-26 2015-06-03 株式会社半導体エネルギー研究所 Semiconductor device
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6013682B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
WO2013042562A1 (en) * 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6053490B2 (en) * 2011-12-23 2016-12-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI580047B (en) * 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 Semiconductor device
US9419146B2 (en) * 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6186166B2 (en) * 2012-05-02 2017-08-23 株式会社半導体エネルギー研究所 Semiconductor device
JP6250955B2 (en) 2012-05-25 2017-12-20 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP2014195243A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US9612795B2 (en) 2013-03-14 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Data processing device, data processing method, and computer program
WO2014142043A1 (en) 2013-03-14 2014-09-18 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device and semiconductor device
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP6689062B2 (en) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 Semiconductor device
WO2016092416A1 (en) * 2014-12-11 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and electronic device
US9754660B2 (en) * 2015-11-19 2017-09-05 Samsung Electronics Co., Ltd. Semiconductor device
US10937785B2 (en) * 2016-01-29 2021-03-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device
CN105679676A (en) * 2016-03-01 2016-06-15 京东方科技集团股份有限公司 Thin film transistor and preparation method therefor, and array substrate
US10008502B2 (en) 2016-05-04 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
JP7074583B2 (en) * 2018-06-26 2022-05-24 キオクシア株式会社 Semiconductor storage device
KR20240001066A (en) * 2022-06-24 2024-01-03 주식회사 에이치피에스피 Method of manufacturing dram cell

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516346B2 (en) * 1973-10-15 1980-05-01
JPS6037620B2 (en) * 1979-12-11 1985-08-27 株式会社東芝 semiconductor storage device
JPS5683886A (en) * 1979-12-11 1981-07-08 Toshiba Corp Semiconductor storage device
DE3171836D1 (en) 1980-12-08 1985-09-19 Toshiba Kk Semiconductor memory device
JPS63268184A (en) * 1987-04-24 1988-11-04 Sony Corp Semiconductor memory device
JPS63298889A (en) * 1987-05-29 1988-12-06 Sony Corp Semiconductor memory device
JP2775040B2 (en) 1991-10-29 1998-07-09 株式会社 半導体エネルギー研究所 Electro-optical display device and driving method thereof
JPH11505377A (en) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device
JP3625598B2 (en) 1995-12-30 2005-03-02 三星電子株式会社 Manufacturing method of liquid crystal display device
DE69739692D1 (en) * 1996-04-08 2010-01-21 Hitachi Ltd INTEGRATED SEMICONDUCTOR SWITCHING DEVICE
KR100215866B1 (en) * 1996-04-12 1999-08-16 구본준 Dram of nothing capacitor and its fabrication method
JP4103968B2 (en) 1996-09-18 2008-06-18 株式会社半導体エネルギー研究所 Insulated gate type semiconductor device
JPH1140772A (en) * 1997-07-22 1999-02-12 Mitsubishi Electric Corp Semiconductor device, and its manufacture
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000150861A (en) 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3276930B2 (en) 1998-11-17 2002-04-22 科学技術振興事業団 Transistor and semiconductor device
JP2000349172A (en) * 1999-02-26 2000-12-15 Sony Corp Semiconductor memory
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP3326560B2 (en) * 2000-03-21 2002-09-24 日本テキサス・インスツルメンツ株式会社 Semiconductor memory device
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
JP2002093171A (en) * 2000-09-13 2002-03-29 Sony Corp Semiconductor memory and read-out method
KR20020038482A (en) 2000-11-15 2002-05-23 모리시타 요이찌 Thin film transistor array, method for producing the same, and display panel using the same
JP2002269976A (en) * 2001-03-09 2002-09-20 Hitachi Ltd Semiconductor memory
JP3997731B2 (en) 2001-03-19 2007-10-24 富士ゼロックス株式会社 Method for forming a crystalline semiconductor thin film on a substrate
JP2002289859A (en) 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
JP2002368226A (en) * 2001-06-11 2002-12-20 Sharp Corp Semiconductor device, semiconductor memory device and manufacturing method, and portable information equipment
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3925839B2 (en) 2001-09-10 2007-06-06 シャープ株式会社 Semiconductor memory device and test method thereof
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
JP4083486B2 (en) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
CN1445821A (en) 2002-03-15 2003-10-01 三洋电机株式会社 Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (en) 2002-06-13 2004-01-22 Murata Mfg Co Ltd Manufacturing method of semiconductor device and its manufacturing method
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7221586B2 (en) * 2002-07-08 2007-05-22 Micron Technology, Inc. Memory utilizing oxide nanolaminates
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4108633B2 (en) 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
CN102354658B (en) 2004-03-12 2015-04-01 独立行政法人科学技术振兴机构 Method of manufacturing thin film transistor
WO2005098955A1 (en) 2004-04-09 2005-10-20 Semiconductor Energy Laboratory Co., Ltd. Limiter and semiconductor device using the same
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
US7209392B2 (en) * 2004-07-20 2007-04-24 Ememory Technology Inc. Single poly non-volatile memory
JP2006100760A (en) 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
RU2358355C2 (en) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Field transistor
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
EP1812969B1 (en) 2004-11-10 2015-05-06 Canon Kabushiki Kaisha Field effect transistor comprising an amorphous oxide
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
EP1810335B1 (en) 2004-11-10 2020-05-27 Canon Kabushiki Kaisha Light-emitting device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI505473B (en) 2005-01-28 2015-10-21 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI569441B (en) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP4280736B2 (en) 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP2007073705A (en) 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP5116225B2 (en) 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP4560502B2 (en) * 2005-09-06 2010-10-13 キヤノン株式会社 Field effect transistor
JP4850457B2 (en) 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (en) 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
KR101117948B1 (en) 2005-11-15 2012-02-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of Manufacturing a Liquid Crystal Display Device
US7339832B2 (en) * 2005-11-21 2008-03-04 Atmel Corporation Array source line (AVSS) controlled high voltage regulation for programming flash or EE array
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (en) 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (en) 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US8648403B2 (en) * 2006-04-21 2014-02-11 International Business Machines Corporation Dynamic memory cell structures
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP4614148B2 (en) * 2006-05-25 2011-01-19 富士電機ホールディングス株式会社 Manufacturing method of oxide semiconductor and thin film transistor
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4999400B2 (en) 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4609797B2 (en) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
JP4332545B2 (en) 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP4274219B2 (en) 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
JP5164357B2 (en) 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (en) 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (en) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
US20080258204A1 (en) * 2007-04-20 2008-10-23 Macronix International Co., Ltd. Memory structure and operating method thereof
KR101334181B1 (en) 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
WO2008136505A1 (en) * 2007-05-08 2008-11-13 Idemitsu Kosan Co., Ltd. Semiconductor device, thin film transistor and methods for manufacturing the semiconductor device and the thin film transistor
KR101345376B1 (en) 2007-05-29 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
US8354674B2 (en) 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
US7982250B2 (en) * 2007-09-21 2011-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5430846B2 (en) * 2007-12-03 2014-03-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5215158B2 (en) 2007-12-17 2013-06-19 富士フイルム株式会社 Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device
JP5121478B2 (en) 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト Optical sensor element, imaging device, electronic device, and memory element
JP5305696B2 (en) * 2008-03-06 2013-10-02 キヤノン株式会社 Semiconductor device processing method
JP4954954B2 (en) * 2008-08-07 2012-06-20 パナソニック株式会社 Semiconductor memory device
JP4623179B2 (en) 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof
JP5451280B2 (en) 2008-10-09 2014-03-26 キヤノン株式会社 Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
JP5781720B2 (en) 2008-12-15 2015-09-24 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
WO2011052396A1 (en) 2009-10-29 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011055660A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101700154B1 (en) 2009-11-20 2017-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Latch circuit and circuit
KR102682982B1 (en) 2009-11-20 2024-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011065183A1 (en) 2009-11-24 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory cell
KR101911382B1 (en) 2009-11-27 2018-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101777643B1 (en) 2009-12-11 2017-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, logic circuit, and cpu
WO2011074392A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102668377B (en) 2009-12-18 2015-04-08 株式会社半导体能源研究所 Non-volatile latch circuit and logic circuit, and semiconductor device using the same
KR101781336B1 (en) 2009-12-25 2017-09-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011077946A1 (en) 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2519969A4 (en) 2009-12-28 2016-07-06 Semiconductor Energy Lab Semiconductor device
CN105047669B (en) 2009-12-28 2018-08-14 株式会社半导体能源研究所 Memory device and semiconductor device
KR101842413B1 (en) 2009-12-28 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101848516B1 (en) 2010-01-15 2018-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101698537B1 (en) 2010-01-15 2017-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101791279B1 (en) 2010-01-15 2017-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011086847A1 (en) 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8780629B2 (en) 2010-01-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8415731B2 (en) 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
KR101787734B1 (en) 2010-01-20 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
WO2011089849A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Portable electronic device
KR101978106B1 (en) 2010-01-20 2019-05-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011089852A1 (en) 2010-01-22 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and driving method thereof
KR101299256B1 (en) 2010-01-29 2013-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
KR101822962B1 (en) 2010-02-05 2018-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011096264A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
WO2011096262A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
TW201533737A (en) 2015-09-01
JP2015149492A (en) 2015-08-20
JP6242940B2 (en) 2017-12-06
US8493766B2 (en) 2013-07-23
US20110194327A1 (en) 2011-08-11
TWI591628B (en) 2017-07-11
TWI496142B (en) 2015-08-11
JP2011181911A (en) 2011-09-15
KR101862823B1 (en) 2018-05-30
JP5938492B2 (en) 2016-06-22
KR20120125320A (en) 2012-11-14
JP2016181707A (en) 2016-10-13
JP5721456B2 (en) 2015-05-20
WO2011096277A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP7476287B2 (en) Semiconductor Device
TWI496142B (en) Semiconductor device and method of driving semiconductor device
US9490370B2 (en) Semiconductor device
TWI506622B (en) Semiconductor device and method of driving semiconductor device
US8400817B2 (en) Semiconductor device
US8339836B2 (en) Semiconductor device
TWI517157B (en) Semiconductor device
TWI528502B (en) Semiconductor device
TWI508065B (en) Semiconductor device and driving method of the same
TWI523150B (en) Semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees