TW201131663A - Method for making semiconductor device - Google Patents

Method for making semiconductor device Download PDF

Info

Publication number
TW201131663A
TW201131663A TW099141172A TW99141172A TW201131663A TW 201131663 A TW201131663 A TW 201131663A TW 099141172 A TW099141172 A TW 099141172A TW 99141172 A TW99141172 A TW 99141172A TW 201131663 A TW201131663 A TW 201131663A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
gate electrode
film
type semiconductor
gate
Prior art date
Application number
TW099141172A
Other languages
English (en)
Inventor
Toshikazu Matsui
Yasuyuki Sayama
Hiroki Eto
Takumi Hosoya
Original Assignee
Sanyo Electric Co
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co
Publication of TW201131663A publication Critical patent/TW201131663A/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0297Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/01Manufacture or treatment
    • H10D12/031Manufacture or treatment of IGBTs
    • H10D12/032Manufacture or treatment of IGBTs of vertical IGBTs
    • H10D12/038Manufacture or treatment of IGBTs of vertical IGBTs having a recessed gate, e.g. trench-gate IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • H10D12/461Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions
    • H10D12/481Vertical IGBTs having non-planar surfaces, e.g. having trenches, recesses or pillars in the surfaces of the emitter, base or collector regions having gate structures on slanted surfaces, on vertical surfaces, or in grooves, e.g. trench gate IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/517Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers
    • H10D64/518Gate electrodes for field-effect devices for FETs for IGFETs characterised by the conducting layers characterised by their lengths or sectional shapes
    • H10P30/222
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

201131663 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種具有溝槽(trench)閘極構造之半 導體裝置的製造方法,尤其有關一種能防止IGBT (Insulated Gate Bipolar Transistor ;絕緣閘雙極電晶體) 和功率 MOS (Metal Oxide Semiconductor ;金屬氧化物半 導體)電晶體的閘極絕緣膜的絕緣耐壓因為形成射極層等 時之離子植入的衝擊等而導致劣化之半導體裝置的製造方 法。 【先前技術】 IGBT和功率MOS電晶體大多採用用以實現低導通 (ON)電阻化等之溝槽閘極構造。溝槽閘極構造係如第 11圖所示,首先,以從具有N型半導體層1與P型半導體 層2之半導體基板12的表面朝内部之方式將半導體基板 12予以蝕刻,於半導體基板12形成溝槽3。之後,於形成 用以覆蓋溝槽3内壁之閘極絕緣膜4之後,藉由用以填充 於溝槽3内之導電性多晶矽來形成閘極電極5。之後,藉 由砷離子等之離子植入,於P型半導體層2的表面植入雜 質並使其熱擴散,而於該P型半導體層2内形成成為N型 半導體層8之雜質區域。在IGBT的情形中N型半導體層 8係成為射極層,而在功率MOS電晶體的情形中N型半 導體層8係成為源極層。 如第11圖所示,為了於半導體基板12内形成N型半 導體層8,從箭頭9b所示的方向離子植入經過高壓電加速 4 322501 201131663 的神離子等,此時,同時亦從箭頭9a的方向直接 屬於閘極電極5之乡晶料對包纽間極電極5與^ 導體層8之間的閘極絕緣膜4中植人神離子等。箭^ 及9b係表示各個种離子等的植入全距這些箭頭 二 的前端係表Μ離子之在屬於被植人對象之氧切 的平均植入全距的概略位置。 、孚内 由於以箭頭9a所示的植入全距通過由多晶石夕所 的閘極電極5内等而植人至包爽於該閘極電極$與 ,體層8之_閘極絕緣膜4中的坤離子㈣具有大二 =因此會/σ著箭頭9a的植人全距對閘極絕緣膜4内皮 知傷、纟J ’會產生該部分的閘極絕緣膜4的膜質 机通漏電=且閘極絕_ 4的絕緣耐壓降低之缺點。 =石申離子等的植人方向並非與半導體基板12垂 向傾斜方向,此係為了防 旳疋朝 随uhanneling)^防切離子等在半導體基板12内穿 關於由屢槽閑極構造所構成的IGBT等的間極 壓劣化對策係記载於以下的專利文獻卜 緣耐 專利文獻L日本特開2〇〇0·349289號公報 【發明内容】 (發明所欲解決之課題^ 在專利文獻1中,认站丄丄 半導趙層8時,^離麟子植人形成Μ 的閑極電極5與4 =:進入包失於_所構成 土千導體層8之間的閘極絕緣祺4 方式,以厚的絕緣簡蓋心填充於溝槽3內之閘極= 322501 5 201131663 5上。結果,達成防止離子植入時對於閘極絕緣膜的損傷 之目的。 用以覆蓋閘極電極5上之厚的絕緣膜的形成方法係如 下述。首先,於包含閘極電極5上之半導體基板12上的整 面藉由 CVD ( Chemical Vapor Deposition ;化學氣相沉積) 法沉積厚度1 // m左右的氧化矽膜。之後,藉由乾蝕刻(dry etching )等將整面予以回触(etch back )直至露出P型半 導體層2的表面為止。再者,為了防止離子植入導致露出 的P型半導體層2的表面產生損傷,係藉由屏蔽氧化膜 (screening oxide film ) 5Onm左右覆蓋包含閘極電極5上 之半導體基板12的整體表面。 如上所述,在專利文獻1記載的方法中,為了防止離 子植入的損傷而形成用以覆蓋閘極電極5上之絕緣膜的步 驟係由CVD氧化矽膜形成、氧化矽膜的整面回蝕、以及 屏蔽氧化膜的形成之複雜的步驟所構成。 因此,確立一種能以簡單且低成本形成用以覆蓋閘極 電極5上的絕緣膜之製造方法成為一項課題。 (解決課題的手段) 提供一種半導體裝置的製造方法,係具備有:準備於 第一導電型的第一半導體層上具有第二導電型的第二半導 體層之半導體基板之步驟;形成從第二半導體層的表面延 伸至第一半導體層内之溝槽之步驟;形成從溝槽内壁延伸 至第二半導體層的表面之閘極絕緣膜之步驟;於形成有閘 極絕緣膜之溝槽内形成閘極電極之步驟;將閘極電極予以 6 322501 201131663 、熱氧化藉此於閘極電極的上表面形成閘極電極保護膜之步 -驟;以及於閘極電極保護膜的形成後,於第二半導體層内 將雜質離子予以離子植入而形成第一導電型的雜質區域之 步驟。 (發明效果) 依據本發明的半導體裝置的製造方法,能以低成本製 造提升閘極絕緣膜的絕緣耐壓之半導體裝置。 【實施方式】 〔第一實施形態〕 以下,依據第1圖至第7圖說明本發明第一實施形態 的半導體裝置的製造方法。本發明雖係涉及IGBT和功率 MO S電晶體的製造方法,但發明的要旨係關於一種防止溝 槽閘極構造中的閘極電極最上表面附近的問極絕緣膜因為 用以形成射極層等之砷離子等的離子植入而受到損傷之製 造方法。因此,附圖亦以溝槽閘極構造中的閘極電極最上 表面附近的閘極絕緣膜部分為中心予以記載並進行說明。 首先’以下述麟來準備第丨圖所示的半導體基板 12。首先’在半導體裝置為N通道型功率M〇s電晶體的 情形時係準備未圖示的N+型半導體基板,在半導體裝置 為IGBT的情形時係準備未圖示的p+型半導體基板,該p +型半導體基㈣於其表面藉由蟲晶法㈣絲圖示的N +型半導體層。於兩半導體基板的表面露出N+型半導體 層。此外’本實施形態的N+型半導體基板及p+型半導 體基板皆為單結晶石夕基板’經過蟲晶成長的N+型半導體 322501 7 201131663 層亦為矽層。 接著,如第1圖所示,藉由預定的磊晶法於該N+型 半導體層的表面形成由預定的膜厚所構成的N型半導體層 1。接著,於N型半導體層1的表面形成未圖示的氧化矽 膜,穿過該氧化矽膜將硼離子予以離子植入至N型半導體 層1内。之後,將半導體基板12插入至高溫爐等内,將經 過離子植入的硼擴散至N型半導體層1内,藉此形成P型 半導體層2。P型半導體層2係於之後成為閘極電極正下 方的通道層之區域。 接著,如第2圖所示,經由預定的步驟形成由未圖示 的氧化矽膜等所構成的遮罩,使用該遮罩並藉由乾蝕刻等 形成從P型半導體層2的表面延伸至N型半導體層1内部 之預定寬度及預定深度的溝槽3。雖然形成複數個溝槽3, 但僅記載其中一個。 於成為溝槽3側壁的N型半導體層1與P型半導體層 2的表面殘留有許多乾触刻等時的#刻損傷。因此,首先, 將半導體基板12插入至高溫爐内,於成為溝槽3側壁的P 型半導體層2與N型半導體層1的表面形成預定膜厚之所 謂的犧牲氧化膜,於犧牲氧化膜中吸收前述蝕刻損傷層。 之後,將半導體基板浸入氟酸等蝕刻液内,將犧牲氧 化膜予以蝕刻去除。接著,如第3圖所示,將半導體基板 12插入至高溫爐等内,形成從溝槽3内延伸至P型半導體 層2表面之由預定膜厚所構成的閘極絕緣膜4。此外,閘 極絕緣膜4亦可為將氮植入至熱氧化矽膜的氮氧化膜。 8 322501 201131663 接者’藉由CVD法形成用 战用乂覆蓋包含溝槽3内部之 半導體基板12的整體表面之多 <夕日日矽層。由於多晶矽層的膜 厚較厚,因此多晶石夕層埋入至、、盖 主溝槽3的内部,其表面成為 大至平坦的狀態。接著,蔣二a 于二虱一氧化罐(phosphorus ο—10··3)等作為雜質來源,抛爐中將磷 擴^夕t之後’藉由乾钮刻將多晶石夕層予以全 面回#,直至露出P型半導髀思 等體層2上的閘極絕緣膜4。 此時,以#刻裝置的畏杜a 佳蚀刻終點(endpoint)確認 融刻狀態後,以不會於p型丰道_雜 I午導體層2上的閘極絕緣膜4 上殘留多晶矽層的殘渣之方式,4▲ 乃巧’進订一定時間的過度蝕刻 (〇Veretehing) ’藉此形成第4圖所示之填充於溝槽3内 部的閘極電極5。能從溝槽3上確認到問極電極最上表面 5a。結果,如第4圖所示,填充於溝槽3内部的問極電極 最上表面5a#位於從P型半導體層2的表面降低至預定位 置的較低位置。防止包夹於該閘極電極5與p型半導體層 2之間的部分的閘極絕緣膜4因為下—步驟的形成射極^ 等時的神離子等的離子植人而受到損傷導致閘極絕緣膜4 的絕緣时壓降低乃是本發明的目的。 接著,如第5圖所示,將半導體基板12插入至高溫 爐等内’將構成閘極電極5之多晶♦料以熱氧化,形成 比珅離子的離子植人時的多晶破熱氧化膜中的平均植入全 距還厚之成為閘極電極上保護膜之多晶石夕熱氧化膜6。如 第5圖解,多晶鎖氧化膜6係爽著氧化前的虛線所示 的閘極電極最上表面5a形成有由上部6a與下部处所構成 322501 9 201131663 之新的閘極電極最上表面5b。 此時,形成於P型半導體層2上之預定膜厚的閑極絕 緣膜4亦成為以第7圖所示的追加氧化量經過追加氧化之 厚的追加氧化膜7 4加氧賴7的厚度係設定為未滿石申 離子的平均植入全距的70%。關於上述多晶矽熱氧化膜6 的膜厚及追加氧化膜7的膜厚的必要性係容後述。 此外,所謂離子的平均植入全距係指於某物體中離子 植入複數個離子時,各個的離子於物體内行進的植入全距 的平均值。經過離子植入的離子最後會成為中性的原子而 停止,於被離子植入物體内呈現高斯分布(Gaussian distribution )。因此,所謂離子的平均植入全距係指停止 於物體内的雜質的高斯分布的峰值位置。 接著,如箭頭9b所示,為了於p型半導體層2内形 成N型半導體層8,以一定的加速電壓將砷離子等予以離 子植入。離子植入的方向從與半導體基板垂直的方向具有 些微角度乃是如前所示為了防止所植入的離子因為穿隧而 不規則地分布於比P型半導體層2内的預定位置還深的位 置之故。 第5圖的箭頭9a所示的砷離子等係朝包夾於因為於多 晶矽的上表面形成有多晶妙熱氧化膜6而位於比當初的閘 極電極最上表面5a還低的位置的閘極電極最上表面5b與 P型半導體層2之間的部分的閘極絕緣膜4的方向予以植 入。由於在氧化後的新的閘極電極最上表面5b上形成有比 多晶矽熱氧化膜中的砷離子的平均植入全距還厚的多晶矽 322501 10 201131663 、熱氧化膜6,因此經過植入的砷離子等無法進入包夾於上 -述閘極電極5與P型半導體層2之間的閘極絕緣=* =上 即使能夠進入閘極絕緣膜4中,亦僅有比砷離子的平均植 入全距還内側的砷離子能侵入。 在第11圖所示的習知例的情形中,由於砷離子直接 離子植入至包夾於閘極電極5與P型半導體層2之間的閘 極絕緣膜4中,因此閘極絕緣膜4受到坤離子的衝擊,而 如第6圖(a)所示’閘極絕緣膜漏電流係相對於閘極施加 電壓而增加,導致閘極絕緣臈4的絕緣耐壓降低。然而, 在本實施形態的情形中,如上所述,由於即使存在植入於 包夾在閘極電極5與P型半導體層2之間的問極絕緣膜4 中的石申離子,亦比習知例少很多,因此如第6圖⑴所示 保持高的絕緣耐壓。 此外’在第5圖及第π圖中雖記載為於離子植入之 後立即於P型半導體層2内形成N型半導體層8,然而在 该時間點中大部分的石中離子係在非活性狀態下高斯分布於 構成P型半導體層2之石夕原子的晶格間,因此不會於p型 半導體層2内形成完全的N型半導體層8。藉由後續步驟 的層間絕緣膜的高溫退火處理等予以擴散及活性化,而形 成第5圖、第11圖所示之最終形態的N型半導體層8。 接著,以下說明加算過形成於p型半導體層2上的初 期二極絕緣膜4與新的追加氧化量後的追加氧化膜7的膜 厚設為未滿石中離子在氧化石夕膜中的平均植入全距的70%之 理由。藉由第5圖的箭頭%所示的砷離子的離子植入於p 322501 11 201131663 型半導體層2内形成N型半導體層8。N型半導體層8係 成為IGBT的射極層、功率MOS電晶體的源極層,這些射 極層或源極層的下層的P型半導體層2係分別成為裝置 (device)的通道層。 藉由砷離子的離子植入所形成的N型半導體層8係於 之後進行層間絕緣膜的退火處理而使其從P型半導體層2 的表面延伸至比隔著閘極絕緣膜4而與P型半導體層2對 峙的閘極電極最上表面5b還深的P型半導體層2内。此 外,為了降低導通電阻以及降低與用以與N型半導體層8 接觸之未圖示的射極電極等的接觸電阻,N型半導體層8 的砷濃度較佳為儘可能在實用性範圍内的高濃度。 追加氧化膜7的膜厚愈薄時則植入的離子在追加氧化 膜7内停止的比率就愈少,而能穩定地形成高濃度的N型 半導體層8。由於所植入的離子的分布係依循高斯分布, 因此為了穩定地形成高濃度的N型半導體層8,較佳為追 加氧化膜7的膜厚未滿砷離子在氧化矽膜中的平均植入全 距的70%。 另一方面,為了防止對於上述閘極絕緣膜4的損傷, 閘極電極5上的多晶矽熱氧化膜6較厚為宜。於第7圖的 橫軸係顯示將於具有預定初期膜厚的閘極絕緣膜4的P型 半導體層2的表面新追加形成的追加氧化量予以規格化, 於縱軸係顯示將於P型半導體層2上加算預定初期膜厚的 閘極絕緣膜4與追加氧化量而形成的追加氧化膜7的膜厚 及形成於閘極電極5上的多晶矽熱氧化膜6的膜厚予以規 12 322501 201131663 格化而表不該等間之關係。雖然會受到多晶矽中的雜質濃 度等的影響,但於多晶矽上成長的氧化膜的成臈速度係比 於矽上成長的氧化臈的成長速度還快。利用該成長速度的 差異亦為用以獲得本發明的效果的重點之一。 在本實施形態的砷離子的離子植入時的加速電壓的 隋形中,砷離子在多晶矽氧化膜中的平均植入全距係為第 7圖的縱軸al所示之經過規格化的值,al^3 25nm。因此, 為了不使包夾於閘極電極最上表面5b部附近的閘極電極5 與P型半導體層2之間的閘極絕緣膜4因為坤離子的離子 植入而受到損傷’閘極電極最上表面外上的多晶矽熱氧化 獏6經過規格化的膜厚必須比約3 25nm還厚。 當將多晶石夕熱氧化膜6的膜厚作成比石申離子在多晶石夕 氧化膜中的平均植人全距3 25麵還薄時,可確認到間極 、、。緣膜4的絕緣耐壓的劣化。在此情形中,初期的閘極電 極最上表面5a與新的閘極電極最上表面5b間的多晶矽熱 氧化膜6的下部6b的膜厚係整體膜厚的G.45,形成於比 初期的閘極電極最上表面5a還上面的多晶石夕熱氧化膜6 的上部6a的膜厚係整體膜厚的約0.55。 如第7圖所示’當閘極電極5上的多晶矽熱氧化膜6 的多曰曰矽上規格化氧化膜厚為al与3.25nm時規格化追加 氧化晉孫p 1 « -I, 你ei,13nm,p型半導體層2上的矽上規格化追 加氧化膜7的膜厚成為bl = l.87nm。另一方面,砷離子在 氧化石夕膜中的平均植入全距係與多晶矽氧化膜的情形大致 相同’約3.25nm。當矽上規格化追加氧化膜7的膜厚比砷 13 322501 201131663 離子在氧化賴中的平均植人全距3 25nm的Q7倍的約 2.25rnn(b2)還厚時,帛5圖的箭頭%所示的石申離子朝 向P型半導體2中的植人量減少、,N型半導體層8的電 阻變尚,且由於表面濃度降低而使與未圖示的射極電極等 之接觸電阻變高。 〔第二實施形態〕 依據第8圖及第9圖說明本發明的第二實施形態。與 第一實施形態相同的構成係附上相同的符號。首先,經由 與第一實施形態相同的步驟準備第4圖所示的半導體基板 12。接者,如第8圖所示,將露出於p型半導體層2上的 閘極絕緣膜4予以蝕刻去除。此時,包夾於閘極電極5與 P型半導體層2之間的部分的閘極絕緣膜4亦被稍微凹入 姓刻。 接著,如第9圖所示,將半導體基板12插入至高溫 爐内,以與第一實施形態相同的條件於閘極電極5上形成 多晶矽熱氧化膜6,於P型半導體層2上形成追加氧化膜 7 a。在此情形中’形成於閘極電極5上的多晶石夕氧化膜6 的膜厚係與第一實施形態的情形相同。 相對於此,在相同的追加氧化量中,由於形成在p型 半導體層2上的追加氧化膜7a的膜厚的初期膜厚為〇,因 此當然比從預定的初期膜厚開始的第一實施形態中的追加 氧化膜7的膜厚還薄。雖然不夠嚴謹’但本實施形態之由 形成於露出的P型半導體層2上的熱氧化矽膜所構成之石夕 上規格化追加氧化膜7a的膜厚係成為與規格化追加氣化 322501 14 201131663 量相同的值。 追加氧化膜7與追加氧化膜7a的膜厚的下限係受限於 用以防止離子植入的損傷之最少的多晶矽熱氧化膜6的膜 厚,而上限係受限於N型半導體層8的濃度等。以第一實 施形態中的第7圖的規格化追加氧化量比較其容許範圍。 不論是在第一實施形態與本實施形態中,規格化追加氧化 量的下限皆為與多晶矽上規格化氧化膜的膜厚al与 3.25nm對應之cl与1.3nm而相同。 相對於此,規格化追加氧化量的上限在第一實施形態 中為與矽上規格化追加氧化膜厚的上限b2_2 25nm對應 之c2%1.72nm。而在本實施形態中,由於規格化追加氧化 量其本身係相當於P型半導體層2上的矽規格化追加氧化 膜厚,因此矽上規格化追加氧化膜厚的上限c3係為砷離子 在氧化矽膜中的平均植入全距3_25nm的〇7倍,亦即變成 c3=?2.25nm。結果,在第一實施形態中規格化追加氧化量 的容許範圍係成為cl至c2,亦即為1.3nm至1.72nm,相 對於此,在本實施形態中規格化追加氧化量的容許範圍係 成為cl至c3 ’亦即為ijnm至2.25nm。結果,能將追加 氧化量的容許範圍擴展2.2倍以上。由於規格化追加氧化 里係與氧化時間的開平方成正比,因此與第一實施形熊相 比,本實施形態中至規格化追加氧化量的上限為止的時間 係能增長約1.8倍。 亦即,在第一實施形態的情形中,由於用以形成容許 規格化追加氧化量之上限與下限之間的熱處理時間寬度狹 322501 15 201131663 窄且製程餘裕度小,因此需要減少一次的處理片數等之降 低變異差異的對策。相對於此,與第一實施形態相比,在 本實施形態中,由於至容許規格化追加氧化量的上限為止 的時間係增加1.8倍’因此能大幅改善製程餘裕度。 接著,說明第一實施形態與第二實施形態(以下合稱 為本實施形態)所共通之專利文獻1記載的習知例中所未 有之本發明的特徵。第一個特徵為是否能從溝槽3的侧壁 將雜質離子植入至p型半導體層2内。在習知例的第一實 施例中,包含溝槽3内的半導體基板12上整面係在平坦的 狀態下被厚的氧化矽膜覆蓋’並未露出溝槽3的侧壁。因 此,砷離子等僅從P型半導體層2的上表面離子植入至該 P型半導體層2内,並不會從溝槽3的侧壁離子植入砷離 子等。 此外,在第三實施例中,由於能從最上部所露出的溝 槽3的露出部分確認之溝槽3的侧壁係被由CVD氧化膜、 閘極氧化膜以及屏蔽氧化膜所構成之厚的膜所覆蓋,因此 還是不會從溝槽3的侧壁離子植入砷離子等。 相對於此,在本實施形態中’由於將閘極電極5上的 多晶矽氧化膜6的上表面形成為比P型半導體層2的上表 面還低,因此雖然為溝槽3的侧壁被追加氧化膜7或追加 氧化膜7a覆蓋的狀態,但亦露出溝槽3的一部分。因此, 除了從P型半導體層2的上表面植入,朝向箭頭9a或箭頭 9a與箭頭9b之間的方向植入之砷離子等的一部分亦經由 追加氧化膜7内或追加氧化膜7a内等而從溝槽3的侧壁植 322501 16 201131663 , 入至P型半導體層2内。 - 由於來自箭頭9a或箭頭9a與箭頭%之間的方向之砷 離子等朝向追加氧化膜7或追加氧化膜7a的射入口係位於 比來自箭頭9b方向的砷離子朝向p型半導體層2上的追 加氧化膜7或追加氧化膜7a的射入口還低的位置,因此能 使從溝槽3的側壁射入的砷離子等比習知例分布至p型半 導體層2的更深位置。結果。能期待裝置特性的提升等。 此外,由於此位置會隨著追加氧化膜7的膜厚愈薄而愈 深,因此相較於第一實施形態,第二實施形態較為有利。 然而’從箭頭9a或箭頭9a與箭頭9b之間的方向射入 的砷離子等係斜向行進在形成於溝槽3的侧壁上的追加氣 化膜7或追加氧化膜7a。因此,例如即使在石夕上規格化追 加氧化膜7a的膜厚為與多晶矽上規格化氧化膜的膜厚ai 1 3.25nm對應之ci与1 3nm的情形,神離子等係在石夕上規 格化追问氧化膜中經過約l〇.6nm後植入至p型半導體層2 内。結果,植入至P型半導體層2内之砷等的濃度變成較 低。 因此,為了發揮上述效果,亦必須考量石夕中的砷離子 的平均植入全距為矽氧化膜中的砷離子的平均植入全距的 約1.2倍,而決定多晶矽氧化膜6的最上表面與p型半導 體層2的上表面的距離。 接者,參照第10圖說明第一個特徵。第1 〇圖係擴大 顯示閘極電極最上表面5b與閘極絕緣膜4附近的位置關 係。雖將閘極電極5予以氧化而於閘極電極5上形成多晶 322501 17 201131663 石夕氧化膜6,惟此時㈣極絕賴4賴㈣極電極最上 表面5a部附近係在多晶矽被氧化之間時,p型半導體層2 亦因為通過閘極絕緣膜4的氧化物質而被氧化。 結果,閘極電極最上表面5b#形成為具有隨著遠離p 型半導體層2其高度緩緩變高的最高部,且之後朝溝槽$ 的中〜部降低其南度之山形狀。此外,於p型半導體層2 與間極電極最上表面5b之間形成有從預定膜厚的間極絕 緣膜開始朝向閘極電極最上表面5b的最高部緩緩增加膜 厚的P 5L半導體層的熱氧化膜以及多晶石夕的熱氧化膜所混 合之厚的混合絕緣膜6c。 另一方面,有在包夾於閘極電極最上表面與p型 半導體層2之間的閘極絕緣膜4内或閘極絕緣膜4正下方 的P型半導體層2表面係在飯刻後立即呈現银刻損傷且該 餘刻損傷持續殘留之情形。在此情形中,如上所述,隔著 閘極絕緣膜4而與閘極電極最上表面讣對峙之含有蝕刻損 傷的P型半導體層2係變成新的混合絕緣膜6(;的一部分: 而吸收去除於P型半導體層2所含有的損傷層。此外,由 於形成有至閘極電極最上表面5b為止緩緩變厚的混合絕 緣膜6c ’因此緩和閘極電極最上表面&及與該閘極電極 最上表® 5a料的P型半導體層2之間的電場強度,而能 防止該等間之漏電流的增大。 最後,說明第三個特徵。當結束砷等的離子植入步驟 時,接著,藉由CVD法等於半導體基板12上整面沉積層 間絕緣膜。通常,層間絕緣膜係以無摻雜(n〇n_d〇ped)氧 322501 18 201131663 化矽膜NSG、硼及磷摻雜氧化矽膜BPSG的順序堆積而形 成。在本實施形態中具有下述特徵:由於形成有比以往還 厚的夕BB石夕熱氧化膜6或追加氧化膜7,因此無須形成NSG 廣’可於閘極電極5或N型半導體層8上直接形成BPSG。 之後’經由預定步驟於層間絕緣膜形成接觸孔(c〇ntact hole) ’經由預定步驟形成射極電極等,最後則形成由氮 化膜·#所構成的保護膜(passivati〇n,亦有稱為純化膜之 情形,本文中稱為保護膜),藉此完成半導體裝置。如此, 能進一步減少製造步驟數,且能以更低的成本製造上述閘 極絕緣膜的絕緣耐壓經過提升的半導體裝置。 此外’上述雖說明N通道型功率m〇S電晶體的情形, 但在P通道型功率M〇s電晶體的情形中,第一及第二實 施形4中僅各雜質的極性變成相反而已,基本部分並未改 變0 【圖式簡單說明】 第1圖係顯示本發明第一實施形態的半導體裝置的製 造方法之剖面圖。 第2圖係顯示本發明第一實施形態的半導體裝置的製 造方法之剖面圖。 第3圖係顯示本發明第一實施形態的半導體裝置的製 造方法之剖面圖。 第4圖係顯示本發明第一實施形態的半導體裝置的製 造方法之剖面圖。 第5圖係顯示本發明第一實施形態的半導體裝置的製 19 322501 201131663 造方法之剖面圖。 第6圖(a)及(b)係顯示閘極施加電壓與閘極絕緣 膜的漏電流的關係之圖表。 第7圖係顯示經過規格化的追加氧化量與多晶矽上及 矽上的規格化氧化膜厚的關係之圖表。 第8圖係顯示本發明第二實施形態的半導體裝置的製 造方法之剖面圖。 第9圖係顯示本發明第二實施形態的半導體裝置的製 造方法之剖面圖。 第10圖係放大顯示本發明實施形態中的半導體裝置 的製造方法之閘極電極最上表面的附近之剖面圖。 第11圖係顯示以往的半導體裝置的製造方法之剖面 【主要元件符號說明】 3 5 67、 9a 7a 、9b 12 N型半導層 溝槽 閘極電極 多晶石夕熱氧化膜 追加氧化膜 箭頭(畔離子的離子 半導體基板 P型半導層 4 閘極絕緣膜 5a、5b閘極電極最上表面 6a'6b'6c多晶矽熱氧化膜 8 N型半導體層 植入方向) 322501 20

Claims (1)

  1. 201131663 七、申請專利範圍: 1. 一種半導體裝置的製造方法,係包括有: 準備於第一導電型的第一半導體層上具有第二導 電型的第二半導體層之半導體基板之步驟; 形成從前述第二半導體層的表面延伸至前述第一 半導體層内之溝槽之步驟; 形成從前述溝槽内壁延伸至前述第二半導體層的 表面之閘極絕緣膜之步驟; 於形成有前述閘極絕緣膜之前述溝槽内形成閘極 電極之步驟; 將則述閘極電極予以熱氧化而措此於耵^ 極的上表面形成閘極電極保護膜之步驟;以及 於前述閘極電極保護膜的形成後,於前述第二半導 體層内將雜質離子予以離子植入而形成第一導電型的 雜質區域之步驟。 =申:專利範圍帛i項所述之半導體裝置的製造方 八中在形成如述閘極電極保護膜之步驟中,於前 ::::導體層的上表面重疊前述閘極絕緣膜而形成 域之膜的膜厚係比形成前述_ 的平均植入全距ί厚且離/在前述閉極電極保護膜中 膜重疊後_厚為以二胡極絕賴與前述熱氧化 保護膜中的平均植二則述雜質離子在前述閘極電極 十均植入全距的70%的厚度。 322501 1 201131663 、^巧專利範15第1項或第2項所述之半導體裝置的製 =法,其中,前述閘極電極保護膜的上表面係成為比 刚述第二半導體層的上表面還低的位置。 的:、:專引範圍第1至3項中任-項所述之半導體裝置 道1 k方法,其中,包夾於前述閘極電極與前述第二半 I體層之間的前述閉極絕緣膜係在前述閘極電極最上 表面形成為較厚。 5.:申請專利範圍第4項所述之半導體裝置的製造方 其中’與則述第二半導體層對峙的前述閘極電極最 上表面係形成為具有隨著遠離該第二半導體層而變高 的f上部’且之後朝前述溝槽的中心部變低之山形狀, 2剛述第-半導體層與前述閘極電極最上表面之間的 前述閘極絕緣膜係從預定膜厚朝前述最上部 而形成β 6·如申請專利範圍第項中任—項所以半㈣裝置 的製造方法,其中,復具備有下述步驟:在前述間極電 極形成後且在形成前述閘極電極保護膜之前,從前述第 二半導體層表面去除前述閘極絕緣膜。 322501 2
TW099141172A 2009-12-24 2010-11-29 Method for making semiconductor device TW201131663A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009292162A JP2011134837A (ja) 2009-12-24 2009-12-24 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
TW201131663A true TW201131663A (en) 2011-09-16

Family

ID=44174721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099141172A TW201131663A (en) 2009-12-24 2010-11-29 Method for making semiconductor device

Country Status (5)

Country Link
US (1) US8017482B2 (zh)
JP (1) JP2011134837A (zh)
KR (1) KR101268227B1 (zh)
CN (1) CN102110602B (zh)
TW (1) TW201131663A (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219161A (ja) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp 半導体装置および半導体装置の製造方法
TW201423869A (zh) * 2012-12-13 2014-06-16 茂達電子股份有限公司 溝渠式電晶體的製作方法
CN105655246A (zh) * 2016-01-04 2016-06-08 株洲南车时代电气股份有限公司 一种沟槽式igbt栅极的制作方法
KR101753512B1 (ko) * 2016-01-11 2017-07-03 앰코 테크놀로지 코리아 주식회사 반도체 디바이스 및 이의 제조 방법
JP6519894B2 (ja) * 2016-03-31 2019-05-29 新電元工業株式会社 半導体装置の製造方法及び半導体装置
JP2018041789A (ja) * 2016-09-06 2018-03-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6967352B2 (ja) * 2017-02-07 2021-11-17 ローム株式会社 半導体装置および半導体装置の製造方法、ならびに、半導体ウエハ構造物
JP6781667B2 (ja) * 2017-06-08 2020-11-04 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN117747535B (zh) * 2024-02-21 2024-05-28 合肥晶合集成电路股份有限公司 浅沟槽隔离结构、半导体结构及制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153545A (ja) * 1995-09-29 1997-06-10 Toshiba Corp 半導体装置及びその製造方法
KR100195208B1 (ko) * 1996-04-15 1999-06-15 윤종용 반도체 장치의 소자분리막 형성 방법
JP2000349289A (ja) * 1999-03-29 2000-12-15 Fuji Electric Co Ltd 半導体装置およびその製造方法
US6921699B2 (en) * 2002-09-30 2005-07-26 International Rectifier Corporation Method for manufacturing a semiconductor device with a trench termination
GB0229210D0 (en) * 2002-12-14 2003-01-22 Koninkl Philips Electronics Nv Method of manufacture of a trench semiconductor device
JP2008235399A (ja) 2007-03-19 2008-10-02 Toshiba Corp トレンチ型電力用半導体装置及びその製造方法
JP2009117412A (ja) 2007-11-01 2009-05-28 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置およびその製造方法

Also Published As

Publication number Publication date
KR101268227B1 (ko) 2013-05-31
US8017482B2 (en) 2011-09-13
US20110159651A1 (en) 2011-06-30
CN102110602A (zh) 2011-06-29
JP2011134837A (ja) 2011-07-07
CN102110602B (zh) 2013-09-04
KR20110074465A (ko) 2011-06-30

Similar Documents

Publication Publication Date Title
TW201131663A (en) Method for making semiconductor device
US7670911B2 (en) Method for manufacturing vertical MOS transistor
US10573742B1 (en) Oxygen inserted Si-layers in vertical trench power devices
JP7605241B2 (ja) トレンチ型半導体装置の製造方法
JPH1126758A (ja) トレンチ型mos半導体装置およびその製造方法
JP2012243985A (ja) 半導体装置及びその製造方法
CN103489916A (zh) 阶梯栅氧化层有源漂移区结构的n型ldmos及其制作方法
JP5533011B2 (ja) 半導体装置の製造方法
JP2007095997A (ja) 半導体装置及びその製造方法
JP2005327799A (ja) 半導体装置の製造方法
KR20000073373A (ko) 불순물 이온 편석 방지막 및 그 제조방법, 그 편석 방지막을 이용한 반도체 소자의 격리구조 및 그 제조방법
JP5446388B2 (ja) 集積化半導体装置の製造方法
JP5403966B2 (ja) トレンチ型半導体素子及びトレンチ型半導体素子の製造方法
JP5135920B2 (ja) 半導体装置の製造方法
JP2010161241A (ja) 半導体装置および半導体装置の製造方法
JP2009004804A (ja) 半導体装置
JP2009026809A (ja) 半導体装置とその製造方法
US20120258578A1 (en) Semiconductor device and manufacturing method thereof
JP5266738B2 (ja) トレンチゲート型半導体装置の製造方法
TWI647747B (zh) 功率場效電晶體、功率場效電晶體裝置及製造功率場效電晶體之方法
JP5675931B2 (ja) トレンチ型半導体素子の製造方法
KR20060075237A (ko) 반도체 장치의 제조방법
JPH0529618A (ja) 電界効果型トランジスタおよびその製造方法
JP2006313937A (ja) 半導体装置
JP2008034449A (ja) 半導体装置及びその製造方法