TW201038384A - Light irradiation method and light irradiation apparatus - Google Patents

Light irradiation method and light irradiation apparatus Download PDF

Info

Publication number
TW201038384A
TW201038384A TW99105211A TW99105211A TW201038384A TW 201038384 A TW201038384 A TW 201038384A TW 99105211 A TW99105211 A TW 99105211A TW 99105211 A TW99105211 A TW 99105211A TW 201038384 A TW201038384 A TW 201038384A
Authority
TW
Taiwan
Prior art keywords
light
linear
illuminance
light irradiation
ultraviolet
Prior art date
Application number
TW99105211A
Other languages
Chinese (zh)
Other versions
TWI402152B (en
Inventor
Shigeru Endou
Norihiko Hatano
Tetsuji Kadowaki
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Publication of TW201038384A publication Critical patent/TW201038384A/en
Application granted granted Critical
Publication of TWI402152B publication Critical patent/TWI402152B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

Provided is a light irradiation method for irradiating a linear light beam (LB) from a light irradiation device including a plurality of optical elements (LED) arrayed in one direction (X). The light irradiation method comprises generating a linear light beam having light irradiation faces (SF) extending in the direction (X) by irradiating a beam having an elongated elliptical irradiation area (T) from each optical element (LED) and superimposing the irradiation areas; opposing the irradiation faces (SF) of the linear light beam to a linear photo-curable resin (S) formed on a substrate (P) along the direction (X); irradiating the linear light beam onto the linear photo-curable resin (S); and relatively moving one of the irradiation face (SF) of the linear light beam and the substrate (P) in the direction (X), while the linear light beam is irradiated onto the linear photo-curable resin.

Description

201038384 ‘ 六、發明說明: 【發明所屬之技術領域】 本發明有關於光照射裝置之光照射方法及光照射 裝置。 … 【先前技術】 液晶顯示面板的元件基板及對向基板以極窄的間 Ο 隔相向配置,該元件基板以矩陣狀配置形成有薄膜電晶 體’該對向基板形成有遮光膜及彩色濾光片等。此外, 兩基板疊合時,先在這兩基板間被具有光硬化性樹脂的 密封材料所包圍的區域封入液晶。接著,將紫外線照射 到选封材料,該密封材料硬化而使兩基板貼合,藉此製 - 造液晶顯示面板。 在此情況,有一種光照射裝置,以紫外線硬化密封 材料而使兩基板彼此黏接。這種光照射裝置例如是使用 〇 電弧放電式金屬鹵化物燈作為光源,將紫外線照射到待 貼合的基板的整面(例如專利文件一)。 此外’近年來,使用紫外線發光二極體的光照射裝 置受到注目’這種裝置將紫外線僅照射到直線狀密封材 料’以能降低消耗電力’並且能容易且立即因應貼合基 板規格的變更。這種使用紫外線發光二極體的光照射裝 置的複數個紫外線發光二極體以預設的間距排列於一 方向。此外,於各紫外線發光二極體的光出射側,配置 有半球透鏡、圓柱面透鏡等光學系統。藉此,使從各紫 201038384 外線發光二極體出射後的光透過這些半球透鏡、圓柱面 透鏡等光學系統而成為橫截面為直線狀的光束(light beam)(直線狀光束)並照射到直線狀密封材料。 專利文件一:特開2006-66585號公報 【發明内容】 根據複數個紫外線發光二極體的發光所生成的直 線狀光束的照度較佳為在其照射區域的全部位置都均 勻分布,亦即都相同。 然而,習知光照射裝置中,複數個紫外線發光二極 體以預設的間隔配置於一方向。因此,使用複數個紫外 線發光二極體所形成的直線狀光束的照度的峰值❻⑶幻 及谷值(bottom)在線方向交互發生,所以在線方向的 有位置都非均勻分布。 必須_封材料照射預設的狀的?、制度。在此 月况,如上所述,若照度分布不均勻,則欲將楣宗沾罗 致生產效4;:射時間’因此’照射時間變長,導 射; 201038384 本發明的一個態樣係從光照射裝置照射直線狀光 束的方法’該光照射裝置包括沿著一方向排列的複數個 光學元件。該方法具備以下步驟:從複數個光學元件分 別照射具有長橢圓形狀照射區域的光並將該各照射區 ' 域重疊,藉此生成具有沿著一方向延伸的光照射面的直 .線狀光束;使直線狀光束的光照射面沿著一方向正對形 成於基板的直線狀光硬化性樹脂;將直線狀光束照射到 直線狀光硬化性樹脂;以及在將直線狀光束照射到直線 ❹ 狀光硬化性樹脂的期間,使直線狀光束的光照射面及基 板其中之一沿著一方向相對移動。 本發明的另一態樣是光照射裝置。光照射裝置具 . 備:載台,載置基板,該基板形成有直線狀光硬化性樹 脂;光照射單元,包括沿著一方向排列的複數個光學元 ' 件’從該複數個光學元件分別照射具有長橢圓形狀照射 區域的光並將該各照射區域重疊,藉此生成具有沿著一 方向延伸的光照射面的直線狀光束;光學元件驅動裝 ❹ 置’驅動光照射單元的各光學元件;第一移動裝置,使 光照射單元沿著與一方向直交的方向移動;第二移動裝 - 置’使光照射單元或載台上的基板沿著一方向移動;以 及控制裝置,控制第一移動裝置,以使直線狀光束的光 照射面沿著一方向正對直線狀光硬化性樹脂,並且控制 光學元件驅動裝置及第二移動裝置,以使直線狀光束的 光照射面及基板其中之一沿著一方向相對移動,同時將 直線狀光束照射到直線狀光硬化性樹脂。 依據本發明,即使直線狀光束的照度分布在線方向 201038384 不均勻,也能提高直線狀光束對照射對象區域的累計照 度的均勻分布性。藉此,能縮短照射時間,因而能提高 生產效率。 【實施方式】 以下,依據圖式說明本發明的光照射裝置的一實施 形態··用於基板貼合的紫外線照射裝置。第一圖中,紫 外線照射裝置1配備於一種未繪示的生產線,該生產線 是在下基板W1與上基板W2之間封入液晶以製造主動 矩陣型液晶顯示面板P。紫外線照射裝置丨用於液晶顯 示面板P的製造程序中的硬化程序,該硬化程序使介於 液晶顯示面板P的下基板W1與上基板W2之間由紫外 線硬化樹脂所組成的密封材料s硬化。紫外線照射裝置 1具備紫外線照射單元3,該紫外線照射單元3以直線 狀光束LB的形式生成會照射到密封材料s的紫外線。 該紫外線照射單元3設於龍門架(gantry)2。此外,紫外 線硬化樹脂是光硬化性樹脂的一個例子,紫外線照射單 元3是本發明的光照射單元的一個例子。 如第一圖所示,紫外線照射裝置i具有設置於地面 的支架5。支架5具有配置於四邊的四根支柱5a’該四 根支柱5a直立設置於地面。此外,支架5具有四根下部 架5b、二根中間架5c及二根上部架(左側上部架5d及 右側上部架5e)。四根下部架5b分別連結著相鄰的支柱 5a的下部。二根中間架5c其中之一連結著前側(圖中的 201038384 反Y方向側)左右一對支柱5a的中間部。此外’二根中 間架5c其中另一者連結著後侧(圖中的Y方向侧)左右一 對支柱5a的中間部。左側上部架5d連結著左側(圖中的 反X方向側)前後一對支柱5a的上端部。右侧上部架5e . 連結著右侧(圖中的X方向侧)前後一對支柱5a的上端 部。此外,本說明書中,將紫外線照射裝置1的左右方 '向規定為「X方向」,將前後方向規定為「Y方向」,將 上下方向規定為「Z方向」。在此,第一圖的例子中,將 〇 前後方向(Y方向)稱為上部架5d,5e的長邊方向,將左右 方向(X方向)稱為搭架於上部架5d,5e間的龍門架2的長 邊方向。 支架5内設有由八角形不透明板所構成的載台 ' ST,該不透明板載置液晶顯示面板P。如第二圖及第三 - 圖所示,載台ST的下面STa被支承臂7(參照第二圖)支 撐,該支承臂7配置於該載台ST的下側,該支承臂7 設於方形框體6,該方形框體6藉由未繪示的附導件滾 珠螺桿而能相對於下部架5b上下運動。 於載台ST的中央位置如第三圖所示形成有貫通孔 匕夕卜,如筮-圇u . .201038384 ‘6. Description of the Invention: [Technical Field of the Invention] The present invention relates to a light irradiation method and a light irradiation device for a light irradiation device. [Prior Art] The element substrate and the counter substrate of the liquid crystal display panel are arranged to face each other with an extremely narrow gap, and the element substrate is arranged in a matrix to form a thin film transistor. The opposite substrate is formed with a light shielding film and color filter. Film and so on. Further, when the two substrates are stacked, the liquid crystal is sealed in a region surrounded by a sealing material having a photocurable resin between the two substrates. Next, ultraviolet rays are applied to the sealing material, and the sealing material is cured to bond the two substrates, thereby fabricating a liquid crystal display panel. In this case, there is a light irradiation device which bonds the two substrates to each other by ultraviolet curing the sealing material. Such a light irradiation device uses, for example, a 〇 arc discharge type metal halide lamp as a light source, and irradiates ultraviolet rays to the entire surface of a substrate to be bonded (e.g., Patent Document 1). In addition, in recent years, a light-emitting device using an ultraviolet light-emitting diode has been attracting attention. This device irradiates ultraviolet rays only to the linear sealing material ′ to reduce power consumption, and can easily and immediately adapt to changes in the specifications of the substrate. The plurality of ultraviolet light-emitting diodes of the light-irradiating device using the ultraviolet light-emitting diode are arranged in a direction at a predetermined pitch. Further, an optical system such as a hemispherical lens or a cylindrical lens is disposed on the light emitting side of each of the ultraviolet light emitting diodes. In this way, the light emitted from each of the violet 201038384 external light-emitting diodes is transmitted through an optical system such as a hemispherical lens or a cylindrical lens to form a light beam (linear beam) having a straight cross section and is irradiated to the straight line. Sealing material. Patent Document 1: JP-A-2006-66585 SUMMARY OF THE INVENTION The illuminance of a linear beam generated by the light emission of a plurality of ultraviolet light-emitting diodes is preferably uniformly distributed at all positions of the irradiation region, that is, the same. However, in the conventional light irradiation device, a plurality of ultraviolet light emitting diodes are arranged in a direction at a predetermined interval. Therefore, the peak ❻(3) illusion and the bottom line of the illuminance of the linear beam formed by the plurality of ultraviolet light-emitting diodes alternate in the line direction, so that the positions in the line direction are unevenly distributed. Must the _ sealing material illuminate the preset shape? ,system. In this month's situation, as described above, if the illuminance distribution is not uniform, it is desirable to make the production effect 4; the shooting time 'thus' the irradiation time becomes longer, and the light is guided; 201038384 One aspect of the invention is from the light Method of illuminating a linear beam by an illumination device' The light illumination device includes a plurality of optical elements arranged in a direction. The method includes the steps of: respectively illuminating light having an elliptical shaped illumination region from a plurality of optical elements and superimposing the respective illumination regions' domains, thereby generating a straight linear beam having a light irradiation surface extending in one direction a linear light-curable resin formed on the substrate in a direction along the light-irradiating surface of the linear beam; a linear light beam is irradiated onto the linear light-curable resin; and the linear light beam is irradiated onto the straight line During the photocurable resin, one of the light-irradiating surface of the linear beam and the substrate is relatively moved in one direction. Another aspect of the invention is a light illumination device. a light irradiation device: a stage on which a substrate is placed, the substrate is formed with a linear photocurable resin; and the light irradiation unit includes a plurality of optical elements 'arranged' along a direction from the plurality of optical elements Irradiating the light having the long elliptical shaped irradiation region and superimposing the respective irradiation regions, thereby generating a linear beam having a light irradiation surface extending in one direction; and the optical element driving device 'driving each optical element of the light irradiation unit a first moving device that moves the light irradiation unit in a direction orthogonal to one direction; a second moving device that moves the substrate on the light irradiation unit or the stage in one direction; and a control device that controls the first Moving the device such that the light-irradiating surface of the linear beam directly faces the linear photo-curable resin in one direction, and controls the optical element driving device and the second moving device so that the light-emitting surface of the linear beam and the substrate are The linear beam is irradiated to the linear photocurable resin while moving relatively in one direction. According to the present invention, even if the illuminance distribution of the linear beam is not uniform in the line direction 201038384, the uniform distribution of the cumulative illuminance of the linear beam to the irradiation target region can be improved. Thereby, the irradiation time can be shortened, and thus the production efficiency can be improved. [Embodiment] Hereinafter, an embodiment of a light irradiation device according to the present invention will be described with reference to the drawings, and an ultraviolet irradiation device for bonding substrates. In the first drawing, the ultraviolet ray irradiation apparatus 1 is provided in a production line which is not shown, which seals liquid crystal between the lower substrate W1 and the upper substrate W2 to manufacture an active matrix type liquid crystal display panel P. The ultraviolet irradiation device is used for a curing process in the manufacturing process of the liquid crystal display panel P, which hardens the sealing material s composed of the ultraviolet curable resin between the lower substrate W1 and the upper substrate W2 of the liquid crystal display panel P. The ultraviolet irradiation device 1 is provided with an ultraviolet irradiation unit 3 that generates ultraviolet rays that are irradiated onto the sealing material s in the form of a linear light beam LB. The ultraviolet irradiation unit 3 is provided on a gantry 2. Further, the ultraviolet curable resin is an example of a photocurable resin, and the ultraviolet ray irradiation unit 3 is an example of the light irradiation unit of the present invention. As shown in the first figure, the ultraviolet irradiation device i has a holder 5 provided on the ground. The bracket 5 has four pillars 5a' disposed on four sides, and the four pillars 5a are erected on the ground. Further, the bracket 5 has four lower frames 5b, two intermediate frames 5c, and two upper frames (the left upper frame 5d and the right upper frame 5e). The four lower frames 5b are respectively coupled to the lower portions of the adjacent pillars 5a. One of the two intermediate frames 5c is connected to the intermediate portion of the pair of right and left pillars 5a on the front side (201038384 in the opposite direction to the Y direction in the drawing). Further, the other of the two intermediate frames 5c is connected to the intermediate portion of the pair of left and right pillars 5a on the rear side (the Y-direction side in the drawing). The left upper frame 5d is connected to the upper end portion of the pair of front and rear pillars 5a on the left side (the reverse X direction side in the drawing). The upper upper frame 5e is connected to the upper end of the pair of front and rear pillars 5a on the right side (the X direction side in the drawing). In the present specification, the left and right directions of the ultraviolet irradiation device 1 are defined as "X direction", the front and rear directions are defined as "Y direction", and the vertical direction is defined as "Z direction". Here, in the example of the first figure, the front-rear direction (Y direction) is referred to as the longitudinal direction of the upper frames 5d, 5e, and the left-right direction (X direction) is referred to as the gantry between the upper frames 5d, 5e. The long side direction of the frame 2. The holder 5 is provided with a stage 'ST formed of an octagonal opaque plate on which the liquid crystal display panel P is placed. As shown in the second and third figures, the lower surface STa of the stage ST is supported by a support arm 7 (refer to the second figure) disposed on the lower side of the stage ST, and the support arm 7 is provided on The square frame body 6 can be moved up and down relative to the lower frame 5b by an unillustrated guide ball screw. A through hole is formed in the center position of the stage ST as shown in the third figure, such as 筮-囵u.

TB的中心軸線為旋轉中, 〇旋轉。 7 201038384 有關設於基板移動裝置9的對 口 ΤΒ上進行對位後,將該液:位工作 ST。此外,基板移動裝置9使載載置於載台 不面板Ρ旋轉90度,再載置於載台s,口 ST的液晶顯 孔二置 ::降,_ _(未繪示)能從各;丨導孔)〇裝置二:示) f 亦即,在各升降銷突出各引導甲出縮入。 搬送來的液晶顯示面板各: =:ΞΓ遞交給對位工作台tb,進行對位i著 液曰海:束,對位工作台Τβ就縮入貫通孔8。因此, 液甜顯不面板Ρ在已對位的狀態載置於載台ST。 此外’載台ST上的貫通孔8的前後兩侧,貫 ^有沿著左右方向(X方向)延伸的一對檢測窗u。 1 夕’如第二圖所示’於栽台ST的下侧設有與各檢測窗 11分別對應的照度檢測裝置12(第二圖中僅繪示一個 照度檢測裝置12配置於面向各自所對應的檢測窗u的 位置。 如第四圖所示,照度檢測裝置12具有導軌13,該 導軌I3被支撐固定於方形框體6,並且沿著載台ST的 檢測窗11在左右方向(X方向)設置。導執13是本發明 的引導部件的一個例子。導軌13具有载運托架 8 201038384 (carriage)14的引導面13a,該導軌13配置成該引導面 13a面向檢測窗η。放大繪示後如第五圖所示,托架14 能沿著左右方向(X方向)在導軌13上往復運動。 托架14藉由確動皮帶(timing belt)(未繪示)連接到 托架馬達Ml(參照第十一圖)。驅動托架馬達Ml,藉此 使得托架14藉由確動皮帶沿著X方向在導軌13上往復 移動。 Ο 托架14的上面固定著照度感測器15。該照度感測 器15從入射孔15a接收已穿透檢測窗11的紫外線,並 檢測該紫外線的照度。詳而言之,當托架14沿著X方 向往復移動時,照度感測器15透過沿著X方向形成的 檢測窗11接收直線狀光束LB(參照第八圖),並檢測該 . 直線狀光束LB的照度。此外,照度感測器15對於直線 狀光束LB的照度,可以沿著X方向在複數個位置離散 檢測,也可以沿著X方向連續檢測。 Q 此外,檢測窗11的橫寬Dx是比直線狀光束LB的 線寬D充分大的寬度’在本實施形態中,檢測窗η的 • 橫寬Dx是直線狀光束LB的線寬D的二倍〜三倍的大 小。 如第三圖所示,將通過檢測窗11橫寬Dx中心位置 Pwo的線當作檢測窗11的中心線。在此情況,沿著χ 方向設置的照度感測器15的入射孔15a的移動軌跡成為 與檢測窗11的中心線亦即中心位置Pwo正對的軌跡。 於設於支架5的左側上部架5d與右側上部架5e之 9 201038384 各^如門架2°龍門架2具有前後一對龍門架主體2a。 的卜/主體2a #左端部下面被支樓於左紙部架5d 部牟/各制架主體2&的右端部下面被捕於右侧上 上面左側上部架5d的導軌21與右侧上部架 方21互相平行,沿著Y方向延伸。因此,在X 向^伸的前後—對龍門架2沿著Υ方向移動。 (未龍的左右兩端部與滚珠螺桿 5d. j $滾珠螺桿可旋轉地被支撐於各上部架 後方〜門架主體2a藉由該滾珠螺桿能沿著γ方向(前 ^ 移動。此外,以龍門架馬達M2(參照第十二 螺桿,藉此,前後-對龍Η架主體2a 夕C方向)在—對導執21上往復移動。此 也可以體“是#由滾珠螺桿的旋轉而移動’但是 稭由線性馬達來移動龍門架主體2a。 J龍門架主體2a的下面配置成與χ方向平行,且 件°23二尸的面。f*外’如第六圖所示,使用安裂部 、紫外線照射單元3沿著X方向設置於各龍門架 ^體2a的下自。亦即,本例中,二個紫外線照射單元^ 設置成與—對龍門架主體2a平行。各紫外線照射單元3 的結構是相_。設於安裝部件23的紫外線照射單元3 與,門架主體2a -起沿著γ方向往復移動n線照 射單π 3對於载置固定於载台ST的液晶顯示面板以下 基板W1與上基板W2之間的密封材料S),照射由沿著 X方向一直線延伸的紫外線所組成的直線狀光束。 201038384 安裝部件23(紫外線照射單元3)藉由設於 體2a的滾珠螺桿(未繪示)而可沿著χ方向(左右方 復移動地安裝於龍門架主體2a。因此,以單元馬達μ°3 照第十-圖)旋轉控制龍門架主體2a的滾珠 使紫外線照射單元3沿著X方向(左右方 | 架主體2a往復移動。 、聪门 Ο Ο 密封材料s的硬化程序中’紫外線照射單元3在載 載台ST的液晶顯示面板1^上方沿著Y方向 1此外,紫外線照射單元3在寬度方向的中心 斑上照第六圖)與面板P的規定位置(下基板W1 之間所形成的x方向上延伸的直線狀密封 位置上,紫外線照射單元3在γ方向的移 外線昭射ΐ,’在該γ方向的移動已停止的位置上,紫 射單元3沿著χ方向往復移動。此外,紫外線照 動(掃描)ί密封材料s精的狀態沿著χ方向往復移 昭射同曰檨5時朝向在X方向延伸的直線狀密封材料S 此使該密封向:的紫外線的直線狀光束LB,藉 其人’依據第六圖〜第九圖說明紫外線照射單元3。 結板31,二及第七圖所示,紫外線照射單元3具有連 ^殼體30該連結板31沿著X方向固定於安裝部件23 固^有—的下面。於連結板31的下面沿著X方向排列 32。各昭數個(本實施形態中有四十個)照射模組 …射模組32具有複數個(本實施形態中有八個) 201038384 紫外線發光二極體led。紫外線發光二極體LED是光 學元件的一個例子。 如第七圖所示,各照射模組32具有電路基板33, 於該電路基板33上沿著X方向配置一列八個紫外線發 光一極體LED,並將這些二極體連接到該電路基板%。 各照射模組32的電路基板33被螺栓34固裝於連結板 31的下面。此時,已配置並連接的紫外線發光二極體 LED位於下側’並且八個紫外線發光二極體LED沿著X 方向排列。而且,彼此相鄰的照射模組32定位成,鄰〇 接的電路基板33間的紫外線發光二極體LED沿著χ方 向以等間隔排列成一直線狀。 因此’本實施形態中,三百二十個紫外線發光二極 體LED沿著χ方向以等間隔配置成一直線狀。呈一直·-線配置並連接於電路基板33的各紫外線發光二極體 LED的下側分別配置有半球透鏡%。從各半球透鏡% 所對應的紫外線發光二極體LED出射的紫外線入射各 半球透鏡。此外,各半球透鏡35抑制已入射的紫外線〇 的擴散並使該紫外線分別朝下方出射。 ~ 於與各照射模組32對應配置的八個半球透鏡35的 下側,沿著X方向配置有覆蓋八個半球透鏡35整體的. ,狀圓柱面透鏡36。從各半球透鏡35出射、擴散受到 制,1外線入射圓柱面透鏡36。該圓柱面透鏡36使 從各半球透鏡35已入射的紫外線朝γ方向收並出 射聚集成Μ形狀的光。 ^ Μ 12 201038384 詳言之’如第八圖⑻及(b)所示,從各紫外線發光二 極體LED已出射的紫外線UV分別被配置於正下方的半 球透鏡35抑制擴散。此外,從各半球透鏡35已出射的 紫外線UV由於圓柱面透鏡36而在Y方向收斂並聚集 成橢圓形狀。藉此’從各紫外線發光二極體led出射的 紫外線UV在上基板W2上的照射區域τ成為在χ方向 有長軸的長橢圓形狀。此外,各照射區域τ的長轴方向 端部(重疊區域)彼此重疊,因而形成沿著χ方向呈直線 狀延伸的光照射面SF。亦即,從各紫外線發光二極體 LED出射的紫外線UV成為在χ方向(左右方向)延伸的 直線狀紫外線(亦即,直線狀光束LB),照射到上基板 W2上。 直線狀光束LB的光照射面sf是複數個照射區域τ 的集合。在此情況,光照射面SF的照度(亦即,各照射 區域τ上的照度)在從各紫外線發光二極體LED已出射 的各紫外線UV朝Y方向最收斂的部分最高。因此,各 Ο 照射區域τ上照度最高的部分,是從各紫外線發光二極 體LED已出射的各紫外線UV的光軸中心部,亦即,各 照射區域T的中心部。此外,從相鄰的紫外線發光二極 體LED分別已出射的紫外線UV重疊的重疊區域中,在 Y方向收斂的光量少,所以照度不高而成為最小。 因此,在從紫外線照射單元3出射的直線狀光束 LB,如第九圖所示,當沿著X方向的紫外線發光二極體 LED的配置間隔為Pd時存在照度的最大値。結果,直 線狀光束LB當配置間隔為pd時在X方向發生照度的 13 201038384 射面SF發生照度不 最大値(峰值)及最小値(谷值),光照 均的情況。 ^ 照㈣組32的各半球透鏡35及圓 柱面透鏡36被保持部材40保持著,該保持部材4〇沿χ 方向安裝於電路基板33。該保持部材4()是在電路基板 33被螺栓34固裝於連結板31的下 34固裝於電路基板33。 Π 於保持部材4G的下面中纽置沿著χ方向凹設有 收容溝41,該收容溝41容納圓柱面透鏡%。 此外’於收容溝41的内底面中與各半球透鏡%分 別對應的位置,以等間隔形成有貫通孔42。該貫通孔 42的直位比半球透鏡35的直徑猶小,西己置於紫外線發 光二極體LEDf©的各半球透鏡35的―部分嵌入貫通 孔42。此外,當保持部材4〇固裝於電路基板%時,半 球透鏡35會夾持固定於保持部材4〇、與配置連接於電 路基板33的紫外線發光二極體LED之間。 C.) 於保持部材4G的下面沿著γ方向配置有—對脫落 防止板43。該一對脫落防止板43是在保持部材4〇被螺 栓34固裝於電路基板33的下面時,—併被該螺检^ 固裝於保持部材40。 一對脫落防止板43分別具有彈性卡止爪43a,該彈 性卡止爪43a配置成隔著規定間隔互相面對。各彈性卡 止爪43a將收容溝41容納的圓柱面透鏡%從下側彈壓 卡止,以免圓柱面透鏡36從收容溝41脫落。 14 201038384 其次,依據第十一圖說明紫外線照射裝置1的電性 結構。 第十一圖中’紫外線照射裝置1具備控制裝置5(N 控制裝置50例如由微電腦構成,具備中央處理裝置 (CPU)50a、用以記憶控制程式的R〇M50b、暫時記憶 CPU50a的運算結果等的RAM50C、以及輸入輸出電路 50d。其中,該控制程式用以使CPU50a執行各種處理動 作,該處理動作例如用以使直線狀光束LB照射到密封 材料S。 控制裝置50透過作為光學元件驅動裝置的紫外線 發光二極體驅動電路51而連接到紫外線照射單元3的 各紫外線發光二極體LED。控制裝置50向紫外線發光 二極體驅動電路51輸出各紫外線發光二極體led的發 光控制信號,以控制各紫外線發光二極體LED的發光。 控制裝置50透過龍門架馬達驅動電路52連接到驅 動前後一對龍門架主體2a的二個龍門架馬達M2。控制 裝置50向龍門架馬達驅動電路52輸出各龍門架馬達 M2的驅動控制信號,以控制各龍門架馬達M2的驅動。 龍門架2(龍門架主體2a)、龍門架馬達驅動電路52及龍 門架馬達M2是本發明的第一移動裝置的一個例子。 控制裝置50透過單元馬達驅動電路53連接到設於 龍門架主體2a的單元馬達M3。控制裝置5〇向單元馬 達,動電路53輪出單元馬達M3的驅動控制信號,以控 制單元馬達M3的驅動。單元馬達驅動電路53及單元馬 15 201038384 達M3是本發明的第二移動裝置的一個例子。 W 一本例中,控制裝置50透過單元馬達驅動電路幻 早兀馬達M3正反旋轉,藉此’使紫外線照射單元 對於龍Η社體2a,在紫外線發光二歸的配 間隔P d的二分之一的距離沿著χ方向往復移動。因此, m線照射單元3照射的直線狀光束lb的光照射面 與液晶顯示面板p的密封材料s正對的狀態下, 配置間隔Pd的二分之-的距離沿著χ方向往復移動。 η 狀光束LB的光照射面SF在直線狀密封材料 S上著X方向往復移動。 控制裝置50透過托架馬達驅動電路54連接到托架 f達M1。控制裝* 50肖托架馬達驅動電路54輸出乾 ^達Mi _動㈣信號,以㈣托㈣達⑷的驅 托架14、托架馬達驅動電路54及托架馬達 本發明的第三移動裝置的一個例子。 I;. 再者’控制裝置50連接到圖像處理裝置%。於液 示面板p形成有對位標記爪沉让),用以 =板P相對於載台ST的對位。騎位標記會被設於 55^1^"^的對位照相機CA所拍攝。圖像處理裝置 圖像資^ if CA輸人對位標記的圖料料,根據該 液㈣示面板?的偏移量,並向控縣置 5 U 出。 ,制裝置5〇連接到基板移動裝置9。控制裝置5〇 根據由圖像處理裝置55運算出的偏移量,生成基板移 16 201038384 動裝置9雜她制錢。根軸 移動裝置9使對位卫作A ㈣號,基板 γ方向或兩_上:=7:朝:方向、 偏移量。 面鉍轉,It此消除 控制裝置50連接到龍門架位 置檢測感_The center axis of the TB is in rotation and the crucible rotates. 7 201038384 After the alignment is performed on the opposite side of the substrate moving device 9, the liquid is operated in the ST position. In addition, the substrate moving device 9 causes the carrier to be placed on the stage without the panel Ρ rotated by 90 degrees, and then placed on the stage s, the liquid crystal display holes of the mouth ST are set to two:: drop, _ _ (not shown) can be丨 丨 〇 〇 〇 〇 二 二 : : : : f f f f f f f f f f f f f f f f Each of the liquid crystal display panels that are transported is: =: ΞΓ is delivered to the counter table tb, and the aligning liquid is immersed in the sea: the bundle, and the aligning table Τβ is retracted into the through hole 8. Therefore, the liquid sweetness display panel is placed on the stage ST in the state of being aligned. Further, the front and rear sides of the through hole 8 on the stage ST have a pair of detection windows u extending in the left-right direction (X direction). 1 夕 ' As shown in the second figure, the illuminance detecting device 12 corresponding to each of the detection windows 11 is provided on the lower side of the planting station ST (only one illuminance detecting device 12 is arranged in the second figure to face each other) The position of the detection window u. As shown in the fourth figure, the illuminance detecting device 12 has a guide rail 13 which is supported and fixed to the square frame 6, and the detection window 11 along the stage ST is in the left-right direction (X direction) The guide 13 is an example of the guide member of the present invention. The guide rail 13 has a guide surface 13a for carrying the carriage 8 201038384 (carriage) 14, and the guide rail 13 is disposed such that the guide surface 13a faces the detection window η. As shown in the fifth figure, the bracket 14 can reciprocate on the guide rail 13 in the left-right direction (X direction). The bracket 14 is connected to the carriage motor by a timing belt (not shown). M1 (refer to FIG. 11). The carriage motor M1 is driven, whereby the carriage 14 is reciprocated on the guide rail 13 in the X direction by the urging belt. 照 The illuminance sensor 15 is fixed on the upper surface of the bracket 14. The illuminance sensor 15 receives the penetrating detection window 11 from the incident hole 15a. The outer line detects the illuminance of the ultraviolet ray. In detail, when the cradle 14 reciprocates along the X direction, the illuminance sensor 15 receives the linear beam LB through the detection window 11 formed along the X direction (refer to the eighth The illuminance of the linear beam LB is detected, and the illuminance of the linear beam LB by the illuminance sensor 15 may be discretely detected at a plurality of positions along the X direction or continuously detected along the X direction. Further, the lateral width Dx of the detection window 11 is a width sufficiently larger than the line width D of the linear beam LB. In the present embodiment, the lateral width Dx of the detection window η is the line width D of the linear beam LB. The size is doubled to three times. As shown in the third figure, the line passing through the detection window 11 across the Dx center position Pwo is taken as the center line of the detection window 11. In this case, the illuminance sensor disposed along the χ direction The movement trajectory of the entrance hole 15a of 15 is a trajectory that is opposite to the center line Pwo of the detection window 11, that is, the left upper frame 5d and the right upper frame 5e of the bracket 5 201038384 each such as the gantry 2 °The gantry 2 has a pair of front and rear gantry main bodies 2a The main body 2a # the left side of the left side of the left side of the left side of the left side of the left side of the left side of the left side of the left side of the left side of the left side of the 5d part of the left side of the 5d part of the main frame 2& The squares 21 are parallel to each other and extend in the Y direction. Therefore, before and after the extension of the X direction, the gantry 2 is moved along the Υ direction. (The left and right ends of the dragon are separated from the ball screw 5d. j $ the ball screw can be rotated The ground is supported behind each of the upper frames - the gantry main body 2a is movable in the γ direction by the ball screw (the front is moved). In addition, the gantry motor M2 is used (refer to the twelfth screw, whereby the front and rear - the pair of dragons The frame main body 2a is reciprocated on the guide 21 in the C direction. It is also possible that the body "is # moved by the rotation of the ball screw" but the straw is moved by the linear motor to move the gantry main body 2a. The lower surface of the J gantry main body 2a is arranged in parallel with the χ direction, and the surface of the 219 corpse. F* outside' As shown in the sixth figure, the use of the cleavage portion and the ultraviolet ray irradiation unit 3 are disposed in the X direction along the gantry frame body 2a. That is, in this example, the two ultraviolet ray irradiation units are set. The gantry main body 2a is parallel to each other. The structure of each ultraviolet irradiation unit 3 is phase _. The ultraviolet ray irradiation unit 3 provided in the mounting member 23 and the gantry main body 2a reciprocate along the γ direction to illuminate the single π (3) A linear light beam composed of ultraviolet rays extending in a line along the X direction is irradiated to the sealing material S) between the substrate W1 and the upper substrate W2 on the liquid crystal display panel fixed to the stage ST. 201038384 Mounting member 23 ( The ultraviolet irradiation unit 3) is attached to the gantry main body 2a in the z-direction (the right and left sides are moved by the ball screw (not shown) provided in the body 2a. Therefore, the unit motor μ°3 is taken as the tenth- Figure) Rotary control gantry main body 2a The ball irradiates the ultraviolet irradiation unit 3 in the X direction (the left and right side | the frame main body 2a reciprocates. In the curing process of the sealing material s, the ultraviolet irradiation unit 3 is above the liquid crystal display panel 1 of the carrier ST Further, in the Y direction 1 , the ultraviolet ray irradiation unit 3 is in the central position in the width direction (see the sixth figure) and the predetermined position of the panel P (the linear sealing position extending in the x direction formed between the lower substrate W1), ultraviolet rays The irradiation unit 3 shifts the outer line in the γ direction, and 'the laser unit 3 reciprocates along the x direction at the position where the movement in the γ direction has stopped. In addition, the ultraviolet ray (scan) 密封 sealing material s fine The state is reciprocating along the χ direction, and the linear sealing material S extending in the X direction when the 曰檨 曰檨 曰檨 曰檨 此 此 此 此 此 此 此 使 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线 直线Fig. 9 is a view showing the ultraviolet irradiation unit 3. As shown in Fig. 31 and Fig. 2, the ultraviolet irradiation unit 3 has a casing 30 which is fixed to the lower surface of the mounting member 23 in the X direction. Under the link plate 31 The array 32 is arranged along the X direction. Each of the plurality of illumination modules (forty in the present embodiment) has a plurality of illumination modules (there are eight in the present embodiment). 201038384 Ultraviolet light-emitting diodes. The light-emitting diode LED is an example of an optical element. As shown in the seventh figure, each of the illumination modules 32 has a circuit board 33 on which a series of eight ultraviolet light-emitting one-pole LEDs are arranged along the X direction. The diodes are connected to the circuit board %. The circuit board 33 of each of the illumination modules 32 is fixed to the lower surface of the connecting plate 31 by bolts 34. At this time, the ultraviolet light emitting diode LEDs that are arranged and connected are located under Side 'and eight UV LEDs are arranged along the X direction. Further, the adjacent illumination modules 32 are positioned such that the ultraviolet light-emitting diodes LEDs between the adjacent circuit boards 33 are arranged in a line shape at equal intervals in the meandering direction. Therefore, in the present embodiment, three hundred and twenty ultraviolet light-emitting diode LEDs are arranged in a line shape at equal intervals along the χ direction. The hemispherical lens % is disposed on the lower side of each of the ultraviolet light emitting diode LEDs which are arranged in a straight line and connected to the circuit board 33. The ultraviolet rays emitted from the ultraviolet light emitting diode LEDs corresponding to the respective hemispherical lens % are incident on the respective hemispherical lenses. Further, each of the hemispherical lenses 35 suppresses the diffusion of the incident ultraviolet rays 并使 and causes the ultraviolet rays to be emitted downward. The cylindrical face lens 36 covering the entire eight hemispherical lenses 35 is disposed along the X direction on the lower side of the eight hemispherical lenses 35 disposed corresponding to the respective illumination modules 32. The outer hemispherical lens 35 is emitted and diffused, and the outer line is incident on the cylindrical lens 36. The cylindrical lens 36 condenses the ultraviolet rays incident from the respective hemispherical lenses 35 toward the γ direction and emits light which is integrated into the Μ shape. ^ Μ 12 201038384 In detail, as shown in the eighth diagrams (8) and (b), the ultraviolet rays UV emitted from the respective ultraviolet light-emitting diode LEDs are respectively diffused by the hemispherical lens 35 disposed directly below. Further, the ultraviolet rays UV emitted from the respective hemispherical lenses 35 converge in the Y direction by the cylindrical lens 36 and are gathered into an elliptical shape. Thereby, the irradiation region τ of the ultraviolet ray UV emitted from each of the ultraviolet ray-emitting diodes on the upper substrate W2 has a long elliptical shape having a long axis in the χ direction. Further, the end portions (overlapping regions) in the long-axis direction of the respective irradiation regions τ overlap each other, and thus the light-irradiating surface SF extending linearly in the z-direction is formed. In other words, the ultraviolet ray UV emitted from each of the ultraviolet ray-emitting diodes is linear ultraviolet ray (i.e., linear light beam LB) extending in the x-direction (left-right direction), and is irradiated onto the upper substrate W2. The light irradiation surface sf of the linear light beam LB is a set of a plurality of irradiation regions τ. In this case, the illuminance of the light-irradiating surface SF (i.e., the illuminance on each of the irradiation regions τ) is the highest at the portion where the ultraviolet rays UV emitted from the respective ultraviolet-emitting diode LEDs converge most toward the Y direction. Therefore, the portion having the highest illuminance in each of the illuminating regions τ is the central portion of the optical axis of each ultraviolet ray UV that has been emitted from each of the ultraviolet ray-emitting diode LEDs, that is, the central portion of each of the irradiation regions T. Further, in the overlapping region where the ultraviolet rays UV emitted from the adjacent ultraviolet light-emitting diode LEDs overlap, the amount of light that converges in the Y direction is small, so that the illuminance is not high and is minimized. Therefore, in the linear light beam LB emitted from the ultraviolet irradiation unit 3, as shown in the ninth figure, when the arrangement interval of the ultraviolet light emitting diode LEDs along the X direction is Pd, there is a maximum 照 of illuminance. As a result, the linear beam LB is illuminating in the X direction when the arrangement interval is pd. 13 201038384 The surface SF has an illuminance not large 峰值 (peak) and a minimum 谷 (valley), and the illumination is uniform. The respective hemispherical lenses 35 and the cylindrical lens 36 of the (four) group 32 are held by the holding member 40, and the holding members 4 are attached to the circuit board 33 in the χ direction. The holding member 4 () is attached to the circuit board 33 on the lower surface 34 of the circuit board 33 which is fixed to the connecting plate 31 by bolts 34. A receiving groove 41 is recessed in the lower surface of the holding member 4G in the meandering direction, and the receiving groove 41 accommodates the cylindrical lens %. Further, the through hole 42 is formed at equal intervals in the inner bottom surface of the housing groove 41 at a position corresponding to each of the hemispherical lenses. The straight portion of the through hole 42 is smaller than the diameter of the hemispherical lens 35, and the portion of each of the hemispherical lenses 35 of the ultraviolet ray-emitting diode LEDf is placed in the through hole 42. Further, when the holding member 4 is fixed to the circuit board %, the hemispherical lens 35 is sandwiched and fixed between the holding member 4A and the ultraviolet light emitting diode LED disposed to be connected to the circuit board 33. C.) The pair of falling prevention plates 43 are disposed along the γ direction on the lower surface of the holding member 4G. The pair of fall prevention plates 43 are attached to the holding member 40 by the screw inspection when the holding member 4 is attached to the lower surface of the circuit board 33 by the bolts 34. Each of the pair of fall prevention plates 43 has an elastic locking claw 43a which is disposed to face each other with a predetermined interval therebetween. Each of the elastic latching claws 43a locks the cylindrical lens 100 accommodated in the housing groove 41 from the lower side to prevent the cylindrical lens 36 from coming off the receiving groove 41. 14 201038384 Next, the electrical structure of the ultraviolet irradiation device 1 will be described based on the eleventh diagram. In the eleventh diagram, the ultraviolet irradiation device 1 includes a control device 5 (the N control device 50 is composed of, for example, a microcomputer, and includes a central processing unit (CPU) 50a, R〇M50b for storing the control program, and a calculation result of the temporary memory CPU 50a. The RAM 50C and the input/output circuit 50d, wherein the control program is used to cause the CPU 50a to perform various processing operations, for example, to irradiate the linear beam LB to the sealing material S. The control device 50 is transmitted as an optical element driving device. The ultraviolet light emitting diode drive circuit 51 is connected to each of the ultraviolet light emitting diode LEDs of the ultraviolet light irradiation unit 3. The control device 50 outputs the light emission control signals of the respective ultraviolet light emitting diodes LED to the ultraviolet light emitting diode drive circuit 51, The light emission of each of the ultraviolet light emitting diode LEDs is controlled. The control device 50 is connected to the two gantry motors M2 that drive the pair of front and rear gantry main bodies 2a via the gantry motor drive circuit 52. The control device 50 outputs the gantry motor drive circuit 52. The drive control signals of each gantry motor M2 are used to control the driving of each gantry motor M2. 2 (gantry main body 2a), gantry motor drive circuit 52, and gantry motor M2 are examples of the first moving device of the present invention. The control device 50 is connected to the unit provided in the gantry main body 2a via the unit motor drive circuit 53. Motor M3. The control device 5 turns to the unit motor, and the drive circuit 53 rotates the drive control signal of the unit motor M3 to control the drive of the unit motor M3. The unit motor drive circuit 53 and the unit horse 15 201038384 reach M3 is the second of the present invention. An example of a mobile device. W In this example, the control device 50 transmits the front and back of the motor M3 through the unit motor drive circuit, thereby making the ultraviolet irradiation unit for the dragon's body 2a. The distance of one-half of the distance P d reciprocates along the χ direction. Therefore, the light-irradiating surface of the linear light beam lb irradiated by the m-ray irradiation unit 3 is aligned with the sealing material s of the liquid crystal display panel p, and is disposed. The distance of the interval Pd is reciprocated along the x direction. The light irradiation surface SF of the ? beam LB reciprocates in the X direction on the linear sealing material S. The control device 50 The carriage motor drive circuit 54 is connected to the bracket f up to M1. The control unit* 50 shawl motor drive circuit 54 outputs a dry Mi _ move (four) signal to (four) support (four) up to (4) drive bracket 14, bracket The motor drive circuit 54 and the carriage motor are an example of the third moving device of the present invention. I;. Further, the control device 50 is connected to the image processing device %. The liquid indicating panel p is formed with the alignment mark claws. Used to = the alignment of the board P with respect to the stage ST. The riding position mark will be taken by the registration camera CA set at 55^1^"^. Image processing device Image resource = if CA input the map material of the registration mark, according to the liquid (four) display panel? The offset is set to 5 U out of the county. The manufacturing device 5 is connected to the substrate moving device 9. The control device 5 生成 generates a substrate shift based on the offset calculated by the image processing device 55. The root axis moving device 9 makes the alignment servo A (four), the substrate γ direction or the two _ upper: = 7: toward: direction, offset. The surface is turned, It eliminates the control device 50 connected to the gantry position detection sense _

,50根據來自龍門架位置檢測感測器61的檢: Ϊ 架,^(紫外線照射單元3)各個時^ 的方向的位置。例如:控制裝i 50以預設的龍門架 ^體以(紫外線照射單元3)的起始位置(homeposition^ 基準檢測現在的位置。 控制裝置50連接到托架位置檢測感測器62,以輸 入來自托架位置檢測感測器62的檢測信號。控制裝置 5〇根據來自托架位置檢測感測器62的檢測信號,來檢 測與托架14 一起在X方向往復移動的照度感測器15各 個時候的X方向的位置。 控制裝置50連接到單元位置檢測感測器63,輸入 來自單元位置檢測感測器63的檢測信號。控制裝置50 根據卞自單元位置檢測感測器63的檢測信號,來檢測 藉由單元馬達M3在X方向往復移動的紫外線照射單元 3各個時候在X方向的位置(紫外線照射單元3在X方 向相對於載台ST的相對位置)。 其次’說明上述般構成的紫外線照射裝置1的動作。 [起始設定] 17 201038384 在對直線狀密封材料S照射直線狀光束LB之際, 必須將直線狀光束在寬度方向的中心線Lox(照度在寬 度方向的峰值位置)對準直線狀密封材料s在寬度方向 的中心線。藉此,能進行能量效率佳的紫外線照射,因 而能減少消耗電力、縮短照射時間。 然而,無法以目視正確判斷直線狀光束LB在寬度 方向的中心線Lox。因此,在習知技術方面,為求保險 起見,必須加長照射時間,以免產生未硬化部分,所以 難以做到消耗電力的減少、照射時間的縮短。 因此’使從紫外線照射單元3出射在χ方向延伸的 直線狀光束LB照射到同樣地在χ方岐伸的直線狀密 封材料S時’希望正確掌握麵狀光束lb在寬度方向 的此時’—般如以圖所示,直線狀光束 LB=射:SF上的照度在通過其線寬D的中心位置 PO的線(中心線L0X)上的部分成為最高。 然而,例如由於紫外線昭私 # “、、射早兀3的機械性誤差 等,直線g束LB的巾錢置p 元3在寬度方向的中心位置Puq 。興m、射早50 is based on the position from the gantry position detecting sensor 61: truss, ^ (ultraviolet illuminating unit 3) in each direction. For example, the control device 50 detects the current position with the preset position of the gantry frame (the ultraviolet irradiation unit 3) (the home position is determined by the home position). The control device 50 is connected to the carriage position detecting sensor 62 for input. The detection signal from the carriage position detecting sensor 62. The control device 5 detects each of the illuminance sensors 15 that reciprocate in the X direction together with the carriage 14 based on the detection signal from the carriage position detecting sensor 62. The position of the X direction at the time. The control device 50 is connected to the unit position detecting sensor 63, and inputs a detection signal from the unit position detecting sensor 63. The control device 50 detects the detection signal of the sensor 63 based on the unit position detecting, The position of the ultraviolet irradiation unit 3 that reciprocates in the X direction by the unit motor M3 is detected in the X direction (the relative position of the ultraviolet irradiation unit 3 in the X direction with respect to the stage ST). Next, the ultraviolet rays of the above-described configuration are described. The operation of the irradiation device 1. [Start setting] 17 201038384 When the linear sealing material S is irradiated with the linear beam LB, the linear beam must be in the width. The center line Lox (the peak position of the illuminance in the width direction) is aligned with the center line of the linear sealing material s in the width direction. Thereby, energy-efficient ultraviolet irradiation can be performed, so that power consumption can be reduced and the irradiation time can be shortened. However, the center line Lox of the linear beam LB in the width direction cannot be correctly judged visually. Therefore, in the conventional art, in order to be safe, it is necessary to lengthen the irradiation time so as to avoid an unhardened portion, so that it is difficult to consume power. Therefore, the linear light beam LB which is emitted from the ultraviolet ray irradiation unit 3 and extends in the χ direction is irradiated to the linear sealing material S which is similarly stretched in the χ direction, and it is desired to correctly grasp the planar light beam lb. At this time in the width direction, as shown in the figure, the portion of the linear beam LB = shot: SF on the line passing through the center position PO of the line width D (center line L0X) becomes the highest. For example, due to the mechanical error of the ultraviolet ray, and the mechanical error of the ray 3, the line g LB is placed at the center position Puq in the width direction. m, early shoot

Hi二佳的紫外線照射,進而減 少祕電力驗照射時間’而必 的中心線Lox的位置(中心位 直線狀光束 準直線狀密封材料S的中心線置p°),將該中心線Lox對 因此’事前已檢測無法以目Hi two good ultraviolet radiation, and then reduce the secret electric power inspection time 'and the position of the center line Lox (the center line of the linear straight beam quasi-linear sealing material S is set to p °), the center line Lox 'I have been unable to detect beforehand

的中心位置Po。以下,C的直線狀光束LB 康弟十一圖所示控制裝置50 18 201038384 的處理動作的流程圖,來說明如何檢測從紫外線照射單 元3出射的直線狀光束LB中心線Lox的位置。 首先,控制裝置50驅動龍門架馬達M2,使龍門架 主體2a從預設的起始位置開始沿著γ方向移動,直到 ' 設於龍門架主體2a的紫外線照射單元3在寬度方向的中 心位置Puo與檢測窗11的中心位置Pwo —致為止(步驟 S1-1)。此時,控制裝置50(CPU50a)將來自龍門架位置 檢測感測器61的檢測信號加以輸入,計算龍門架主體 2a(亦即紫外線照射單元3)的起始位置起的各個時候的 移動距離。 此外,控制裝置50判別紫外線照射單元3在寬度 -- 方向的中心位置Puo是否吻合檢測窗11的中心位置The central location of Po. Hereinafter, a flow chart of the processing operation of the control device 50 18 201038384 shown in the linear beam LB of C, which is shown by the control device 50 18 201038384, will explain how to detect the position of the linear beam LB center line Lox emitted from the ultraviolet irradiation unit 3. First, the control device 50 drives the gantry motor M2 to move the gantry main body 2a from the preset starting position in the γ direction until the center position of the ultraviolet ray irradiation unit 3 provided in the gantry main body 2a in the width direction. It is the same as the center position Pwo of the detection window 11 (step S1-1). At this time, the control device 50 (CPU 50a) inputs the detection signal from the gantry position detecting sensor 61, and calculates the moving distance of each time from the start position of the gantry main body 2a (i.e., the ultraviolet irradiation unit 3). Further, the control device 50 discriminates whether or not the center position Pu of the ultraviolet irradiation unit 3 in the width-direction coincides with the center position of the detection window 11.

Pwo(步驟Sl-2^此外,從起始位置到檢測窗u中心位 置Pwo為止的距離(檢查距離)預先被求取,並預先記憔 於控制裝置50的R〇M50b。因此,控制裝置50能藉: 比較移動距離與檢查距離,來判別紫外線照射單元3 〇 中心位置Puo是否吻合檢測窗11的中心位置pw〇。 此外,當檢測窗11的中心位置Pwo與紫外線照射 單元3的中心位置Puo不吻合時(步驟si-2中為否時), 控制裝置50返回步驟S1-1,使龍門架主體2a移動,直 到中心位置Pwo,Puo吻合為止。 當龍門架主體2a的移動距離到達檢查距離時(步驟 S1 -2中為是)’亦即’當紫外線照射單元3的中心仅置 Puo吻合檢測窗η的中心位置Pw〇時’控制裝置5〇停 19 201038384 止龍門架馬達从2, S1-3) 〇 以使龍門架主體2a的移動停止(步驟 设剌裝置50控制紫外線發光_ 路51,使紫外線照射單元3所有的動電 LED菸氺,、任I線發光二極體 驟S1:4)。使直線狀光束⑶朝檢測窗11出射(步 接著,控制裝置50驅動托架馬達M1 ^導軌U的前端移動(往動)到後端為止 照度感測器15在導轨13上往動的期間在) 15a的移動軌跡上,檢測經由檢測窗u入射入、孔 的直線狀光束LB的光照射面SF的照度(步驟s = 如:照度感測H 15在人射孔15a的移動執跡上 = 位置檢測直線狀光束LB的照度(或是也可以在移 上連續檢測直線狀光束LB的照度)。此外,控制裝跡 在照度感測器15到達另一端之前直根據來 0 位置檢測感測器62的檢測信號與來自照度感測器>、、 照度檢測信號,在入射孔15a的移動軌跡上的各位= 取直線狀光束LB的光照射面SF的照度並纪求 RAM50c(步驟Sl-ό、S1-7)。 …、又’〜憶於 當照度感測器15到達另一端時(在步驟si_7 是),控制裝置50使托架馬達Ml停止(步驟S1_8) 4 次,控制裝置50判斷是否已使龍門架主體2a(紫外)線^ 射單元3的中心位置Puo)從檢測窗η的中心位置Pw'、 往前側方向(反Y方向側)微動預設的規定次數(步2 201038384 S1-9)。在尚未使龍門架主體2a微動的情況(步驟Sl-9 中為否),控制裝置50驅動龍門架馬達M2’使龍門架主 體2a朝前侧方向微動預設的距離(本實施形態中是直線 狀光束LB的線寬D的十分之一的距離)(步驟S1-10)。 然後,控制裝置50移到步驟S1-5 ’驅動托架馬達Ml 反轉,使托架14從導軌13的後端移動(復動)到前端。 藉此,照度感測器15在從中心位置PW0往前側方 向(反Y方向側)偏離預設的距離所到的位置上,在導軌 13上復動。此外,在該復動的期間,照度感測器15在 入射孔15a的移動執跡上的各位置,檢測經由檢測窗11 入射入射孔15a的直線狀光束LB的光照射面SF的照 度。此外,控制裝置50與前述同樣地求取照度感測器 15在入射孔15a移動執跡上的各位置的照度,並記憶於 RAM50c(步驟 Sl-6、S1-7)。 以後’同樣的動作一直進行到使龍門架主體2a朝前 側方向微動規定次數為止。此外,在前侧方向上的複數 個偏差位置交互進行托架14的往復動作的期間,直線 狀光束LB的照度沿著X方向被檢測。當朝前側方向的 微動進行了規定次數時(步驟S1_9中為是),控制裝置50 會使龍門架主體2a(紫外線照射單元3的中心位置Pu0) 從檢測窗11的中心位置Pw〇朝後側方向方向侧)微動 預没的距離(本實施形態中為直線狀光束LB的寬度的十 分之一的距離)(步驟Sl-ii)。 接著,控制裝置50驅動托架馬達M1正轉,使托架 201038384 14從導軌13的前端往動到後端為止(步驟si_l2)(在托架 14位2導軌13的後端的情況’使托架14復動到導執 13的前端為止)。藉此’照度感測器15在從中心位置Pwo 朝後側方向(Y方向側)偏離預設的距離所到的位置’在 導軌13上復動。此外,在該往動的期間’照度感測器 在入射孔15 a的移動軌跡上的各位置,檢測經由檢測 ® 11入射該入射孔15a的直線狀光束lb的光照射面 SF的照度。此外,控制裝置5〇在照度感測器15到達另 一端之前’ 一直根據來自托架位置檢測感測器62的檢〇 測信號以及來自照度感測器15的照度檢測信號,在入 射孔15a移動軌跡上的各位置求取直線狀光束lb的光 照射面SF的照度,並記憶於RAM5〇c(步驟SM3、 S1-14)。 當照度感測器15到達另一端時(步驟$ 1 _ 14中為 是),控制裝置50會使托架馬達Ml停止(步驟SM5)。 其次’控制裝置50判斷是否已使龍門架主體2a(紫外線 照射單元3的中心位置Puo)從檢測窗11的中心位置pw〇 朝後侧方向(Y方向側)微動預設的規定次數(步驟U S1-16)。如果未達規定次數(步驟S1-16中為否),則斤制 裝置50驅動龍門架馬達M2’使龍門架主體2a朝&側 方向進一步微動預設的距離(步驟si-11)。 此外,控制裝置50移到步驟S1-12,驅動托架 Ml反轉,使托架14從導執13的後端復動到前端為止。 以後,同樣的動作一直進行到使龍門架主體2a朝後 22 201038384 側方向微動規定次數為h此外,在後侧方向上的複數 個偏差位置交互進行托架14的往復動作的期間,直線 狀光束lb的照mx方向被檢測。當純侧方向的 微動進行了規定次數時(步驟S1_16中為是),控制裝置 50結束檢測具有規定寬度的直線狀光束lb(光照射面 SF)的照度,並使龍門架主冑2a移動到起始 驟 S1-17)。 ΟPwo (Step S1-2) Further, the distance (inspection distance) from the start position to the detection window u center position Pwo is obtained in advance, and is recorded in advance in the R? M50b of the control device 50. Therefore, the control device 50 It is possible to compare the moving distance and the inspection distance to determine whether the center position Pu of the ultraviolet irradiation unit 3 吻合 matches the center position pw of the detection window 11. Further, when the center position Pwo of the detection window 11 and the center position of the ultraviolet irradiation unit 3 are Puo When there is no match (when step si-2 is NO), the control device 50 returns to step S1-1 to move the gantry main body 2a until the center position Pwo and Puo match. When the moving distance of the gantry main body 2a reaches the inspection distance (YES in step S1 - 2) 'that is, 'when the center of the ultraviolet irradiation unit 3 is only placed at the center position Pw of the Puo matching detection window η', the control device 5 stops 19 201038384 The gantry motor is from 2, S1 -3) 〇 to stop the movement of the gantry main body 2a (step setting device 50 controls the ultraviolet ray _ path 51, so that all the electroluminescent LED soot of the ultraviolet ray irradiation unit 3, and any I-line illuminating diode step S1: 4). The linear beam (3) is emitted toward the detection window 11 (stepwise, the control device 50 drives the carriage motor M1 to move the front end of the guide U to the rear end until the illuminance sensor 15 moves on the guide rail 13 On the movement trajectory of 15a, the illuminance of the light irradiation surface SF of the linear light beam LB incident through the detection window u is detected (step s = eg, the illuminance sensing H 15 is on the movement of the human perforation 15a) = position detects the illuminance of the linear beam LB (or the illuminance of the linear beam LB can also be continuously detected on the shift). In addition, the control track detects the sensing based on the 0 position before the illuminance sensor 15 reaches the other end. The detection signal of the device 62, the illuminance sensor>, and the illuminance detection signal, the bits on the movement trajectory of the incident hole 15a = the illuminance of the light irradiation surface SF of the linear light beam LB, and the RAM 50c is obtained (step S1- ό, S1-7), and again, when the illuminance sensor 15 reaches the other end (YES in step si_7), the control device 50 stops the carriage motor M1 (step S1_8) 4 times, and the control device 50 Judging whether the gantry main body 2a (ultraviolet) line unit 3 has been Center position a predetermined number of times Puo) η from the center position of the detection window Pw ', forward side in the direction (counter-Y direction side) of the jog preset (step 2 201038384 S1-9). In the case where the gantry main body 2a has not been slightly moved (NO in step S1-9), the control device 50 drives the gantry motor M2' to slightly move the gantry main body 2a toward the front side by a predetermined distance (in this embodiment, a straight line) A distance of one tenth of the line width D of the beam LB) (step S1-10). Then, the control device 50 moves to step S1-5' to invert the drive carriage motor M1 to move (reverse) the carriage 14 from the rear end of the guide rail 13 to the front end. Thereby, the illuminance sensor 15 is moved back on the guide rail 13 at a position deviated from the center position PW0 toward the front side (the reverse Y direction side) by a predetermined distance. Further, during this double shift, the illuminance sensor 15 detects the illuminance of the light irradiation surface SF of the linear light beam LB incident on the incident hole 15a via the detection window 11 at each position on the movement track of the entrance hole 15a. Further, the control device 50 obtains the illuminance at each position where the illuminance sensor 15 moves on the entrance hole 15a in the same manner as described above, and stores it in the RAM 50c (steps S1-6, S1-7). In the following, the same operation is performed until the gantry main body 2a is slightly moved forward by a predetermined number of times. Further, while the plurality of deviation positions in the front side direction alternately reciprocate the carriage 14, the illuminance of the linear light beam LB is detected along the X direction. When the jog in the front side direction is performed a predetermined number of times (YES in step S1_9), the control device 50 causes the gantry main body 2a (the center position Pu0 of the ultraviolet irradiation unit 3) to be moved from the center position Pw of the detection window 11 toward the rear side. The direction direction side is a distance that is slightly preliminarily (in the present embodiment, a distance of one tenth of the width of the linear light beam LB) (step S1 - ii). Next, the control device 50 drives the carriage motor M1 to rotate forward, so that the bracket 201038384 14 moves from the front end of the guide rail 13 to the rear end (step si_12) (in the case of the bracket 14 position 2, the rear end of the guide rail 13) 14 is repeated until the front end of the guide 13). Thereby, the illuminance sensor 15 is moved back on the guide rail 13 at a position 'from the center position Pwo toward the rear side direction (the Y-direction side) by a predetermined distance. Further, during the forward movement period, the illuminance of the light-irradiating surface SF of the linear beam lb incident on the incident hole 15a via the detection ® 11 is detected at each position on the movement locus of the incident hole 15a. Further, the control device 5 ' always moves in the incident hole 15a based on the detection signal from the carriage position detecting sensor 62 and the illuminance detecting signal from the illuminance sensor 15 before the illuminance sensor 15 reaches the other end The illuminance of the light-irradiating surface SF of the linear beam lb is obtained at each position on the track, and is stored in the RAM 5〇c (steps SM3, S1-14). When the illuminance sensor 15 reaches the other end (YES in step $1_14), the control device 50 stops the carriage motor M1 (step SM5). Next, the control device 50 determines whether or not the gantry main body 2a (the center position Puo of the ultraviolet irradiation unit 3) has been jogged from the center position pw of the detection window 11 toward the rear side (the Y direction side) by a predetermined number of times (step U). S1-16). If the predetermined number of times has not elapsed (NO in step S1-16), the handling device 50 drives the gantry motor M2' to further slightly move the gantry main body 2a toward the & side direction by a predetermined distance (step si-11). Further, the control device 50 moves to step S1-12, and the drive tray M1 is reversed to cause the carriage 14 to move back from the rear end of the guide 13 to the front end. Thereafter, the same operation is performed until the gantry main body 2a is slightly moved toward the rear 22 201038384 side by a predetermined number of times h, and the linear beam is alternately performed during the reciprocation of the carriage 14 at a plurality of deviation positions in the rear direction. The lm is detected in the mx direction. When the fine movement in the pure side direction is performed a predetermined number of times (YES in step S1_16), the control device 50 ends the detection of the illuminance of the linear light beam lb (light irradiation surface SF) having a predetermined width, and moves the gantry main 胄 2a to Start step S1-17). Ο

接著’控制裝置50求取直線狀光束LB光照射面 SF如第十圖所示的照度分布ID,從該所求得的照度分 布求取照度最*的中心線Lgx的位置(中心位置ρ〇χ步 驟 S1-18)。 亦即’控制裝置50判定照度最高的中心線L〇x(直 線狀光束LB的中心位置p〇)是否與紫外線照射單元3 的中心位置Puo —致,如果不一致,則求取直線狀光束 LB的中心位置P〇相對於紫外線照射單元3的中心位置 Puo來說前後偏離了多少。此外,控制裝置5〇設定在步 驟S1-18所求得的直線狀光束lb的中心位置p〇作為紫 外線照射單元3的新中心位置Pu〇,記憶於RAM5〇c(步 驟S1-19),並結束起始設定的處理動作。 因此’從紫外線照射單元3出射的直線狀光束LB 的照度最高的中心線Lox(中心位置Po)被設定作為紫外 線照射單元3的新中心位置puo。因此,紫外線照射裝 置1以該所設定的紫外線照射單元3的新中心位置Puo 為基準控制龍門架主體2a的移動,藉此,能將從紫外線 23 201038384 照射早7L 3出射的直線狀光束LB的照度最高的部分總 是精度良好地照射到密封材料8。控制裝置50是本發明 的中心位置設定裝置的一個例子。 [紫外線照射] 其次,依據第十三圖所示繪示控制裝置50處理動 作的流程圖來說明以下的處理動作:將自紫外線照射單 兀3出射在X方向延伸的直線狀光束LB照射到直線狀 密封材料S,使密封材料S紫外線硬化,進而貼人 顯示面板P的下基板W1與上基板W2。 口 首先,控制裝置50將紫外線照射單元3配置於與 形成於液晶顯示面板p的直線狀密封材料s正對的上方 位置,該液晶顯示面板P已載置於載台ST並定位,該 直線狀密封材料S形成於液晶顯示面板p的下基板W1 與上基板W2之間。(步驟S2-1)。 亦即,控制裝置50驅動各個龍門架馬達m2藉此使 位於起始位置的一對龍門架主體2a沿著γ方向移動, 以使設於各龍門架主體仏的各紫外線照射單元3的中心 位置Puo,移動到與各自所對應的直線狀密封材料s正 對的上方位置為止,該直線狀密封材料s形成於下基板 W1與上基板W2之間。 當各紫外線照射單元3的中心位置Puo正對各自所 對應的直線狀密封材料S時,控制裝置5〇驅動紫外線 發光二極體驅動電路51,使各照射模組32的所有紫外 線發光二極體LED發光。(步驟S2-2)。 24 201038384 已從所有紫外線發光二極體LED出射的紫外線υν 透過各半球透鏡35及圓柱面透鏡36形成為在一方向(χ 方向)延伸的直線狀光束LB。各紫外線照射單元3將該 直線狀光束LB照射到液晶顯示面板p(直線狀密封材料 S),使密封材料S硬化。 控制裝置50對照射時間進行計時,將直線狀光束 LB照射到液晶顯示面板p(直線狀密封材料…預設的時 ΟNext, the control device 50 obtains the illuminance distribution ID as shown in the tenth diagram of the linear light beam LB light irradiation surface SF, and obtains the position of the center line Lgx of the illuminance most * from the obtained illuminance distribution (center position ρ 〇 χStep S1-18). That is, the control device 50 determines whether or not the center line L〇x (the center position p〇 of the linear beam LB) having the highest illuminance is coincident with the center position Puo of the ultraviolet irradiation unit 3, and if not, the linear beam LB is obtained. The center position P〇 is deviated from the center position Puo of the ultraviolet irradiation unit 3. Further, the control device 5 sets the center position p〇 of the linear light beam lb obtained in step S1-18 as the new center position Pu〇 of the ultraviolet irradiation unit 3, and stores it in the RAM 5〇c (step S1-19), and End the processing of the initial setting. Therefore, the center line Lox (center position Po) having the highest illuminance of the linear light beam LB emitted from the ultraviolet irradiation unit 3 is set as the new center position puo of the ultraviolet irradiation unit 3. Therefore, the ultraviolet irradiation device 1 controls the movement of the gantry main body 2a with reference to the new center position Puo of the set ultraviolet irradiation unit 3, whereby the linear beam LB emitted from the ultraviolet rays 23 201038384 can be irradiated 7 L 3 early. The portion having the highest illuminance is always irradiated to the sealing material 8 with high precision. The control device 50 is an example of the center position setting device of the present invention. [Ultraviolet irradiation] Next, a description will be given of a processing operation in which the linear light beam LB extending from the ultraviolet irradiation unit 3 and extending in the X direction is irradiated to the straight line in accordance with the flowchart of the processing operation of the control device 50 shown in FIG. The sealing material S is cured by ultraviolet rays of the sealing material S, and is attached to the lower substrate W1 and the upper substrate W2 of the display panel P. First, the control device 50 arranges the ultraviolet irradiation unit 3 at an upper position facing the linear sealing material s formed on the liquid crystal display panel p, and the liquid crystal display panel P is placed on the stage ST and positioned. The sealing material S is formed between the lower substrate W1 and the upper substrate W2 of the liquid crystal display panel p. (Step S2-1). That is, the control device 50 drives the respective gantry motors m2 to thereby move the pair of gantry main bodies 2a at the home position in the γ direction so that the center positions of the respective ultraviolet ray irradiation units 3 provided in the main gantry bodies 仏Puo is moved between the lower substrate W1 and the upper substrate W2 until it moves to the upper position facing the corresponding linear sealing material s. When the center position Puo of each ultraviolet irradiation unit 3 faces the corresponding linear sealing material S, the control device 5 drives the ultraviolet light emitting diode driving circuit 51 to make all the ultraviolet light emitting diodes of the respective illumination modules 32. LED lighting. (Step S2-2). 24 201038384 Ultraviolet light υν emitted from all of the ultraviolet light emitting diodes is formed as a linear light beam LB extending in one direction (χ direction) through each of the hemispherical lenses 35 and the cylindrical lens 36. Each of the ultraviolet irradiation units 3 irradiates the linear light beam LB onto the liquid crystal display panel p (linear sealing material S) to cure the sealing material S. The control device 50 counts the irradiation time and irradiates the linear light beam LB to the liquid crystal display panel p (linear sealing material... preset time Ο

間(照射時間)。(步驟S2-3)。亦即,在X方向延伸的直 線狀光束LB在同樣在X方向延伸的直線狀密封材料$ 的正上方位置照射,使在χ方向延伸的直線狀密封材料 S在短時間内硬化。 此時’在照射時間到達預設的時間為止前的期間(步 驟幻-3。中為否)’控制裝置5〇驅動單元馬達驅動電路 53使各單元馬達Μ3正反旋轉,使各紫外線照射單元3 相對於龍Η架2(及載台ST)在規定麟(本實施形態中為 =置間隔Pd的二分之—的距離)沿著χ方向往復移動。 二即,使各紫外線照射單元3相對於液晶 顯不面板P沿 者χ方向相對地往復移動(步驟S2_4)。 因此’在X方向延伸的直線狀光束^珥光照射面SF) ' X方向延伸的直線狀密封材料s的正上方位置沿著 :向往復移動。以下’將直線狀光束LB光照射面卯 為「掃描」。該掃描是在前述預設的照射 此外’各紫外線照射單元3的往復移動的速率設定 25 201038384 為移動速率,藉此能在本實施形態中在前述的預設的 照射時間的期間在配置間隔Pd的二分之一的距離往復 二次。 如别所述直線狀光束LB在X方向具有照度不均, 所,4直線狀光束LB沿著X方向的往復移動是用來減 少該照 >度不均而進行的。亦即,直線狀光束LB有照度 不均,该照度不均的最大値及最小値在χ方向以規定間 距(配置間隔Pd)產生。因此,不掃描且將直線狀光束LB 照射到密封材料S時’到達預設的規定累計照度的時間 在最大照度位置與最小照度位置沿著χ方向大不相同。 因此,使直線狀光束LB掃描,在密封材料s上使 直線狀光束LB沿著X方向的照度平均化,藉此使到達 預設的規定累計照度的時間在密封材料8上沿著χ方向 始白於,。 因此 ρ⑽封材料S的所有位置提供規定 外線,而以被最小(谷值)的照度照射的密 封材料s上的位置為基準來設定照射時間。因此,能縮 短照射時間(預設的照射時間)。再者,能使用沿著乂方 向已均勻化的照度將紫外線照射到密封材料s。此外, 本實施形態巾,當黯時_達預 設的規定累計照度的紫外線沿著 日==時預 S的所有位置。 “者x方向照射到密封材料 W2 中:密=== 26 201038384 因而貼合。接著,控制裝置50藉由紫外線發光二極體 =^>電路51關閉所有的紫外線發光二極體LED(步驟 當所有的紫外線發光二極體LED關閉時’控制裝置 5〇判斷紫外線是否已照射到所有的直線狀密封材料 S(步驟S2-6)。如果尚未照射到所有的直線狀密封材料 S(步驟S2-6中為否)’則控制裝置5〇將紫外線照射單元 〇 3配置於與液晶顯示面板p下一新直線狀密封材料s正 對的上方位置後(步驟S2-7),返回步驟S2-2,進行與前 述同樣的處理。 、 當對所有的直線狀密封材料S照射了直線狀光束 LB(步驟S2-6中為是)’則控制裝置50使龍門架主體2a 移動到起始位置後(步驟S2-8),結束一個液晶顯示面板 P的紫外線照射。然後,等待下一新液晶顯示面板p的 紫外線照射。 有的情況下,紫外線照射單元3長時間使用,會導 致各紫外線發光二極體LED的特性(發光能力)改變,因 此可能會出現照度降低的紫外線發光二極體led,無法 獲得均勻分布的直線狀光束LB。因此,定期檢查各紫 外線發光二極體LED的照度。 以下,說明該檢查方法。首先,控制裝置使龍 門架主體2a移動’直到紫外線照射單元3的中心位置 Puo —致於檢測窗11的中心位置Pwo為止。 27 201038384 其次,控制裝置50藉由紫外線發光二極體驅動 路51使紫外線照射單元3的所有的紫外線發 LED發光,以使直線狀光束LB朝檢測窗n出射一極體 接著,控制裝置50使照度感測器15沿著導執13 往動,在入射孔15a的移動軌跡上檢测透過檢測窗u 入射照度感測器15入射孔15a的直線狀光束的照 度。然後,控制裝置50根據來自扼架位置檢測感 62的檢測信號及來自照度感測器15的照度檢測信號°,Between (irradiation time). (Step S2-3). In other words, the linear light beam LB extending in the X direction is irradiated at a position directly above the linear sealing material $ extending in the X direction, and the linear sealing material S extending in the x direction is hardened in a short time. At this time, 'the period before the irradiation time reaches the preset time (No in step Magic-3.) 'Control device 5〇 drive unit motor drive circuit 53 causes each unit motor Μ3 to rotate forward and backward, so that each ultraviolet irradiation unit 3 With respect to the truss 2 (and the stage ST), the predetermined ridge (the distance of the two-part interval Pd in the present embodiment) reciprocates in the χ direction. That is, each of the ultraviolet ray irradiation units 3 is reciprocally moved relative to the liquid crystal display panel P in the χ direction (step S2_4). Therefore, the position of the straight sealing material s extending in the X direction of the linear beam extending in the X direction is reciprocated along the direction. Hereinafter, the linear beam LB light irradiation surface is "scanned". This scanning is the rate of movement of the reciprocating movement of each of the ultraviolet irradiation units 3 by the preset irradiation. The speed is set to 25 201038384 as the moving rate, whereby the interval Pd can be set during the aforementioned preset irradiation time in the present embodiment. One-half of the distance is reciprocated twice. If the linear beam LB has uneven illuminance in the X direction, the reciprocating movement of the linear beam LB along the X direction is performed to reduce the unevenness of the image. That is, the linear beam LB has illuminance unevenness, and the maximum 値 and minimum 照 of the illuminance unevenness are generated at a predetermined interval (arrangement interval Pd) in the χ direction. Therefore, when the linear beam LB is not irradiated and the linear beam LB is irradiated to the sealing material S, the time to reach the preset prescribed cumulative illuminance is greatly different between the maximum illuminance position and the minimum illuminance position along the χ direction. Therefore, the linear light beam LB is scanned, and the illuminance of the linear light beam LB along the X direction is averaged on the sealing material s, whereby the time until the predetermined prescribed cumulative illuminance is reached is started along the χ direction on the sealing material 8. White,. Therefore, all the positions of the ρ(10) sealing material S provide a prescribed outer line, and the irradiation time is set based on the position on the sealing material s illuminated by the minimum (valley) illuminance. Therefore, the irradiation time (predetermined irradiation time) can be shortened. Further, ultraviolet rays can be irradiated to the sealing material s using the illuminance which has been uniformed in the direction of the crucible. Further, in the towel of the present embodiment, the ultraviolet rays of the predetermined cumulative illuminance which are preset are at all positions of the pre-S when the day ==. "The person x direction is irradiated into the sealing material W2: dense === 26 201038384 and thus fitted. Then, the control device 50 turns off all the ultraviolet light emitting diode LEDs by the ultraviolet light emitting diode = ^ > circuit 51 (step When all of the ultraviolet light emitting diode LEDs are turned off, the control device 5 determines whether or not the ultraviolet rays have been irradiated to all of the linear sealing materials S (step S2-6). If all the linear sealing materials S have not been irradiated (step S2) In the case of -6, the control device 5 sets the ultraviolet irradiation unit 〇3 to the upper position facing the new linear sealing material s of the liquid crystal display panel p (step S2-7), and returns to step S2-. 2. The same processing as described above is performed. When all of the linear sealing material S is irradiated with the linear light beam LB (YES in step S2-6), the control device 50 moves the gantry main body 2a to the home position. (Step S2-8), the ultraviolet irradiation of one liquid crystal display panel P is ended. Then, the ultraviolet irradiation of the next new liquid crystal display panel p is waited for. In some cases, the ultraviolet irradiation unit 3 is used for a long time, which causes each ultraviolet The characteristics (light-emitting ability) of the LEDs are changed, so that the ultraviolet light-emitting diodes with reduced illuminance may be present, and the uniformly distributed linear light beam LB cannot be obtained. Therefore, the illumination of each of the ultraviolet light-emitting diode LEDs is periodically checked. The inspection method will be described below. First, the control device moves the gantry main body 2a until the center position Puo of the ultraviolet irradiation unit 3 is at the center position Pwo of the detection window 11. 27 201038384 Next, the control device 50 is irradiated with ultraviolet rays. The light-emitting diode driving path 51 causes all of the ultraviolet-emitting LEDs of the ultraviolet-irradiation unit 3 to emit light, so that the linear light beam LB is emitted toward the detecting window n, and then the control device 50 causes the illuminance sensor 15 to follow the guide 13 The illuminance of the linear beam incident on the incident aperture 15a of the illuminance sensor 15 through the detection window u is detected on the movement trajectory of the entrance hole 15a. Then, the control device 50 detects the detection signal from the truss position detection sensation 62 and The illuminance detection signal from the illuminance sensor 15°,

I 求取直線狀光束LB在寬度方向的中心位置的照度,亦 即,求取配置於X方向的各紫外線二極體LED的昭产。 如此,控制裝置50判別照度已降低的紫外線發光二極 體 LED。 此外’控制裝置5G判斷在照度已降低的紫外 光二極體LED當中是否有必須更換的紫外線發光二極 體LED。在此,如果不必更換,則控制裝置%I The illuminance at the center position in the width direction of the linear light beam LB is obtained, that is, the visibility of each of the ultraviolet diode LEDs arranged in the X direction is obtained. In this manner, the control device 50 determines the ultraviolet light emitting diode LED whose illuminance has been lowered. Further, the control device 5G judges whether or not there is an ultraviolet light-emitting diode LED which must be replaced among the ultraviolet light-emitting diodes whose illuminance has been lowered. Here, if it is not necessary to replace, the control device%

C 要施加多少的驅動電壓,才使照度已降低的紫外線 二極體LED回到規定照度。此外,控制裝置%藉= 外線發光二極體驅動電路51將所求得的驅動電壓供應 給所對應的紫外線發光二極體LED,藉此使所有夕^ 線發光二極體LED出射相同照度的紫外線。 、 藉此’能連續不斷地將均⑽布的 束L B照射到密封材料s。 m綠狀7b 此外’檢查的結果’當有必須更 極體LED時,控制裝置指定需更換的紫外線么= 28 201038384 LED以及設有該紫外線發光二極體LED的照射模組 32(電路基板33) ’並通知有必要更換。控制裝置%是本 發明的發光能力判定裝置的一個例子。 其次,將本實施形態的紫外線照射裝置丨的優點記 ' 載如下。 , (1)紫外線照射裝置1在直線狀光束LB正對在X方 向延伸的直線狀密封材料S的狀態下,使紫外線照射單 〇 元3相對於龍門架主體2a(及液晶顯示面板p)沿著X方 向在規定距離往復移動。結果,與習知技術相比,能減 少直線狀光束LB沿著X方向的照度不均,因而提升照 射到密封材料S的累計照度的均勻分布性。 - (2)紫外線照射單元3相對於龍門架主體2a(及液晶 . 顯示面板p)在各紫外線發光二極體LED的配置間隔Pd 的二分之一的距離沿著X方向往復移動。因此,直線狀 光束LB的光照射面SF在液晶顯示面板p的密封材料s 上沿著X方向在配置間隔Pd的二分之一的距離往復移 U 動。 因此,能將在X方向在配置間隔Pd具有照度不均 的直線狀光束LB的累§十照度沿者密封材料$的X方向 更加平均化。結果,能將密封材料S的各位置均勻地硬 化,並且不必為了對密封材料S的各位置提供規定累計 照度而以被照射最小照度的位置作為基準運算照射時 間,所以能縮短直線狀光束LB的照射時間,能提高生 產效率。 29 201038384 (3) 使紫外線照射單元3在X方向的往復移動距離成 為紫外線發光二極體LED的配置間隔Pd的二分之一的 距離,極力縮小該移動距離,藉此能將龍門架主體2a 小型化。 (4) 於載置液晶顯示面板P的載台ST貫通形成有沿 著X方向延伸的檢測窗11。再者,於載台ST的下側中 與檢測窗11正對的位置設有照度檢測裝置12,該照度 檢測裝置12具有沿著檢測窗11往復移動的照度感測器 15。在硬化程序的開始前,紫外線照射裝置1使直線狀 光束LB沿著Y方向偏一邊,每逢這個情況就使照度感 測器15沿著X方向往復移動,藉此檢測朝檢測窗11照 射的直線狀光束LB的光照射面SF的照度値。此外,根 據光照射面S F的照度値來求取直線狀光束L B的光照射 面SF的中心位置Po,將該光照射面SF的中心位置Po 設定為紫外線照射單元3的新中心位置Puo。 因此,從紫外線照射單元3出射的直線狀光束LB 中照度最高的中心位置Po設定為紫外線照射單元3的 新中心位置Puo。該設定係不由目視進行,所以高精度 地進行。因此,能將從紫外線照射單元3出射的直線狀 光束中照度最高的中心位置Po以精度總是良好的方式 照射到密封材料S。 (5) 具有在X方向移動的照度感測器15的照度檢測 裝置12設於載台ST的下侧。因此,在直線狀光束LB 朝密封材料S照射之際不會形成妨礙,所以能防止因為 30 201038384 具備照度檢測裝置12而使裝置整體大型化。 (6)紫外線照射裝置1根據在X方向延伸的直線狀光 束LB的中心位置Po的照度,來判定在X方向排列的 各紫外線發光二極體LED的發光能力。因此,能使各紫 外線發光二極體LED的照度均勻分布,或是判斷各紫外 線發光二極體LED的壽命的有無。 此外’上述實施形態也可以做如下變更。 ◎上述實施形態中,使紫外線照射單元3在各紫外 線發光二極體LED的配置間隔Pd的二分之一的距離沿 著X方向在復移動,但是該移動距離不限定於配置間隔 Pd的二分之一。本發明的「使直線狀光束的光照射面或 基板沿著一方向相對移動」這樣的特徵是習知技術中沒 有的特徵。例如:即使移動距離是配置間隔pd的三分 之一,直線狀光束LB的照度不均也比習知技術更低。 較佳為移動距離是配置間隔Pd的二分之一。或是移動 距離也可以是超過配置間隔Pd的二分之一的距離。在 此情況,當使紫外線照射單元3在配置間隔pd的二分 之一的距離的整數(二以上的整數)倍的距離往復移動, 則能更加提高密封材料S在X方向的累計照度均勻分布 性。 ◎上述實施形態中,為了將密封材料8在X方向的 累計照度平均化,而使紫外線照射單元3沿著X方向往 復移動二次。也可以使紫外線照射單元3沿著X方向往 復移動一次或三次以上。 201038384 ◎上述實施形態中,為了將密封材料S在χ方向的 累計照度平均化,使紫外線照射單元3沿著X方向往復 移動。紫外線照射單元3也可以不往復移動,而是使紫 外線照射單元3往動或復動。在此情況,當在預設的照 射時間的期間在配置間隔Pd的二分之一的距離的整數 倍的距離往動或復動時,能將密封材料S在X方向的累 計照度更平均化。 ◎上述實施形態中,以第二移動裝置的單元馬達 M3使滾珠螺桿正反旋轉,藉此使紫外線照射單元3沿 著X方向往復移動。也可以不這樣做’而是以單元馬達 M3使偏心凸輪旋轉,藉由被該馬達M3旋轉的偏心凸輪 使紫外線照射單元3往復移動。 ◎上述實施形態中,使紫外線照射單元3相對於龍 門架主體2a沿著X方向往復移動。也可以不這樣做, 而是將紫外線照射單元3固定於龍門架主體2a,使該龍 門架主體2a相對於載台ST(液晶顯示面板P)在χ方向 往復移動。或是使紫外線照射單元3不能沿著χ方向移 動’使載台ST沿著X方向能移動。在此情況,例如基 板移動裝置9作為第二移動裝置發揮作用,該第二移動 裝置使面板P(載台ST)相對於紫外線照射單元3做相對 移動。 ◎上述實施形態中,當使照度感測器15沿著χ方 向移動並檢測直線狀光束LB光照射面SF的照度時,使 紫外線照射單元3沿著Y方向在直線狀光束LB的寬度 32 201038384 的十分之一的間隔移動。然而,使紫外線照射單元3沿 著Y方向移動的間隔不被限定於直線狀光束LB的寬度 的十分之一的間隔,可以適宜變更。 ◎上述實施形態中,藉由照度感測器15檢測直線 狀光束LB光照射面SF的照度之際’使龍門架主體2a 沿著Y方向微動。也可以不這樣做,而是使設於載台 ST下侧的照度檢測裝置12沿著Y方向微動。C The amount of driving voltage to be applied is such that the ultraviolet LED that has reduced illumination returns to the specified illuminance. In addition, the control device % by the external light-emitting diode driving circuit 51 supplies the obtained driving voltage to the corresponding ultraviolet light-emitting diode LED, thereby causing all the light-emitting diode LEDs to emit the same illumination. Ultraviolet light. Thereby, the bundle L B of the uniform (10) cloth can be continuously irradiated to the sealing material s. m green 7b In addition, 'check result', when there is a need for a more polar LED, the control device specifies the ultraviolet light to be replaced = 28 201038384 LED and the illumination module 32 with the ultraviolet light emitting diode LED (circuit substrate 33) ) 'And notify that it is necessary to replace. The control device % is an example of the luminous ability determining device of the present invention. Next, the advantages of the ultraviolet irradiation device 本 of the present embodiment are described below. (1) The ultraviolet irradiation device 1 causes the ultraviolet irradiation unit unit 3 to be along the gantry main body 2a (and the liquid crystal display panel p) in a state where the linear light beam LB faces the linear sealing material S extending in the X direction. The X direction reciprocates at a predetermined distance. As a result, the illuminance unevenness of the linear beam LB along the X direction can be reduced as compared with the prior art, thereby improving the uniform distribution of the cumulative illuminance irradiated to the sealing material S. - (2) The ultraviolet irradiation unit 3 reciprocates in the X direction with respect to the gantry main body 2a (and the liquid crystal display panel p) at a distance of one-half of the arrangement interval Pd of the respective ultraviolet light-emitting diodes. Therefore, the light-irradiating surface SF of the linear light beam LB reciprocates on the sealing material s of the liquid crystal display panel p in the X direction by a distance of one-half of the arrangement interval Pd. Therefore, the tens of illuminance of the linear light beam LB having the illuminance unevenness at the arrangement interval Pd in the X direction can be more averaged along the X direction of the sealing material $. As a result, the respective positions of the sealing material S can be uniformly hardened, and it is not necessary to calculate the irradiation time with the position at which the minimum illuminance is irradiated as a reference for providing the predetermined illuminance for each position of the sealing material S, so that the linear beam LB can be shortened. The irradiation time can improve production efficiency. 29 201038384 (3) The distance between the reciprocating movement of the ultraviolet irradiation unit 3 in the X direction is one-half of the arrangement interval Pd of the ultraviolet light-emitting diode LED, and the moving distance is reduced as much as possible, whereby the gantry main body 2a can be miniaturization. (4) A detection window 11 extending in the X direction is formed through the stage ST on which the liquid crystal display panel P is placed. Further, an illuminance detecting device 12 having an illuminance sensor 15 that reciprocates along the detecting window 11 is provided at a position facing the detecting window 11 on the lower side of the stage ST. Before the start of the hardening process, the ultraviolet irradiation device 1 deflects the linear light beam LB in the Y direction, and in this case, the illuminance sensor 15 reciprocates in the X direction, thereby detecting the irradiation toward the detection window 11. The illuminance 値 of the light irradiation surface SF of the linear beam LB. Further, the center position Po of the light irradiation surface SF of the linear light beam LB is obtained based on the illuminance 値 of the light irradiation surface SF, and the center position Po of the light irradiation surface SF is set to the new center position Puo of the ultraviolet irradiation unit 3. Therefore, the center position Po having the highest illuminance among the linear light beams LB emitted from the ultraviolet irradiation unit 3 is set to the new center position Puo of the ultraviolet irradiation unit 3. This setting is not performed visually, so it is performed with high precision. Therefore, the center position Po having the highest illuminance among the linear light beams emitted from the ultraviolet irradiation unit 3 can be irradiated to the sealing material S with high precision. (5) The illuminance detecting device 12 having the illuminance sensor 15 moving in the X direction is provided on the lower side of the stage ST. Therefore, when the linear light beam LB is irradiated to the sealing material S, no obstacle is formed. Therefore, it is possible to prevent the illuminance detecting device 12 from being enlarged by the 30 201038384. (6) The ultraviolet irradiation device 1 determines the light-emitting ability of each of the ultraviolet-emitting diode LEDs arranged in the X direction based on the illuminance at the center position Po of the linear beam LB extending in the X direction. Therefore, the illuminance of each of the ultraviolet light emitting diode LEDs can be evenly distributed, or the life of each of the ultraviolet light emitting diode LEDs can be judged. Further, the above embodiment may be modified as follows. In the above-described embodiment, the ultraviolet irradiation unit 3 is moved back in the X direction at a distance of one-half of the arrangement interval Pd of the respective ultraviolet light-emitting diode LEDs. However, the movement distance is not limited to the arrangement interval Pd. One of the points. The feature of "moving the light-irradiating surface of the linear beam or the substrate relatively in one direction" of the present invention is a feature not found in the prior art. For example, even if the moving distance is one third of the arrangement interval pd, the illuminance unevenness of the linear beam LB is lower than that of the prior art. Preferably, the moving distance is one-half of the configuration interval Pd. Or the moving distance may be a distance exceeding one-half of the arrangement interval Pd. In this case, when the ultraviolet irradiation unit 3 is reciprocated by an integer (two or more integers) times the distance of one-half of the arrangement interval pd, the uniform distribution of the integrated illumination of the sealing material S in the X direction can be further improved. Sex. In the above embodiment, in order to average the cumulative illuminance of the sealing material 8 in the X direction, the ultraviolet ray irradiation unit 3 is repeatedly moved twice in the X direction. It is also possible to move the ultraviolet irradiation unit 3 one or more times in the X direction. In the above embodiment, in order to average the cumulative illuminance of the sealing material S in the x direction, the ultraviolet ray irradiation unit 3 is reciprocated in the X direction. The ultraviolet irradiation unit 3 may not move back and forth, but may cause the ultraviolet irradiation unit 3 to move or re-shift. In this case, when the distance of the integral multiple of the distance of one-half of the interval Pd is moved or doubled during the preset irradiation time, the cumulative illuminance of the sealing material S in the X direction can be more averaged. . In the above embodiment, the ball screw is rotated forward and backward by the unit motor M3 of the second moving device, whereby the ultraviolet irradiation unit 3 is reciprocated in the X direction. Instead of doing so, the eccentric cam is rotated by the unit motor M3, and the ultraviolet ray irradiation unit 3 is reciprocated by the eccentric cam rotated by the motor M3. In the above embodiment, the ultraviolet irradiation unit 3 is reciprocated in the X direction with respect to the gantry main body 2a. Instead of doing so, the ultraviolet irradiation unit 3 may be fixed to the gantry main body 2a, and the gantry main body 2a may reciprocate in the x direction with respect to the stage ST (liquid crystal display panel P). Alternatively, the ultraviolet irradiation unit 3 cannot be moved in the x direction to move the stage ST in the X direction. In this case, for example, the substrate moving device 9 functions as a second moving device that relatively moves the panel P (stage ST) relative to the ultraviolet irradiation unit 3. In the above embodiment, when the illuminance sensor 15 is moved in the x direction and the illuminance of the linear beam LB light irradiation surface SF is detected, the ultraviolet irradiation unit 3 is caused to have a width of the linear beam LB along the Y direction 32 201038384 One tenth of the interval moves. However, the interval at which the ultraviolet ray irradiation unit 3 is moved in the Y direction is not limited to the interval of one tenth of the width of the linear light beam LB, and can be appropriately changed. In the above embodiment, when the illuminance sensor 15 detects the illuminance of the linear light beam LB light irradiation surface SF, the gantry main body 2a is slightly moved in the Y direction. Alternatively, the illuminance detecting device 12 provided on the lower side of the stage ST may be slightly moved in the Y direction.

◎上述實施形態中,設有二個龍門架主體2a(二個 紫外線照射單元3),但是也可以適宜變更其數目。 ◎上述實施形態中,於各紫外線照射單元3配置有 十二個照射模組32,但是也可以適宜變更其數目。 ◎上述實施形態中,於各照射模組32的電路基板 33配置連接有八個紫外線發光二極體LED,但是也可以 適宜變更其數目。 ◎上述實施形態中,光照射裝置具體化成為紫外線 照射裝置,但是也可以不應用於使用紫外線發光二極體 LEO的光照射裝置’而是應用於使用發光二極體的光照 射裝置’其中前者的紫外線發光二極體led照射紫外 線,後者的發光二極體出射可見光。 綠;實施形態中’光照射裝置具體减為使紫外 ϊ, ^卜=^%_峨綱線照射裝置 -但是也可以應用於::=== 33 201038384 置。 【圖式簡單說明】 第一圖係本實施形態的紫外線照射裝置的立體圖。 第二圖係該紫外線照射裝置的前視圖。 第三圖係用以說明紫外線照射裝置之載台的整體 立體圖。 第四圖係用以說明紫外線照射裝置之照度感測器 的整體立體圖。 第五圖係照度感測器的重要部放大立體圖。 第六圖係用以說明紫外線照射裝置之紫外線照射 單元的重要部剖面圖。 第七圖繪示照射模組之配置狀態。 第八圖的(a)及(b)係用以說明從紫外線照射裝置出 射的直線狀光束的示意圖。 第九圖係用以說明直線狀光束在線方向的照度不 均的照度分布圖。 第十圖係用以說明直線狀光束之光照射面之照度 分布的照度分布圖。 第十一圖係用以說明紫外線照射裝置之電性結構 的電路方塊圖。 34 201038384 第十二圖係用以說明求取直線狀光束之中心位置 所用的控制裝置之處理動作的流程圖。 第十三圖係用以說明在將直線狀光束照射到密封 材料之際控制裝置所做處理動作的流程圖。In the above embodiment, two gantry main bodies 2a (two ultraviolet irradiation units 3) are provided, but the number thereof may be appropriately changed. In the above embodiment, twelve irradiation modules 32 are disposed in each of the ultraviolet irradiation units 3, but the number thereof may be appropriately changed. In the above embodiment, eight ultraviolet light emitting diode LEDs are connected to the circuit board 33 of each of the illumination modules 32, but the number thereof may be appropriately changed. In the above embodiment, the light irradiation device is embodied as an ultraviolet irradiation device. However, the light irradiation device may be applied not to the light irradiation device using the ultraviolet light emitting diode LEO but to the light irradiation device using the light emitting diode. The ultraviolet light emitting diode is led to ultraviolet light, and the latter light emitting diode emits visible light. Green; in the embodiment, the light irradiation device is specifically reduced to ultraviolet ray, ^b = ^% 峨 峨 line irradiation device - but can also be applied to::=== 33 201038384. BRIEF DESCRIPTION OF THE DRAWINGS The first drawing is a perspective view of an ultraviolet irradiation device of the present embodiment. The second figure is a front view of the ultraviolet irradiation device. The third figure is an overall perspective view for explaining the stage of the ultraviolet irradiation device. The fourth figure is an overall perspective view for explaining the illuminance sensor of the ultraviolet ray irradiation device. The fifth figure is an enlarged perspective view of an important part of the illuminance sensor. Fig. 6 is a cross-sectional view showing an important part of the ultraviolet irradiation unit of the ultraviolet irradiation device. The seventh figure shows the configuration state of the illumination module. (a) and (b) of the eighth drawing are schematic views for explaining a linear light beam emitted from an ultraviolet irradiation device. The ninth diagram is an illuminance distribution diagram for explaining the illuminance unevenness of the linear beam in the line direction. The tenth diagram is an illuminance distribution diagram for explaining the illuminance distribution of the light-irradiated surface of the linear beam. Figure 11 is a block diagram showing the electrical structure of the ultraviolet irradiation device. 34 201038384 The twelfth diagram is a flow chart for explaining the processing operation of the control device used to obtain the center position of the linear beam. The thirteenth diagram is a flow chart for explaining the processing operation of the control device when the linear beam is irradiated onto the sealing material.

【主要元件符號說明】 1 紫外線照射裝置 2 龍門架 2a 龍門架主體 3 紫外線照射單元 50 控制裝置 51 紫外線發光二極體驅動電路 52 龍門架馬達驅動電路 53 單元馬達驅動電路 LED 紫外線發光二極體 M2 龍門架馬達 M3 單元馬達 P 液晶顯不面板 S 密封材料 ST 載台 W1 下基板 W2 上基板 35[Main component symbol description] 1 UV irradiation device 2 Gantry 2a Gantry main body 3 Ultraviolet irradiation unit 50 Control device 51 Ultraviolet light-emitting diode drive circuit 52 Gantry motor drive circuit 53 Unit motor drive circuit LED Ultraviolet light-emitting diode M2 Gantry motor M3 unit motor P liquid crystal display panel S sealing material ST carrier W1 lower substrate W2 upper substrate 35

Claims (1)

201038384 七、申請專利範圍: 1·一種光照射方法,從包括沿著一方向排列的複數個光 學元件的光照射裝置照射直線狀光束’該光照射方法 具備下列步驟: 從前述複數個光學元件分別照射具有長橢圓形狀 , 照射區域的光,將該各照射區域重疊,藉此’生成具 有沿著前述一方向延伸的光照射面的前述直線狀光 ' 束; 使前述直線狀光束的前述光照射面沿著前述一方〇 向正對形成於基板的直線狀光硬化性樹脂; 將前述直線狀光束照射到前述直線狀光硬化性樹 脂;以及 在將前述直線狀光束照射到前述直線狀光硬化性 樹脂的期間’使前述直線狀光束的前述光照射面及前 述基板其中之一沿著前述一方向做相對移動。 2.如申請專利範圍第1項的光照射方法,其中前述相對 移動包括:使前述直線狀光束的前述光照射面及前述 基板其中之一,在前述複數個光學元件的配置間隔的◎ 一分之一以上的距離沿著前述一方向相對移動。 3·一種光照射骏置,具備: ' 載台,栽置基板,該基板形成有直線狀光硬化性· 樹脂; 一光照射單元,包括沿著一方向排列的複數個光學 疋件,從該複數個光學元件分別照射具有長橢圓形狀 照射區域的光,將該各照射區域重疊,藉此生成具有 36 201038384 沿著前述一方向延伸的光照射面的直線狀光束; 光學元件驅動裝置,驅動前述光照射單元的各光 學元件; 第一移動裝置,使前述光照射單元沿著與前述一 . 方向直交的方向移動; 第二移動裝置,使前述光照射單元或前述載台上 的前述基板沿著前述一方向移動;以及 控制裝置,控制前述第一移動裝置,使前述直線 〇 狀光束的前述光照射面沿著前述一方向正對前述直線 狀光硬化性樹脂,並且控制前述光學元件驅動裝置及 前述第二移動裝置,使前述直線狀光束的前述光照射 面及前述基板其中之一沿著前述一方向做相對移動, 同時將前述直線狀光束照射到前述直線狀光硬化性樹 脂。 4.如申請專利範圍第3項的光照射裝置,其中前述第二 移動裝置使前述光照射單元相對於載置於前述載台上 的前述基板沿著前述一方向做相對移動。 Ο 5·如申請專利範圍第3項的光照射裝置,其中前述第二 ·#動裝置使前述光照射單元及前述载台上的前述基板 其中之一,在前述複數個光學元件的配置間隔的二分 之以上的距離沿著前述一方向做相對移動。 6·Ϊ申專利範㈣3項的光照料置,更具備:照度 檢測前述直線狀光束的照度;以及第三移動 裝置,,使前述照度感測器沿著前述一方向移動; 冑述控制裳置控制前述第1動褒置,以將前述 37 201038384 光照射單元配置於前述照度感測器的正上方位置,並 且控制前述光學元件驅動裝置、前述照度感測器及前 述第三移動裝置,以使前述照度感測器移動,同時檢 測前述直線狀光束在前述光照射面的照度。 7. 如申請專利範圍第6項的光照射裝置,更具備:檢測 窗,沿著前述一方向形成於前述載台内,以供前述直 線狀光束穿透;以及引導部件,配置於前述载台的下 側,並與前述檢測窗相向,以沿著前述檢測窗引導前 述照度感測器的移動; 前述照度感測器在沿著前述引導部件移動的期 間,檢測透過前述檢測窗入射的前述直線狀光束在前 述光照射面的照度。 8. 如申請專利範圍第6項的光照射裝置,更具備中心位 置設定裝置’該中心位置設定裝置根據藉由前述照度 感測器所檢測出的前述直線狀光束在光照射面的照度 來判定前述直線狀光束在線寬方向的中心位置,將該 直線狀光束的中心位置設定作為前述光照射單元在與 前述一方向直交的方向上的中心位置。 9. 如申請專利範圍第8項的光照射裝置,更具備發光能 力判定裝置,該發光能力判定裝置在通過前述直線狀 光束的前述中心位置的線上使前述照度感測器沿著前 述一方向移動,判定前述直線狀光束在前述中心位置 的照度,根據該判定出的照度來判定前述複數個光學 元件的發光能力。 10_如申請專利範圍第3項的光照射裝置,其中前述光照 38 201038384 射單元包括沿著前述一方向排列的複數個電路基板, 前述複數個光學元件沿著前述一方向以直線狀配置連 接於前述複數個電路基板。 11. 如申請專利範圍第3項的光照射裝置,其中前述光照 , 射單元包括:複數個半球透鏡,分別接收從前述複數 個光學元件其中之一已出射的光;以及圓柱面透鏡, 接收從前述複數個半球透鏡已出射的光。 12. 如申請專利範圍第3至11項中任一項的光照射裝 Ο 置,其中前述複數個光學元件係紫外線發光二極體, 前述光硬化性樹脂係紫外線硬化性樹脂。 39201038384 VII. Patent application scope: 1. A light irradiation method, which irradiates a linear beam from a light irradiation device including a plurality of optical elements arranged in one direction. The light irradiation method has the following steps: respectively, from the plurality of optical elements Irradiating the light having the long elliptical shape and irradiating the region, and superimposing the respective irradiation regions, thereby generating a linear light beam having a light irradiation surface extending in the one direction; and irradiating the light beam with the linear light beam a linear photocurable resin formed on the substrate along the one side of the surface; the linear beam is irradiated onto the linear photocurable resin; and the linear beam is irradiated onto the linear photocurability In the period of the resin, one of the light irradiation surface of the linear light beam and the substrate is relatively moved in the one direction. 2. The light irradiation method according to claim 1, wherein the relative movement includes: ???one of the light irradiation surface of the linear light beam and one of the substrates, and an arrangement interval of the plurality of optical elements One or more of the distances relatively move in the aforementioned one direction. 3. A light irradiation device comprising: a stage, a substrate on which a linear photocurable resin is formed, and a light irradiation unit including a plurality of optical elements arranged in a direction. Each of the plurality of optical elements illuminates the light having the long elliptical illumination region, and superimposes the respective irradiation regions, thereby generating a linear beam having a light irradiation surface extending along the one direction in the direction of 36 201038384; and an optical element driving device that drives the aforementioned Each of the optical elements of the light irradiation unit; the first moving means moves the light irradiation unit in a direction orthogonal to the one direction; the second moving means causes the light irradiation unit or the substrate on the stage to follow And the control device controls the first moving device such that the light-irradiating surface of the linear beam-shaped beam faces the linear photo-curable resin along the one direction, and controls the optical element driving device and In the second moving device, the light-irradiating surface of the linear beam and the substrate are One for relative movement along said one direction, while the linear beam is irradiated to the linear light-curing resin. 4. The light irradiation device of claim 3, wherein the second moving device relatively moves the light irradiation unit relative to the substrate placed on the stage along the one direction. The light-irradiating device of claim 3, wherein the second light-emitting device has one of the light-irradiating unit and the substrate on the stage disposed at intervals of the plurality of optical elements More than two-half of the distance is relatively moved along the aforementioned direction. 6. The light material arrangement of the third item of the patent application (4) further comprises: illuminance detecting the illuminance of the linear beam; and a third moving device for moving the illuminance sensor along the one direction; Controlling the first movable device to dispose the 37 201038384 light irradiation unit directly above the illuminance sensor, and controlling the optical element driving device, the illuminance sensor, and the third moving device to The illuminance sensor moves to simultaneously detect the illuminance of the linear light beam on the light irradiation surface. 7. The light irradiation device of claim 6, further comprising: a detection window formed in the stage along the one direction to allow the linear beam to penetrate; and a guiding member disposed on the stage a lower side facing the detection window to guide the movement of the illuminance sensor along the detection window; the illuminance sensor detecting the straight line incident through the detection window while moving along the guiding member The illuminance of the beam on the aforementioned light-irradiated surface. 8. The light irradiation device of claim 6, further comprising a center position setting device that determines based on the illuminance of the linear beam detected by the illuminance sensor on the light irradiation surface The center position of the linear beam in the line width direction is set as the center position of the light irradiation unit in a direction orthogonal to the one direction. 9. The light irradiation device of claim 8 further comprising a light-emitting capability determining device that moves the illuminance sensor along the one direction on a line passing through the center position of the linear beam The illuminance of the linear beam at the center position is determined, and the illuminating ability of the plurality of optical elements is determined based on the determined illuminance. The light-emitting device of claim 3, wherein the illumination unit 38 201038384 includes a plurality of circuit boards arranged along the one direction, and the plurality of optical elements are linearly arranged along the one direction. The plurality of circuit boards described above. 11. The light irradiation device of claim 3, wherein the illumination unit comprises: a plurality of hemispherical lenses respectively receiving light that has exited from one of the plurality of optical elements; and a cylindrical lens receiving the slave The light that has been emitted by the plurality of hemispherical lenses. The light-emitting device according to any one of claims 3 to 11, wherein the plurality of optical elements are ultraviolet light-emitting diodes, and the photo-curable resin is an ultraviolet curable resin. 39
TW099105211A 2009-04-28 2010-02-23 Light irradiation method and light irradiation apparatus TWI402152B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009110136 2009-04-28
JP2009110135 2009-04-28

Publications (2)

Publication Number Publication Date
TW201038384A true TW201038384A (en) 2010-11-01
TWI402152B TWI402152B (en) 2013-07-21

Family

ID=43031992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099105211A TWI402152B (en) 2009-04-28 2010-02-23 Light irradiation method and light irradiation apparatus

Country Status (5)

Country Link
JP (1) JP5230875B2 (en)
KR (1) KR101240367B1 (en)
CN (1) CN101978308B (en)
TW (1) TWI402152B (en)
WO (1) WO2010125836A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626495B (en) * 2013-06-22 2018-06-11 Ushio Electric Inc Polarized light irradiation device for light alignment and polarized light irradiation method for light alignment

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5771776B2 (en) * 2010-12-21 2015-09-02 パナソニックIpマネジメント株式会社 UV irradiation equipment
JP5732971B2 (en) * 2011-03-31 2015-06-10 東芝ライテック株式会社 UV irradiation equipment
CN102435307B (en) * 2011-11-09 2013-09-18 深圳市华星光电技术有限公司 Detection method of UV (Ultraviolet) illumination of multi-layer UV hot oven in TFT-LCD (Thin Film Transistor-Liquid Crystal Display) manufacturing process and combined disk extraction device for implementing detection method
JP2013219205A (en) * 2012-04-10 2013-10-24 Hoya Candeo Optronics株式会社 Light irradiation device
JP6206945B2 (en) * 2013-03-07 2017-10-04 株式会社ブイ・テクノロジー Scanning exposure apparatus and scanning exposure method
JP2015165546A (en) * 2014-02-07 2015-09-17 株式会社ミマキエンジニアリング Ultraviolet light-emitting diode unit, ultraviolet light-emitting diode unit set, ink jet device, and three-dimensional mold object manufacturing apparatus
JP6394317B2 (en) * 2014-11-21 2018-09-26 東芝ライテック株式会社 Light irradiation device
JP6984228B2 (en) * 2016-11-17 2021-12-17 東京エレクトロン株式会社 Exposure device, adjustment method of exposure device and storage medium
JP6809188B2 (en) * 2016-12-13 2021-01-06 東京エレクトロン株式会社 Light irradiation device
CN108681211A (en) * 2018-04-20 2018-10-19 佛山市鑫东陶陶瓷有限公司 A kind of point light source exposure device
JPWO2020217288A1 (en) * 2019-04-22 2020-10-29
DE102022128497A1 (en) 2022-10-27 2024-05-02 Forschungszentrum Jülich GmbH DEVICE AND METHOD FOR THERMAL TREATMENT OF WORKPIECES

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694803B2 (en) * 2003-08-28 2011-06-08 芝浦メカトロニクス株式会社 Ultraviolet light irradiation apparatus and irradiation method, substrate manufacturing apparatus and substrate manufacturing method
JP2006030933A (en) * 2004-06-18 2006-02-02 Shin Etsu Chem Co Ltd Substrate surface sealing method and ultraviolet-ray irradiation device for liquid crystal display cell substrate
JP5180439B2 (en) * 2005-01-28 2013-04-10 芝浦メカトロニクス株式会社 Ultraviolet light irradiation apparatus and irradiation method, substrate manufacturing apparatus and substrate manufacturing method
JP2007057861A (en) * 2005-08-25 2007-03-08 Harison Toshiba Lighting Corp Optical system for condensing light in square pattern and uv ray irradiation apparatus for liquid crystal panel
JP2007334039A (en) * 2006-06-15 2007-12-27 Ulvac Japan Ltd Light source device and method of panel alignment using the same
JP5060748B2 (en) * 2006-07-28 2012-10-31 芝浦メカトロニクス株式会社 Sealant curing apparatus and substrate manufacturing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626495B (en) * 2013-06-22 2018-06-11 Ushio Electric Inc Polarized light irradiation device for light alignment and polarized light irradiation method for light alignment

Also Published As

Publication number Publication date
WO2010125836A1 (en) 2010-11-04
CN101978308A (en) 2011-02-16
KR101240367B1 (en) 2013-03-11
JP5230875B2 (en) 2013-07-10
CN101978308B (en) 2012-09-19
JPWO2010125836A1 (en) 2012-10-25
KR20100132024A (en) 2010-12-16
TWI402152B (en) 2013-07-21

Similar Documents

Publication Publication Date Title
TW201038384A (en) Light irradiation method and light irradiation apparatus
TWI552275B (en) Opto-electronic module and method for manufacturing the same
CN1066907C (en) Method and apparatus for assembling of electronic unit
CN100342261C (en) Exposure device
US20130342820A1 (en) Light-exposure device
KR101196324B1 (en) Light irradiation apparatus
TW201912382A (en) Light modeling device, lighting control method and program
TWI543228B (en) Light irradiation device
WO2014002312A1 (en) Pattern drawing device, pattern drawing method
JP4480660B2 (en) Substrate bonding equipment
TW202202950A (en) Light source device for exposure, lighting device, exposure device, and exposure method
KR102576187B1 (en) Ultraviolet light curing device
CN215069888U (en) Transfer apparatus and display device
Zhu et al. Microlens array on flip-chip led patterned with an ultraviolet micro-pixelated emitter
KR101367665B1 (en) Sealant curing apparatus and arrangement method of LED for sealant curing apparatus
US9921482B2 (en) Exposure device and lighting unit
JP2003338660A (en) Semiconductor laser driving circuit
JP2010266616A (en) Light irradiation device
JP4417401B2 (en) Laser line generator, laser module and laser marking device
WO2023190399A1 (en) Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article
JP5131129B2 (en) Light source unit and exposure apparatus having the light source unit
TW202414123A (en) Drawing apparatus and drawing method
KR20120062513A (en) Method and apparatus of fabricating light guide plate, lcd module including light guide plate
JP2004226603A (en) Positioning method and display device manufacturing method
JP2009162833A (en) Assembly method and device for optical device, and optical device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees