WO2023190399A1 - Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article - Google Patents

Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article Download PDF

Info

Publication number
WO2023190399A1
WO2023190399A1 PCT/JP2023/012312 JP2023012312W WO2023190399A1 WO 2023190399 A1 WO2023190399 A1 WO 2023190399A1 JP 2023012312 W JP2023012312 W JP 2023012312W WO 2023190399 A1 WO2023190399 A1 WO 2023190399A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid tank
pixel
light source
modeling
Prior art date
Application number
PCT/JP2023/012312
Other languages
French (fr)
Japanese (ja)
Inventor
俊一 酒巻
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Publication of WO2023190399A1 publication Critical patent/WO2023190399A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • B29C64/277Arrangements for irradiation using multiple radiation means, e.g. micromirrors or multiple light-emitting diodes [LED]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present disclosure relates to a stereolithographic device, a reduction projection optical component for the stereolithographic device, and a method for manufacturing a stereolithographic object.
  • a stereolithography apparatus such as International Publication No. 2018/154847 has been known as an apparatus for modeling a three-dimensional structure having a three-dimensional shape.
  • the stereolithography device disclosed in International Publication No. 2018/154847 includes a light source device and an optical element that collects light emitted from the light source device. Further, a container in which a liquid photocurable resin that reacts with ultraviolet rays is stored is provided as a liquid tank.
  • a light source device includes a plurality of light emitting elements that emit ultraviolet rays and a partition wall that serves as a partition wall that partitions adjacent light emitting elements.
  • One pixel is formed by the partition wall and the light emitting element housed within the area surrounded by the partition wall.
  • an optical element forms a spot light that is irradiated onto a photocurable resin by condensing ultraviolet rays emitted from one pixel.
  • the spot light is irradiated onto the liquid surface from above the liquid tank along a direction perpendicular to the liquid surface of the liquid tank. Note that in this specification, the direction perpendicular to the liquid surface is also simply referred to as the "irradiation direction.”
  • An exposure image designed with a desired two-dimensional pattern is formed in the formation region within the liquid tank by irradiation with a plurality of spot lights. Irradiation with ultraviolet rays causes a photocuring reaction in the photocurable resin in the formation area where the exposed image is formed. As a result, a cured resin layer having a two-dimensional pattern similar to the exposed image is formed in the formation region with a predetermined thickness.
  • the stereolithography apparatus of International Publication No. 2018/154847 is provided with a stage that supports the formed resin cured layer from below.
  • the stage sinks into the liquid tank while supporting the cured resin layer, and the liquid photocurable resin above the cured resin layer is irradiated with ultraviolet rays.
  • ultraviolet rays By repeating the subsidence of the stage and the irradiation of ultraviolet rays, a plurality of cured resin layers are stacked vertically, and as a result, a three-dimensional object having a desired three-dimensional shape can be finally obtained.
  • Patent Document 1 International Publication No. 2018/154847
  • light energy density means light energy per unit area.
  • the present disclosure has been made focusing on the above, and can improve the efficiency of light use.
  • Means for solving the above problems include the following aspects.
  • a plurality of pixels each including a liquid tank in which a liquid photocurable resin is accumulated, a partition wall, and a light-emitting element housed in the partition wall are arranged in a periodic matrix.
  • a light source device with a maximum width of 200 ⁇ m or less is placed between the light source device and the liquid tank, and the light emitted from one pixel is used to form a spot light that is irradiated onto the photocurable resin, and multiple spots are formed.
  • a stereolithography apparatus that includes an optical element that forms an exposure image in a formation area in a liquid tank using light, and a stage that supports a resin cured layer of a photocurable resin that is cured by the exposure image and moves in the vertical direction.
  • the optical element has a microlens that condenses light emitted from one pixel, and the pitch of the microlens is greater than or equal to the light source wavelength [nm] of the light emitting element and less than or equal to the pitch of one pixel. 1>.
  • optical element according to ⁇ 1> or ⁇ 2> above wherein the optical element has a microlens that condenses light emitted from one pixel, and a plurality of microlenses are arranged for one pixel. Modeling equipment.
  • ⁇ 4> The stereolithography device according to ⁇ 2> or ⁇ 3> above, wherein the microlenses are circular in plan view, and the pitch of the microlenses is at least twice the light source wavelength [nm] of the light emitting element. .
  • the optical element described in ⁇ 1> above has a plurality of slits that narrow down the light emitted from one pixel, and is an aperture that uses the slits to form a spot light that is irradiated onto the photocurable resin. stereolithography device.
  • the light source device is disposed below the liquid tank, the cured resin layer is supported on the lower side of the stage, and the stage is capable of rising while supporting the cured resin layer.
  • the stereolithography device according to any one of ⁇ 5>.
  • ⁇ 7> The stereolithography apparatus according to any one of ⁇ 1> to ⁇ 6> above, wherein a switching element corresponding to each of the plurality of light emitting elements is provided.
  • ⁇ 8> It has a liquid tank in which liquid photocurable resin is accumulated and a projection surface formed by a plurality of single pixels, and has an area N times (however, N>1) the area of the stereolithographic object to be modeled.
  • a light source device that projects a printing image from a projection surface, and a light source device that is placed between the projection surface of the light source device and the bottom of the liquid tank and reduces the area of the printing image to 1/M (however, M>1)
  • a light having a reduction projection optical component that projects onto a modeling surface in a bath, and a stage that supports a resin cured layer of a photocurable resin cured by a modeling image on the modeling surface and moves in the vertical direction.
  • Modeling equipment Modeling equipment.
  • the reduction projection optical component includes a first light focusing member disposed on the side of the light source device, and an optical axis correction device that corrects the optical axis of the light focused by the first light focusing member in a direction perpendicular to the modeling surface.
  • the light source device is disposed below the liquid tank, the cured resin layer is supported on the lower side of the stage, and the stage is capable of rising while supporting the cured resin layer, ⁇ 8> ⁇
  • the stereolithography device according to any one of ⁇ 11>.
  • ⁇ 13> Projecting a printing image of N times the area of the stereofabricated object to be formed (where N>1) from a projection plane formed by a plurality of one pixel of the light source device, and reducing projection optical components.
  • the area of the printing image is reduced to 1/M (however, M>1) using the method, and the printing image with the reduced area is projected onto the printing surface in a liquid tank in which liquid photocurable resin is accumulated. a step of curing a photocurable resin.
  • ⁇ 14> It has a liquid tank in which a liquid photocurable resin is accumulated and a projection surface formed by a plurality of single pixels, and has an area N times (however, N>1) the area of the stereolithographic object to be modeled.
  • Reduction projection optics used in a stereolithography apparatus which includes a light source device that projects a modeling image from a projection surface, and a stage that supports a resin cured layer of photocurable resin cured by the modeling image and moves in the vertical direction.
  • a reduction projection optical component for stereolithography equipment which includes a light source device that projects a modeling image from a projection surface, and a stage that supports a resin cured layer of photocurable resin cured by the modeling image and moves in the vertical direction.
  • FIG. 2 is a front view illustrating the stereolithography apparatus according to the first embodiment, with part of the liquid tank and the light irradiation device cut away.
  • FIG. 4 is a sectional view taken along line 2-2 in FIG. 3, illustrating a light source device and an optical element of the light irradiation device according to the first embodiment.
  • FIG. 2 is a plan view illustrating a light source device and an optical element of the light irradiation device according to the first embodiment.
  • FIG. 3 is a diagram illustrating the operation of an optical element when the optical element provided in a unit area corresponding to one pixel is one microlens.
  • FIG. 1 is a front view illustrating the stereolithography apparatus according to the first embodiment, with part of the liquid tank and the light irradiation device cut away.
  • FIG. 4 is a sectional view taken along line 2-2 in FIG. 3, illustrating a light source device and an optical element of the light irradiation device according to the first embodiment.
  • FIG. 2 is
  • FIG. 7 is a diagram illustrating the operation of an optical element when the optical element provided in a unit area corresponding to one pixel is a plurality of microlenses. It is a top view explaining the switching element of the light irradiation device concerning a 1st embodiment.
  • FIG. 2 is a diagram illustrating a method for manufacturing a stereolithographic object using the stereolithography apparatus according to the first embodiment, with a part of the liquid tank and a light irradiation device cut away. It is a top view explaining the light source device and optical element of the light irradiation device concerning a 1st modification.
  • FIG. 7 is a plan view illustrating a light source device and an optical element of a light irradiation device according to a second modification.
  • FIG. 10 is a sectional view taken along line 10-10 in FIG. 9, illustrating a light source device and an optical element of a light irradiation device according to a third modification.
  • FIG. 7 is a plan view illustrating a light source device and an optical element of a light irradiation device according to a second embodiment.
  • 13 is a sectional view taken along line 13-13 in FIG. 12, illustrating a light source device and an optical element of a light irradiation device according to a second embodiment.
  • FIG. 7 is a front view illustrating a stereolithography apparatus according to a third embodiment with a part of a liquid tank and a light irradiation device cut away. It is a perspective view explaining the optical element of the light irradiation device concerning a 3rd embodiment.
  • FIG. 7 is a diagram illustrating a method of manufacturing a stereolithographic object using a stereolithography apparatus according to a third embodiment, with a part of a liquid tank and a light irradiation device cut away.
  • Image data for stereolithographic modeling of the first resin cured layer, a modeling image having an area N times the area of the stereolithographic object in the light source device in the case of M N, and an area of 1/M in the optical element.
  • FIG. 2 is a perspective view illustrating a state in which a first resin cured layer and a second resin cured layer are laminated in stereolithography.
  • FIG. 7 is a diagram illustrating a stereolithography apparatus according to a fifth modification with a part of a liquid tank and a light irradiation device cut away.
  • the stereolithography apparatus 10 includes a liquid tank 12, a stage 14, a hanging member 16 for suspending the stage 14, and a light irradiation device 20.
  • the liquid tank 12 has a bottom and side walls, and is entirely made of a translucent material.
  • a liquid photocurable resin 18 is accumulated in the liquid tank 12 . Note that in the present disclosure, it is not essential that the entire liquid tank has translucency. In the present disclosure, it is sufficient that at least a portion of the bottom or side wall through which the light irradiated by the light irradiation device passes has translucency.
  • stage 14 supports the resin cured layer of the photocurable resin 18 that has been cured by the exposed image, and moves in the vertical direction in FIG. 1 . That is, the stage 14 can be raised and lowered while supporting the cured resin layer. Further, in the first embodiment, the cured resin layer is supported on the lower surface side of the stage 14 via support pins 32. That is, in the first embodiment, the stereolithography apparatus 10 is a hanging 3D printer.
  • the light irradiation device 20 is provided below the liquid tank 12 in FIG. 1, and irradiates light onto the lower surface of the stage 14 through the bottom of the liquid tank 12, which has translucency.
  • the first embodiment exemplifies the case of stereolithography using a DLP (Digital Light Processing) method, which is a surface exposure method
  • the stereolithography of the present disclosure is not limited to the DLP method, and may be performed using a surface exposure method. Good to have.
  • the light irradiation device 20 includes a casing 22, a light source device 24 provided inside the casing 22, and an optical element 26 arranged between the light source device 24 and the liquid tank 12 inside the casing 22. Be prepared.
  • image data for modeling is input to the light irradiation device 20.
  • the modeling image data is created using, for example, CAD software or CAM software.
  • the light irradiation device 20 emits light of a predetermined wavelength necessary for stereolithography, such as ultraviolet light, toward the lower side of the stage 14 immersed in the liquid tank 12 based on the input image data for modeling. Selectively irradiate.
  • the light source device 24 includes a substrate 24A, a partition wall 24B, a light emitting element 24C, a sealing material 24D, and a protective layer 24E.
  • the light source device 24 collectively emits light from a plurality of pixels 23 to the formation area 18A of the photocurable resin 18. Note that in FIG. 2, for convenience of explanation, illustration of the casing 22 illustrated in FIG. 1 is omitted.
  • the substrate 24A is, for example, a glass substrate or a resin substrate.
  • the substrate 24A is provided with various circuits for driving the light emitting elements 24C, switching elements such as TFTs (Thin Film Transistors), and various wirings such as scanning lines, signal lines, and power lines. Illustrations of various circuits are omitted. Further, as will be explained later, FIG. 5 illustrates the switching element 36, the X electrode members X1 and X2, and the Y electrode members Y1 and Y2.
  • the partition wall 24B is formed of, for example, a resin material or a metal material. As shown in FIG. 3, a plurality of partition walls 24B are provided along each of the X direction and the Y direction. The X direction and the Y direction are orthogonal to each other. Therefore, in plan view, the partition walls 24B in the X direction and the partition walls 24B in the Y direction appear in a lattice shape.
  • One light emitting element 24C is provided in the space inside the grid surrounded by the partition wall 24B.
  • a plurality of light emitting elements 24C are arranged in a periodic matrix in a plan view.
  • the light emitting element 24C is, for example, a micro light emitting diode (micro LED).
  • the light emitting element 24C is housed in the partition wall 24B and the partition wall 24B.
  • the light emitting element 24C emits ultraviolet light having a wavelength of around 400 nm. Note that in the present disclosure, the light emitting element is not limited to micro LEDs, and any element that emits light with a wavelength that can cure the photocurable resin 18, such as an organic LED, can be used as appropriate.
  • the micro LED used as a light emitting element in the present disclosure is not electrically controlled.
  • the micro LED is itself a light source that emits exposure light, and the light emitted by the micro LED is used as it is as exposure light.
  • the amount of light passing through the liquid crystal is electrically controlled by a voltage applied to the liquid crystal. That is, the usage and usage conditions of light in the light emitting element of the present disclosure are different from the usage and usage status of light in the micro LED of a liquid crystal display.
  • a plurality of light emitting elements 24C arranged in a matrix are arranged to face the photocurable resin 18 in the liquid tank 12.
  • FIG. 3 shows an example in which four light emitting elements are arranged in the X direction and two light emitting elements are arranged in the Y direction in a matrix, in the present disclosure, the number of light emitting elements and the arrangement pattern can be set arbitrarily.
  • the sealing material 24D can be made of, for example, a resin having a translucent property that allows light to pass through, such as epoxy resin or silicone resin. As shown in FIG. 2, the sealing material 24D seals the light emitting element 24C inside the partition wall 24B.
  • a protective layer 24E is provided on the partition wall 24B in FIG.
  • the protective layer 24E protects the light emitting element 24C.
  • the protective layer 24E can be made of, for example, a transparent resin film that allows light to pass therethrough.
  • one pixel 23 in the first embodiment includes a light emitting element 24C inside and is constituted by an area surrounded on all sides by partition walls 24B. Therefore, like the light emitting element 24C, a plurality of pixels 23 are arranged in a periodic matrix in plan view.
  • the pitch of one pixel 23 is, for example, the center distance between adjacent pixels 23. Further, the pitch of one pixel 23 is equal to the center distance between adjacent partition walls 24B. Furthermore, in the first embodiment, one pixel 23 has a square shape in plan view, so the pitch of one pixel 23 is equal to the maximum width W1 of one pixel 23. In the first embodiment, the maximum width W1 of one pixel 23 is set to 5 ⁇ m or more and 200 ⁇ m or less.
  • the maximum width W1 of one pixel 23 is less than 5 ⁇ m, one pixel 23 becomes too small, which increases manufacturing costs. Furthermore, when the maximum width W1 of one pixel 23 exceeds 200 ⁇ m, the resolution of the exposed image decreases. In particular, it is more preferable that the maximum width W1 of one pixel 23 is 100 ⁇ m or less from the viewpoint of improving resolution. Note that in the present disclosure, the maximum width W1 of one pixel may be less than 5 ⁇ m. Further, in the present disclosure, the maximum width W1 of one pixel may exceed 200 ⁇ m.
  • the maximum width W1 in the X direction and the maximum width W1 in the Y direction are equal, but in the present disclosure, the maximum width in the X direction and the maximum width in the Y direction are different. It's okay. That is, in the present disclosure, the shape of one pixel may be rectangular in plan view. Further, the shape of one pixel is not limited to a rectangular shape, and may be any geometric shape such as a circular shape or other polygonal shape.
  • the optical element 26 includes a base 26A and a microlens 26B provided on one surface of the base 26A.
  • the optical element 26 is arranged below the liquid tank 12 and between the light source device 24 and the liquid tank 12.
  • the optical element 26 uses the light emitted from one pixel 23 to form a spot light that is irradiated onto the photocurable resin 18 .
  • An exposed image is formed in the formation area 18A in the liquid tank 12 by the plurality of spot lights.
  • the base 26A is a plate-like member.
  • the base 26A can be made of translucent glass, resin material, or the like.
  • the microlens 26B can be made of transparent glass, resin material, or the like.
  • the microlens 26B of the first embodiment serves as an optical element and forms a spot light that is irradiated onto the photocurable resin 18 by condensing light emitted from one pixel 23.
  • the optical element may be another light condensing device such as a type of lens other than a microlens or a reflecting mirror.
  • the base 26A and the microlens 26B are integrally formed. Note that in the present disclosure, the microlens 26B may be formed separately from the base 26A and may be joined to the base 26A.
  • the microlens 26B has a circular shape in plan view. Further, as shown in FIG. 2, the microlens 26B has a hemispherical shape that projects upward. In the first embodiment, all the microlenses 26B have the same diameter. Note that in the present disclosure, the shapes and dimensions of the plurality of microlenses 26B may be different. Furthermore, the shapes and dimensions of the plurality of microlenses 26B in a group corresponding to one pixel may be different from each other.
  • a plurality of microlenses 26B are provided in a matrix on the base 26A in plan view.
  • four microlenses 26B are arranged for one pixel 23 as one microlens array.
  • the number of microlenses 26B for one pixel may be one or any number of microlenses 26B.
  • the width W2 of one microlens array is approximately equal to the width W3 of the sealing material.
  • the pitch of the microlenses 26B within one pixel 23 is set to be greater than or equal to the light source wavelength [nm] of the light emitting element 24C and less than or equal to the pitch of one pixel 23. If the pitch of the microlenses 26B is less than the wavelength of the light source, it becomes difficult to properly perform the light focusing function as a lens. On the other hand, when the pitch of the microlenses exceeds the pitch of one pixel, the dimensions of the microlenses become too large, which increases the burden of manufacturing costs.
  • the pitch of the microlenses 26B is set to be twice or more the light source wavelength [nm] of the light emitting element 24C from the viewpoint of suppressing interference fringes.
  • the pitch of the microlenses 26B can be set within a range of 800 nm or more and 1 ⁇ m or less.
  • the pitch of the microlenses 26B within one pixel 23 is equal to the diameter D of the microlens 26B, as shown in FIG. substantially equal. That is, in the first embodiment, the fact that the pitch of the microlenses 26B within one pixel 23 is greater than or equal to the light source wavelength is synonymous with the fact that the diameter D of the microlenses 26B is greater than or equal to the light source wavelength.
  • the ratio of the diameter of the microlenses to the pitch of the microlenses within one pixel 23 is large.
  • the ratio of the diameter D of the microlens 26B to the pitch of the microlens 26B within one pixel 23 is preferably 70% or more, more preferably 80% or more, and 90% or more. More preferably, it is 95% or more.
  • the ratio of the diameter D of the microlenses 26B in one pitch should be within the range of 70% or more as described above. is preferred.
  • the pitch of the microlens within one pixel is equal to or greater than the wavelength. Even if the diameter of the microlens is less than the light source wavelength, if the gap between the microlenses is small, the emitted light from one pixel of the light source device can be focused. In other words, if the gap between the microlenses is small enough to condense the emitted light from one pixel, the pitch formed between adjacent microlenses within one pixel can be set to be greater than the light source wavelength. .
  • the central region RC has a shape in which the outer edge of the lens is directly projected onto the modeling surface 19. Further, the peripheral region RP is located at the peripheral edge of the central region RC. The light energy irradiated to the peripheral region RP does not contribute to exposure.
  • FIG. 4B when four microlenses 26B are arranged for one pixel 23, part of the light emitted from the left microlens 26B that is decentered from the optical axis C is The light reaches the overlapping region RO inside the exposed image on the adjacent right microlens 26B side. Note that in the cross-sectional view of FIG. 4B, two microlenses 26B are visible. The optical axis C of the microlens 26B is parallel to the vertical direction in FIGS. 4A and 4B. Therefore, compared to the case where only one microlens 26B is arranged as shown in FIG. 4A, the reduction in the amount of spot light that does not contribute to exposure is suppressed.
  • switching element As shown in FIG. 5, in the first embodiment, a switching element 36 corresponding to each of the plurality of light emitting elements 24C is provided. Specifically, each of the plurality of pixels 23 is connected to the X electrode members X1, X2 and Y electrode members Y1, Y2 set for each pixel 23 via the corresponding switching element 36. .
  • the X electrode members X1, X2 and the Y electrode members Y1, Y2 are orthogonal to each other.
  • two pixels 23 arranged adjacent to each other in the left and right direction are connected to the first X electrode member X1, and in the lower row in FIG. A case is illustrated in which two pixels 23 are connected to the second X electrode member X2. Further, on the left side of FIG. 5, two pixels 23 arranged adjacent to each other in the vertical direction are connected to the first Y electrode member Y1, and on the right side of FIG. A case is illustrated in which two arranged pixels 23 are connected to the second Y electrode member Y2.
  • the switching element 36 can improve the accuracy of switching between light irradiation and non-light irradiation for each target pixel 23. Note that in the present disclosure, the switching element 36 is not essential.
  • a subsequent cured resin layer is laminated under the previously formed cured resin layer by irradiating light using the light irradiation device 20.
  • a stereolithographic object 30 is formed by a liquid bath photopolymerization method. Note that the stereolithographic object 30 may be any industrial product.
  • FIG. 6 illustrates a state in which the optically modeled object 30 being modeled is suspended by the support pin 32 extending from the lower surface of the stage 14; however, in the present disclosure, the support pin 32 is not required.
  • the stage 14 is lowered into the liquid tank 12 with the stereofabricated object supported above the stage 14 in FIG. 1, thereby stacking the resin cured layers in the vertical direction.
  • the stage 14 is lowered into the liquid tank 12 and the resin cured layers are stacked in the vertical direction, the light is irradiated from the upper side of the liquid tank 12 toward the upper surface of the stage 14 .
  • a formation region 18A in which an exposed image is formed is located between the upper surface of the stage 14 and the liquid level of the liquid tank 12. Therefore, the upper surface of the photocurable resin 18 in the formation area 18A comes into contact with oxygen in the air. Oxygen makes it difficult for the photocurable resin 18 to harden.
  • the formation area 18A is a photocurable resin 18 located below the lower surface of the stage 14 in FIG. That is, since the stage 14 blocks air, the photocurable resin 18 in the formation area 18A does not come into contact with oxygen in the air.
  • the width W2 of the microlens array corresponding to one pixel 23 may be greater than or equal to the width W3 of the sealing material 24D in one pixel 23.
  • a case is illustrated in which four microlenses 26B are arranged in a matrix as one microlens array for one pixel 23.
  • the width W2 of one microlens array is the same as the pitch of one pixel 23, that is, the maximum width W1 of one pixel 23.
  • the width W2 of the microlens array is preferably set to the pitch of one pixel 23 or less. If the width W2 of the microlens array exceeds the pitch of one pixel 23, there is a concern that light will reach the position of the exposed image corresponding to the adjacent pixel 23 even though the adjacent pixel 23 is not illuminated. There is.
  • the microlens 26B may have a square shape in plan view. That is, the microlens 26B of the second modification has a rectangular parallelepiped shape. Note that in the present disclosure, the shape of the microlens can be any other geometric shape, such as a rectangular shape in plan view.
  • the microlens array may be composed of nine microlenses 26B arranged in a matrix in a 3 ⁇ 3 arrangement in plan view.
  • nine microlenses 26B correspond to one pixel 23.
  • the pitch of the microlenses 26B by setting the upper limit value and the lower limit value of the pitch of the microlenses 26B, it is possible to both form the irradiation light necessary for exposure and suppress the burden of manufacturing costs of the optical element 26. .
  • the microlens 26B can irradiate a linearized spot light. Further, a plurality of microlenses 26B are arranged for light from one pixel 23. Therefore, part of the light emitted from one microlens 26B that is decentered from the optical axis C reaches the overlapping region RO inside the exposed images on the side of the microlens 26B adjacent to one microlens 26B. . As a result, compared to the case where only one microlens 26B is disposed, reduction in the amount of spot light can be suppressed. Therefore, the cured resin layer can be precisely shaped.
  • the microlenses 26B are circular, and the pitch of the microlenses 26B is at least twice the light source wavelength [nm] of the light emitting element 24C. Therefore, the light emitted from the microlens 26B does not interfere with each other, and as a result, no moire pattern is generated on the surface of the stereolithographic object.
  • the resin layer has a thickness of one layer compared to when the stage 14 descends into the liquid tank 12. The energy required to form a hardened layer can be reduced.
  • the resolution of the design pattern is higher than in the case of the dot matrix drive format, and as a result, the accuracy of modeling the three-dimensional object can be improved.
  • the stereolithography apparatus 10 includes a liquid tank, a light source device, an aperture 38, and a stage.
  • the maximum width W1 of one pixel 23 of the light source device is set to 200 ⁇ m or less.
  • the stereolithography apparatus 10 has an aperture 38 disposed between the light source device and the liquid tank as an optical element instead of the microlens 26B as the optical element 26 described in the first embodiment.
  • this embodiment is different from the first embodiment. That is, both a condensing device such as a microlens and a diaphragm device such as an aperture are included in the "optical element" of the present disclosure.
  • Members other than the aperture 38 in the second embodiment have the same configuration and function as the members with the same name in the first embodiment. Therefore, the aperture 38 will be mainly described below, and duplicate explanations of the configurations of other members will be omitted.
  • the aperture 38 is a plate-shaped aperture device having a plurality of slits 38A.
  • the aperture 38 can be made of resin or the like, for example.
  • the slit 38A has a rectangular shape in plan view, but in the present disclosure, the shape of the slit is not limited to this, and may be any other shape, such as an elongated oval shape.
  • the aperture 38 emits spot light including straight light that is irradiated onto the photocurable resin 18 using light emitted from one pixel 23 through the slit 38A. Form. An exposed image is formed in the formation region 18A in the liquid tank 12 by the plurality of spot lights thus formed.
  • the other steps in the method for manufacturing a stereolithographic object according to the second embodiment are the same as those in the method for manufacturing a stereolithographic article according to the first embodiment, and thus redundant explanation will be omitted.
  • the maximum width W1 of one pixel 23 is set to 200 ⁇ m or less, so that a decrease in the directivity of light is suppressed. Therefore, compared to the case where the maximum width W1 exceeds 200 ⁇ m, it is possible to suppress a decrease in light utilization efficiency in the photocuring reaction. As a result, light usage efficiency can be improved.
  • a spot light irradiated onto the photocurable resin 18 is formed using an aperture 38 having a slit 38A as an optical element.
  • the aperture 38 can be manufactured at a lower cost than, for example, a condensing device such as a lens, so costs can be reduced.
  • Other effects in the second embodiment are the same as those in the first embodiment, and therefore redundant explanations will be omitted.
  • the optical modeling apparatus 11 includes a liquid tank 12, a stage 14, a hanging member 16 for suspending the stage 14, and a light irradiation device 50.
  • stage 14 supports a resin cured layer of a photocurable resin 18 that has been cured by an exposure image that is a modeling image in which the area of the stereofabricated object to be modeled has been reduced to 1/M, and also supports the resin cured layer of the photocurable resin 18 in the vertical direction in FIG. Move to. M is a positive real number greater than 1, ie, M>1.
  • the stage 14 can be raised and lowered while supporting the cured resin layer.
  • the area of a stereolithographic object to be modeled means the target area of the modeling surface of each layer in the target stereolithographic object.
  • each layer means “each layer in a stereolithographic object modeled by curing one layer at a time by light irradiation and laminating one after another”.
  • stereolithography refers to both the final three-dimensional object as a whole and each of the plurality of resin cured layers included in the stereolithography that is being built. It can be used both to mean.
  • the light irradiation device 50 is provided below the liquid tank 12 in FIG. 14, and irradiates light onto the lower surface of the stage 14 through the bottom of the liquid tank 12, which has translucency.
  • the third embodiment exemplifies the case of stereolithography using the DLP method, which is a surface exposure method, the stereolithography of the present disclosure is not limited to the DLP method.
  • the light irradiation device and the liquid tank may be configured to be relatively movable along the surface direction of the modeling surface 19.
  • the light may be scanned by moving the light irradiation device two-dimensionally within a plane parallel to the exposure surface.
  • the light irradiation device 50 includes a light source device 54 and an optical element 56 arranged between the light source device 54 and the liquid tank 12.
  • the light source device 54 and the optical element 56 are integrated by a sealing case 58.
  • pre-created image data for modeling is input to the light irradiation device 50.
  • the light irradiation device 50 performs stereolithography toward the lower side of the stage 14 immersed in the liquid tank 12 based on the input image data for modeling.
  • a light emitting element (not shown) selectively irradiates light with a predetermined wavelength necessary for
  • the light source device 54 has a projection surface 55 formed by a plurality of pixels 53.
  • the light source device 54 projects a modeling image N times the area of the stereolithographic object 31 to be modeled from the projection surface 55 .
  • N is a positive real number greater than 1, ie, N>1.
  • the area may be expanded, for example, by increasing the area of each of the plurality of pixels used, or by increasing the number of the plurality of pixels used. Furthermore, increasing the area of one pixel used and increasing the number of pixels may be combined.
  • a plurality of pixels 53 included in the light source device 24 are arranged on the bottom 58A of the sealing case 58 along the X direction (that is, the left-right direction in FIG. 14). Illustrated. Furthermore, in FIG. 14, for ease of viewing, a state in which only some of the plurality of pixels 53 emit light is illustrated by broken arrows. However, during actual stereolithography, the light source device 24 is controlled so that one pixel 53 emits light appropriately according to the desired image for modeling. The light source device 24 emits light from a plurality of pixels 53 all at once.
  • One pixel 53 in the third embodiment includes a light emitting element arranged on a substrate (not shown). Further, each of the plurality of light emitting elements is sealed with a sealing material (not shown) inside a region surrounded on all sides by partition walls (not shown) on the substrate. In the third embodiment, one pixel 53 has a square shape in plan view. A protective layer (not shown) is provided on the upper side of the partition wall in FIG. 14, which is the side opposite to the substrate.
  • partition wall Although not shown, a plurality of partition walls are provided along each of the X direction in FIG. 14 and the Y direction extending along the direction penetrating the page of FIG. 14. Therefore, when viewed from above, the partition walls in the X direction and the partition walls in the Y direction appear in a lattice shape. Although not shown, a protective layer is provided on the partition wall in FIG. 14.
  • the emission wavelength of the light emitting element can be arbitrarily set within the range of, for example, from about 365 nm in the ultraviolet region to about 1770 nm in the infrared region.
  • the light emitting element is a mini LED or a micro LED, it is possible to irradiate light in the ultraviolet region of 365 nm.
  • the transparency of the photocurable resin is relatively high, a sufficient curing reaction may not occur with light of wavelengths other than the ultraviolet region.
  • Light having a wavelength in the ultraviolet region is advantageous in that it can easily cure the photocurable resin even if the photocurable resin has relatively high transparency.
  • the optical element 56 is arranged below the liquid tank 12 and between the light source device 24 and the liquid tank 12. Note that in the present disclosure, the optical element may be placed above the liquid tank 12.
  • the optical element 56 includes a reduction projection optical component 57 for a stereolithography device.
  • the reduction projection optical component 57 includes a sealing case 58, a first light focusing member 57A, a second light focusing member 57B, and an optical axis correction member 57C.
  • the reduction projection optical component 57 focuses the light of the modeling image 41.
  • the reduction projection optical component 57 is arranged between the projection surface 55 of the light source device 24 and the bottom surface of the liquid tank 12.
  • the reduction projection optical component 57 reduces the area of the printing image having an area N times the area of the stereolithographic object 31 (however, N>1) to 1/M (however, M>1).
  • the image is projected onto the modeling surface 19 in the liquid tank 12 in the reduced state.
  • N is 3 or more
  • M is 3 or more. That is, the area of the modeling image is set to three times or more, and the reduction ratio by the reduction projection optical component 57 is set to 1/3 or less.
  • the optical energy density is improved by more than 9 times compared to the case where the image for modeling of the stereolithographic object 31 is projected on the same area without changing the area, that is, on the 1 times the area. can.
  • the reduction ratio is 1/4 or less from the viewpoint of improving the optical energy density.
  • the reduction ratio is 1/5 or less from the viewpoint of improving the optical energy density.
  • the reduction ratio of the modeling image by the reduction projection optical component is arbitrary. That is, in the present disclosure, the number of N greater than one may be less than three.
  • N ⁇ M the area of the image for printing reduced and projected onto the formation area becomes smaller than the area of the first stereolithographic object before the area is enlarged, that is, the target area.
  • the area of the printing image of the exposure image in the printing area may be smaller than the initial target area.
  • pixel density refers to a square area whose sides are defined by two axes perpendicular to each other on the projection plane, and which is included in a unit area where each side has a length of 1 inch. This means the number of pixels in a light emitting element.
  • the sealing case 58 Inside the sealing case 58, a first light focusing member 57A, a second light focusing member 57B, and an optical axis correction member 57C are each sealed.
  • the sealing case 58 can be made of, for example, resin.
  • the sealing case 58 has a bottom portion 58A, a peripheral wall portion 58B, and a ceiling portion 58C.
  • the ceiling portion 58C has translucency.
  • the shape of the peripheral wall portion 58B can be changed as appropriate as long as the members constituting the reduction projection optical component 57 can be integrally sealed inside.
  • the side wall of the first light focusing member 57A may be used as a part of the peripheral wall portion 58B of the sealing case 58.
  • the bottom 58A of the first light focusing member 57A may be used as part or all of the bottom of the sealing case 58. That is, the sealing case is not essential in the present disclosure.
  • the first light focusing member 57A is arranged inside the sealing case 58 on the side of the light source device 24, which is the opposite side of the liquid tank 12 with the ceiling portion 58C in between.
  • the first light focusing member 57A of the third embodiment is, for example, a concave focusing lens. Note that in the present disclosure, the first light focusing member 57A is not limited to a focusing lens. In the present disclosure, another member or device that has translucency and can focus the light of the modeling image 41 may be employed as the first light focusing member.
  • the second light focusing member 57B is arranged between the first light focusing member 57A and the optical axis correction member 57C.
  • the second light focusing member 57B of the third embodiment includes a second light focusing member 57B having a refractive index greater than the refractive index of air. Note that in the present disclosure, the refractive index of the second light focusing member may be less than or equal to the refractive index of air. Further, in the present disclosure, the second light focusing member is not essential.
  • the second light focusing member 57B of the third embodiment is, for example, an acrylic or epoxy hardened material, that is, a solid material.
  • the second light focusing member 57B has a refractive index different from that of the first light focusing member 57A.
  • the refractive index of the second light focusing member 57B is, for example, about 1.5.
  • the second light focusing member 57B is not limited to an acrylic hardened material.
  • another member or device that has translucency and can focus the light of the modeling image may be employed as the second light focusing member.
  • the second light focusing member 57B may be a solid or a liquid that does not have light-curable properties.
  • pure water, grease, methylene iodide (CH 2 I 2 ), an organic halogen compound, an acrylic hardening material, etc. can be used as the second light focusing member 57B.
  • Acrylic hardening materials are advantageous in that they are generally readily available and relatively easy to handle.
  • the first light focusing member 57A and the second light focusing member 57B are in close contact with each other inside the sealing case 58. Therefore, compared to the case where a gap is formed between the first light focusing member 57A and the second light focusing member 57B due to the first light focusing member 57A and the second light focusing member 57B not coming into close contact with each other, the light The influence on the refractive index can be reduced. Note that in the present disclosure, it is not essential that the first light focusing member 57A and the second light focusing member 57B come into close contact with each other.
  • the reduction projection optical component may be configured by only one of the first light focusing member 27A and the second light focusing member 57B.
  • the optical axis correction member 57C adjusts the light input from the second light focusing member 57B so that the optical axis of the light focused by the first light focusing member 57A is along a direction perpendicular to the modeling surface 19 of the forming area 18A. Correct the optical axis of That is, in the present disclosure, it is not essential that the optical axis of the focused light be strictly orthogonal to the modeling surface 19. Any optical device such as a convex lens can be used as the optical axis correction member 57C. Note that in the present disclosure, the optical axis correction member is not essential.
  • the first light focusing member 57A and the optical axis correction member 57C are different members from each other, but in the present disclosure, the first light focusing member and the optical axis correction member may be composed of one member.
  • ⁇ Method for manufacturing optically modeled objects> (Overview of stereolithography)
  • a method for manufacturing a stereolithographic object according to the third embodiment will be described with reference to FIGS. 14 and 16 to 19.
  • the image data for modeling 40A having an area N times the area of the stereolithography object 31 is created in advance by a modeling image data creation device such as CAM software.
  • the created image data for modeling 40A is input to the stereolithography device 11.
  • a formation area including the liquid surface of the photocurable resin 18 on the lower side of the stage 14 and having a constant thickness is formed.
  • the photocurable resin 18 is selectively cured by photopolymerization.
  • a cured resin layer of the stereolithographic object is formed.
  • the stage 14 is raised by the set thickness of the cured resin layer.
  • light is irradiated using the light irradiation device 50, so that a subsequent resin cured layer is formed under the previously formed resin cured layer. are stacked.
  • each resin cured layer in stereolithography of the third embodiment will be specifically described.
  • the area of the modeling image data 40A in other words, the external dimensions
  • the modeling image projected from the projection surface 55 of the light source device 24 are determined.
  • the area of 41A is almost the same.
  • the area of the image data for modeling 40B and the projection of the light source device 24 are determined.
  • the area of the modeling image 41B projected from the surface 55 is approximately the same.
  • the area of the modeling image 42B on the modeling surface 19 in the liquid tank 12 in which the photocurable resin 18 is accumulated is reduced to the area on the projection surface 55 by reduction projection using the reduction projection optical component 57. Compared to this, it is reduced to 1/N.
  • the pattern of the subsequent second resin cured layer 31B is different from the pattern of the preceding first resin cured layer 31A.
  • FIG. 19 a part of a stereolithographic object is illustrated in which a first resin cured layer 31A having a constant thickness and a second resin cured layer 31B having a constant thickness are laminated.
  • a method for manufacturing a stereolithography product using the stereolithography apparatus 11 according to the third embodiment can be configured.
  • the shapes of the cured resin layer in FIGS. 17 to 19 are merely examples, and in the present disclosure, the shape of the cured resin layer is not limited to these and may be arbitrary.
  • the support pin 32 in FIG. 16 in the third embodiment is not essential in the present disclosure, as described in the first embodiment.
  • the stage 14 for example, by lowering the stage 14 into the liquid tank 12 with the stereolithographic object supported above the stage 14 in FIG.
  • a method may be adopted in which the resin cured layers are stacked in the vertical direction.
  • the photocurable resin 18 is difficult to cure due to oxygen. Become.
  • the stage 14 blocks air as in the first embodiment, so that the formation area 18A is The photocurable resin 18 does not come into contact with oxygen in the air.
  • modeling images 41A and 41B having an area N times the area of the stereolithographic object 31 are projected from the projection surface 55 of the light source device 24. Therefore, compared to a device that projects a modeling image having an area that is one times the area of the stereolithographic object 31 from the projection plane of the light source device, the number of pixels 53 used increases by N times.
  • the reduction projection optical component 57 projects the modeling images 41A and 41B onto the modeling surface 19 in the liquid tank 12 with the area reduced to 1/N.
  • the light energy density in the forming area 18A as a printing area is improved compared to the case where a printing image having an area that is one times the area of the stereolithographic object 31 is directly projected onto the printing surface 19 in the liquid tank 12. can. As a result, light usage efficiency can be improved.
  • the pixel density of the modeling images 41A and 41B on the modeling surface 19 in the liquid tank 12 is n times higher, the light energy density increases to the square of n (n 2 ). As a result, the modeling speed in stereolithography can be improved.
  • the diagonal length of the forming area as the modeling area is approximately 5.6 inches (i.e., 70 mm), based on the general dimensions of the oral cavity. In many cases, a rectangular shaped forming surface of approximately 124 mm x 124 mm is required.
  • a light source device that can actually form exposure light having a fine pixel pitch of about 50 ⁇ m is prepared, such as in the SLA (Stereolithography) method, in order to realize the fine pixel pitch, for example, a reflective micromirror, etc. , the number of additional members may increase. Therefore, the configuration of the device becomes complicated, and as a result, the cost tends to increase.
  • the area of the modeling image on the light projection surface of the light source device 24 is expanded by N times. Therefore, for example, even if the dimension of the projection surface 55 in the light source device 24 is about 25 inches and the actual pixel pitch is about 250 ⁇ m, the length of the diagonal line in the reduced printing image 42 is A pixel pitch of about 50 ⁇ m can be obtained for a formation area of about 5.6 inches. As a result, even one pixel having a relatively large area can be used as a unit pixel without requiring additional members, so that the device can be constructed at a lower cost. Therefore, the optical modeling apparatus 11 according to the third embodiment is suitable for optical modeling of dental objects.
  • the number of a plurality of pixels that project the modeling images 41A, 41B whose area is enlarged by N times may be increased.
  • the pixel density of the modeling images 42A, 42B on the modeling surface 19 can be further improved as the number of pixels onto which the modeling images 41A, 41B are projected increases.
  • the area of the modeling images 41A, 41B can be reduced to 1/N by the first light focusing member 57A. Further, the optical axis of the light can be corrected in a direction perpendicular to the modeling surface 19 by the optical axis correction member 57C.
  • the overall refractive index of the reduction projection optical component 57 is formed by the combination of two light focusing members, the first light focusing member 57A and the second light focusing member 57B. Therefore, it is easier to adjust the overall refractive index of the reduction projection optical component 57 than when the reduction projection optical component 57 has only one first light focusing member 57A. Moreover, the modeling images 41A and 41B whose areas have been reduced are less likely to be distorted than when the reduction projection optical component 57 has only one first light focusing member 57A.
  • the values of N of the enlargement ratio and reduction ratio are 3 or more, so even if the LED is a mass-produced light emitting element in which N is 3 or more, the light energy density can be improved.
  • the resin since the cured resin layers are stacked in the vertical direction as the stage 14 rises, the resin has a thickness of one layer compared to when the stage 14 descends into the liquid tank 12. The energy required to form a hardened layer can be reduced.
  • Other effects in the third embodiment are the same as those in the first and second embodiments, and therefore, redundant explanation will be omitted.
  • a stereolithography apparatus 11A includes a rotation support part 34 that rotates a light irradiation device 50 including an optical element 56.
  • the rotation support portion 34 is rotatable not only in the X direction extending along the left-right direction in FIG. 20 but also in the Y direction extending along the direction penetrating the plane of the paper in FIG.
  • the case where the entire light irradiation device 50 including the light source device 24 and the optical element 56 is supported by the rotation support part 34 was illustrated, but the present disclosure is not limited to this, and the optical element Only 56 may be rotatably supported.
  • the other configurations of the stereolithography apparatus 11A according to the fifth modification are the same as those of the stereolithography apparatus 11 according to the third embodiment, and therefore redundant explanation will be omitted.
  • the optical energy density in stereolithography can be improved. Furthermore, by rotating the light irradiation device 50, the irradiation range of light can be expanded compared to, for example, a case where the light irradiation device 50 can only irradiate light perpendicular to the modeling surface 19. Other effects in the fifth modification are the same as those in the third embodiment, so repeated explanation will be omitted.
  • stereolithography is realized by the DLP method
  • the present disclosure is not limited to the DLP method, and may be implemented using other methods such as an LCD (Liquid Crystal Display) method or a micro LED method. It can also be applied to this method.
  • the members constituting the light irradiation device are normally required to have high durability so that they can withstand relatively high light energy. Therefore, the cost tends to increase.
  • the modeling image on the modeling surface is contracted more than the modeling image projected from the projection surface, it is not necessary to increase the durability of the light irradiation device as much as in the case of the DLP method. Therefore, by combining the present disclosure with, for example, an LCD method or a micro LED method, it is possible to suppress the cost of the stereolithography apparatus.
  • the transmittance loss from the light source is relatively large, so it may not be possible to obtain the light energy necessary for stereolithography.
  • the light energy density may remain at about 2 mJ/cm 2 .
  • the DLP method can achieve a light energy density of about 16 mJ/cm 2 .
  • the printing image on the printing surface is shrunk compared to the printing image projected from the projection surface into a general LCD type stereolithography apparatus, it is possible to achieve the same level as the DLP method. It becomes possible to obtain a higher light irradiation intensity. For example, when the reduction ratio is 1/2.8, that is, when an area ratio of about 8 times is obtained, assuming that no optical loss occurs, the light of about 16 mJ/cm 2 is the same as in the case of the DLP method. It is possible to obtain energy density.
  • the present disclosure can be configured by partially combining the configurations illustrated in FIGS. 1 to 20.
  • the present disclosure includes various embodiments not described above, and the technical scope of the present disclosure is determined only by the matters specifying the invention in the claims that are reasonable from the above explanation. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Abstract

This optical shaping device has: a liquid tank in which a liquid-phase photocurable resin is accumulated; a light source device in which a plurality of pixels each comprising a partition wall and a light-emitting element accommodated in the partition wall are disposed in a periodic matrix shape and the maximum width of each pixel is 200 μm or less; an optical element which is disposed between the light-source device and the liquid tank, and in which light radiated from one pixel is used to form spot beams emitted to the photocurable resin, and which forms an exposure image in a formation region inside the liquid tank by means of the plurality of spot beams; and a stage which supports a resin cured layer of the photocurable resin cured by the exposure image and moves in the vertical direction.

Description

光造形装置、光造形装置用の縮小投影光学部品、及び光造形物の製造方法Stereolithography device, reduction projection optical component for stereolithography device, and method for manufacturing stereolithography object
 本開示は、光造形装置、光造形装置用の縮小投影光学部品、及び光造形物の製造方法に関する。 The present disclosure relates to a stereolithographic device, a reduction projection optical component for the stereolithographic device, and a method for manufacturing a stereolithographic object.
 従来、3次元形状を有する立体構造物を造形する装置として、国際公開第2018/154847号のような光造形装置が知られている。国際公開第2018/154847号の光造形装置は、光源装置と、光源装置から放射された光を集光する光学素子とを有する。また、紫外線に反応する液状の光硬化性樹脂が蓄積された容器が、液槽として設けられる。 Conventionally, a stereolithography apparatus such as International Publication No. 2018/154847 has been known as an apparatus for modeling a three-dimensional structure having a three-dimensional shape. The stereolithography device disclosed in International Publication No. 2018/154847 includes a light source device and an optical element that collects light emitted from the light source device. Further, a container in which a liquid photocurable resin that reacts with ultraviolet rays is stored is provided as a liquid tank.
 国際公開第2018/154847号では、光源装置は、紫外線を放射する複数の発光素子と、隣接する発光素子を区分けする隔壁としての区画壁とを有する。区画壁と、区画壁によって囲まれた領域内に収容された発光素子とによって、一画素が形成される。 In International Publication No. 2018/154847, a light source device includes a plurality of light emitting elements that emit ultraviolet rays and a partition wall that serves as a partition wall that partitions adjacent light emitting elements. One pixel is formed by the partition wall and the light emitting element housed within the area surrounded by the partition wall.
 また、国際公開第2018/154847号では、光学素子は、一画素から放射された紫外線を集光することによって、光硬化性樹脂に照射されるスポット光を形成する。スポット光は、液槽の液面に直交する方向に沿って、液槽の上側から液面に対して照射される。なお、本明細書では、液面に直交する方向を、単に「照射方向」とも称する。 Furthermore, in International Publication No. 2018/154847, an optical element forms a spot light that is irradiated onto a photocurable resin by condensing ultraviolet rays emitted from one pixel. The spot light is irradiated onto the liquid surface from above the liquid tank along a direction perpendicular to the liquid surface of the liquid tank. Note that in this specification, the direction perpendicular to the liquid surface is also simply referred to as the "irradiation direction."
 複数のスポット光の照射によって液槽内の形成領域に、所望の2次元形状のパターンで設計された露光像が形成される。紫外線の照射によって、露光像が形成された形成領域の光硬化性樹脂に光硬化反応が生じる。結果、形成領域に、露光像と同様の2次元形状のパターンを有する樹脂硬化層が、所定の厚みを有して形成される。 An exposure image designed with a desired two-dimensional pattern is formed in the formation region within the liquid tank by irradiation with a plurality of spot lights. Irradiation with ultraviolet rays causes a photocuring reaction in the photocurable resin in the formation area where the exposed image is formed. As a result, a cured resin layer having a two-dimensional pattern similar to the exposed image is formed in the formation region with a predetermined thickness.
 また、国際公開第2018/154847号の光造形装置には、形成された樹脂硬化層を下側から支持するステージが設けられる。ステージが樹脂硬化層を支持したまま液槽の内部に沈下すると共に、樹脂硬化層の上側の液状の光硬化性樹脂に対し、紫外線が照射される。ステージの沈下及び紫外線の照射が繰り返されることによって、複数の樹脂硬化層が上下方向に沿って積層され、結果、所望の3次元形状を有する立体造形物を最終的に得ることができる。 Moreover, the stereolithography apparatus of International Publication No. 2018/154847 is provided with a stage that supports the formed resin cured layer from below. The stage sinks into the liquid tank while supporting the cured resin layer, and the liquid photocurable resin above the cured resin layer is irradiated with ultraviolet rays. By repeating the subsidence of the stage and the irradiation of ultraviolet rays, a plurality of cured resin layers are stacked vertically, and as a result, a three-dimensional object having a desired three-dimensional shape can be finally obtained.
 特許文献1:国際公開第2018/154847号 Patent Document 1: International Publication No. 2018/154847
 ここで、本件開示者の検討の結果、紫外線を放射する発光素子に供給される電力が同じである場合、照射方向に沿って見た際の一画素の最大幅が広い程、一画素の幅方向の中央において光硬化性樹脂に対する照射光の指向性が低下するという知見が得られた。 Here, as a result of the Discloser's study, if the power supplied to the light emitting element that emits ultraviolet rays is the same, the wider the maximum width of one pixel when viewed along the irradiation direction, the wider the width of one pixel. It was found that the directivity of the irradiated light to the photocurable resin decreases in the center of the direction.
 換言すると、一画素の最大幅が広くなる程、照射方向以外の方向に向かう光であって露光に寄与しない光の量が増える。このため、国際公開第2018/154847号の光造形装置では、一画素の最大幅によっては、光の利用効率が低下する懸念が生じる。 In other words, as the maximum width of one pixel increases, the amount of light that is directed in a direction other than the irradiation direction and does not contribute to exposure increases. For this reason, in the stereolithography apparatus of International Publication No. 2018/154847, there is a concern that the light utilization efficiency may decrease depending on the maximum width of one pixel.
 また、光造形装置では、形成領域における露光像である造形用画像の光エネルギー密度が小さくなると、光造形のための照射時間を長くする必要が生じ、結果、造形速度が低下してしまう。すなわち、光の利用効率に改善の余地がある。なお、本明細書において、光エネルギー密度は、単位面積当たりの光エネルギーを意味する。 In addition, in a stereolithography apparatus, when the light energy density of a shaping image that is an exposure image in a formation region becomes smaller, it becomes necessary to lengthen the irradiation time for stereolithography, resulting in a decrease in the modeling speed. In other words, there is room for improvement in light usage efficiency. Note that in this specification, light energy density means light energy per unit area.
 本開示は、上記に着目して為されたものであって、光の利用効率を改善できる。 The present disclosure has been made focusing on the above, and can improve the efficiency of light use.
 上記課題を解決するための手段は、以下の態様を含む。 Means for solving the above problems include the following aspects.
<1>液状の光硬化性樹脂が蓄積される液槽と、区画壁と区画壁の中に収容された発光素子とを備える一画素が、周期的なマトリクス状に複数配置され、一画素の最大幅が200μm以下である光源装置と、光源装置と液槽との間に配置され、一画素から放射された光を用いて光硬化性樹脂に照射されるスポット光を形成し、複数のスポット光によって液槽内の形成領域に露光像を形成する光学素子と、露光像によって硬化した光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、を有する光造形装置。 <1> A plurality of pixels each including a liquid tank in which a liquid photocurable resin is accumulated, a partition wall, and a light-emitting element housed in the partition wall are arranged in a periodic matrix. A light source device with a maximum width of 200 μm or less is placed between the light source device and the liquid tank, and the light emitted from one pixel is used to form a spot light that is irradiated onto the photocurable resin, and multiple spots are formed. A stereolithography apparatus that includes an optical element that forms an exposure image in a formation area in a liquid tank using light, and a stage that supports a resin cured layer of a photocurable resin that is cured by the exposure image and moves in the vertical direction.
<2>光学素子は、一画素から放射された光を集光するマイクロレンズを有し、マイクロレンズのピッチは、発光素子の光源波長[nm]以上、一画素のピッチ以下である、上記<1>に記載の光造形装置。 <2> The optical element has a microlens that condenses light emitted from one pixel, and the pitch of the microlens is greater than or equal to the light source wavelength [nm] of the light emitting element and less than or equal to the pitch of one pixel. 1>.
<3>光学素子は、一画素から放射された光を集光するマイクロレンズを有し、一画素に対して複数のマイクロレンズが配置される、上記<1>又は<2>に記載の光造形装置。 <3> The optical element according to <1> or <2> above, wherein the optical element has a microlens that condenses light emitted from one pixel, and a plurality of microlenses are arranged for one pixel. Modeling equipment.
<4>マイクロレンズは、平面視で円形状であり、マイクロレンズのピッチは、発光素子の光源波長[nm]の2倍以上である、上記<2>又は<3>に記載の光造形装置。 <4> The stereolithography device according to <2> or <3> above, wherein the microlenses are circular in plan view, and the pitch of the microlenses is at least twice the light source wavelength [nm] of the light emitting element. .
<5>光学素子は、一画素から放射された光を絞る複数のスリットを有し、スリットを用いて光硬化性樹脂に照射されるスポット光を形成するアパチャーである、上記<1>に記載の光造形装置。 <5> The optical element described in <1> above has a plurality of slits that narrow down the light emitted from one pixel, and is an aperture that uses the slits to form a spot light that is irradiated onto the photocurable resin. stereolithography device.
<6>光源装置は、液槽の下側に配置され、樹脂硬化層は、ステージの下面側に支持され、ステージは、樹脂硬化層を支持した状態で上昇可能である、上記<1>~<5>のいずれかに記載の光造形装置。 <6> The light source device is disposed below the liquid tank, the cured resin layer is supported on the lower side of the stage, and the stage is capable of rising while supporting the cured resin layer. The stereolithography device according to any one of <5>.
<7>複数の発光素子のそれぞれに対応するスイッチング素子が設けられる、上記<1>~<6>のいずれかに記載の光造形装置。 <7> The stereolithography apparatus according to any one of <1> to <6> above, wherein a switching element corresponding to each of the plurality of light emitting elements is provided.
<8>液状の光硬化性樹脂が蓄積される液槽と、複数の一画素によって形成される投影面を有し、造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を投影面から投影する光源装置と、光源装置の投影面と液槽の底面との間に配置され造形用画像の面積を1/M(ただし、M>1)に縮小して液槽内の造形形成面に投影する縮小投影光学部品と、造形形成面の上の造形用画像によって硬化した光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、を有する光造形装置。 <8> It has a liquid tank in which liquid photocurable resin is accumulated and a projection surface formed by a plurality of single pixels, and has an area N times (however, N>1) the area of the stereolithographic object to be modeled. A light source device that projects a printing image from a projection surface, and a light source device that is placed between the projection surface of the light source device and the bottom of the liquid tank and reduces the area of the printing image to 1/M (however, M>1) A light having a reduction projection optical component that projects onto a modeling surface in a bath, and a stage that supports a resin cured layer of a photocurable resin cured by a modeling image on the modeling surface and moves in the vertical direction. Modeling equipment.
<9>縮小投影光学部品は、光源装置の側に配置された第一光集束部材と、第一光集束部材によって集束した光の光軸を造形形成面に直交する向きに補正する光軸補正部材と、を備える、上記<8>に記載の光造形装置。 <9> The reduction projection optical component includes a first light focusing member disposed on the side of the light source device, and an optical axis correction device that corrects the optical axis of the light focused by the first light focusing member in a direction perpendicular to the modeling surface. The stereolithography apparatus according to <8> above, comprising: a member;
<10>縮小投影光学部品は、第一光集束部材と光軸補正部材との間に、空気の屈折率よりも大きい屈折率を有する第二光集束部材を備える、上記<9>に記載の光造形装置。 <10> The reduction projection optical component according to <9> above, comprising a second light focusing member having a refractive index larger than the refractive index of air between the first light focusing member and the optical axis correction member. Stereolithographic device.
<11>Nは、3以上である、上記<8>~<10>のいずれかに記載の光造形装置。 <11> The stereolithography apparatus according to any one of <8> to <10> above, wherein N is 3 or more.
<12>光源装置は、液槽の下側に配置され、樹脂硬化層は、ステージの下面側に支持され、ステージは、樹脂硬化層を支持した状態で上昇可能である、上記<8>~<11>のいずれかに記載の光造形装置。 <12> The light source device is disposed below the liquid tank, the cured resin layer is supported on the lower side of the stage, and the stage is capable of rising while supporting the cured resin layer, <8>~ The stereolithography device according to any one of <11>.
<13>造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を光源装置の複数の一画素によって形成される投影面から投影する工程と、縮小投影光学部品を用いて造形用画像の面積を1/M(ただし、M>1)に縮小し、面積が縮小した造形用画像を液状の光硬化性樹脂が蓄積された液槽内の造形形成面に投影することによって光硬化性樹脂を硬化する工程と、を含む、光造形物の製造方法。 <13> Projecting a printing image of N times the area of the stereofabricated object to be formed (where N>1) from a projection plane formed by a plurality of one pixel of the light source device, and reducing projection optical components. The area of the printing image is reduced to 1/M (however, M>1) using the method, and the printing image with the reduced area is projected onto the printing surface in a liquid tank in which liquid photocurable resin is accumulated. a step of curing a photocurable resin.
<14>液状の光硬化性樹脂が蓄積される液槽と、複数の一画素によって形成される投影面を有し、造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を投影面から投影する光源装置と、造形用画像によって硬化した光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、を有する光造形装置において用いられる縮小投影光学部品であって、光源装置の投影面と液槽の底面との間に配置され造形用画像の面積を1/M(ただし、M>1)に縮小して液槽内の造形形成面に投影する、光造形装置用の縮小投影光学部品。 <14> It has a liquid tank in which a liquid photocurable resin is accumulated and a projection surface formed by a plurality of single pixels, and has an area N times (however, N>1) the area of the stereolithographic object to be modeled. Reduction projection optics used in a stereolithography apparatus, which includes a light source device that projects a modeling image from a projection surface, and a stage that supports a resin cured layer of photocurable resin cured by the modeling image and moves in the vertical direction. A component that is placed between the projection surface of the light source device and the bottom of the liquid tank, and reduces the area of the modeling image to 1/M (however, M>1) and projects it onto the modeling surface in the liquid tank. A reduction projection optical component for stereolithography equipment.
 本開示によれば、光の利用効率を改善できる。 According to the present disclosure, light utilization efficiency can be improved.
第1実施形態に係る光造形装置を、液槽の一部と光照射装置とを切断して説明する正面図である。FIG. 2 is a front view illustrating the stereolithography apparatus according to the first embodiment, with part of the liquid tank and the light irradiation device cut away. 第1実施形態に係る光照射装置の光源装置と光学素子とを説明する、図3中の2-2線断面図である。FIG. 4 is a sectional view taken along line 2-2 in FIG. 3, illustrating a light source device and an optical element of the light irradiation device according to the first embodiment. 第1実施形態に係る光照射装置の光源装置と光学素子とを説明する平面図である。FIG. 2 is a plan view illustrating a light source device and an optical element of the light irradiation device according to the first embodiment. 一画素に対応する単位領域に設けられた光学素子が1つのマイクロレンズである場合の光学素子の動作を説明する図である。FIG. 3 is a diagram illustrating the operation of an optical element when the optical element provided in a unit area corresponding to one pixel is one microlens. 一画素に対応する単位領域に設けられた光学素子が複数のマイクロレンズである場合の光学素子の動作を説明する図である。FIG. 7 is a diagram illustrating the operation of an optical element when the optical element provided in a unit area corresponding to one pixel is a plurality of microlenses. 第1実施形態に係る光照射装置のスイッチング素子を説明する平面図である。It is a top view explaining the switching element of the light irradiation device concerning a 1st embodiment. 第1実施形態に係る光造形装置を用いた光造形物の製造方法を、液槽の一部と光照射装置とを切断して説明する図である。FIG. 2 is a diagram illustrating a method for manufacturing a stereolithographic object using the stereolithography apparatus according to the first embodiment, with a part of the liquid tank and a light irradiation device cut away. 第1変形例に係る光照射装置の光源装置と光学素子とを説明する平面図である。It is a top view explaining the light source device and optical element of the light irradiation device concerning a 1st modification. 第2変形例に係る光照射装置の光源装置と光学素子とを説明する平面図である。FIG. 7 is a plan view illustrating a light source device and an optical element of a light irradiation device according to a second modification. 第3変形例に係る光照射装置の光源装置と光学素子とを説明する平面図である。It is a top view explaining the light source device and optical element of the light irradiation device concerning the 3rd modification. 第3変形例に係る光照射装置の光源装置と光学素子とを説明する、図9中の10-10線断面図である。10 is a sectional view taken along line 10-10 in FIG. 9, illustrating a light source device and an optical element of a light irradiation device according to a third modification. FIG. 第4変形例に係る光照射装置の光源装置と光学素子とを説明する平面図である。It is a top view explaining the light source device and optical element of the light irradiation device concerning the 4th modification. 第2実施形態に係る光照射装置の光源装置と光学素子とを説明する平面図である。FIG. 7 is a plan view illustrating a light source device and an optical element of a light irradiation device according to a second embodiment. 第2実施形態に係る光照射装置の光源装置と光学素子とを説明する、図12中の13-13線断面図である。13 is a sectional view taken along line 13-13 in FIG. 12, illustrating a light source device and an optical element of a light irradiation device according to a second embodiment. FIG. 第3実施形態に係る光造形装置を液槽の一部と光照射装置とを切断して説明する正面図である。FIG. 7 is a front view illustrating a stereolithography apparatus according to a third embodiment with a part of a liquid tank and a light irradiation device cut away. 第3実施形態に係る光照射装置の光学素子を説明する斜視図である。It is a perspective view explaining the optical element of the light irradiation device concerning a 3rd embodiment. 第3実施形態に係る光造形装置を用いた光造形物の製造方法を、液槽の一部と光照射装置とを切断して説明する図である。FIG. 7 is a diagram illustrating a method of manufacturing a stereolithographic object using a stereolithography apparatus according to a third embodiment, with a part of a liquid tank and a light irradiation device cut away. 第一樹脂硬化層を光造形するための画像データと、M=Nの場合の光源装置における光造形物の面積のN倍の面積を有する造形用画像と、光学素子において面積が1/Mに縮小された露光像である造形用画像とを説明する図である。Image data for stereolithographic modeling of the first resin cured layer, a modeling image having an area N times the area of the stereolithographic object in the light source device in the case of M=N, and an area of 1/M in the optical element. It is a figure explaining the image for modeling which is a reduced exposure image. 第二樹脂硬化層を光造形するための画像データと、M=Nの場合の光源装置における光造形物の面積のN倍の面積を有する造形用画像と、光学素子において面積が1/Nに縮小された露光像である造形用画像とを説明する図である。Image data for stereolithography of the second resin cured layer, a modeling image having an area N times the area of the stereolithography in the light source device when M=N, and an area of the optical element reduced to 1/N. It is a figure explaining the image for modeling which is a reduced exposure image. 光造形において第一樹脂硬化層と第二樹脂硬化層とが積層された状態を説明する斜視図である。FIG. 2 is a perspective view illustrating a state in which a first resin cured layer and a second resin cured layer are laminated in stereolithography. 第5変形例に係る光造形装置を、液槽の一部と光照射装置とを切断して説明する図である。FIG. 7 is a diagram illustrating a stereolithography apparatus according to a fifth modification with a part of a liquid tank and a light irradiation device cut away.
 以下に本開示の実施の形態を、第1実施形態~第3実施形態を用いて説明する。以下の図面の記載において、同一の部分及び類似の部分には、同一の符号又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なる。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。また、明細書中に特段の断りが無い限り、本開示の各構成要素の個数は、1つに限定されず、複数存在してもよい。 Embodiments of the present disclosure will be described below using first to third embodiments. In the description of the drawings below, the same or similar parts are denoted by the same or similar symbols. However, the drawings are schematic, and the relationship between thickness and planar dimensions, the ratio of the thickness of each device and each member, etc. are different from the reality. Therefore, specific thickness and dimensions should be determined with reference to the following explanation. Furthermore, the drawings include portions that differ in dimensional relationships and ratios. Further, unless otherwise specified in the specification, the number of each component of the present disclosure is not limited to one, and a plurality may exist.
-第1実施形態-
<光造形装置>
 まず、第1実施形態に係る光造形装置10を、図1~図11を参照して説明する。図1に示すように、光造形装置10は、液槽12と、ステージ14と、ステージ14を吊り下げる吊り下げ部材16と、光照射装置20と、を有する。
-First embodiment-
<Stereolithography device>
First, a stereolithography apparatus 10 according to a first embodiment will be described with reference to FIGS. 1 to 11. As shown in FIG. 1, the stereolithography apparatus 10 includes a liquid tank 12, a stage 14, a hanging member 16 for suspending the stage 14, and a light irradiation device 20.
(液槽)
 液槽12は、底部及び側壁を有すると共に、全体的に、透光性を有する素材によって作製される。液槽12には、液状の光硬化性樹脂18が蓄積される。なお、本開示では、液槽全体が透光性を有することは、必須ではない。本開示では、底部又は側壁において光照射装置によって照射される光が通過する部分が、少なくとも透光性を有すればよい。
(liquid tank)
The liquid tank 12 has a bottom and side walls, and is entirely made of a translucent material. A liquid photocurable resin 18 is accumulated in the liquid tank 12 . Note that in the present disclosure, it is not essential that the entire liquid tank has translucency. In the present disclosure, it is sufficient that at least a portion of the bottom or side wall through which the light irradiated by the light irradiation device passes has translucency.
(ステージ)
 ステージ14は、露光像によって硬化した光硬化性樹脂18の樹脂硬化層を支持し、図1中の上下方向に移動する。すなわち、ステージ14は、樹脂硬化層を支持した状態で上昇可能及び下降可能である。また、第1実施形態では、硬化した樹脂硬化層は、ステージ14の下面側に、サポートピン32を介して支持される。すなわち、第1実施形態では光造形装置10は、吊り下げ型3Dプリンタである。
(stage)
The stage 14 supports the resin cured layer of the photocurable resin 18 that has been cured by the exposed image, and moves in the vertical direction in FIG. 1 . That is, the stage 14 can be raised and lowered while supporting the cured resin layer. Further, in the first embodiment, the cured resin layer is supported on the lower surface side of the stage 14 via support pins 32. That is, in the first embodiment, the stereolithography apparatus 10 is a hanging 3D printer.
(光照射装置)
 光照射装置20は、図1中の液槽12の下側に設けられ、透光性を有する液槽12の底部を通じて、ステージ14の下面側に光を照射する。なお、第1実施形態では、面露光方式であるDLP(Digital Light Processing)方式の光造形の場合が例示されているが、本開示の光造形は、DLP方式に限定されず、面露光方式であればよい。
(Light irradiation device)
The light irradiation device 20 is provided below the liquid tank 12 in FIG. 1, and irradiates light onto the lower surface of the stage 14 through the bottom of the liquid tank 12, which has translucency. Note that although the first embodiment exemplifies the case of stereolithography using a DLP (Digital Light Processing) method, which is a surface exposure method, the stereolithography of the present disclosure is not limited to the DLP method, and may be performed using a surface exposure method. Good to have.
 光照射装置20は、筐体22と、筐体22の内側に設けられた光源装置24と、筐体22の内側で光源装置24と液槽12との間に配置された光学素子26とを備える。光造形物の製造時には、予め作成された造形用画像データが光照射装置20に入力される。造形用画像データは、例えばCADソフトウェア又はCAMソフトウェア等によって作成される。光照射装置20は、入力された造形用画像データに基づき、液槽12内に浸漬されたステージ14の下側に向かって、例えば紫外線のような、光造形に必要な所定の波長の光を選択的に照射する。 The light irradiation device 20 includes a casing 22, a light source device 24 provided inside the casing 22, and an optical element 26 arranged between the light source device 24 and the liquid tank 12 inside the casing 22. Be prepared. When manufacturing a stereolithographic object, previously created image data for modeling is input to the light irradiation device 20. The modeling image data is created using, for example, CAD software or CAM software. The light irradiation device 20 emits light of a predetermined wavelength necessary for stereolithography, such as ultraviolet light, toward the lower side of the stage 14 immersed in the liquid tank 12 based on the input image data for modeling. Selectively irradiate.
(光源装置)
 図2に示すように、光源装置24は、基板24Aと、区画壁24Bと、発光素子24Cと、封止材24Dと、保護層24Eとを備える。光源装置24は、光硬化性樹脂18の形成領域18Aに対し、複数の一画素23から光を一括して出射する。なお、図2中では、説明の便宜のため、図1中で例示された筐体22の図示は省略されている。
(Light source device)
As shown in FIG. 2, the light source device 24 includes a substrate 24A, a partition wall 24B, a light emitting element 24C, a sealing material 24D, and a protective layer 24E. The light source device 24 collectively emits light from a plurality of pixels 23 to the formation area 18A of the photocurable resin 18. Note that in FIG. 2, for convenience of explanation, illustration of the casing 22 illustrated in FIG. 1 is omitted.
(基板)
 基板24Aは、例えばガラス基板又は樹脂基板である。基板24Aには、発光素子24Cを駆動するための各種回路、TFT(Thin Film Transistor)等のスイッチング素子、走査線、信号線及び電源線等の各種配線が設けられる。各種回路の図示は省略されている。また、後で説明するが、図5中には、スイッチング素子36と、X電極部材X1,X2と、Y電極部材Y1,Y2とが例示されている。
(substrate)
The substrate 24A is, for example, a glass substrate or a resin substrate. The substrate 24A is provided with various circuits for driving the light emitting elements 24C, switching elements such as TFTs (Thin Film Transistors), and various wirings such as scanning lines, signal lines, and power lines. Illustrations of various circuits are omitted. Further, as will be explained later, FIG. 5 illustrates the switching element 36, the X electrode members X1 and X2, and the Y electrode members Y1 and Y2.
(区画壁)
 区画壁24Bは、例えば樹脂材料や金属材料によって形成される。区画壁24Bは、図3に示すように、X方向とY方向とのそれぞれに沿って複数設けられる。X方向とY方向とは、互いに直交する。このため、平面視で、X方向の区画壁24BとY方向の区画壁24Bとは、格子状に表れる。区画壁24Bで囲まれる格子の内側の空間に、1つの発光素子24Cが設けられる。
(compartment wall)
The partition wall 24B is formed of, for example, a resin material or a metal material. As shown in FIG. 3, a plurality of partition walls 24B are provided along each of the X direction and the Y direction. The X direction and the Y direction are orthogonal to each other. Therefore, in plan view, the partition walls 24B in the X direction and the partition walls 24B in the Y direction appear in a lattice shape. One light emitting element 24C is provided in the space inside the grid surrounded by the partition wall 24B.
(発光素子)
 発光素子24Cは、平面視で、周期的なマトリクス状に複数配列される。発光素子24Cは、例えば、マイクロ発光ダイオード(マイクロ Light Emitting Diode,マイクロLED)である。発光素子24Cは、区画壁24Bと区画壁24Bの中に収容される。発光素子24Cは、400nm付近の波長を有する紫外線の光を放射する。なお、本開示では、発光素子としては、マイクロLEDに限定されず、例えば有機LED等、光硬化性樹脂18を硬化可能な波長の光を発光する素子を適宜採用できる。
(Light emitting element)
A plurality of light emitting elements 24C are arranged in a periodic matrix in a plan view. The light emitting element 24C is, for example, a micro light emitting diode (micro LED). The light emitting element 24C is housed in the partition wall 24B and the partition wall 24B. The light emitting element 24C emits ultraviolet light having a wavelength of around 400 nm. Note that in the present disclosure, the light emitting element is not limited to micro LEDs, and any element that emits light with a wavelength that can cure the photocurable resin 18, such as an organic LED, can be used as appropriate.
 なお、本開示で発光素子として用いられるマイクロLEDは、電気的に制御されない。換言すると、マイクロLEDは、露光光を放射する光源そのものであると共に、マイクロLEDの放射する光は、そのまま露光光として利用される。この点、例えば液晶ディスプレイのバックライトとして用いられるマイクロLEDでは、液晶に印加される電圧によって液晶を通過する光量が電気的に制御される。すなわち、本開示の発光素子における光の使用用途及び使用状態は、液晶ディスプレイのマイクロLEDにおける光の使用用途及び使用状態とは異なる。 Note that the micro LED used as a light emitting element in the present disclosure is not electrically controlled. In other words, the micro LED is itself a light source that emits exposure light, and the light emitted by the micro LED is used as it is as exposure light. In this regard, for example, in a micro-LED used as a backlight of a liquid crystal display, the amount of light passing through the liquid crystal is electrically controlled by a voltage applied to the liquid crystal. That is, the usage and usage conditions of light in the light emitting element of the present disclosure are different from the usage and usage status of light in the micro LED of a liquid crystal display.
 第1実施形態では、マトリクス状に複数配列された発光素子24Cは、液槽12内の光硬化性樹脂18に対向するように配置される。図3中では、X方向に4個であってY方向に2個マトリクス状に配置された状態が例示されているが、本開示では、発光素子の個数及び配置パターンは、任意に設定できる。 In the first embodiment, a plurality of light emitting elements 24C arranged in a matrix are arranged to face the photocurable resin 18 in the liquid tank 12. Although FIG. 3 shows an example in which four light emitting elements are arranged in the X direction and two light emitting elements are arranged in the Y direction in a matrix, in the present disclosure, the number of light emitting elements and the arrangement pattern can be set arbitrarily.
(封止材)
 封止材24Dは、例えば、エポキシ樹脂やシリコーン樹脂等の、光を透過可能な透光性を有する樹脂等によって作製できる。図2に示すように、封止材24Dは、発光素子24Cを区画壁24Bの内側に封止する。
(Encapsulant)
The sealing material 24D can be made of, for example, a resin having a translucent property that allows light to pass through, such as epoxy resin or silicone resin. As shown in FIG. 2, the sealing material 24D seals the light emitting element 24C inside the partition wall 24B.
(保護層)
 保護層24Eは、図2中で区画壁24Bの上に設けられる。保護層24Eは、発光素子24Cを保護する。保護層24Eは、例えば、光を透過可能な透光性を有する樹脂フィルム等によって作製できる。
(protective layer)
A protective layer 24E is provided on the partition wall 24B in FIG. The protective layer 24E protects the light emitting element 24C. The protective layer 24E can be made of, for example, a transparent resin film that allows light to pass therethrough.
(一画素)
 図2に示すように、第1実施形態における「一画素23」は、発光素子24Cが内側に含まれ、区画壁24Bによって四方を囲まれた領域によって構成される。このため、発光素子24Cと同様、一画素23は、平面視で、周期的なマトリクス状に複数配置される。
(one pixel)
As shown in FIG. 2, "one pixel 23" in the first embodiment includes a light emitting element 24C inside and is constituted by an area surrounded on all sides by partition walls 24B. Therefore, like the light emitting element 24C, a plurality of pixels 23 are arranged in a periodic matrix in plan view.
 一画素23のピッチは、例えば隣接する一画素23の中心間隔である。また、一画素23のピッチは、隣接する区画壁24Bの中心間隔に等しい。また、第1実施形態では一画素23は、平面視で正方形状であるため、一画素23のピッチは、一画素23の最大幅W1に等しい。第1実施形態では、一画素23の最大幅W1は、5μm以上、200μm以下に設定される。 The pitch of one pixel 23 is, for example, the center distance between adjacent pixels 23. Further, the pitch of one pixel 23 is equal to the center distance between adjacent partition walls 24B. Furthermore, in the first embodiment, one pixel 23 has a square shape in plan view, so the pitch of one pixel 23 is equal to the maximum width W1 of one pixel 23. In the first embodiment, the maximum width W1 of one pixel 23 is set to 5 μm or more and 200 μm or less.
 一画素23の最大幅W1が5μm未満の場合、一画素23が小さくなり過ぎるため、製造コストが嵩む。また、一画素23の最大幅W1が200μmを超えると、露光像の解像度が低下する。特に、一画素23の最大幅W1が100μm以下であることが、解像度向上の観点から、より好ましい。なお、本開示では、一画素の最大幅W1は、5μm未満であってもよい。また、本開示では、一画素の最大幅W1は、200μmを超えてもよい。 If the maximum width W1 of one pixel 23 is less than 5 μm, one pixel 23 becomes too small, which increases manufacturing costs. Furthermore, when the maximum width W1 of one pixel 23 exceeds 200 μm, the resolution of the exposed image decreases. In particular, it is more preferable that the maximum width W1 of one pixel 23 is 100 μm or less from the viewpoint of improving resolution. Note that in the present disclosure, the maximum width W1 of one pixel may be less than 5 μm. Further, in the present disclosure, the maximum width W1 of one pixel may exceed 200 μm.
 なお、第1実施形態では、X方向の最大幅W1とY方向の最大幅W1とは等しいが、本開示では、これに限定されず、X方向の最大幅とY方向の最大幅とは異なってもよい。すなわち、本開示では平面視で、一画素の形状は、矩形状であってもよい。また、一画素の形状は、矩形状に限定されず、円形状や他の多角形状等、任意の幾何学形状であってよい。 Note that in the first embodiment, the maximum width W1 in the X direction and the maximum width W1 in the Y direction are equal, but in the present disclosure, the maximum width in the X direction and the maximum width in the Y direction are different. It's okay. That is, in the present disclosure, the shape of one pixel may be rectangular in plan view. Further, the shape of one pixel is not limited to a rectangular shape, and may be any geometric shape such as a circular shape or other polygonal shape.
(光学素子)
 光学素子26は、図2に示すように、基部26Aと、基部26Aの一方の面上に設けられたマイクロレンズ26Bとを備える。第1実施形態では、光学素子26は、液槽12の下側で、光源装置24と液槽12との間に配置される。光学素子26は、一画素23から放射された光を用いて光硬化性樹脂18に照射されるスポット光を形成する。複数のスポット光によって、液槽12内の形成領域18Aに露光像が形成される。
(optical element)
As shown in FIG. 2, the optical element 26 includes a base 26A and a microlens 26B provided on one surface of the base 26A. In the first embodiment, the optical element 26 is arranged below the liquid tank 12 and between the light source device 24 and the liquid tank 12. The optical element 26 uses the light emitted from one pixel 23 to form a spot light that is irradiated onto the photocurable resin 18 . An exposed image is formed in the formation area 18A in the liquid tank 12 by the plurality of spot lights.
(基部)
 基部26Aは、板状部材である。基部26A、透光性のガラス又は樹脂材料等によって作製できる。
(base)
The base 26A is a plate-like member. The base 26A can be made of translucent glass, resin material, or the like.
(マイクロレンズ)
 マイクロレンズ26Bは、透光性のガラス又は樹脂材料等によって作製できる。第1実施形態のマイクロレンズ26Bは、光学素子として、一画素23から放射された光を集光することによって、光硬化性樹脂18に照射されるスポット光を形成する。なお、本開示では、光学素子は、マイクロレンズ以外の種類のレンズや反射鏡等、他の集光装置であってもよい。
(microlens)
The microlens 26B can be made of transparent glass, resin material, or the like. The microlens 26B of the first embodiment serves as an optical element and forms a spot light that is irradiated onto the photocurable resin 18 by condensing light emitted from one pixel 23. Note that in the present disclosure, the optical element may be another light condensing device such as a type of lens other than a microlens or a reflecting mirror.
 第1実施形態では、基部26Aとマイクロレンズ26Bとは、一体に形成される。なお、本開示では、マイクロレンズ26Bは、基部26Aとは別に形成され、かつ、基部26Aと接合されてもよい。 In the first embodiment, the base 26A and the microlens 26B are integrally formed. Note that in the present disclosure, the microlens 26B may be formed separately from the base 26A and may be joined to the base 26A.
 図3に示すように、マイクロレンズ26Bは、平面視で円形状である。また、図2に示すように、マイクロレンズ26Bは、上側に突出する半球状である。第1実施形態では、マイクロレンズ26Bの径は、すべて同じである。なお、本開示では、複数のマイクロレンズ26Bの形状及び寸法は異なってもよい。また、一画素に対応する一群の複数のマイクロレンズ26Bの中で、それぞれの形状及び寸法は、互いに異なってもよい。 As shown in FIG. 3, the microlens 26B has a circular shape in plan view. Further, as shown in FIG. 2, the microlens 26B has a hemispherical shape that projects upward. In the first embodiment, all the microlenses 26B have the same diameter. Note that in the present disclosure, the shapes and dimensions of the plurality of microlenses 26B may be different. Furthermore, the shapes and dimensions of the plurality of microlenses 26B in a group corresponding to one pixel may be different from each other.
 マイクロレンズ26Bは、平面視で、基部26Aの上にマトリクス状に複数設けられる。図3中に例示された光学素子26では、一画素23に対して4つのマイクロレンズ26Bが、1つのマイクロレンズアレイとして配置される。なお、本開示では、一画素に対するマイクロレンズ26Bの個数は、1つであってもよいし、或いは、任意の複数であってもよい。また、図2に示すように、第1実施形態では、1つのマイクロレンズアレイの幅W2は、封止材の幅W3とほぼ等しい。 A plurality of microlenses 26B are provided in a matrix on the base 26A in plan view. In the optical element 26 illustrated in FIG. 3, four microlenses 26B are arranged for one pixel 23 as one microlens array. Note that in the present disclosure, the number of microlenses 26B for one pixel may be one or any number of microlenses 26B. Further, as shown in FIG. 2, in the first embodiment, the width W2 of one microlens array is approximately equal to the width W3 of the sealing material.
(マイクロレンズのピッチ)
 次に、マイクロレンズのピッチについて説明する。第1実施形態では、一画素23内における、マイクロレンズ26Bのピッチ(例えば、中心間隔)は、発光素子24Cの光源波長[nm]以上、一画素23のピッチ以下に設定される。マイクロレンズ26Bのピッチが光源波長未満の場合、レンズとしての集光機能を適切に発揮させることが難しくなる。一方、マイクロレンズのピッチが一画素のピッチを超える場合、マイクロレンズの寸法が大きくなり過ぎるため、製造コストの負担が大きくなる。
(microlens pitch)
Next, the pitch of the microlenses will be explained. In the first embodiment, the pitch (for example, center spacing) of the microlenses 26B within one pixel 23 is set to be greater than or equal to the light source wavelength [nm] of the light emitting element 24C and less than or equal to the pitch of one pixel 23. If the pitch of the microlenses 26B is less than the wavelength of the light source, it becomes difficult to properly perform the light focusing function as a lens. On the other hand, when the pitch of the microlenses exceeds the pitch of one pixel, the dimensions of the microlenses become too large, which increases the burden of manufacturing costs.
 また、第1実施形態では、マイクロレンズ26Bのピッチは、発光素子24Cの光源波長[nm]の2倍以上に設定されることが、干渉縞を抑制できる観点から、より好ましい。例えば、光源波長が400nm付近であれば、マイクロレンズ26Bのピッチは、800nm以上、1μm以下の範囲内程度に設定できる。 Further, in the first embodiment, it is more preferable that the pitch of the microlenses 26B is set to be twice or more the light source wavelength [nm] of the light emitting element 24C from the viewpoint of suppressing interference fringes. For example, if the light source wavelength is around 400 nm, the pitch of the microlenses 26B can be set within a range of 800 nm or more and 1 μm or less.
 なお、第1実施形態では、マイクロレンズ26Bが一画素23内に隙間なく配置されるため、図3に示すように、一画素23内におけるマイクロレンズ26Bのピッチは、マイクロレンズ26Bの径Dと実質的に等しい。すなわち、第1実施形態では、一画素23内におけるマイクロレンズ26Bのピッチが光源波長以上であるということは、マイクロレンズ26Bの径Dが光源波長以上であることと同義である。 In the first embodiment, since the microlenses 26B are arranged without any gaps within one pixel 23, the pitch of the microlenses 26B within one pixel 23 is equal to the diameter D of the microlens 26B, as shown in FIG. substantially equal. That is, in the first embodiment, the fact that the pitch of the microlenses 26B within one pixel 23 is greater than or equal to the light source wavelength is synonymous with the fact that the diameter D of the microlenses 26B is greater than or equal to the light source wavelength.
 ただし、マイクロレンズ26Bの間に隙間がある場合、一画素23内におけるマイクロレンズのピッチ中のマイクロレンズの径の占める割合が大きいことが好ましい。具体的には、一画素23内におけるマイクロレンズ26Bのピッチ中におけるマイクロレンズ26Bの径Dの占める割合は、70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがなお好ましく、95%以上であることが更に好ましい。特に、一画素23内におけるマイクロレンズ26Bのピッチの長さが光源波長に等しいときは、1つのピッチ中のマイクロレンズ26Bの径Dの占める割合が上記のとおり70%以上の範囲内であることが好ましい。 However, if there is a gap between the microlenses 26B, it is preferable that the ratio of the diameter of the microlenses to the pitch of the microlenses within one pixel 23 is large. Specifically, the ratio of the diameter D of the microlens 26B to the pitch of the microlens 26B within one pixel 23 is preferably 70% or more, more preferably 80% or more, and 90% or more. More preferably, it is 95% or more. In particular, when the pitch length of the microlenses 26B in one pixel 23 is equal to the light source wavelength, the ratio of the diameter D of the microlenses 26B in one pitch should be within the range of 70% or more as described above. is preferred.
 なお、本開示では、マイクロレンズの径が光源波長未満であっても、一画素内におけるマイクロレンズのピッチが、波長以上であればよい。マイクロレンズの径が光源波長未満であっても、マイクロレンズ間の隙間が小さければ、光源装置の一画素からの放射光を集光できる。換言すると、マイクロレンズ間の隙間が、一画素からの放射光を集光できる程度に小さければ、一画素内で隣接するマイクロレンズの間で形成されるピッチが、光源波長以上に設定可能である。 Note that in the present disclosure, even if the diameter of the microlens is less than the light source wavelength, it is sufficient that the pitch of the microlens within one pixel is equal to or greater than the wavelength. Even if the diameter of the microlens is less than the light source wavelength, if the gap between the microlenses is small, the emitted light from one pixel of the light source device can be focused. In other words, if the gap between the microlenses is small enough to condense the emitted light from one pixel, the pitch formed between adjacent microlenses within one pixel can be set to be greater than the light source wavelength. .
(露光光)
 次に、マイクロレンズによって形成される露光光について説明する。図4Aに示すように、1つの発光素子24Cが内側に含まれる一画素23に対し、1つのマイクロレンズ26Bのみが配置される場合、形成領域18Aの結像底面である造形形成面19の露光像は、中央領域RCと周縁領域RPとに区分けできる。
(Exposure light)
Next, the exposure light formed by the microlens will be explained. As shown in FIG. 4A, when only one microlens 26B is arranged for one pixel 23 in which one light emitting element 24C is included, exposure of the modeling formation surface 19 which is the imaging bottom surface of the formation area 18A The image can be divided into a central region RC and a peripheral region RP.
 中央領域RCは、レンズの外縁が造形形成面19に直接投射された形状を有する。また、周縁領域RPは、中央領域RCの周縁に位置する。周縁領域RPに照射される光エネルギーは、露光に寄与しない。 The central region RC has a shape in which the outer edge of the lens is directly projected onto the modeling surface 19. Further, the peripheral region RP is located at the peripheral edge of the central region RC. The light energy irradiated to the peripheral region RP does not contribute to exposure.
 一方、図4Bに示すように、一画素23に対して4つのマイクロレンズ26Bが配置される場合、左側のマイクロレンズ26Bから照射された光のうち光軸Cから偏心した光の一部は、隣接する右側のマイクロレンズ26B側の露光像の内側の重なり領域ROに届く。なお、図4Bの断面図中では、2つのマイクロレンズ26Bが表れている。マイクロレンズ26Bの光軸Cは、図4A及び図4B中の上下方向に平行である。このため、図4Aのような1つのマイクロレンズ26Bのみが配置される場合と比較して、露光に寄与しないスポット光の光量の低減が抑制される。 On the other hand, as shown in FIG. 4B, when four microlenses 26B are arranged for one pixel 23, part of the light emitted from the left microlens 26B that is decentered from the optical axis C is The light reaches the overlapping region RO inside the exposed image on the adjacent right microlens 26B side. Note that in the cross-sectional view of FIG. 4B, two microlenses 26B are visible. The optical axis C of the microlens 26B is parallel to the vertical direction in FIGS. 4A and 4B. Therefore, compared to the case where only one microlens 26B is arranged as shown in FIG. 4A, the reduction in the amount of spot light that does not contribute to exposure is suppressed.
(スイッチング素子)
 図5に示すように、第1実施形態では、複数の発光素子24Cのそれぞれに対応するスイッチング素子36が設けられる。具体的には、複数の一画素23のそれぞれは、対応するスイッチング素子36を介して、それぞれの一画素23に設定されたX電極部材X1,X2とY電極部材Y1,Y2とに接続される。X電極部材X1,X2とY電極部材Y1,Y2とは、互いに直交する。
(switching element)
As shown in FIG. 5, in the first embodiment, a switching element 36 corresponding to each of the plurality of light emitting elements 24C is provided. Specifically, each of the plurality of pixels 23 is connected to the X electrode members X1, X2 and Y electrode members Y1, Y2 set for each pixel 23 via the corresponding switching element 36. . The X electrode members X1, X2 and the Y electrode members Y1, Y2 are orthogonal to each other.
 図5中の上段には、左右方向に隣接配置された2個の一画素23が、第1のX電極部材X1に接続されると共に、図5中の下段には、左右方向に隣接配置された2個の一画素23が、第2のX電極部材X2に接続された場合が例示されている。また、図5中の左側には、上下方向に隣接配置された2個の一画素23が、第1のY電極部材Y1に接続されると共に、図5中の右側には、上下方向に隣接配置された2個の一画素23が、第2のY電極部材Y2に接続された場合が例示されている。スイッチング素子36によって、対象である一画素23ごとに、光の照射と光の非照射との切り替え精度を向上できる。なお、本開示では、スイッチング素子36は必須ではない。 In the upper row in FIG. 5, two pixels 23 arranged adjacent to each other in the left and right direction are connected to the first X electrode member X1, and in the lower row in FIG. A case is illustrated in which two pixels 23 are connected to the second X electrode member X2. Further, on the left side of FIG. 5, two pixels 23 arranged adjacent to each other in the vertical direction are connected to the first Y electrode member Y1, and on the right side of FIG. A case is illustrated in which two arranged pixels 23 are connected to the second Y electrode member Y2. The switching element 36 can improve the accuracy of switching between light irradiation and non-light irradiation for each target pixel 23. Note that in the present disclosure, the switching element 36 is not essential.
<光造形物の製造方法>
 次に、第1実施形態に係る光造形物の製造方法を説明する。図1に示したように、光照射装置20からの光照射によって、ステージ14の下側の光硬化性樹脂18の液面を含み、かつ、一定の厚みを有する形成領域18Aにおいて、光硬化性樹脂18が、光重合することによって選択的に硬化する。結果、光造形物の樹脂硬化層が形成される。そして、吊り下げ部材16が図1中の上側に移動することによって、ステージ14が、設定された樹脂硬化層の厚みの分、上昇する。
<Method for manufacturing optically modeled objects>
Next, a method for manufacturing a stereolithographic object according to the first embodiment will be described. As shown in FIG. 1, light irradiation from the light irradiation device 20 causes photocurable resin to be formed in the formation area 18A that includes the liquid surface of the photocurable resin 18 on the lower side of the stage 14 and has a certain thickness. The resin 18 is selectively cured by photopolymerization. As a result, a cured resin layer of the stereolithographic object is formed. Then, by moving the hanging member 16 upward in FIG. 1, the stage 14 rises by the set thickness of the cured resin layer.
 ステージ14の上昇後、光照射装置20を用いて光が照射されることによって、先行して形成された樹脂硬化層の下に、後続の樹脂硬化層が積層される。図6に示すように、第1実施形態では、液槽光重合法によって光造形物30が造形される。なお、光造形物30は、任意の産業製品であってよい。 After the stage 14 is raised, a subsequent cured resin layer is laminated under the previously formed cured resin layer by irradiating light using the light irradiation device 20. As shown in FIG. 6, in the first embodiment, a stereolithographic object 30 is formed by a liquid bath photopolymerization method. Note that the stereolithographic object 30 may be any industrial product.
 なお、第1実施形態では、図6中にステージ14の下面から延びるサポートピン32によって、造形中の光造形物30が吊り下げられた状態が例示されているが、本開示では、サポートピン32は必須ではない。ステージ14の上昇と光照射装置20による光の照射とが繰り返されることによって、最終的に、光造形物30が、ステージ14の下側に吊り下げられた状態で造形される。 Note that in the first embodiment, FIG. 6 illustrates a state in which the optically modeled object 30 being modeled is suspended by the support pin 32 extending from the lower surface of the stage 14; however, in the present disclosure, the support pin 32 is not required. By repeating the raising of the stage 14 and the irradiation of light by the light irradiation device 20, the optically modeled object 30 is finally modeled in a state suspended below the stage 14.
 なお、本開示では、例えば図1中のステージ14の上側に光造形物が支持された状態でステージ14が液槽12の中に下降することによって、樹脂硬化層が上下方向に積層される方式が、採用されてもよい。ただし、ステージ14が液槽12の中に下降することによって樹脂硬化層が上下方向に積層される場合、光は、液槽12の上側からステージ14の上面に向かって照射される。露光像が形成される形成領域18Aは、ステージ14の上面と液槽12の液面との間に位置する。このため、形成領域18Aの光硬化性樹脂18の上面は、空気中の酸素に接触する。酸素によって光硬化性樹脂18が、硬化し難くなる。 In the present disclosure, for example, the stage 14 is lowered into the liquid tank 12 with the stereofabricated object supported above the stage 14 in FIG. 1, thereby stacking the resin cured layers in the vertical direction. may be adopted. However, when the stage 14 is lowered into the liquid tank 12 and the resin cured layers are stacked in the vertical direction, the light is irradiated from the upper side of the liquid tank 12 toward the upper surface of the stage 14 . A formation region 18A in which an exposed image is formed is located between the upper surface of the stage 14 and the liquid level of the liquid tank 12. Therefore, the upper surface of the photocurable resin 18 in the formation area 18A comes into contact with oxygen in the air. Oxygen makes it difficult for the photocurable resin 18 to harden.
 一方、第1実施形態のように、図1中でステージ14が上昇することによって樹脂硬化層が上下方向に積層される場合、液槽12の下側からステージ14の下面に向かって光が照射される。形成領域18Aは、図1中のステージ14の下面の下側に位置する光硬化性樹脂18である。すなわち、ステージ14が空気を遮るため、形成領域18Aの光硬化性樹脂18は、空気中の酸素に接触しない。 On the other hand, when the cured resin layers are stacked vertically as the stage 14 rises in FIG. 1 as in the first embodiment, light is irradiated from the lower side of the liquid tank 12 toward the lower surface of the stage 14. be done. The formation area 18A is a photocurable resin 18 located below the lower surface of the stage 14 in FIG. That is, since the stage 14 blocks air, the photocurable resin 18 in the formation area 18A does not come into contact with oxygen in the air.
(第1変形例)
 図7に示すように、一画素23に対応するマイクロレンズアレイの幅W2は、一画素23における封止材24Dの幅W3以上であってよい。図7中には、一画素23に対し、1つのマイクロレンズアレイとして4つのマイクロレンズ26Bがマトリクス状に配置された場合が例示されている。また、図7中では、1つのマイクロレンズアレイの幅W2は、一画素23のピッチ、すなわち、一画素23の最大幅W1と同じである場合が例示されている。
(First modification)
As shown in FIG. 7, the width W2 of the microlens array corresponding to one pixel 23 may be greater than or equal to the width W3 of the sealing material 24D in one pixel 23. In FIG. 7, a case is illustrated in which four microlenses 26B are arranged in a matrix as one microlens array for one pixel 23. Further, in FIG. 7, a case is illustrated in which the width W2 of one microlens array is the same as the pitch of one pixel 23, that is, the maximum width W1 of one pixel 23.
 マイクロレンズアレイの幅W2は、一画素23のピッチ以下に設定されることが好ましい。マイクロレンズアレイの幅W2が一画素23のピッチを超えると、隣接する一画素23が非照射状態であるにもかかわらず、隣接する一画素23に対応する露光像の位置に、光が届く懸念がある。 The width W2 of the microlens array is preferably set to the pitch of one pixel 23 or less. If the width W2 of the microlens array exceeds the pitch of one pixel 23, there is a concern that light will reach the position of the exposed image corresponding to the adjacent pixel 23 even though the adjacent pixel 23 is not illuminated. There is.
(第2変形例)
 図8に示すように、マイクロレンズ26Bは、平面視で正方形状であってもよい。すなわち、第2変形例のマイクロレンズ26Bは、直方体状である。なお、本開示では、マイクロレンズの形状は、平面視で矩形状等、他の任意の幾何学形状を採用できる。
(Second modification)
As shown in FIG. 8, the microlens 26B may have a square shape in plan view. That is, the microlens 26B of the second modification has a rectangular parallelepiped shape. Note that in the present disclosure, the shape of the microlens can be any other geometric shape, such as a rectangular shape in plan view.
(第3変形例)
 図9及び図10に示すように、マイクロレンズアレイは、平面視で、3×3の状態で、マトリクス状に配置された9つのマイクロレンズ26Bによって構成されてもよい。第3変形例では、9つのマイクロレンズ26Bが、一画素23に対応する。
(Third modification)
As shown in FIGS. 9 and 10, the microlens array may be composed of nine microlenses 26B arranged in a matrix in a 3×3 arrangement in plan view. In the third modification, nine microlenses 26B correspond to one pixel 23.
(第4変形例)
 図11に示すように、マイクロレンズアレイが9つのマイクロレンズ26Bで構成される場合であっても、1つのマイクロレンズ26Bの形状としては、任意の幾何学形状を採用できる。図11中には、第2変形例で説明した場合と同様に、平面視で正方形状のマイクロレンズ26Bが設けられた場合が例示されている。
(Fourth modification)
As shown in FIG. 11, even if the microlens array is composed of nine microlenses 26B, any geometric shape can be adopted as the shape of one microlens 26B. In FIG. 11, a case is illustrated in which a square microlens 26B is provided in a plan view, similar to the case described in the second modification.
(作用効果)
 第1実施形態では、一画素23の最大幅W1が200μm以下に設定されるため、光の指向性の低下が抑制される。このため、最大幅W1が200μmを超える場合と比して、光硬化反応における光の利用効率の低下を抑制できる。結果、光の利用効率を改善できる。
(effect)
In the first embodiment, since the maximum width W1 of one pixel 23 is set to 200 μm or less, a decrease in the directivity of light is suppressed. Therefore, compared to the case where the maximum width W1 exceeds 200 μm, it is possible to suppress a decrease in light utilization efficiency in the photocuring reaction. As a result, light usage efficiency can be improved.
 また、第1実施形態では、マイクロレンズ26Bのピッチの上限値と下限値とが設定されることによって、露光に必要な照射光の形成と光学素子26の製造コストの負担の抑制とを両立できる。 Further, in the first embodiment, by setting the upper limit value and the lower limit value of the pitch of the microlenses 26B, it is possible to both form the irradiation light necessary for exposure and suppress the burden of manufacturing costs of the optical element 26. .
 また、第1実施形態では、マイクロレンズ26Bによって、直線化されたスポット光を照射できる。また、一画素23からの光に対して複数のマイクロレンズ26Bが配置される。このため、1つのマイクロレンズ26Bから照射された光のうち光軸Cから偏心した光の一部が、1つのマイクロレンズ26Bに隣接するマイクロレンズ26B側の露光像の内側の重なり領域ROに届く。結果、1つのマイクロレンズ26Bのみが配置される場合と比較して、スポット光の光量の低減を抑制できる。このため、樹脂硬化層を精細に造形できる。 Furthermore, in the first embodiment, the microlens 26B can irradiate a linearized spot light. Further, a plurality of microlenses 26B are arranged for light from one pixel 23. Therefore, part of the light emitted from one microlens 26B that is decentered from the optical axis C reaches the overlapping region RO inside the exposed images on the side of the microlens 26B adjacent to one microlens 26B. . As a result, compared to the case where only one microlens 26B is disposed, reduction in the amount of spot light can be suppressed. Therefore, the cured resin layer can be precisely shaped.
 また、第1実施形態では、マイクロレンズ26Bは円形状であると共に、マイクロレンズ26Bのピッチは、発光素子24Cの光源波長[nm]の2倍以上である。このため、マイクロレンズ26Bから出射した光が干渉せず、結果、光造形物の表面にモアレ模様が生じない。 Furthermore, in the first embodiment, the microlenses 26B are circular, and the pitch of the microlenses 26B is at least twice the light source wavelength [nm] of the light emitting element 24C. Therefore, the light emitted from the microlens 26B does not interfere with each other, and as a result, no moire pattern is generated on the surface of the stereolithographic object.
 また、第1実施形態では、ステージ14が上昇することによって樹脂硬化層が上下方向に積層されるため、ステージ14が液槽12の中に下降する場合に比べ、1層分の厚みを有する樹脂硬化層を形成するために必要なエネルギーを低減できる。 In addition, in the first embodiment, since the cured resin layers are stacked vertically as the stage 14 rises, the resin layer has a thickness of one layer compared to when the stage 14 descends into the liquid tank 12. The energy required to form a hardened layer can be reduced.
 また、第1実施形態では、スイッチング素子36によってアクティブマトリクス駆動形式で光を照射できる。このため、ドットマトリクス駆動形式の場合に比べ、設計パターンの解像度が高まり、結果、立体造形物の造形精度を向上できる。 Furthermore, in the first embodiment, light can be irradiated using the switching element 36 in an active matrix drive format. For this reason, the resolution of the design pattern is higher than in the case of the dot matrix drive format, and as a result, the accuracy of modeling the three-dimensional object can be improved.
-第2実施形態-
 次に、第2実施形態に係る光造形装置10を、図12及び図13を参照して説明する。第2実施形態に係る光造形装置は、液槽と、光源装置と、アパチャー38と、ステージと、を有する。第2実施形態においても第1実施形態と同様に、光源装置の一画素23の最大幅W1は、200μm以下に設定される。
-Second embodiment-
Next, a stereolithography apparatus 10 according to a second embodiment will be described with reference to FIGS. 12 and 13. The stereolithography apparatus according to the second embodiment includes a liquid tank, a light source device, an aperture 38, and a stage. In the second embodiment, as in the first embodiment, the maximum width W1 of one pixel 23 of the light source device is set to 200 μm or less.
 第2実施形態に係る光造形装置10は、第1実施形態で説明した光学素子26としてのマイクロレンズ26Bの代わりに、アパチャー38が光学素子として光源装置と液槽との間に配置される点が、第1実施形態と異なる。すなわち、マイクロレンズのような集光装置とアパチャーのような絞り装置とはいずれも、本開示の「光学素子」に含まれる。第2実施形態におけるアパチャー38以外の部材は、第1実施形態における同名の部材と同様の構成及び機能を有する。このため、以下、アパチャー38について主に説明すると共に、他の部材の構成についての重複説明を省略する。 The stereolithography apparatus 10 according to the second embodiment has an aperture 38 disposed between the light source device and the liquid tank as an optical element instead of the microlens 26B as the optical element 26 described in the first embodiment. However, this embodiment is different from the first embodiment. That is, both a condensing device such as a microlens and a diaphragm device such as an aperture are included in the "optical element" of the present disclosure. Members other than the aperture 38 in the second embodiment have the same configuration and function as the members with the same name in the first embodiment. Therefore, the aperture 38 will be mainly described below, and duplicate explanations of the configurations of other members will be omitted.
 図12及び図13に示すように、アパチャー38は、複数のスリット38Aを有する板状の絞り装置である。アパチャー38は、例えば樹脂等によって作製できる。第2実施形態ではスリット38Aは、平面視で、矩形状であるが、本開示では、スリットの形状は、これに限定されず、例えば長楕円形状等、他の任意の形状であってよい。 As shown in FIGS. 12 and 13, the aperture 38 is a plate-shaped aperture device having a plurality of slits 38A. The aperture 38 can be made of resin or the like, for example. In the second embodiment, the slit 38A has a rectangular shape in plan view, but in the present disclosure, the shape of the slit is not limited to this, and may be any other shape, such as an elongated oval shape.
 第2実施形態に係る光造形物の製造方法では、アパチャー38は、スリット38Aによって、一画素23から放射された光を用いて光硬化性樹脂18に照射される、直線光を含むスポット光を形成する。形成された複数のスポット光によって、液槽12内の形成領域18Aに露光像が形成される。第2実施形態に係る光造形物の製造方法における他の工程については、第1実施形態に係る光造形物の製造方法と同様であるため、重複説明を省略する。 In the method for manufacturing a stereolithographic object according to the second embodiment, the aperture 38 emits spot light including straight light that is irradiated onto the photocurable resin 18 using light emitted from one pixel 23 through the slit 38A. Form. An exposed image is formed in the formation region 18A in the liquid tank 12 by the plurality of spot lights thus formed. The other steps in the method for manufacturing a stereolithographic object according to the second embodiment are the same as those in the method for manufacturing a stereolithographic article according to the first embodiment, and thus redundant explanation will be omitted.
(作用効果)
 第2実施形態では、第1実施形態の場合と同様、一画素23の最大幅W1が200μm以下に設定されるため、光の指向性の低下が抑制される。このため、最大幅W1が200μmを超える場合と比して、光硬化反応における光の利用効率の低下を抑制できる。結果、光の利用効率を改善できる。
(effect)
In the second embodiment, as in the first embodiment, the maximum width W1 of one pixel 23 is set to 200 μm or less, so that a decrease in the directivity of light is suppressed. Therefore, compared to the case where the maximum width W1 exceeds 200 μm, it is possible to suppress a decrease in light utilization efficiency in the photocuring reaction. As a result, light usage efficiency can be improved.
 また、第2実施形態では、スリット38Aを有するアパチャー38を光学素子として用いて、光硬化性樹脂18に照射されるスポット光が形成される。アパチャー38は、例えばレンズ等の集光装置に比べ安価に作製可能であるので、コストを低減できる。第2実施形態における他の作用効果については、第1実施形態の場合と同様であるため、重複説明を省略する。 Furthermore, in the second embodiment, a spot light irradiated onto the photocurable resin 18 is formed using an aperture 38 having a slit 38A as an optical element. The aperture 38 can be manufactured at a lower cost than, for example, a condensing device such as a lens, so costs can be reduced. Other effects in the second embodiment are the same as those in the first embodiment, and therefore redundant explanations will be omitted.
-第3実施形態-
<光造形装置>
 次に、第3実施形態に係る光造形装置11を、図14及び図15を参照して説明する。図14に示すように、光造形装置11は、液槽12と、ステージ14と、ステージ14を吊り下げる吊り下げ部材16と、光照射装置50と、を有する。
-Third embodiment-
<Stereolithography device>
Next, a stereolithography apparatus 11 according to a third embodiment will be described with reference to FIGS. 14 and 15. As shown in FIG. 14, the optical modeling apparatus 11 includes a liquid tank 12, a stage 14, a hanging member 16 for suspending the stage 14, and a light irradiation device 50.
 なお、第3実施形態に係る光造形装置11において、第1実施形態及び第2実施形態と同名の部材は、同様の構成及び機能を有する。第3実施形態では、第1実施形態及び第2実施形態と異なる点について主に説明すると共に、同様の構成及び作用効果についての重複説明を適宜省略する。 Note that in the stereolithography apparatus 11 according to the third embodiment, members with the same names as those in the first embodiment and the second embodiment have similar configurations and functions. In the third embodiment, points different from the first embodiment and the second embodiment will be mainly explained, and redundant explanations of similar configurations and effects will be omitted as appropriate.
(ステージ)
 ステージ14は、造形される光造形物の面積が1/Mに縮小された造形用画像である露光像によって硬化した光硬化性樹脂18の樹脂硬化層を支持すると共に、図14中の上下方向に移動する。Mは、1より大きい正の実数、すなわち、M>1である。ステージ14は、樹脂硬化層を支持した状態で上昇可能及び下降可能である。
(stage)
The stage 14 supports a resin cured layer of a photocurable resin 18 that has been cured by an exposure image that is a modeling image in which the area of the stereofabricated object to be modeled has been reduced to 1/M, and also supports the resin cured layer of the photocurable resin 18 in the vertical direction in FIG. Move to. M is a positive real number greater than 1, ie, M>1. The stage 14 can be raised and lowered while supporting the cured resin layer.
 本明細書では「造形される光造形物の面積」は、対象とされる光造形物における各層の造形面の目標面積を意味する。また、「各層」は、「1層ずつ光照射により硬化させて順次積層されることで造形される光造形物における各層」を意味する。すなわち、本明細書で使用される「光造形物」は、最終的に得られる全体としての立体造形物を意味する場合と、造形中の光造形物に含まれる複数の樹脂硬化層のそれぞれとを意味する場合との、両方において使用され得る。 In this specification, "the area of a stereolithographic object to be modeled" means the target area of the modeling surface of each layer in the target stereolithographic object. Moreover, "each layer" means "each layer in a stereolithographic object modeled by curing one layer at a time by light irradiation and laminating one after another". In other words, the term "stereolithography" as used herein refers to both the final three-dimensional object as a whole and each of the plurality of resin cured layers included in the stereolithography that is being built. It can be used both to mean.
(光照射装置)
 光照射装置50は、図14中の液槽12の下側に設けられると共に、透光性を有する液槽12の底部を通じてステージ14の下面側に光を照射する。なお、第3実施形態では、面露光方式であるDLP方式の光造形の場合が例示されているが、本開示の光造形は、DLP方式に限定されない。
(Light irradiation device)
The light irradiation device 50 is provided below the liquid tank 12 in FIG. 14, and irradiates light onto the lower surface of the stage 14 through the bottom of the liquid tank 12, which has translucency. Note that although the third embodiment exemplifies the case of stereolithography using the DLP method, which is a surface exposure method, the stereolithography of the present disclosure is not limited to the DLP method.
 なお、本開示では、光照射装置と液槽とは、造形形成面19の面方向に沿って相対移動可能であるように構成されてよい。例えば、光照射装置が露光面に平行な面内で2次元的に移動することによって、光が走査されてもよい。 Note that in the present disclosure, the light irradiation device and the liquid tank may be configured to be relatively movable along the surface direction of the modeling surface 19. For example, the light may be scanned by moving the light irradiation device two-dimensionally within a plane parallel to the exposure surface.
 光照射装置50は、光源装置54と、光源装置54と液槽12との間に配置された光学素子56とを備える。光源装置54と光学素子56とは、封止ケース58によって一体化される。光造形物の製造時には、予め作成された造形用画像データが、光照射装置50に入力される。 The light irradiation device 50 includes a light source device 54 and an optical element 56 arranged between the light source device 54 and the liquid tank 12. The light source device 54 and the optical element 56 are integrated by a sealing case 58. When manufacturing a stereolithographic object, pre-created image data for modeling is input to the light irradiation device 50.
 光照射装置50は、第1実施形態の光照射装置20の場合と同様に、入力された造形用画像データに基づき、液槽12内に浸漬されたステージ14の下側に向かって、光造形に必要な所定の波長の光を、不図示の発光素子によって選択的に照射する。 As in the case of the light irradiation device 20 of the first embodiment, the light irradiation device 50 performs stereolithography toward the lower side of the stage 14 immersed in the liquid tank 12 based on the input image data for modeling. A light emitting element (not shown) selectively irradiates light with a predetermined wavelength necessary for
(光源装置)
 光源装置54は、複数の一画素53によって形成される投影面55を有する。光源装置54は、造形される光造形物31の面積のN倍の造形用画像を投影面55から投影する。Nは、1より大きい正の実数、すなわち、N>1である。面積の拡大は、例えば、使用される複数の画素のそれぞれの面積の拡大によって実現してもよいし、或いは、使用される複数の画素の個数を増加することによって実現してもよい。また、使用される一画素の面積の拡大と個数の増加とが組み合わせられてもよい。
(Light source device)
The light source device 54 has a projection surface 55 formed by a plurality of pixels 53. The light source device 54 projects a modeling image N times the area of the stereolithographic object 31 to be modeled from the projection surface 55 . N is a positive real number greater than 1, ie, N>1. The area may be expanded, for example, by increasing the area of each of the plurality of pixels used, or by increasing the number of the plurality of pixels used. Furthermore, increasing the area of one pixel used and increasing the number of pixels may be combined.
 図14中には、光源装置24に含まれる複数の一画素53が、封止ケース58の底部58Aの上に、X方向(すなわち、図14中の左右方向)に沿って配置された状態が例示されている。また、図14中では、見易さのため、複数の一画素53のうちの一部のみが発光した状態が、破線の矢印によって例示されている。しかし、実際の光造形の際には、所望の造形用画像に応じた一画素53が適宜発光するように、光源装置24が制御される。光源装置24は、複数の一画素53から光を一括して放射する。 In FIG. 14, a plurality of pixels 53 included in the light source device 24 are arranged on the bottom 58A of the sealing case 58 along the X direction (that is, the left-right direction in FIG. 14). Illustrated. Furthermore, in FIG. 14, for ease of viewing, a state in which only some of the plurality of pixels 53 emit light is illustrated by broken arrows. However, during actual stereolithography, the light source device 24 is controlled so that one pixel 53 emits light appropriately according to the desired image for modeling. The light source device 24 emits light from a plurality of pixels 53 all at once.
(一画素)
 第3実施形態における一画素53は、不図示の基板の上に配置された発光素子を有する。また、複数の発光素子のそれぞれは、基板の上で、不図示の区画壁によって四方を囲まれた領域の内側に、不図示の封止材によって封止される。第3実施形態では、一画素53は、平面視で正方形状である。区画壁の基板と反対側である図14中の上側には、不図示の保護層が設けられる。
(one pixel)
One pixel 53 in the third embodiment includes a light emitting element arranged on a substrate (not shown). Further, each of the plurality of light emitting elements is sealed with a sealing material (not shown) inside a region surrounded on all sides by partition walls (not shown) on the substrate. In the third embodiment, one pixel 53 has a square shape in plan view. A protective layer (not shown) is provided on the upper side of the partition wall in FIG. 14, which is the side opposite to the substrate.
(区画壁)
 区画壁は、図示を省略するが、図14中のX方向と図14の紙面を貫く方向に沿って延びるY方向とのそれぞれに沿って、複数設けられる。このため、平面視で、X方向の区画壁とY方向の区画壁とは、格子状に表れる。図示を省略するが、図14中の区画壁の上には保護層が設けられる。
(compartment wall)
Although not shown, a plurality of partition walls are provided along each of the X direction in FIG. 14 and the Y direction extending along the direction penetrating the page of FIG. 14. Therefore, when viewed from above, the partition walls in the X direction and the partition walls in the Y direction appear in a lattice shape. Although not shown, a protective layer is provided on the partition wall in FIG. 14.
 発光素子の発光波長は、例えば紫外領域である約365nmから、赤外領域である約1770nmまでの範囲内で任意に設定できる。例えば、発光素子がミニLEDやマイクロLEDである場合、365nmの紫外領域の光を照射することが可能である。 The emission wavelength of the light emitting element can be arbitrarily set within the range of, for example, from about 365 nm in the ultraviolet region to about 1770 nm in the infrared region. For example, when the light emitting element is a mini LED or a micro LED, it is possible to irradiate light in the ultraviolet region of 365 nm.
 ここで、光硬化性樹脂の透明度が比較的高いと、紫外線領域以外の他の波長の光では、十分な硬化反応が生じない場合がある。紫外線領域の波長の光は、光硬化性樹脂の透明度が比較的高くても、光硬化性樹脂を硬化させ易い点で有利である。 Here, if the transparency of the photocurable resin is relatively high, a sufficient curing reaction may not occur with light of wavelengths other than the ultraviolet region. Light having a wavelength in the ultraviolet region is advantageous in that it can easily cure the photocurable resin even if the photocurable resin has relatively high transparency.
(光学素子)
 図14に示すように、第3実施形態では、光学素子56は、液槽12の下側で、光源装置24と液槽12との間に配置される。なお、本開示では、光学素子は、液槽12の上側に配置されてもよい。
(optical element)
As shown in FIG. 14, in the third embodiment, the optical element 56 is arranged below the liquid tank 12 and between the light source device 24 and the liquid tank 12. Note that in the present disclosure, the optical element may be placed above the liquid tank 12.
(縮小投影光学部品)
 光学素子56は、光造形装置用の縮小投影光学部品57を有する。縮小投影光学部品57は、封止ケース58と、第一光集束部材57Aと、第二光集束部材57Bと、光軸補正部材57Cとを備える。縮小投影光学部品57は、造形用画像41の光を集束する。
(reduction projection optical parts)
The optical element 56 includes a reduction projection optical component 57 for a stereolithography device. The reduction projection optical component 57 includes a sealing case 58, a first light focusing member 57A, a second light focusing member 57B, and an optical axis correction member 57C. The reduction projection optical component 57 focuses the light of the modeling image 41.
 縮小投影光学部品57は、光源装置24の投影面55と液槽12の底面との間に配置される。縮小投影光学部品57は、光造形物31の面積のN倍(ただし、N>1)の面積を有する造形用画像を、その造形用画像の面積を1/M(ただし、M>1)に縮小した状態で、液槽12内の造形形成面19に投影する。第3実施形態では、Nは、3以上であると共に、Mは、3以上である。すなわち、造形用画像の面積は、3倍以上に設定されると共に、縮小投影光学部品57による縮小率は、1/3以下に設定される。 The reduction projection optical component 57 is arranged between the projection surface 55 of the light source device 24 and the bottom surface of the liquid tank 12. The reduction projection optical component 57 reduces the area of the printing image having an area N times the area of the stereolithographic object 31 (however, N>1) to 1/M (however, M>1). The image is projected onto the modeling surface 19 in the liquid tank 12 in the reduced state. In the third embodiment, N is 3 or more, and M is 3 or more. That is, the area of the modeling image is set to three times or more, and the reduction ratio by the reduction projection optical component 57 is set to 1/3 or less.
 このため、第3実施形態では、光造形物31の造形用画像を、面積を変えることなくそのままの面積、すなわち、1倍の面積で投影する場合に比べ、光エネルギー密度を9倍以上に向上できる。また、縮小率は、1/4以下であることが、光エネルギー密度の向上の観点から、より好ましい。また、縮小率は、1/5以下であることが、光エネルギー密度の向上の観点から、更に好ましい。 Therefore, in the third embodiment, the optical energy density is improved by more than 9 times compared to the case where the image for modeling of the stereolithographic object 31 is projected on the same area without changing the area, that is, on the 1 times the area. can. Moreover, it is more preferable that the reduction ratio is 1/4 or less from the viewpoint of improving the optical energy density. Moreover, it is more preferable that the reduction ratio is 1/5 or less from the viewpoint of improving the optical energy density.
 一方、縮小率が1/3を超える場合、光エネルギー密度の向上効果を得難くなる。なお、本開示では、縮小投影光学部品による造形用画像の縮小率は、任意である。すなわち、本開示では、1より大きいNの数は、3未満であってよい。 On the other hand, if the reduction ratio exceeds 1/3, it becomes difficult to obtain the effect of improving the optical energy density. Note that in the present disclosure, the reduction ratio of the modeling image by the reduction projection optical component is arbitrary. That is, in the present disclosure, the number of N greater than one may be less than three.
 なお、本開示では、NとMとは、同じであってもよいし、或いは、異なってもよい。また、例えばN=3かつM=4のように、N<Mであってもよい。N<Mである場合、面積が拡大される前の最初の光造形物の面積、すなわち、目標面積より、形成領域に縮小投影された造形用画像の面積が小さくなる。換言すると、本開示では、造形エリアにおける露光像の造形用画像の面積は、最初の目標面積より小さくてもよい。 Note that in the present disclosure, N and M may be the same or different. Further, N<M may be satisfied, for example, N=3 and M=4. When N<M, the area of the image for printing reduced and projected onto the formation area becomes smaller than the area of the first stereolithographic object before the area is enlarged, that is, the target area. In other words, in the present disclosure, the area of the printing image of the exposure image in the printing area may be smaller than the initial target area.
 N<Mである場合、造形用画像における単位面積当たりの一画素の個数、すなわち、画素密度は、M≦Nである場合に比べて増加する。なお、本明細書では「画素密度」は、投影面において互いに直交する2軸によってそれぞれの辺が定義される正方形状の領域であって、1辺の長さが1インチである単位領域に含まれる、発光素子の一画素の個数を意味する。 When N<M, the number of pixels per unit area in the modeling image, that is, the pixel density, increases compared to the case where M≦N. In this specification, "pixel density" refers to a square area whose sides are defined by two axes perpendicular to each other on the projection plane, and which is included in a unit area where each side has a length of 1 inch. This means the number of pixels in a light emitting element.
(封止ケース)
 封止ケース58の内側には、第一光集束部材57Aと、第二光集束部材57Bと、光軸補正部材57Cとのそれぞれが封止される。封止ケース58は、例えば樹脂等によって作製できる。封止ケース58は、底部58Aと、周壁部58Bと、天井部58Cとを有する。天井部58Cは、透光性を有する。
(sealed case)
Inside the sealing case 58, a first light focusing member 57A, a second light focusing member 57B, and an optical axis correction member 57C are each sealed. The sealing case 58 can be made of, for example, resin. The sealing case 58 has a bottom portion 58A, a peripheral wall portion 58B, and a ceiling portion 58C. The ceiling portion 58C has translucency.
 周壁部58Bの形状は、内側に縮小投影光学部品57を構成する部材を一体的に封止できる限り、適宜変更できる。例えば、第一光集束部材57Aの側壁が、封止ケース58の周壁部58Bの一部として用いられてもよい。或いは、第一光集束部材57Aの底部58Aが、封止ケース58の底部の一部又は全部として用いられてもよい。すなわち、本開示では封止ケースは必須ではない。 The shape of the peripheral wall portion 58B can be changed as appropriate as long as the members constituting the reduction projection optical component 57 can be integrally sealed inside. For example, the side wall of the first light focusing member 57A may be used as a part of the peripheral wall portion 58B of the sealing case 58. Alternatively, the bottom 58A of the first light focusing member 57A may be used as part or all of the bottom of the sealing case 58. That is, the sealing case is not essential in the present disclosure.
(第一光集束部材)
 第一光集束部材57Aは、封止ケース58の内側で、天井部58Cを挟んで液槽12とは反対側である、光源装置24の側に配置される。第3実施形態の第一光集束部材57Aは、例えば凹型の集束レンズである。なお、本開示では、第一光集束部材57Aは、集束レンズに限定されない。本開示では、透光性を有すると共に造形用画像41の光を集束できる他の部材又は装置が、第一光集束部材として採用されてよい。
(First light focusing member)
The first light focusing member 57A is arranged inside the sealing case 58 on the side of the light source device 24, which is the opposite side of the liquid tank 12 with the ceiling portion 58C in between. The first light focusing member 57A of the third embodiment is, for example, a concave focusing lens. Note that in the present disclosure, the first light focusing member 57A is not limited to a focusing lens. In the present disclosure, another member or device that has translucency and can focus the light of the modeling image 41 may be employed as the first light focusing member.
(第二光集束部材)
 第二光集束部材57Bは、第一光集束部材57Aと光軸補正部材57Cとの間に配置される。第3実施形態の第二光集束部材57Bは、空気の屈折率よりも大きい屈折率を有する第二光集束部材57Bを備える。なお、本開示では、第二光集束部材の屈折率は、空気の屈折率以下であってもよい。また、本開示では、第二光集束部材は、必須ではない。
(Second light focusing member)
The second light focusing member 57B is arranged between the first light focusing member 57A and the optical axis correction member 57C. The second light focusing member 57B of the third embodiment includes a second light focusing member 57B having a refractive index greater than the refractive index of air. Note that in the present disclosure, the refractive index of the second light focusing member may be less than or equal to the refractive index of air. Further, in the present disclosure, the second light focusing member is not essential.
 第3実施形態の第二光集束部材57Bは、例えばアクリル系やエポキシ系の硬化素材、すなわち、固体の素材である。第二光集束部材57Bは、第一光集束部材57Aの屈折率とは異なる屈折率を有する。第二光集束部材57Bの屈折率は、例えば1.5程度である。なお、本開示では、第二光集束部材57Bは、アクリル系の硬化素材に限定されない。本開示では、透光性を有すると共に造形用画像の光を集束できる他の部材又は装置が、第二光集束部材として採用されてよい。 The second light focusing member 57B of the third embodiment is, for example, an acrylic or epoxy hardened material, that is, a solid material. The second light focusing member 57B has a refractive index different from that of the first light focusing member 57A. The refractive index of the second light focusing member 57B is, for example, about 1.5. Note that in the present disclosure, the second light focusing member 57B is not limited to an acrylic hardened material. In the present disclosure, another member or device that has translucency and can focus the light of the modeling image may be employed as the second light focusing member.
 また、本開示では、第二光集束部材57Bは、固体であってもよいし、或いは、光に基づく硬化性を有さない液体であってもよい。本開示では、第二光集束部材57Bとして、例えば、純水、グリース、ヨウ化メチレン(CH)、有機ハロゲン化合物、アクリル系硬化材料等を採用できる。アクリル系硬化材料は、一般的に入手し易いと共に取り扱いが比較的容易である点で、有利である。 Furthermore, in the present disclosure, the second light focusing member 57B may be a solid or a liquid that does not have light-curable properties. In the present disclosure, for example, pure water, grease, methylene iodide (CH 2 I 2 ), an organic halogen compound, an acrylic hardening material, etc. can be used as the second light focusing member 57B. Acrylic hardening materials are advantageous in that they are generally readily available and relatively easy to handle.
 第3実施形態では、第一光集束部材57Aと第二光集束部材57Bとは、封止ケース58の内側で密着する。このため、第一光集束部材57Aと第二光集束部材57Bとが密着しないことによって第一光集束部材57Aと第二光集束部材57Bとの間に隙間が形成される場合に比べ、光の屈折率への影響を低減できる。なお、本開示では、第一光集束部材57Aと第二光集束部材57Bとが密着することは、必須ではない。 In the third embodiment, the first light focusing member 57A and the second light focusing member 57B are in close contact with each other inside the sealing case 58. Therefore, compared to the case where a gap is formed between the first light focusing member 57A and the second light focusing member 57B due to the first light focusing member 57A and the second light focusing member 57B not coming into close contact with each other, the light The influence on the refractive index can be reduced. Note that in the present disclosure, it is not essential that the first light focusing member 57A and the second light focusing member 57B come into close contact with each other.
 また、第3実施形態では、第一光集束部材57Aと第二光集束部材57Bとの両方が縮小投影光学部品57に含まれる場合が例示された。しかし、本開示では、第一光集束部材27Aと第二光集束部材57Bとのうちのいずれか一方のみによって、縮小投影光学部品が構成されてもよい。 Further, in the third embodiment, the case where both the first light focusing member 57A and the second light focusing member 57B are included in the reduction projection optical component 57 is illustrated. However, in the present disclosure, the reduction projection optical component may be configured by only one of the first light focusing member 27A and the second light focusing member 57B.
(光軸補正部材)
 光軸補正部材57Cは、第一光集束部材57Aによって集束された光の光軸が形成領域18Aの造形形成面19に直交する向きに沿うように、第二光集束部材57Bから入力された光の光軸を補正する。すなわち、本開示では、集束された光の光軸が造形形成面19に厳密に直交することは、必須ではない。光軸補正部材57Cとしては、例えば凸レンズ等の任意の光学装置を使用できる。なお、本開示では、光軸補正部材は必須ではない。
(Optical axis correction member)
The optical axis correction member 57C adjusts the light input from the second light focusing member 57B so that the optical axis of the light focused by the first light focusing member 57A is along a direction perpendicular to the modeling surface 19 of the forming area 18A. Correct the optical axis of That is, in the present disclosure, it is not essential that the optical axis of the focused light be strictly orthogonal to the modeling surface 19. Any optical device such as a convex lens can be used as the optical axis correction member 57C. Note that in the present disclosure, the optical axis correction member is not essential.
 また、第3実施形態では、第一光集束部材57Aと光軸補正部材57Cとは、互いに別の部材である場合が例示されたが、本開示では、第一光集束部材と光軸補正部材とは、1つの部材によって構成されてもよい。 Further, in the third embodiment, the first light focusing member 57A and the optical axis correction member 57C are different members from each other, but in the present disclosure, the first light focusing member and the optical axis correction member may be composed of one member.
<光造形物の製造方法>
(光造形の概要)
 次に、第3実施形態に係る光造形物の製造方法を、図14、図16~図19を参照して説明する。まず、例えばCAMソフトウェア等の造形用画像データ作成装置によって、光造形物31の面積のN倍の造形用画像データ40Aが、光造形に先立って予め作成される。作成された造形用画像データ40Aは、光造形装置11に入力される。
<Method for manufacturing optically modeled objects>
(Overview of stereolithography)
Next, a method for manufacturing a stereolithographic object according to the third embodiment will be described with reference to FIGS. 14 and 16 to 19. First, prior to stereolithography, the image data for modeling 40A having an area N times the area of the stereolithography object 31 is created in advance by a modeling image data creation device such as CAM software. The created image data for modeling 40A is input to the stereolithography device 11.
 図14に示したように、第1実施形態の場合と同様、光照射装置50による光照射によって、ステージ14の下側の光硬化性樹脂18の液面を含み且つ一定の厚みを有する形成領域18Aにおいて、光硬化性樹脂18が、光重合することによって選択的に硬化する。結果、光造形物の樹脂硬化層が形成される。そして、吊り下げ部材16が図14中の上側に移動することによって、ステージ14が、設定された樹脂硬化層の厚みの分、上昇する。また、第1実施形態の場合と同様、ステージ14の上昇後、光照射装置50を用いて光が照射されることによって、先行して形成された樹脂硬化層の下に、後続の樹脂硬化層が積層される。 As shown in FIG. 14, as in the case of the first embodiment, by light irradiation by the light irradiation device 50, a formation area including the liquid surface of the photocurable resin 18 on the lower side of the stage 14 and having a constant thickness is formed. In 18A, the photocurable resin 18 is selectively cured by photopolymerization. As a result, a cured resin layer of the stereolithographic object is formed. Then, by moving the hanging member 16 upward in FIG. 14, the stage 14 is raised by the set thickness of the cured resin layer. Further, as in the case of the first embodiment, after the stage 14 is raised, light is irradiated using the light irradiation device 50, so that a subsequent resin cured layer is formed under the previously formed resin cured layer. are stacked.
(樹脂硬化層の形成)
 次に、第3実施形態の光造形における、それぞれの樹脂硬化層の形成について具体的に説明する。図17に示すように、第一樹脂硬化層31Aを光造形する際、造形用画像データ40Aの面積(換言すると、外形の寸法)と、光源装置24の投影面55から投影される造形用画像41Aの面積とは、ほぼ同じである。
(Formation of cured resin layer)
Next, the formation of each resin cured layer in stereolithography of the third embodiment will be specifically described. As shown in FIG. 17, when optically modeling the first resin cured layer 31A, the area of the modeling image data 40A (in other words, the external dimensions) and the modeling image projected from the projection surface 55 of the light source device 24 are determined. The area of 41A is almost the same.
 一方、光硬化性樹脂18が蓄積された液槽12内における造形形成面19の上の造形用画像42Aの面積は、縮小投影光学部品57を用いた縮小投影によって、投影面55上の面積に比べ、1/Nに縮小される。すなわち、第3実施形態では、縮小率と拡大率とが等しい場合、すなわち、M=Nである場合が例示的に説明される。なお、本開示では、縮小率は、M=Nである場合に限定されない。すなわち、造形用画像の面積は、1/M(ただし、N≠M)に縮小されてもよい。 On the other hand, the area of the modeling image 42A on the modeling surface 19 in the liquid tank 12 in which the photocurable resin 18 is accumulated is reduced to the area on the projection surface 55 by reduction projection using the reduction projection optical component 57. Compared to this, it is reduced to 1/N. That is, in the third embodiment, a case where the reduction rate and the enlargement rate are equal, that is, M=N, will be exemplified. Note that in the present disclosure, the reduction rate is not limited to the case where M=N. That is, the area of the modeling image may be reduced to 1/M (however, N≠M).
 次に、図18に示すように、第一樹脂硬化層31Aの上に積層される第二樹脂硬化層31Bを光造形する際においても、造形用画像データ40Bの面積と、光源装置24の投影面55から投影される造形用画像41Bの面積とは、ほぼ同じである。一方、光硬化性樹脂18が蓄積された液槽12内における造形形成面19の上の造形用画像42Bの面積は、縮小投影光学部品57を用いた縮小投影によって、投影面55上の面積に比べ、1/Nに縮小される。 Next, as shown in FIG. 18, even when stereolithographically forming the second resin cured layer 31B laminated on the first resin cured layer 31A, the area of the image data for modeling 40B and the projection of the light source device 24 are determined. The area of the modeling image 41B projected from the surface 55 is approximately the same. On the other hand, the area of the modeling image 42B on the modeling surface 19 in the liquid tank 12 in which the photocurable resin 18 is accumulated is reduced to the area on the projection surface 55 by reduction projection using the reduction projection optical component 57. Compared to this, it is reduced to 1/N.
 図17及び図18に示すように、第3実施形態では、後続の第二樹脂硬化層31Bのパターンと先行の第一樹脂硬化層31Aのパターンとは、異なる。図19中には、一定の厚みを有する第一樹脂硬化層31Aと一定の厚みを有する第二樹脂硬化層31Bとが積層された光造形物の一部が、例示されている。 As shown in FIGS. 17 and 18, in the third embodiment, the pattern of the subsequent second resin cured layer 31B is different from the pattern of the preceding first resin cured layer 31A. In FIG. 19, a part of a stereolithographic object is illustrated in which a first resin cured layer 31A having a constant thickness and a second resin cured layer 31B having a constant thickness are laminated.
 縮小投影を含む上記の一連の工程によって、第3実施形態に係る光造形装置11を用いた光造形物の製造方法を構成できる。なお、図17~図19中の樹脂硬化層の形状は、例示であり、本開示では、樹脂硬化層の形状は、これらに限定されず、任意である。また、第3実施形態における図16中のサポートピン32は、第1実施形態中で説明したように、本開示では必須ではない。 Through the above series of steps including reduction projection, a method for manufacturing a stereolithography product using the stereolithography apparatus 11 according to the third embodiment can be configured. Note that the shapes of the cured resin layer in FIGS. 17 to 19 are merely examples, and in the present disclosure, the shape of the cured resin layer is not limited to these and may be arbitrary. Further, the support pin 32 in FIG. 16 in the third embodiment is not essential in the present disclosure, as described in the first embodiment.
 また、第1実施形態中で説明したように、本開示では、例えば図14中のステージ14の上側に光造形物が支持された状態でステージ14が液槽12の中に下降することによって、樹脂硬化層が上下方向に積層される方式が採用されてもよい。ただし、第1実施形態中で説明したように、ステージ14が液槽12の中に下降することによって樹脂硬化層が上下方向に積層される場合、酸素によって光硬化性樹脂18が、硬化し難くなる。 Further, as described in the first embodiment, in the present disclosure, for example, by lowering the stage 14 into the liquid tank 12 with the stereolithographic object supported above the stage 14 in FIG. A method may be adopted in which the resin cured layers are stacked in the vertical direction. However, as explained in the first embodiment, when the stage 14 is lowered into the liquid tank 12 and the resin cured layers are stacked in the vertical direction, the photocurable resin 18 is difficult to cure due to oxygen. Become.
 一方、第3実施形態のように、ステージ14が上昇することによって樹脂硬化層が上下方向に積層される場合、第1実施形態の場合と同様、ステージ14が空気を遮るため、形成領域18Aの光硬化性樹脂18は、空気中の酸素に接触しない。 On the other hand, when the cured resin layers are vertically stacked by raising the stage 14 as in the third embodiment, the stage 14 blocks air as in the first embodiment, so that the formation area 18A is The photocurable resin 18 does not come into contact with oxygen in the air.
(作用効果)
 第3実施形態では、光造形物31の面積のN倍の面積を有する造形用画像41A,41Bが、光源装置24の投影面55から投影される。このため、光造形物31の面積の1倍の面積を有する造形用画像を光源装置の投影面から投影する装置と比較すると、使用される一画素53の個数が、N倍に増大する。そして、第3実施形態では、縮小投影光学部品57によって、造形用画像41A,41Bが、面積を1/Nに縮小して液槽12内の造形形成面19に投影される。
(effect)
In the third embodiment, modeling images 41A and 41B having an area N times the area of the stereolithographic object 31 are projected from the projection surface 55 of the light source device 24. Therefore, compared to a device that projects a modeling image having an area that is one times the area of the stereolithographic object 31 from the projection plane of the light source device, the number of pixels 53 used increases by N times. In the third embodiment, the reduction projection optical component 57 projects the modeling images 41A and 41B onto the modeling surface 19 in the liquid tank 12 with the area reduced to 1/N.
 このため、光造形物31の面積の1倍の面積を有する造形用画像を液槽12内の造形形成面19にそのまま投影する場合と比べ、造形エリアとしての形成領域18Aにおける光エネルギー密度を向上できる。結果、光の利用効率を改善できる。 Therefore, the light energy density in the forming area 18A as a printing area is improved compared to the case where a printing image having an area that is one times the area of the stereolithographic object 31 is directly projected onto the printing surface 19 in the liquid tank 12. can. As a result, light usage efficiency can be improved.
 また、液槽12内の造形形成面19での造形用画像41A,41Bの画素密度がn倍であると、光エネルギー密度は、nの二乗(n)倍に増大する。結果、光造形における造形速度を向上できる。 Further, when the pixel density of the modeling images 41A and 41B on the modeling surface 19 in the liquid tank 12 is n times higher, the light energy density increases to the square of n (n 2 ). As a result, the modeling speed in stereolithography can be improved.
 また、光造形の対象物が例えば人間用の歯科造形物である場合、一般的な口腔の寸法から、造形エリアとしての形成領域には、対角線の長さが約5.6インチ(すなわち、70mm×124mm程度)である矩形状の造形形成面が必要である場合が多い。ここで、例えばSLA(Stereolithography)方式のように、実際に約50μm程度の細かい画素ピッチを有する露光光を形成できる光源装置が用意される場合、細かい画素ピッチを実現するため、例えば反射マイクロミラー等、追加部材が増える場合が生じ得る。このため、装置の構成が複雑になり、結果、コストが嵩み易い。 In addition, when the object of stereolithography is, for example, a human dental model, the diagonal length of the forming area as the modeling area is approximately 5.6 inches (i.e., 70 mm), based on the general dimensions of the oral cavity. In many cases, a rectangular shaped forming surface of approximately 124 mm x 124 mm is required. Here, when a light source device that can actually form exposure light having a fine pixel pitch of about 50 μm is prepared, such as in the SLA (Stereolithography) method, in order to realize the fine pixel pitch, for example, a reflective micromirror, etc. , the number of additional members may increase. Therefore, the configuration of the device becomes complicated, and as a result, the cost tends to increase.
 一方、第3実施形態では、光源装置24の投光面の造形用画像の面積が、N倍に拡大される。このため、例えば光源装置24において投影面55の寸法が、約25インチであり、かつ、実際の画素ピッチが、約250μmであっても、縮小された造形用画像42中では、対角線の長さが約5.6インチの形成領域に対して、約50μmの画素ピッチを得ることができる。結果、追加部材等を伴うことなく、かつ、比較的大きな面積を有する一画素であっても単位画素として使用可能になるため、装置をより安価に構成できる。このため、第3実施形態に係る光造形装置11は、歯科造形物の光造形において好適である。 On the other hand, in the third embodiment, the area of the modeling image on the light projection surface of the light source device 24 is expanded by N times. Therefore, for example, even if the dimension of the projection surface 55 in the light source device 24 is about 25 inches and the actual pixel pitch is about 250 μm, the length of the diagonal line in the reduced printing image 42 is A pixel pitch of about 50 μm can be obtained for a formation area of about 5.6 inches. As a result, even one pixel having a relatively large area can be used as a unit pixel without requiring additional members, so that the device can be constructed at a lower cost. Therefore, the optical modeling apparatus 11 according to the third embodiment is suitable for optical modeling of dental objects.
 また、第3実施形態では、面積がN倍に拡大された造形用画像41A,41Bを投影する複数の一画素の個数を増加させてもよい。造形用画像41A,41Bを投影する複数の一画素の個数が増加する程、造形形成面19の上の造形用画像42A,42Bの画素密度をより向上できる。 Furthermore, in the third embodiment, the number of a plurality of pixels that project the modeling images 41A, 41B whose area is enlarged by N times may be increased. The pixel density of the modeling images 42A, 42B on the modeling surface 19 can be further improved as the number of pixels onto which the modeling images 41A, 41B are projected increases.
 また、第3実施形態では、第一光集束部材57Aによって、造形用画像41A,41Bの面積を1/Nに縮小できる。また、光軸補正部材57Cによって、光の光軸を造形形成面19に直交する向きに補正できる。 Furthermore, in the third embodiment, the area of the modeling images 41A, 41B can be reduced to 1/N by the first light focusing member 57A. Further, the optical axis of the light can be corrected in a direction perpendicular to the modeling surface 19 by the optical axis correction member 57C.
 また、第3実施形態では、第一光集束部材57Aと第二光集束部材57Bとの2つの光集束部材の組み合わせによって、縮小投影光学部品57の全体的な屈折率が形成される。このため、縮小投影光学部品57が1つの第一光集束部材57Aのみを有する場合より、縮小投影光学部品57の全体的な屈折率を調整し易い。また、縮小投影光学部品57が1つの第一光集束部材57Aのみを有する場合より、面積が縮小された造形用画像41A,41Bが歪み難い。 Furthermore, in the third embodiment, the overall refractive index of the reduction projection optical component 57 is formed by the combination of two light focusing members, the first light focusing member 57A and the second light focusing member 57B. Therefore, it is easier to adjust the overall refractive index of the reduction projection optical component 57 than when the reduction projection optical component 57 has only one first light focusing member 57A. Moreover, the modeling images 41A and 41B whose areas have been reduced are less likely to be distorted than when the reduction projection optical component 57 has only one first light focusing member 57A.
 また、第3実施形態では、拡大率及び縮小率のNの値は、3以上であるため、例えばNが3以上である量産品の発光素子のLEDであっても、光エネルギー密度を向上できる。 Further, in the third embodiment, the values of N of the enlargement ratio and reduction ratio are 3 or more, so even if the LED is a mass-produced light emitting element in which N is 3 or more, the light energy density can be improved. .
 また、第3実施形態では、ステージ14が上昇することによって樹脂硬化層が上下方向に積層されるため、ステージ14が液槽12の中に下降する場合に比べ、1層分の厚みを有する樹脂硬化層を形成するために必要なエネルギーを低減できる。第3実施形態における他の作用効果については、第1実施形態及び第2実施形態の場合と同様であるため、重複説明を省略する。 Furthermore, in the third embodiment, since the cured resin layers are stacked in the vertical direction as the stage 14 rises, the resin has a thickness of one layer compared to when the stage 14 descends into the liquid tank 12. The energy required to form a hardened layer can be reduced. Other effects in the third embodiment are the same as those in the first and second embodiments, and therefore, redundant explanation will be omitted.
(第5変形例)
 例えば、本開示では、光造形装置において光学素子56が、造形形成面19に対して回転してもよい。図20に示すように、第5変形例に係る光造形装置11Aは、光学素子56を含む光照射装置50を回転させる回転支持部34を有する。なお、回転支持部34は図20中の左右方向に沿って延びるX方向だけでなく、図20の紙面を貫く方向に沿って延びるY方向においても回転可能である。
(Fifth modification)
For example, in the present disclosure, the optical element 56 may rotate with respect to the shape forming surface 19 in the stereolithography apparatus. As shown in FIG. 20, a stereolithography apparatus 11A according to the fifth modification includes a rotation support part 34 that rotates a light irradiation device 50 including an optical element 56. Note that the rotation support portion 34 is rotatable not only in the X direction extending along the left-right direction in FIG. 20 but also in the Y direction extending along the direction penetrating the plane of the paper in FIG.
 また、第3実施形態では、光源装置24と光学素子56とを含む光照射装置50全体が回転支持部34によって支持される場合が例示されたが、本開示ではこれに限定されず、光学素子56のみが回転可能な状態で支持されてもよい。第5変形例に係る光造形装置11Aにおける他の構成については、第3実施形態に係る光造形装置11と同様であるため、重複説明を省略する。 Further, in the third embodiment, the case where the entire light irradiation device 50 including the light source device 24 and the optical element 56 is supported by the rotation support part 34 was illustrated, but the present disclosure is not limited to this, and the optical element Only 56 may be rotatably supported. The other configurations of the stereolithography apparatus 11A according to the fifth modification are the same as those of the stereolithography apparatus 11 according to the third embodiment, and therefore redundant explanation will be omitted.
 第5変形例においても第3実施形態の場合と同様、光造形における光エネルギー密度を向上できる。更に、光照射装置50が回転することによって、例えば光照射装置50が造形形成面19に対して直交する光しか照射できない場合に比べて、光の照射範囲を拡大できる。第5変形例における他の作用効果については、第3実施形態の場合と同様であるため、重複説明を省略する。 Similarly to the third embodiment, in the fifth modification, the optical energy density in stereolithography can be improved. Furthermore, by rotating the light irradiation device 50, the irradiation range of light can be expanded compared to, for example, a case where the light irradiation device 50 can only irradiate light perpendicular to the modeling surface 19. Other effects in the fifth modification are the same as those in the third embodiment, so repeated explanation will be omitted.
(他の光造形方式への適用)
 また、第3実施形態では、光造形がDLP方式によって実現される場合が例示されたが、本開示は、DLP方式に限定されず、例えばLCD(Liquid Crystal Display)方式やマイクロLED方式等の他の方式にも適用できる。
(Application to other stereolithography methods)
Further, in the third embodiment, a case where stereolithography is realized by the DLP method is exemplified, but the present disclosure is not limited to the DLP method, and may be implemented using other methods such as an LCD (Liquid Crystal Display) method or a micro LED method. It can also be applied to this method.
 ここで、通常、DLP方式の場合、比較的高い光エネルギーに耐え得るように、光照射装置を構成する部材に高い耐久性が要求される。このため、コストが嵩み易い。一方、造形形成面の上の造形用画像が投影面から投影される造形用画像よりも収縮される本開示では、光照射装置の耐久性を、DLP方式の場合程に高める必要がない。このため、例えばLCD方式やマイクロLED方式に本開示を組み合わせることによって、光造形装置のコストを抑制できる。 Here, in the case of the DLP method, the members constituting the light irradiation device are normally required to have high durability so that they can withstand relatively high light energy. Therefore, the cost tends to increase. On the other hand, in the present disclosure in which the modeling image on the modeling surface is contracted more than the modeling image projected from the projection surface, it is not necessary to increase the durability of the light irradiation device as much as in the case of the DLP method. Therefore, by combining the present disclosure with, for example, an LCD method or a micro LED method, it is possible to suppress the cost of the stereolithography apparatus.
 特に、一般的なLCD方式の光造形装置では、光源からの透過率損失が比較的大きいため、光造形に必要な光エネルギーを得られない場合がある。例えば、一般的なLCD方式では、光エネルギー密度は、約2mJ/cmに留まる場合がある。一方、DLP方式では、約16mJ/cmの光エネルギー密度を実現できる。 In particular, in a typical LCD type stereolithography apparatus, the transmittance loss from the light source is relatively large, so it may not be possible to obtain the light energy necessary for stereolithography. For example, in a typical LCD system, the light energy density may remain at about 2 mJ/cm 2 . On the other hand, the DLP method can achieve a light energy density of about 16 mJ/cm 2 .
 このため、一般的なLCD方式の光造形装置に、造形形成面の上の造形用画像が投影面から投影される造形用画像よりも収縮される本開示が組み込まれることによって、DLP方式と同等以上の光照射強度を得ることが可能になる。例えば、縮小率が1/2.8である場合、すなわち、約8倍の面積比が得られる場合、光損失が生じないと仮定すると、DLP方式の場合と同様、約16mJ/cmの光エネルギー密度を得ることが可能である。 Therefore, by incorporating the present disclosure in which the printing image on the printing surface is shrunk compared to the printing image projected from the projection surface into a general LCD type stereolithography apparatus, it is possible to achieve the same level as the DLP method. It becomes possible to obtain a higher light irradiation intensity. For example, when the reduction ratio is 1/2.8, that is, when an area ratio of about 8 times is obtained, assuming that no optical loss occurs, the light of about 16 mJ/cm 2 is the same as in the case of the DLP method. It is possible to obtain energy density.
<その他の実施形態>
 本開示は上記の開示した実施の形態によって説明したが、この開示の一部をなす論述及び図面は、本開示を限定するものであると理解すべきではない。本開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになると考えられるべきである。
<Other embodiments>
Although the present disclosure has been described with reference to the embodiments disclosed above, the statements and drawings that form a part of this disclosure should not be understood to limit the present disclosure. It should be appreciated that various alternative embodiments, implementations, and operational techniques will be apparent to those skilled in the art from this disclosure.
 例えば、図1~図20中に例示した構成を部分的に組み合わせることによって、本開示を構成することもできる。以上のとおり本開示は、上記に記載していない様々な実施の形態等を含むとともに、本開示の技術的範囲は、上記の説明から妥当な特許請求の範囲の発明特定事項によってのみ定められるものである。 For example, the present disclosure can be configured by partially combining the configurations illustrated in FIGS. 1 to 20. As described above, the present disclosure includes various embodiments not described above, and the technical scope of the present disclosure is determined only by the matters specifying the invention in the claims that are reasonable from the above explanation. It is.
 2022年3月28日に出願された日本国特許出願2022-052538号及び2023年2月24日に出願された日本国特許出願2023-027677号の開示は、それらの全体が参照により本明細書に取り込まれる。 The disclosures of Japanese Patent Application No. 2022-052538 filed on March 28, 2022 and Japanese Patent Application No. 2023-027677 filed on February 24, 2023 are incorporated herein by reference in their entirety. be taken in.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference.

Claims (14)

  1.  液状の光硬化性樹脂が蓄積される液槽と、
     区画壁と前記区画壁の中に収容された発光素子とを備える一画素が、周期的なマトリクス状に複数配置され、前記一画素の最大幅が200μm以下である光源装置と、
     前記光源装置と前記液槽との間に配置され、前記一画素から放射された光を用いて前記光硬化性樹脂に照射されるスポット光を形成し、複数の前記スポット光によって前記液槽内の形成領域に露光像を形成する光学素子と、
     前記露光像によって硬化した前記光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、
     を有する光造形装置。
    a liquid tank in which liquid photocurable resin is accumulated;
    A light source device in which a plurality of pixels each including a partition wall and a light emitting element housed in the partition wall are arranged in a periodic matrix, and the maximum width of each pixel is 200 μm or less;
    The light source device is disposed between the light source device and the liquid tank, and the light emitted from the one pixel is used to form a spot light that is irradiated to the photocurable resin, and the plurality of spot lights are used to illuminate the inside of the liquid tank. an optical element that forms an exposed image in a formation region;
    a stage that supports the resin cured layer of the photocurable resin cured by the exposure image and moves in the vertical direction;
    A stereolithography device having:
  2.  前記光学素子は、前記一画素から放射された光を集光するマイクロレンズを有し、
     前記マイクロレンズのピッチは、前記発光素子の光源波長[nm]以上、前記一画素のピッチ以下である、
     請求項1に記載の光造形装置。
    The optical element has a microlens that collects light emitted from the one pixel,
    The pitch of the microlenses is greater than or equal to the light source wavelength [nm] of the light emitting element and less than or equal to the pitch of the one pixel;
    The stereolithography apparatus according to claim 1.
  3.  前記光学素子は、前記一画素から放射された光を集光するマイクロレンズを有し、
     前記一画素に対して複数の前記マイクロレンズが配置される、
     請求項1又は2に記載の光造形装置。
    The optical element has a microlens that collects light emitted from the one pixel,
    A plurality of the microlenses are arranged for the one pixel,
    The stereolithography apparatus according to claim 1 or 2.
  4.  前記マイクロレンズは、平面視で円形状であり、
     前記マイクロレンズのピッチは、前記発光素子の光源波長[nm]の2倍以上である、
     請求項2に記載の光造形装置。
    The microlens has a circular shape in plan view,
    The pitch of the microlenses is at least twice the light source wavelength [nm] of the light emitting element,
    The stereolithography apparatus according to claim 2.
  5.  前記光学素子は、前記一画素から放射された光を絞る複数のスリットを有し、前記スリットを用いて前記光硬化性樹脂に照射されるスポット光を形成するアパチャーである、
     請求項1に記載の光造形装置。
    The optical element is an aperture that has a plurality of slits that narrow down the light emitted from the one pixel, and uses the slits to form a spot light that is irradiated onto the photocurable resin.
    The stereolithography apparatus according to claim 1.
  6.  前記光源装置は、前記液槽の下側に配置され、
     前記樹脂硬化層は、前記ステージの下面側に支持され、
     前記ステージは、前記樹脂硬化層を支持した状態で上昇可能である、
     請求項1又は2に記載の光造形装置。
    The light source device is arranged below the liquid tank,
    The resin hardening layer is supported on the lower surface side of the stage,
    The stage is capable of rising while supporting the cured resin layer.
    The stereolithography apparatus according to claim 1 or 2.
  7.  複数の前記発光素子のそれぞれに対応するスイッチング素子が設けられる、
     請求項1又は2に記載の光造形装置。
    A switching element is provided corresponding to each of the plurality of light emitting elements,
    The stereolithography apparatus according to claim 1 or 2.
  8.  液状の光硬化性樹脂が蓄積される液槽と、
     複数の一画素によって形成される投影面を有し、造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を前記投影面から投影する光源装置と、
     前記光源装置の前記投影面と前記液槽の底面との間に配置され前記造形用画像の面積を1/M(ただし、M>1)に縮小して前記液槽内の造形形成面に投影する縮小投影光学部品と、前記造形形成面の上の造形用画像によって硬化した前記光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、
     を有する、光造形装置。
    a liquid tank in which liquid photocurable resin is accumulated;
    a light source device that has a projection surface formed by a plurality of one pixel and projects a modeling image that is N times the area of the stereolithographic object to be modeled (however, N>1) from the projection surface;
    Disposed between the projection surface of the light source device and the bottom surface of the liquid tank, the area of the modeling image is reduced to 1/M (however, M>1) and projected onto the modeling surface in the liquid tank. a reduction projection optical component that supports the resin cured layer of the photocurable resin cured by the modeling image on the modeling surface, and a stage that moves in the vertical direction;
    A stereolithography device having:
  9.  前記縮小投影光学部品は、前記光源装置の側に配置された第一光集束部材と、前記第一光集束部材によって集束した光の光軸を前記造形形成面に直交する向きに補正する光軸補正部材と、を備える、
     請求項8に記載の光造形装置。
    The reduction projection optical component includes a first light focusing member disposed on the side of the light source device, and an optical axis that corrects the optical axis of the light focused by the first light focusing member to a direction perpendicular to the modeling surface. comprising a correction member;
    The stereolithography apparatus according to claim 8.
  10.  前記縮小投影光学部品は、前記第一光集束部材と前記光軸補正部材との間に、空気の屈折率よりも大きい屈折率を有する第二光集束部材を備える、
     請求項9に記載の光造形装置。
    The reduction projection optical component includes a second light focusing member having a refractive index larger than the refractive index of air between the first light focusing member and the optical axis correction member.
    The stereolithography apparatus according to claim 9.
  11.  Nは、3以上である、
     請求項8~10のいずれか一項に記載の光造形装置。
    N is 3 or more,
    The stereolithography apparatus according to any one of claims 8 to 10.
  12.  前記光源装置は、前記液槽の下側に配置され、
     前記樹脂硬化層は、前記ステージの下面側に支持され、
     前記ステージは、前記樹脂硬化層を支持した状態で上昇可能である、
     請求項8~10のいずれか1項に記載の光造形装置。
    The light source device is arranged below the liquid tank,
    The resin hardening layer is supported on the lower surface side of the stage,
    The stage is capable of rising while supporting the cured resin layer.
    The stereolithography apparatus according to any one of claims 8 to 10.
  13.  造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を光源装置の複数の一画素によって形成される投影面から投影する工程と、
     縮小投影光学部品を用いて前記造形用画像の面積を1/M(ただし、M>1)に縮小し、面積が縮小した前記造形用画像を液状の光硬化性樹脂が蓄積された液槽内の造形形成面に投影することによって前記光硬化性樹脂を硬化する工程と、
     を含む、光造形物の製造方法。
    a step of projecting a modeling image N times the area of the stereolithographic object to be modeled (where N>1) from a projection surface formed by a plurality of pixels of the light source device;
    The area of the printing image is reduced to 1/M (where M>1) using a reduction projection optical component, and the printing image with the reduced area is placed in a liquid tank in which liquid photocurable resin is accumulated. curing the photocurable resin by projecting it onto a modeling surface;
    A method for manufacturing a stereolithographic object, including:
  14.  液状の光硬化性樹脂が蓄積される液槽と、複数の一画素によって形成される投影面を有し、造形される光造形物の面積のN倍(ただし、N>1)の造形用画像を前記投影面から投影する光源装置と、前記造形用画像によって硬化した前記光硬化性樹脂の樹脂硬化層を支持し、上下方向に移動するステージと、を有する光造形装置において用いられる光学素子であって、
     前記光源装置の前記投影面と前記液槽の底面との間に配置され前記造形用画像の面積を1/M(ただし、M>1)に縮小して前記液槽内の造形形成面に投影する、
     光造形装置用の縮小投影光学部品。
    A printing image that has a liquid tank in which liquid photocurable resin is accumulated and a projection surface formed by a plurality of single pixels, and has an area N times the area of the stereolithographic object to be modeled (however, N>1) An optical element used in a stereolithography apparatus, which includes a light source device that projects from the projection surface, and a stage that supports a resin cured layer of the photocurable resin cured by the modeling image and moves in the vertical direction. There it is,
    Disposed between the projection surface of the light source device and the bottom surface of the liquid tank, the area of the modeling image is reduced to 1/M (however, M>1) and projected onto the modeling surface in the liquid tank. do,
    Reduction projection optical components for stereolithography equipment.
PCT/JP2023/012312 2022-03-28 2023-03-27 Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article WO2023190399A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022052538 2022-03-28
JP2022-052538 2022-03-28
JP2023027677 2023-02-24
JP2023-027677 2023-02-24

Publications (1)

Publication Number Publication Date
WO2023190399A1 true WO2023190399A1 (en) 2023-10-05

Family

ID=88202281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012312 WO2023190399A1 (en) 2022-03-28 2023-03-27 Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article

Country Status (1)

Country Link
WO (1) WO2023190399A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205303A (en) * 1994-01-14 1995-08-08 Mitsubishi Heavy Ind Ltd Optical device for fine processing apparatus
JP2011508690A (en) * 2007-12-27 2011-03-17 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Layered manufacturing method and lighting system used therefor
JP2012519874A (en) * 2009-03-06 2012-08-30 ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオー Irradiation system for stereolithography equipment
JP2020504041A (en) * 2017-01-25 2020-02-06 ネクサ3ディー インコーポレイテッド Method and apparatus using a light engine for photocuring of a liquid polymer to form solid objects

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205303A (en) * 1994-01-14 1995-08-08 Mitsubishi Heavy Ind Ltd Optical device for fine processing apparatus
JP2011508690A (en) * 2007-12-27 2011-03-17 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー Layered manufacturing method and lighting system used therefor
JP2012519874A (en) * 2009-03-06 2012-08-30 ネーデルランデ オルガニサチエ ヴォール トエゲパスト−ナツールウェテンスハペリエク オンデルゾエク ティーエヌオー Irradiation system for stereolithography equipment
JP2020504041A (en) * 2017-01-25 2020-02-06 ネクサ3ディー インコーポレイテッド Method and apparatus using a light engine for photocuring of a liquid polymer to form solid objects

Similar Documents

Publication Publication Date Title
JP6042939B2 (en) Irradiation system for stereolithography equipment
US20150290876A1 (en) Stereolithographic apparatus and method
JP7055424B2 (en) Methods and equipment using an optical engine for photocuring of liquid polymers to form three-dimensional objects
JP2002331591A (en) Stereolithography
JP2016540665A (en) Additive manufacturing apparatus and method
US20090175977A1 (en) Optical molding apparatus, optical molding method, and optically molded product
JP2009132127A (en) Optical shaping apparatus and optical shaping method
JP2017501911A (en) Photo-curable 3D printing apparatus and imaging system therefor
JPH08192469A (en) Photo-setting resin curing method
CN104786508A (en) 3D printing equipment and imaging system thereof
JP2012063390A (en) Exposure device and light source device
US7083405B2 (en) Photo-fabrication apparatus
JP2016508232A5 (en)
KR101990431B1 (en) 3D Printer using macro led
JP4084627B2 (en) Stereolithography method
CN110524874B (en) Photocuring 3D printing device and printing method thereof
WO2023190399A1 (en) Optical shaping device, reduced projection optical component for optical shaping device, and method for manufacturing optically shaped article
JP2013017616A (en) Polymerization apparatus for dental technology
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
TW202408785A (en) Optical shaping apparatus,reduction projection optical component for optical shaping apparatus, and method for manufacturing optical shaping object
JP2002210834A (en) Three-dimensional shaping apparatus and method therefor
JP2006323328A (en) Microlens array, manufacturing method of microlens array and liquid crystal display mounted with the microlens array
JP2022501225A (en) 3D printer
JP6833431B2 (en) Stereolithography equipment, stereolithography method and stereolithography program
JP7066459B2 (en) 3D modeling device and 3D modeling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780408

Country of ref document: EP

Kind code of ref document: A1