JP2012063390A - Exposure device and light source device - Google Patents

Exposure device and light source device Download PDF

Info

Publication number
JP2012063390A
JP2012063390A JP2010205242A JP2010205242A JP2012063390A JP 2012063390 A JP2012063390 A JP 2012063390A JP 2010205242 A JP2010205242 A JP 2010205242A JP 2010205242 A JP2010205242 A JP 2010205242A JP 2012063390 A JP2012063390 A JP 2012063390A
Authority
JP
Japan
Prior art keywords
light source
light
array
light emitting
source device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010205242A
Other languages
Japanese (ja)
Other versions
JP5687013B2 (en
Inventor
Masahiko Kokubo
正彦 小久保
Hiroyuki Shirota
浩行 城田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP2010205242A priority Critical patent/JP5687013B2/en
Priority to TW100127353A priority patent/TWI448833B/en
Priority to KR1020110081843A priority patent/KR101313514B1/en
Priority to CN201110281454.7A priority patent/CN102402130B/en
Publication of JP2012063390A publication Critical patent/JP2012063390A/en
Application granted granted Critical
Publication of JP5687013B2 publication Critical patent/JP5687013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2008Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the reflectors, diffusers, light or heat filtering means or anti-reflective means used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an exposure device and a light source device performing exposure by effectively emitting light of a required wavelength range and required amount with low power consumption, and with a long service life.SOLUTION: A light source unit 41 includes a first LED array 411, a first lens array 412, a second LED array 413, a second lens array 414, a dichroic mirror 415, a third lens array 416, and a first imaging optical system 417. The first LED array 411 emits light of center wavelength 385 nm. The second LED array 413 emits light of center wavelength 365 nm. The dichroic mirror 415 superimposes an image of a light emission section 413c of the second LED array 413 on an image of a light emitting section 411c of the first LED array 411.

Description

本発明は、露光装置および光源装置に関し、さらに詳しくは、電子工業用のプリント基板、半導体や液晶ディスプレイ製造用に用いられる露光装置と、それら露光装置などに使用される光源装置に関する。   The present invention relates to an exposure apparatus and a light source apparatus, and more particularly to an exposure apparatus used for manufacturing a printed circuit board for an electronic industry, a semiconductor or a liquid crystal display, and a light source apparatus used for the exposure apparatus.

例えば電子工業用のプリント基板や半導体ウエハ、液晶ディスプレイ製造用ガラス基板などの処理工程において、フォトリソグラフィ法を利用した表面パターニング技術が一般に使われる。従来、例えばプリント基板の製造工程において、プリント基板上に感光材料(感光性を有する樹脂等)の被膜を塗布またはラミネートなどの手法で形成し、所望のパターンを形成したフォトマスクを介して露光してその感光材料の被膜にパターンを形成していた。   For example, a surface patterning technique using a photolithography method is generally used in processing steps such as a printed circuit board for an electronic industry, a semiconductor wafer, and a glass substrate for manufacturing a liquid crystal display. Conventionally, for example, in the manufacturing process of a printed circuit board, a film of a photosensitive material (photosensitive resin, etc.) is formed on the printed circuit board by a technique such as coating or laminating, and exposed through a photomask having a desired pattern. A pattern was formed on the film of the photosensitive material.

近年、フォトマスクを用いず、光変調素子、たとえばDMD(デジタル・マイクロミラー・デバイス)を用いて変調した光によって露光し、直接的にパターンを描画するいわゆる直接描画と呼ばれる露光方式も用いられるようになった。   In recent years, an exposure method called direct drawing, in which exposure is performed with light modulated using a light modulation element such as a DMD (digital micromirror device) without using a photomask, and a pattern is directly drawn, is also used. Became.

特開2003−332221号公報JP 2003-332221 A 特開2006−133635号公報JP 2006-133635 A

特許文献1に示される直接描画方式の露光装置にあっては、光源としてランプを用いているが、この種の装置に一般に用いられる超高圧水銀ランプは大型であって消費電力が大きく、寿命が短いという問題があった。そこで、特許文献2に示されるように光源として消費電力が少なく長寿命の発光ダイオード(LED)を用いることも提案されている。   In the direct drawing type exposure apparatus disclosed in Patent Document 1, a lamp is used as a light source. However, an ultra-high pressure mercury lamp generally used in this type of apparatus is large in size, consumes a large amount of power, and has a long life. There was a problem of being short. Therefore, as shown in Patent Document 2, it has also been proposed to use a light-emitting diode (LED) with low power consumption and a long life as a light source.

しかしながら、露光の対象物である感光材料の特性によっては、比較的広い波長域の光を照射することが求められることがあり、照射光の波長域が狭いLEDを用いると所望の特性が得られず、パターニングがうまく行えないことが起こる。例えばソルダーレジストの露光には、360〜390nm付近の比較的広い波長域の光を照射することが必要であるため、365nmにピークを持つ単一波長のLEDからの光を照射するだけでは十分に露光することができず、ソルダーレジストのパターン断面が逆テーパー形状になるなどの不都合がある。   However, depending on the characteristics of the photosensitive material that is the subject of exposure, it may be required to irradiate light in a relatively wide wavelength range. If an LED having a narrow wavelength range of irradiating light is used, desired characteristics can be obtained. Therefore, patterning cannot be performed well. For example, since it is necessary to irradiate light of a relatively wide wavelength range near 360 to 390 nm for exposure of a solder resist, it is sufficient to irradiate light from a single wavelength LED having a peak at 365 nm. There are inconveniences such that the exposure cannot be performed and the pattern cross section of the solder resist has a reverse taper shape.

これに対し、特許文献2に記載の光源に、異なる波長の光を発する2種類のLEDを混用することも考えられるが、一つの波長あたりのLED数が減ってしまうと今度は露光のために十分な光量が得られなくなってしまう。   On the other hand, it is conceivable to mix two types of LEDs that emit light of different wavelengths in the light source described in Patent Document 2, but this time for the exposure when the number of LEDs per wavelength decreases. A sufficient amount of light cannot be obtained.

本発明は、上記課題に鑑みなされたものであり、消費電力が少なく長寿命で、かつ必要な波長域の光を必要な光量で効率よく出射できる光源装置および露光装置を提供することを目的としている。   SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a light source device and an exposure device that have low power consumption, have a long service life, and can efficiently emit light in a necessary wavelength region with a necessary amount of light. Yes.

請求項1に記載の発明は、第1の波長特性の光を出射する発光部を有する光源素子を複数配列した第1の光源アレイと、前記第1の光源アレイの各光源素子の発光部の拡大像を形成するレンズを複数配列した第1のレンズアレイと、第2の波長特性の光を出射する発光部を有する光源素子を複数配列した第2の光源アレイと、前記第2の光源アレイの各光源素子の発光部の拡大像を形成するレンズを複数配列した第2のレンズアレイと、前記第1のレンズアレイが形成した前記第1の光源アレイの発光部の像と、前記第2のレンズアレイが形成した前記第2の光源アレイの発光部の像とを重ね合わせて合成像を形成する光学合成素子と、前記光学合成素子が合成した合成像の光束を均一な照度分布の光束にして出射する均一化素子と、を備えたことを特徴とする。   According to a first aspect of the present invention, there is provided a first light source array in which a plurality of light source elements each having a light emitting unit that emits light having a first wavelength characteristic is arranged, and a light emitting unit of each light source element of the first light source array. A first lens array in which a plurality of lenses forming a magnified image are arranged; a second light source array in which a plurality of light source elements each having a light emitting section that emits light having a second wavelength characteristic; and the second light source array. A second lens array in which a plurality of lenses forming an enlarged image of the light emitting part of each light source element are arranged, an image of the light emitting part of the first light source array formed by the first lens array, and the second An optical composition element that forms a composite image by superimposing the image of the light emitting part of the second light source array formed by the lens array, and a light beam of uniform illuminance distribution by combining the light flux of the composite image synthesized by the optical composition element And a uniformizing element that emits It is characterized in.

請求項2に記載の発明は、請求項1に記載の光源装置において、前記光学合成素子が形成した各光源素子の発光部ごとの合成像の光束の主光線を光軸と平行にする第3のレンズアレイと、前記第3のレンズアレイから出射される前記合成像を前記均一化素子の入射端に縮小投影する両側テレセントリックな第1の結像光学系と、をさらに備えたことを特徴とする。   According to a second aspect of the present invention, there is provided the light source device according to the first aspect, wherein the principal ray of the luminous flux of the composite image for each light emitting portion of each light source element formed by the optical synthesis element is parallel to the optical axis. And a both-side telecentric first imaging optical system that projects the combined image emitted from the third lens array on the incident end of the uniformizing element in a reduced manner. To do.

請求項3に記載の発明は、請求項1または2に記載の光源装置において、前記第1のレンズアレイは、前記第1の光源アレイの各光源素子の発光部を、当該光源素子の配列ピッチの大きさに拡大投影するものであり、前記第2のレンズアレイは、前記第2の光源アレイの各光源素子の発光部を、当該光源素子の配列ピッチの大きさに拡大投影するものであることを特徴とする。   According to a third aspect of the present invention, in the light source device according to the first or second aspect, the first lens array includes a light emitting portion of each light source element of the first light source array, and an arrangement pitch of the light source elements. The second lens array projects the light emitting portion of each light source element of the second light source array to the size of the arrangement pitch of the light source elements. It is characterized by that.

請求項4に記載の発明は、請求項1乃至3のいずれかに記載の光源装置において、前記均一化素子が出射する光束を所定の照明領域に投影する第2の結像光学系をさらに備えたことを特徴とする。   According to a fourth aspect of the present invention, in the light source device according to any one of the first to third aspects, the image forming apparatus further includes a second imaging optical system that projects the light beam emitted from the uniformizing element onto a predetermined illumination area. It is characterized by that.

請求項5に記載の発明は、請求項1乃至4のいずれかに記載の光源装置において、前記均一化素子は中空ライトパイプまたは中実ロッドであることを特徴とする。   According to a fifth aspect of the present invention, in the light source device according to any one of the first to fourth aspects, the uniformizing element is a hollow light pipe or a solid rod.

請求項6に記載の発明は、請求項1乃至5のいずれかに記載の光源装置において、前記光学合成素子はダイクロイックミラーであることを特徴とする。   According to a sixth aspect of the present invention, in the light source device according to any one of the first to fifth aspects, the optical combining element is a dichroic mirror.

請求項7に記載の発明は、請求項1乃至6のいずれかに記載の光源装置と、この光源装置によって照明される光変調素子と、前記光変調素子で変調された光を描画対象物に照射する投影光学系と、前記投影光学系と前記描画対象物とを相対移動させて前記描画対象物を走査する走査機構と、を備えたことを特徴とする露光装置である。   According to a seventh aspect of the present invention, a light source device according to any one of the first to sixth aspects, a light modulation element illuminated by the light source device, and light modulated by the light modulation element are used as a drawing object. An exposure apparatus comprising: an irradiation projection optical system; and a scanning mechanism that scans the drawing object by relatively moving the projection optical system and the drawing object.

請求項8に記載の発明は、請求項6に記載の光源装置と、この光源装置によって照明される光変調素子と、前記光変調素子で変調された光をソルダーレジストの被膜が形成された描画対象物に照射する投影光学系と、前記投影光学系と前記描画対象物とを相対移動させて前記描画対象物を走査する走査機構とを備え、前記第1の光源アレイの発光素子は、波長385nm付近にピークを有する光を出射する発光部を有し、前記第2の光源アレイの発光素子は、波長365nm付近にピークを有する光を出射する発光部を有し、前記ダイクロイックミラーは前記第1の光源アレイからの光を透過するとともに、前記第2の光源アレイからの光を反射して合成像を形成するよう配置されたことを特徴とする露光装置である。   According to an eighth aspect of the present invention, there is provided a light source device according to the sixth aspect, a light modulation element illuminated by the light source device, and a drawing in which a light modulated by the light modulation element is formed with a solder resist film. A projection optical system that irradiates an object; and a scanning mechanism that scans the drawing object by relatively moving the projection optical system and the drawing object; and the light emitting element of the first light source array has a wavelength A light emitting unit that emits light having a peak near 385 nm, the light emitting element of the second light source array has a light emitting unit that emits light having a peak near 365 nm, and the dichroic mirror includes the first light emitting element. An exposure apparatus arranged to transmit light from one light source array and to reflect light from the second light source array to form a composite image.

請求項1乃至6に記載の発明によれば、消費電力が少なく長寿命で、かつ必要な波長域の光を出射して露光することができる光源装置が得られる。   According to the first to sixth aspects of the present invention, it is possible to obtain a light source device that consumes less power, has a long lifetime, and can emit light in a necessary wavelength range for exposure.

請求項2に記載の発明によれば、特に効率よく所望の形状の光束を出射することができる。   According to the second aspect of the present invention, a light beam having a desired shape can be emitted particularly efficiently.

請求項7に記載の発明によれば、消費電力が少なく長寿命で、かつ必要な波長域の光を出射して露光することができる露光装置が得られる。   According to the seventh aspect of the present invention, there can be obtained an exposure apparatus which can be exposed by emitting light in a necessary wavelength region with low power consumption and long life.

請求項8に記載の発明によれば、特にソルダーレジストの露光に好適な波長特性を持つ光を出射して露光できる露光装置が得られる。   According to the eighth aspect of the present invention, there can be obtained an exposure apparatus capable of performing exposure by emitting light having a wavelength characteristic particularly suitable for exposure of a solder resist.

本発明の実施の形態に係る露光装置を示す模式図である。It is a schematic diagram which shows the exposure apparatus which concerns on embodiment of this invention. DMDを示す図である。It is a figure which shows DMD. 照明光学系の一部を示す模式的な斜視図である。It is a typical perspective view which shows a part of illumination optical system. 光源ユニットの側面図である。It is a side view of a light source unit. 光源ユニットの一部を抜粋して示す側面図である。It is a side view which extracts and shows a part of light source unit. LEDチップの外観とその投影像を示す図である。It is a figure which shows the external appearance of a LED chip, and its projection image. 光源ユニットの一部を抜粋して示す斜視図である。It is a perspective view which extracts and shows a part of light source unit. 出射光の分光波長特性を示す図である。It is a figure which shows the spectral wavelength characteristic of emitted light.

<1.露光装置の構成と動作の概要>     <1. Overview of exposure apparatus configuration and operation>

図1は本発明の一の実施の形態に係る露光装置1の構成を示す模式図である。図1では装置の内部構造を示すために装置の外形を破線にて示している。露光装置1は、ソルダーレジストの被膜が表面に塗布またはラミネートによって形成されたプリント基板(以下、単に基板と称する)9に所定のパターンを露光してパターン形成を行うものであって、基板9を保持するステージ2、ステージ2を図1中のY方向へと移動させるステージ移動機構31、光ビームを基板9に向けて出射するヘッド部4、ヘッド部4を図2中のX方向へと移動させるヘッド部移動機構32と、これらステージ移動機構31、ヘッド部4およびヘッド部移動機構32に接続された制御部5を有する。   FIG. 1 is a schematic diagram showing a configuration of an exposure apparatus 1 according to an embodiment of the present invention. In FIG. 1, in order to show the internal structure of the apparatus, the outline of the apparatus is shown by a broken line. The exposure apparatus 1 performs pattern formation by exposing a predetermined pattern onto a printed circuit board (hereinafter simply referred to as a substrate) 9 on which a solder resist film is formed by coating or laminating. The stage 2 to be held, the stage moving mechanism 31 that moves the stage 2 in the Y direction in FIG. 1, the head unit 4 that emits a light beam toward the substrate 9, and the head unit 4 are moved in the X direction in FIG. And a control unit 5 connected to the stage moving mechanism 31, the head unit 4, and the head unit moving mechanism 32.

ヘッド部4は、後述の如く所定の波長の光ビームを出射する光源ユニット41、および、格子状に配列された微小ミラー群が設けられたDMD42を含む光学系を内蔵し、DMD42の微小ミラー群により光源ユニット41からの光ビームが反射されることにより空間変調された光ビームを生成し、ステージ2に保持された基板9に出射して露光しパターン形成する。   The head unit 4 incorporates an optical system including a light source unit 41 that emits a light beam of a predetermined wavelength as described later and a DMD 42 provided with a group of micromirrors arranged in a grid, and the micromirror group of the DMD 42 As a result, the light beam from the light source unit 41 is reflected to generate a spatially modulated light beam, which is emitted to the substrate 9 held on the stage 2 and exposed to form a pattern.

光学系の概要を説明する。光源ユニット41から出射された光ビームは、ロッドインテグレータ433、レンズ434a、レンズ434bおよびミラー435を介してミラー436へと導かれ、ミラー436は光ビームを集光させつつDMD42へと導く。DMD42へと入射する光ビームは所定の入射角(例えば、24度)でDMD42の微小ミラー群に均一に照射される。以上のように、光源ユニット41、ロッドインテグレータ433、レンズ434a、レンズ434b、ミラー435およびミラー436により光源ユニット41からの光をDMD42へと導く照明光学系43aが構成される。   An outline of the optical system will be described. The light beam emitted from the light source unit 41 is guided to the mirror 436 via the rod integrator 433, the lens 434a, the lens 434b, and the mirror 435, and the mirror 436 guides the light beam to the DMD 42 while condensing the light beam. The light beam incident on the DMD 42 is uniformly irradiated onto the micromirror group of the DMD 42 at a predetermined incident angle (for example, 24 degrees). As described above, the light source unit 41, the rod integrator 433, the lens 434a, the lens 434b, the mirror 435, and the mirror 436 constitute the illumination optical system 43a that guides the light from the light source unit 41 to the DMD 42.

DMD42の各微小ミラーのうち所定の姿勢(後述するDMD42による光照射の説明において、ON状態に対応する姿勢)にある微小ミラーからの反射光のみにより形成される光ビーム(すなわち、空間変調された光ビーム)はズームレンズ437へと入射し、ズームレンズ437により倍率が調整されてミラー438を介して投影レンズ439へと導かれる。そして、投影レンズ439からの光ビームは微小ミラー群に対して光学的に共役な基板9上の領域へと照射される。このように、露光装置1ではズームレンズ437、ミラー438、投影レンズ439により、各微小ミラーからの光を基板9上の対応する光照射領域へと導く投影光学系43bが構成される。   A light beam (that is, spatially modulated) formed only by the reflected light from the micromirrors in a predetermined posture (the posture corresponding to the ON state in the description of light irradiation by the DMD 42 described later) among the micromirrors of the DMD 42 Light beam) enters the zoom lens 437, the magnification is adjusted by the zoom lens 437, and the light beam is guided to the projection lens 439 through the mirror 438. Then, the light beam from the projection lens 439 is irradiated onto a region on the substrate 9 that is optically conjugate with the micromirror group. Thus, in the exposure apparatus 1, the zoom lens 437, the mirror 438, and the projection lens 439 constitute the projection optical system 43b that guides the light from each minute mirror to the corresponding light irradiation region on the substrate 9.

ステージ2はリニアモータであるステージ移動機構31の移動体側に固定されており、制御部5がステージ移動機構31を制御することにより、微小ミラー群からの光が照射される光照射領域群(1つの微小ミラーが1つの光照射領域に対応するものとする。)がフォトレジスト膜上を図2中のY方向に相対的に移動する。すなわち、光照射領域群はヘッド部4に対して相対的に固定され、基板9の移動により光照射領域群が基板9上を移動する。   The stage 2 is fixed to the moving body side of the stage moving mechanism 31 that is a linear motor, and the control unit 5 controls the stage moving mechanism 31 so that the light irradiation region group (1 The two micromirrors correspond to one light irradiation region.) Moves relatively on the photoresist film in the Y direction in FIG. That is, the light irradiation region group is fixed relative to the head unit 4, and the light irradiation region group moves on the substrate 9 by the movement of the substrate 9.

ヘッド部4はヘッド部移動機構32の移動体側に固定され、光照射領域群の主走査方向(図2中のY方向)に対して垂直な副走査方向(X方向)に間欠的に移動する。すなわち、主走査が終了する毎にヘッド部移動機構32は次の主走査の開始位置へとヘッド部4をX方向に移動させる。そしてこのステージ移動機構31とヘッド部移動機構32の駆動によって、ヘッド部4は基板9表面を走査し露光する。   The head unit 4 is fixed to the moving body side of the head unit moving mechanism 32 and intermittently moves in the sub-scanning direction (X direction) perpendicular to the main scanning direction (Y direction in FIG. 2) of the light irradiation region group. . That is, every time main scanning ends, the head unit moving mechanism 32 moves the head unit 4 in the X direction to the start position of the next main scanning. Then, by driving the stage moving mechanism 31 and the head moving mechanism 32, the head 4 scans and exposes the surface of the substrate 9.

図2はDMD42を示す図である。DMD42はシリコン基板421の上に多数の微小ミラーが格子状に等間隔に配列された(互いに垂直な2方向にM行N列に配列されているものとして以下説明する。)微小ミラー群422を有する空間光変調デバイスであり、各微小ミラーに対応するメモリセルに書き込まれたデータに従って、各微小ミラーが静電界作用により所定の角度だけ傾く。   FIG. 2 is a diagram showing the DMD 42. The DMD 42 includes a group of micromirrors 422 in which a large number of micromirrors are arranged on a silicon substrate 421 at regular intervals in a lattice shape (described below as M2 rows and N columns in two directions perpendicular to each other). Each of the micromirrors is tilted by a predetermined angle by electrostatic field action according to data written in the memory cell corresponding to each micromirror.

図1に示す制御部5からDMD42にリセットパルスが入力されると、各微小ミラーは対応するメモリセルに書き込まれたデータに従って反射面の対角線を軸として所定の姿勢に一斉に傾く。これにより、DMD42に照射された光ビームは各微小ミラーの傾く方向に応じて反射され、光照射領域への光照射のON/OFFが行われる。つまり、メモリセルにONを示すデータが書き込まれた微小ミラーがリセットパルスを受信すると、その微小ミラーに入射する光はズームレンズ437へと反射され、対応する光照射領域に光が照射される。また、微小ミラーがOFF状態とされると、微小ミラーは入射した光をズームレンズ437とは異なる所定の位置へと反射し、対応する光照射領域は光が導かれない状態とされる。   When a reset pulse is input from the control unit 5 shown in FIG. 1 to the DMD 42, the micromirrors are simultaneously tilted in a predetermined posture with the diagonal line of the reflecting surface as an axis according to the data written in the corresponding memory cell. As a result, the light beam applied to the DMD 42 is reflected according to the direction in which each micromirror is tilted, and light irradiation to the light irradiation region is turned on / off. That is, when a micromirror in which data indicating ON is written in the memory cell receives a reset pulse, the light incident on the micromirror is reflected to the zoom lens 437, and the corresponding light irradiation region is irradiated with light. When the micromirror is turned off, the micromirror reflects incident light to a predetermined position different from that of the zoom lens 437, and the corresponding light irradiation region is in a state where light is not guided.

そしてかかる構成により、基板9の表面はヘッド部4によって相対的に走査されつつ、DMD42で変調された光ビームが照射され、基板9表面のソルダーレジストに所定のパターンを形成する。   With this configuration, the surface of the substrate 9 is irradiated with the light beam modulated by the DMD 42 while being relatively scanned by the head unit 4 to form a predetermined pattern on the solder resist on the surface of the substrate 9.

<2.光学系の詳細>     <2. Details of optical system>

次に光学系の詳細について説明する。図3は光源ユニット41を含む照明光学系43aの一部を示す模式的な斜視図、図4は光源ユニット41の側面図、図5は光源ユニット41の一部を抜粋して示す側面図、図6はLEDチップの外観とその投影像を示す図、図7は第1のLEDアレイ411、第1のレンズアレイ412および第3のレンズアレイ416を示す斜視図である。   Next, details of the optical system will be described. 3 is a schematic perspective view showing a part of the illumination optical system 43a including the light source unit 41, FIG. 4 is a side view of the light source unit 41, and FIG. 5 is a side view showing a part of the light source unit 41. FIG. 6 is a view showing the appearance of the LED chip and a projected image thereof, and FIG. 7 is a perspective view showing the first LED array 411, the first lens array 412, and the third lens array 416.

光源ユニット41は、第1のLEDアレイ411、第1のレンズアレイ412、第2のLEDアレイ413、第2のレンズアレイ414、ダイクロイックミラー415、第3のレンズアレイ416、第1の結像光学系417とから構成される。   The light source unit 41 includes a first LED array 411, a first lens array 412, a second LED array 413, a second lens array 414, a dichroic mirror 415, a third lens array 416, and first imaging optics. A system 417.

第1のLEDアレイ411は、中心波長385nm(第1の波長特性)の光を出射する発光部を有するLEDチップ(LEDダイ)411aを基板411b上に12個配列して構成される。LEDチップ411aは1mm角の大きさであって、セラミックパッケージ(図示は省略している)の内部に納められている。LEDチップ411aは1mm角のその全面が発光するのではなく、電極の影の影響などで非発光の部分が存在する。この実施形態におけるLEDチップ411aは、図6(A)に示すように表面のうちの0.8mm角の範囲に図中にハッチングを付して示す発光部411cが形成されている。第1のLEDアレイ411は、かかるLEDチップ411aを10mmピッチ(図5中のd=10mm)で縦横二次元に3×4に配列されるように、各LEDチップ411aのセラミックパッケージを基板411b上に取り付ける。また、各LEDチップ411aの前面には、表面の保護のためのカバーガラス411dが設けられる。   The first LED array 411 is configured by arranging twelve LED chips (LED dies) 411a each having a light emitting portion that emits light having a central wavelength of 385 nm (first wavelength characteristic) on a substrate 411b. The LED chip 411a has a size of 1 mm square and is housed in a ceramic package (not shown). The LED chip 411a does not emit light on its entire surface of 1 mm square, but has a non-light emitting portion due to the influence of the shadow of the electrode. In the LED chip 411a in this embodiment, as shown in FIG. 6A, a light emitting portion 411c shown by hatching in the range of 0.8 mm square of the surface is formed. In the first LED array 411, the ceramic packages of the respective LED chips 411a are arranged on the substrate 411b so that the LED chips 411a are arranged in 3 × 4 in a vertical and horizontal two dimensions at a pitch of 10 mm (d = 10 mm in FIG. 5). Attach to. Further, a cover glass 411d for protecting the surface is provided on the front surface of each LED chip 411a.

第1のレンズアレイ412は、第1のLEDアレイ411の各LEDチップ411aの発光部411cの像を形成するレンズ群を、LEDチップ411aの配列と対応して同じ縦横二次元に3×4の12個配列して形成したものであって、LEDチップ411aの1個あたり、LEDチップ411a側からみて、両凸の第1レンズ412aと平 凸の第2レンズ412bの2枚で構成されるレンズ群を有し、それらを枠412cに組みつけて構成される。(図7では基板411bを透視して第1レンズ412aを記している。)これら第1レンズ412aと第2レンズ412bのレンズ群は、LEDチップ411aのうち発光部411cが存在する0.8mm角の略正方形の領域を、その各LEDチップ411aの配列ピッチ(図5中にdで示す)の大きさ、すなわち10mm角の大きさに拡大投影するようになっている。そして、投影された発光部411cの像はちょうど後述する第3のレンズアレイ416を構成する個々のレンズ416aの全面をカバーする。   The first lens array 412 is a 3 × 4 lens group that forms an image of the light emitting portion 411c of each LED chip 411a of the first LED array 411 in the same vertical and horizontal two dimensions corresponding to the arrangement of the LED chips 411a. A lens that is formed by arranging twelve, and is constituted by two pieces of a biconvex first lens 412a and a planoconvex second lens 412b as seen from the LED chip 411a side per LED chip 411a. It has a group and is assembled with the frame 412c. (In FIG. 7, the first lens 412a is shown through the substrate 411b.) The lens group of the first lens 412a and the second lens 412b is a 0.8 mm square in which the light emitting portion 411c exists in the LED chip 411a. Is enlarged and projected to the size of the arrangement pitch (indicated by d in FIG. 5) of the LED chips 411a, that is, the size of 10 mm square. The projected image of the light emitting unit 411c covers the entire surface of each individual lens 416a constituting a third lens array 416, which will be described later.

第2のLEDアレイ413は、中心波長365nm(第2の波長特性)の光を出射する発光部を有するLEDチップ413aを基板413b上に12個配列して構成される。この第2のLEDアレイ413およびLEDチップ413aの構成は、LEDチップ413aの出射光の波長以外は図5に示した第1のLEDアレイ411、LEDチップ411aと同様であり、LEDチップ413aを10mmピッチで縦横二次元に3×4に配列されるように、各LEDチップ413aのセラミックパッケージを基板413b上に取り付ける。また、各LEDチップ413aの前面には、表面の保護のためのカバーガラス413dが設けられる。   The second LED array 413 is configured by arranging twelve LED chips 413a having a light emitting unit that emits light having a center wavelength of 365 nm (second wavelength characteristic) on a substrate 413b. The configurations of the second LED array 413 and the LED chip 413a are the same as those of the first LED array 411 and the LED chip 411a shown in FIG. 5 except for the wavelength of the emitted light of the LED chip 413a. The ceramic packages of the respective LED chips 413a are attached on the substrate 413b so as to be arranged in a pitch of 3 × 4 in two dimensions vertically and horizontally. A cover glass 413d for protecting the surface is provided on the front surface of each LED chip 413a.

第2のレンズアレイ414の構成は、上述の第1のレンズアレイ412と同様であって、第2のLEDアレイ413の各LEDチップ413aの発光部413cの像を形成するレンズ群を、LEDチップ413aの配列と対応して同じ縦横二次元に3×4の12個配列して形成したもので、LEDチップ413aの1個あたり、LEDチップ413a側からみて、両凸の第1レンズ414aと平凸の第2レンズ414bの2枚で構成されるレンズ群を有し、それらを枠414cに組みつけて構成される。これら第1レンズ414aと第2レンズ414bのレンズ群は、図5に示す第1のレンズアレイ412と同様に、LEDチップ413aのうち発光部413cが存在する0.8mm角の略正方形の領域を、その各LEDチップ413aの配列ピッチの大きさ、すなわち10mm角の大きさに拡大投影するようになっている。そして、投影された発光部413cの像はちょうど後述する第3のレンズアレイ416を構成する個々のレンズ416aの全面をカバーする。   The configuration of the second lens array 414 is the same as that of the first lens array 412 described above, and a lens group that forms an image of the light emitting portion 413c of each LED chip 413a of the second LED array 413 is replaced with an LED chip. 12 × 3 × 4 are arranged in the same vertical and horizontal dimensions corresponding to the arrangement of 413a, and each LED chip 413a is flat with the biconvex first lens 414a when viewed from the LED chip 413a side. It has a lens group composed of two convex second lenses 414b, and is assembled by attaching them to a frame 414c. Similar to the first lens array 412 shown in FIG. 5, the lens group of the first lens 414a and the second lens 414b has an approximately square area of 0.8 mm square in which the light emitting portion 413c exists in the LED chip 413a. The LED chips 413a are enlarged and projected to the size of the arrangement pitch, that is, the size of 10 mm square. The projected image of the light emitting unit 413c covers the entire surface of each lens 416a that constitutes a third lens array 416 described later.

第1のレンズアレイ412とそれが形成する第1のLEDアレイ411の各LEDチップ411aの発光部411cの像との間には、ダイクロイックミラー415が斜めに配置され、さらにそのダイクロイックミラー415をはさんで第1のレンズアレイ412の反対側に、第2のレンズアレイ414と第2のLEDアレイ413が配置される。(図5ではダイクロイックミラー415、第2のレンズアレイ414等は図示を省略している。)これにより、ダイクロイックミラー415は、第1のLEDアレイ411および第1のレンズアレイ412からの光を透過させるとともに、第2のLEDアレイ413および第2のレンズアレイ414からの光を反射させて、第1のLEDアレイ411の発光部411cの像に第2のLEDアレイ413の発光部413cの像を重ねて合成するように配置されている。これにより、第1のレンズアレイ412と第2のレンズアレイ414による合成された像は図6(B)に示すような各LEDアレイ411,413の発光部の形状を拡大して並べたものとなっている。   A dichroic mirror 415 is arranged obliquely between the first lens array 412 and the image of the light emitting portion 411c of each LED chip 411a of the first LED array 411 formed by the first lens array 412, and further, the dichroic mirror 415 is The second lens array 414 and the second LED array 413 are arranged on the opposite side of the first lens array 412. (In FIG. 5, the dichroic mirror 415, the second lens array 414, etc. are not shown.) Thus, the dichroic mirror 415 transmits light from the first LED array 411 and the first lens array 412. In addition, the light from the second LED array 413 and the second lens array 414 is reflected, and the image of the light emitting part 413c of the second LED array 413 is reflected on the image of the light emitting part 411c of the first LED array 411. They are arranged so as to be combined. As a result, the synthesized image by the first lens array 412 and the second lens array 414 is arranged by enlarging the shapes of the light emitting portions of the LED arrays 411 and 413 as shown in FIG. 6B. It has become.

なお、第1のLEDアレイ411の光は中心波長385nmであり、第2のLEDアレイ413の光は中心波長365nmであり、両者の差は20nm程度であるので、これらを合成するためにはダイクロイックミラー415には比較的急峻なエッジを持った分光反射率(分光透過率)特性が必要となる。ダイクロイックミラー415への入射角が45度以上の場合にはPS偏光成分の光学特性の分離が生じて急峻な特性が得られないので、本実施形態ではそれぞれの光の入射角を40度よりも小さくしている。また二つの波長の光の合成の効率をよくするため、波長が短い第2のLEDアレイ413のほうをダイクロイックミラー415の反射側で、波長が長い第1のLEDアレイ411のほうを透過側で、それぞれ利用している。   The light of the first LED array 411 has a center wavelength of 385 nm, the light of the second LED array 413 has a center wavelength of 365 nm, and the difference between them is about 20 nm. The mirror 415 needs to have a spectral reflectance (spectral transmittance) characteristic having a relatively steep edge. When the incident angle to the dichroic mirror 415 is 45 degrees or more, separation of the optical characteristics of the PS polarization component occurs and a steep characteristic cannot be obtained. Therefore, in this embodiment, the incident angle of each light is set to be more than 40 degrees. It is small. Also, in order to improve the efficiency of combining the two wavelengths of light, the second LED array 413 having a shorter wavelength is on the reflection side of the dichroic mirror 415 and the first LED array 411 having a longer wavelength is on the transmission side. , Use each.

第3のレンズアレイ416は、ダイクロイックミラー415で合成された第1のLEDアレイ411の像と第2のLEDアレイ413の像の合成像の位置に配置され、入射する光束の主光線を光軸と平行にして後述する第1の結像光学系417に入射させる。第3のレンズアレイ416は10mm角の平凸レンズ416aを3×4に配列したものであって、個々のレンズ416aは、それぞれの発光部411c、413cと相似形(すなわち正方形)をしており、またその合成像と略同じ大きさである。   The third lens array 416 is disposed at the position of the combined image of the image of the first LED array 411 and the image of the second LED array 413 combined by the dichroic mirror 415, and the principal ray of the incident light beam is the optical axis. In parallel to the first imaging optical system 417 described later. The third lens array 416 is a 3 × 4 array of 10 mm square plano-convex lenses 416 a, and each lens 416 a has a similar shape (that is, a square shape) to each of the light emitting portions 411 c and 413 c, Moreover, it is substantially the same size as the composite image.

第1の結像光学系417は、両側テレセントリックな光学系であって、第1レンズ417a、第2レンズ417b、第3レンズ417cからなり、ダイクロイックミラー415が形成した第1のLEDアレイ411と第2のLEDアレイ413の合成像をインテグレータ433の入射端に縮小投影する。インテグレータ433の入射端の形状と、第1の結像光学系417によって縮小された第1のLEDアレイ411、第2のLEDアレイ413の発光部の像とは略同じ形状とすることが効率上好ましい。   The first imaging optical system 417 is a bilateral telecentric optical system, which includes a first lens 417a, a second lens 417b, and a third lens 417c, and a first LED array 411 formed by the dichroic mirror 415 and the first LED array 411. The combined image of the two LED arrays 413 is reduced and projected onto the incident end of the integrator 433. In view of efficiency, the shape of the incident end of the integrator 433 and the images of the light emitting portions of the first LED array 411 and the second LED array 413 reduced by the first imaging optical system 417 are substantially the same. preferable.

そして、インテグレータ433の出射端から出力される均一な照度分布の光は、レンズ434a、レンズ434b、ミラー435およびミラー436からなる第2の結像光学系によって、DMD42の所定の照明領域に照射される。DMD42に照射される光の波長スペクトルは、図8に示すように第1のLEDアレイ411の中心波長385nmの光と第2のLEDアレイ413の中心波長365nmの光との合成したものとなる。ここで、それぞれのLEDアレイへの投入電流は制御部5の制御により可変とされており、2つの波長の光の強度比率を可変できる。これにより、照射対象であるレジスト特性にあわせて照射する光の特性を細かく設定でき、たとえばソルダーレジストの特性に合わせて所望のパターン断面の形状を得ることができる。   The light with a uniform illuminance distribution output from the output end of the integrator 433 is irradiated to a predetermined illumination region of the DMD 42 by the second imaging optical system including the lens 434a, the lens 434b, the mirror 435, and the mirror 436. The As shown in FIG. 8, the wavelength spectrum of the light irradiated on the DMD 42 is a combination of light having a central wavelength of 385 nm of the first LED array 411 and light having a central wavelength of 365 nm of the second LED array 413. Here, the input current to each LED array is variable under the control of the control unit 5, and the intensity ratio of the light of two wavelengths can be varied. Thereby, the characteristic of the light to be irradiated can be set finely according to the resist characteristic to be irradiated, and for example, a desired pattern cross-sectional shape can be obtained according to the characteristic of the solder resist.

<3.露光装置の動作と効果>     <3. Operation and effect of exposure equipment>

露光装置1のステージ2にソルダーレジストの被膜が形成された基板9が搬入されると、制御部5はステージ移動機構31やヘッド部4、ヘッド部移動機構32等を制御して露光処理を行う。このとき光源ユニット41は、第1のLEDアレイ411の出射する中心波長385nmの光と第2のLEDアレイ413が出射する中心波長365nmの光を合成した光を出力してDMD42を照明し、それの光により基板9のソルダーレジストが露光される。光源ユニット41が出射する光は、各LEDアレイ411、413への投入電流を制御して、処理する基板9に合わせた波長、強度の光とされ、露光が良好に実行される。光源ユニット41においては、2つのLEDアレイ411、413において必要な波長の光を出射するLEDチップ411a、413aを十分な数量だけ設けることができ、必要な波長、光量の光が得られる。   When the substrate 9 on which the solder resist film is formed is carried into the stage 2 of the exposure apparatus 1, the control unit 5 controls the stage moving mechanism 31, the head unit 4, the head unit moving mechanism 32, and the like to perform exposure processing. . At this time, the light source unit 41 illuminates the DMD 42 by outputting light obtained by combining the light with the central wavelength 385 nm emitted from the first LED array 411 and the light with the central wavelength 365 nm emitted from the second LED array 413. The solder resist on the substrate 9 is exposed by the light. The light emitted from the light source unit 41 is controlled to a current applied to each of the LED arrays 411 and 413 to be a light having a wavelength and intensity suitable for the substrate 9 to be processed, and the exposure is performed satisfactorily. In the light source unit 41, a sufficient number of LED chips 411a and 413a that emit light having a necessary wavelength in the two LED arrays 411 and 413 can be provided, and light having a necessary wavelength and light amount can be obtained.

<4.変形例>     <4. Modification>

上記の実施の形態においては、第1のLEDアレイ411の光と第2のLEDアレイ413の光をダイクロイックミラー415で合成した後、第3のレンズアレイ416でテレセントリックにして、第1の結像光学系417で縮小しているが、若干の効率低下が許容できるようであれば、例えば第3のレンズアレイ416は省略することが可能である。また、光源ユニット41に求められる出射光束の形状によっては、第1の結像光学系417を省略してもよい。仮にこの両者を省略する場合、ダイクロイックミラー415で合成した後の光を直接インテグレータ433の入力端に入射させる。   In the above embodiment, the light from the first LED array 411 and the light from the second LED array 413 are synthesized by the dichroic mirror 415, and then telecentric by the third lens array 416, so that the first imaging is performed. Although it is reduced by the optical system 417, the third lens array 416 can be omitted, for example, as long as a slight decrease in efficiency can be tolerated. Further, the first imaging optical system 417 may be omitted depending on the shape of the emitted light beam required for the light source unit 41. If both are omitted, the light combined by the dichroic mirror 415 is directly incident on the input end of the integrator 433.

また、本実施の形態においては、第1のLEDアレイ411の光と第2のLEDアレイ413の光を合成するためにダイクロイックミラー415を使用しているが、それに代えて例えばキューブタイプのダイクロイックプリズムを用いてもよい。また、必要な光の波長領域に応じて3種類以上の波長の光を合成してもよく、その場合、光学合成素子としては、ダイクロイックミラー415を複数用いてもよく、またはクロスプリズム、フィリップスタイププリズム、ケスタープリズム等のダイクロイックプリズムを用いてもよい。   In this embodiment, the dichroic mirror 415 is used to synthesize the light from the first LED array 411 and the light from the second LED array 413. Instead, for example, a cube-type dichroic prism is used. May be used. Further, three or more wavelengths of light may be synthesized according to the wavelength range of the required light. In that case, a plurality of dichroic mirrors 415 may be used as an optical synthesis element, or a cross prism, a Philips type A dichroic prism such as a prism or a Kester prism may be used.

また、ここでは均一化素子としてインテグレータ433を使用している。これは、ミラーを反射面を内側にして張り合わせた中空のライトパイプでもよいし、全反射を利用した多角柱の中実ロッドでもよい。入射側断面形状と出射側断面形状は略相似形となるテーパータイプであってもよい。またインテグレータ433に代えてフライアイレンズを用いてもよい。この場合、フライアイレンズの個々のレンズの形状は、被照射面の形状と略相似形にすることが好ましく、第1の結像光学系417内部の主光線が光軸と交わる位置に設置することで、均一な照度分布を実現することができる。   Here, an integrator 433 is used as a uniformizing element. This may be a hollow light pipe in which mirrors are bonded with the reflecting surface inside, or a solid rod of a polygonal column using total reflection. The incident-side cross-sectional shape and the output-side cross-sectional shape may be a taper type having a substantially similar shape. Further, a fly-eye lens may be used in place of the integrator 433. In this case, the shape of each lens of the fly-eye lens is preferably substantially similar to the shape of the irradiated surface, and is set at a position where the principal ray inside the first imaging optical system 417 intersects the optical axis. Thus, a uniform illuminance distribution can be realized.

1 露光装置
2 ステージ
4 ヘッド部
5 制御部
9 基板
31 ステージ移動機構
32 ヘッド部移動機構
41 光源ユニット
42 DMD
411 第1のLEDアレイ
411a LEDチップ
411c 発光部
412 第1のレンズアレイ
413 第2のLEDアレイ
413a LEDチップ
413c 発光部
414 第2のレンズアレイ
415 ダイクロイックミラー
416 第3のレンズアレイ
417 第1の結像光学系
DESCRIPTION OF SYMBOLS 1 Exposure apparatus 2 Stage 4 Head part 5 Control part 9 Substrate 31 Stage moving mechanism 32 Head part moving mechanism 41 Light source unit 42 DMD
411 1st LED array 411a LED chip 411c Light emitting part 412 1st lens array 413 2nd LED array 413a LED chip 413c Light emitting part 414 2nd lens array 415 Dichroic mirror 416 3rd lens array 417 1st connection Image optics

Claims (8)

第1の波長特性の光を出射する発光部を有する光源素子を複数配列した第1の光源アレイと、
前記第1の光源アレイの各光源素子の発光部の拡大像を形成するレンズを複数配列した第1のレンズアレイと、
第2の波長特性の光を出射する発光部を有する光源素子を複数配列した第2の光源アレイと、
前記第2の光源アレイの各光源素子の発光部の拡大像を形成するレンズを複数配列した第2のレンズアレイと、
前記第1のレンズアレイが形成した前記第1の光源アレイの発光部の像と、前記第2のレンズアレイが形成した前記第2の光源アレイの発光部の像とを重ね合わせて合成像を形成する光学合成素子と、
前記光学合成素子が合成した合成像の光束を均一な照度分布の光束にして出射する均一化素子と、
を備えたことを特徴とする光源装置。
A first light source array in which a plurality of light source elements each having a light emitting unit that emits light having a first wavelength characteristic are arranged;
A first lens array in which a plurality of lenses forming an enlarged image of a light emitting portion of each light source element of the first light source array are arranged;
A second light source array in which a plurality of light source elements each having a light emitting unit that emits light having a second wavelength characteristic are arranged;
A second lens array in which a plurality of lenses forming an enlarged image of a light emitting portion of each light source element of the second light source array are arranged;
A composite image is formed by superimposing the image of the light emitting part of the first light source array formed by the first lens array and the image of the light emitting part of the second light source array formed by the second lens array. An optical synthesis element to be formed;
A uniformizing element that emits a luminous flux of a composite image synthesized by the optical synthesis element as a luminous flux of uniform illuminance distribution; and
A light source device comprising:
請求項1に記載の光源装置において、
前記光学合成素子が形成した各光源素子の発光部ごとの合成像の光束の主光線を光軸と平行にする第3のレンズアレイと、
前記第3のレンズアレイから出射される前記合成像を前記均一化素子の入射端に縮小投影する両側テレセントリックな第1の結像光学系と、
をさらに備えたことを特徴とする光源装置。
The light source device according to claim 1,
A third lens array that makes the principal ray of the luminous flux of the combined image for each light emitting part of each light source element formed by the optical combining element parallel to the optical axis;
A first imaging optical system that is telecentric on both sides that projects the combined image emitted from the third lens array on the entrance end of the homogenizing element in a reduced manner;
A light source device further comprising:
請求項1または2に記載の光源装置において、
前記第1のレンズアレイは、前記第1の光源アレイの各光源素子の発光部を、当該光源素子の配列ピッチの大きさに拡大投影するものであり、
前記第2のレンズアレイは、前記第2の光源アレイの各光源素子の発光部を、当該光源素子の配列ピッチの大きさに拡大投影するものである
ことを特徴とする光源装置。
The light source device according to claim 1 or 2,
The first lens array is an enlarged projection of the light emitting portion of each light source element of the first light source array to the size of the arrangement pitch of the light source elements,
The light source apparatus, wherein the second lens array projects a light emitting portion of each light source element of the second light source array in an enlarged size to an arrangement pitch of the light source elements.
請求項1乃至3のいずれかに記載の光源装置において、
前記均一化素子が出射する光束を所定の照明領域に投影する第2の結像光学系をさらに備えたことを特徴とする光源装置。
The light source device according to claim 1,
A light source apparatus further comprising a second imaging optical system that projects a light beam emitted from the uniformizing element onto a predetermined illumination area.
請求項1乃至4のいずれかに記載の光源装置において、
前記均一化素子はインテグレータ光学系であることを特徴とする光源装置。
The light source device according to any one of claims 1 to 4,
The light source device, wherein the uniformizing element is an integrator optical system.
請求項1乃至5のいずれかに記載の光源装置において、
前記光学合成素子はダイクロイックミラーであることを特徴とする光源装置。
The light source device according to claim 1,
The light source device, wherein the optical combining element is a dichroic mirror.
請求項1乃至6のいずれかに記載の光源装置と、
この光源装置によって照明される光変調素子と、
前記光変調素子で変調された光を描画対象物に照射する投影光学系と、
前記投影光学系と前記描画対象物とを相対移動させて前記描画対象物を走査する走査機構と、
を備えたことを特徴とする露光装置。
A light source device according to any one of claims 1 to 6,
A light modulation element illuminated by the light source device;
A projection optical system for irradiating a drawing object with light modulated by the light modulation element;
A scanning mechanism that scans the drawing object by relatively moving the projection optical system and the drawing object;
An exposure apparatus comprising:
請求項6に記載の光源装置と、
この光源装置によって照明される光変調素子と、
前記光変調素子で変調された光をソルダーレジストの被膜が形成された描画対象物に照射する投影光学系と、
前記投影光学系と前記描画対象物とを相対移動させて前記描画対象物を走査する走査機構とを備え、
前記第1の光源アレイの発光素子は、波長385nm付近にピークを有する光を出射する発光部を有し、
前記第2の光源アレイの発光素子は、波長365nm付近にピークを有する光を出射する発光部を有し、
前記ダイクロイックミラーは前記第1の光源アレイからの光を透過するとともに、前記第2の光源アレイからの光を反射して合成像を形成するよう配置されたことを特徴とする露光装置。


The light source device according to claim 6;
A light modulation element illuminated by the light source device;
A projection optical system for irradiating the object to be drawn on which the solder resist film is formed with light modulated by the light modulation element;
A scanning mechanism that scans the drawing object by relatively moving the projection optical system and the drawing object;
The light emitting element of the first light source array has a light emitting unit that emits light having a peak in the vicinity of a wavelength of 385 nm,
The light emitting element of the second light source array has a light emitting unit that emits light having a peak near a wavelength of 365 nm,
The dichroic mirror is arranged so as to transmit light from the first light source array and reflect the light from the second light source array to form a composite image.


JP2010205242A 2010-09-14 2010-09-14 Exposure apparatus and light source apparatus Active JP5687013B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010205242A JP5687013B2 (en) 2010-09-14 2010-09-14 Exposure apparatus and light source apparatus
TW100127353A TWI448833B (en) 2010-09-14 2011-08-02 An exposure device and a light source device
KR1020110081843A KR101313514B1 (en) 2010-09-14 2011-08-17 exposure apparatus and light source
CN201110281454.7A CN102402130B (en) 2010-09-14 2011-09-14 Exposure device and light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205242A JP5687013B2 (en) 2010-09-14 2010-09-14 Exposure apparatus and light source apparatus

Publications (2)

Publication Number Publication Date
JP2012063390A true JP2012063390A (en) 2012-03-29
JP5687013B2 JP5687013B2 (en) 2015-03-18

Family

ID=45884474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205242A Active JP5687013B2 (en) 2010-09-14 2010-09-14 Exposure apparatus and light source apparatus

Country Status (4)

Country Link
JP (1) JP5687013B2 (en)
KR (1) KR101313514B1 (en)
CN (1) CN102402130B (en)
TW (1) TWI448833B (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179977A1 (en) * 2012-05-29 2013-12-05 株式会社ニコン Illumination device, processing device, and device manufacturing method
WO2013187299A1 (en) * 2012-06-15 2013-12-19 ウシオ電機株式会社 Light irradiating device, and exposure device
JP2014006433A (en) * 2012-06-26 2014-01-16 Dainippon Screen Mfg Co Ltd Pattern drawing device
KR20140123421A (en) 2013-04-12 2014-10-22 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
KR20160016571A (en) 2014-08-02 2016-02-15 가부시키가이샤 아도테크 엔지니어링 Light source device and exposure device
JP2016200787A (en) * 2015-04-14 2016-12-01 株式会社サーマプレシジョン Light irradiation device, exposure device and led array light source
WO2016194378A1 (en) * 2015-06-02 2016-12-08 株式会社アドテックエンジニアリング Light source device, exposure device, and light source control method
JP2017504842A (en) * 2013-10-30 2017-02-09 インフィテック. カンパニー、 リミテッド LED light source device for exposure and LED light source device management system for exposure
JP2019128581A (en) * 2018-07-13 2019-08-01 セジン オント インクSEJIN ONT Inc. Light source device and exposure apparatus including the same
JPWO2020217288A1 (en) * 2019-04-22 2020-10-29
KR20210058665A (en) 2019-11-13 2021-05-24 페닉스덴키가부시키가이샤 Led lamp and light source for exposure device using the same
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
WO2024038533A1 (en) * 2022-08-18 2024-02-22 株式会社ニコン Light source unit, illumination unit, exposure device, and exposure method
WO2024038535A1 (en) * 2022-08-18 2024-02-22 株式会社ニコン Lighting unit, exposure device, and exposure method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9243761B2 (en) * 2013-02-28 2016-01-26 Sumitomo Electric Industries, Ltd. Optical assembly and method for assembling the same, and optical module implemented with optical assembly
JP2015102614A (en) * 2013-11-22 2015-06-04 セイコーエプソン株式会社 Display device
CN105116689A (en) * 2015-09-09 2015-12-02 合肥芯碁微电子装备有限公司 UVLED array light source collection and utilization device used for direct writing exposure machine
KR101718529B1 (en) * 2015-09-24 2017-03-22 주식회사 리텍 Exposure apparatus based on dmd
CN110719702B (en) * 2019-10-18 2022-01-25 中山新诺科技股份有限公司 Dual-wavelength welding-proof equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same
JP2003332221A (en) * 2002-05-16 2003-11-21 Dainippon Screen Mfg Co Ltd Exposure system
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2006133635A (en) * 2004-11-09 2006-05-25 Olympus Corp Illumination optical device and optical device
JP2006267719A (en) * 2005-03-24 2006-10-05 Hitachi Via Mechanics Ltd Method and device for pattern exposure

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4590647B2 (en) 1999-07-30 2010-12-01 日東光学株式会社 Light source device and projector device
JP4546019B2 (en) * 2002-07-03 2010-09-15 株式会社日立製作所 Exposure equipment
JP2004070018A (en) * 2002-08-07 2004-03-04 Mitsubishi Electric Corp Conformation of illumination optical system in projector, and projector
US7181105B2 (en) * 2003-03-25 2007-02-20 Fuji Photo Film Co., Ltd. Method for adjusting alignment of laser beams in combined-laser-light source where the laser beams are incident on restricted area of light-emission end face of optical fiber
JP4508743B2 (en) * 2004-03-31 2010-07-21 日立ビアメカニクス株式会社 Pattern exposure method and pattern exposure apparatus
JP2006337834A (en) * 2005-06-03 2006-12-14 Fujifilm Holdings Corp Exposing device and exposing method
JP2009164495A (en) * 2008-01-10 2009-07-23 Nikon Corp Illuminator, exposure device, exposure method, and device manufacturing method
CN100576089C (en) * 2008-02-27 2009-12-30 芯硕半导体(中国)有限公司 Non-mask write through photo-etching machine with ultrahigh strength LED light source

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003270585A (en) * 2002-03-18 2003-09-25 Ricoh Co Ltd Laser illumination optical system, and exposure device, laser beam machining device and projection device using the same
JP2003332221A (en) * 2002-05-16 2003-11-21 Dainippon Screen Mfg Co Ltd Exposure system
JP2004335949A (en) * 2002-11-29 2004-11-25 Nikon Corp Aligner and exposure method
JP2006133635A (en) * 2004-11-09 2006-05-25 Olympus Corp Illumination optical device and optical device
JP2006267719A (en) * 2005-03-24 2006-10-05 Hitachi Via Mechanics Ltd Method and device for pattern exposure

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013179977A1 (en) * 2012-05-29 2013-12-05 株式会社ニコン Illumination device, processing device, and device manufacturing method
WO2013187299A1 (en) * 2012-06-15 2013-12-19 ウシオ電機株式会社 Light irradiating device, and exposure device
JP2014006433A (en) * 2012-06-26 2014-01-16 Dainippon Screen Mfg Co Ltd Pattern drawing device
KR20140123421A (en) 2013-04-12 2014-10-22 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
JP2014207300A (en) * 2013-04-12 2014-10-30 株式会社オーク製作所 Light source device and exposure apparatus
KR102144597B1 (en) * 2013-04-12 2020-08-13 가부시키가이샤 오크세이사쿠쇼 Light source device and exposure device
JP2017504842A (en) * 2013-10-30 2017-02-09 インフィテック. カンパニー、 リミテッド LED light source device for exposure and LED light source device management system for exposure
KR20160016571A (en) 2014-08-02 2016-02-15 가부시키가이샤 아도테크 엔지니어링 Light source device and exposure device
JP2016035509A (en) * 2014-08-02 2016-03-17 株式会社アドテックエンジニアリング Light source device and exposure apparatus
TWI650613B (en) * 2014-08-02 2019-02-11 日商亞多特克工程股份有限公司 Light source device and exposure device
JP2016200787A (en) * 2015-04-14 2016-12-01 株式会社サーマプレシジョン Light irradiation device, exposure device and led array light source
JP2016224321A (en) * 2015-06-02 2016-12-28 株式会社アドテックエンジニアリング Light source device, exposure device, and light source control method
KR20180016471A (en) 2015-06-02 2018-02-14 가부시키가이샤 아도텟쿠 엔지니아린구 Light source device, exposure device and light source control method
TWI661275B (en) * 2015-06-02 2019-06-01 日商亞多特克工程股份有限公司 Light source device, exposure device and light source control method
WO2016194378A1 (en) * 2015-06-02 2016-12-08 株式会社アドテックエンジニアリング Light source device, exposure device, and light source control method
KR102055670B1 (en) * 2015-06-02 2019-12-13 가부시키가이샤 아도텟쿠 엔지니아린구 Light source device, exposure device and light source control method
JP2019128581A (en) * 2018-07-13 2019-08-01 セジン オント インクSEJIN ONT Inc. Light source device and exposure apparatus including the same
JPWO2020217288A1 (en) * 2019-04-22 2020-10-29
KR20210058665A (en) 2019-11-13 2021-05-24 페닉스덴키가부시키가이샤 Led lamp and light source for exposure device using the same
WO2021251090A1 (en) * 2020-06-08 2021-12-16 株式会社ブイ・テクノロジー Light source device for exposure, lighting device, exposure device, and exposure method
WO2024038533A1 (en) * 2022-08-18 2024-02-22 株式会社ニコン Light source unit, illumination unit, exposure device, and exposure method
WO2024038535A1 (en) * 2022-08-18 2024-02-22 株式会社ニコン Lighting unit, exposure device, and exposure method

Also Published As

Publication number Publication date
JP5687013B2 (en) 2015-03-18
CN102402130A (en) 2012-04-04
TW201211703A (en) 2012-03-16
TWI448833B (en) 2014-08-11
KR101313514B1 (en) 2013-10-01
KR20120028803A (en) 2012-03-23
CN102402130B (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5687013B2 (en) Exposure apparatus and light source apparatus
JP4775842B2 (en) Pattern drawing device
JP5633695B2 (en) Illumination device, projection display device, and direct view display device
JP5286744B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
WO2006004135A1 (en) Exposure apparatus and device manufacturing method
KR20140023234A (en) Led-based photolithographic illuminator with high collection efficiency
US20050226000A1 (en) Optical apparatus for illuminating an object
JP4679249B2 (en) Pattern drawing device
WO2014002312A1 (en) Pattern drawing device, pattern drawing method
JP4328320B2 (en) Light source for exposure
JP2006186302A (en) Light-source unit for scanning exposure
KR101087787B1 (en) Line light source and light source module for exposure apparatus, and exposure apparatus and system for forming patterns having the same
CN110431487B (en) Illumination apparatus and method, exposure apparatus and method, and device manufacturing method
TWI649632B (en) Exposure device and exposure method
JP2006253486A (en) Illuminator, projection aligning method, projection aligner, and process for fabricating microdevice
JP6283798B2 (en) Exposure apparatus and illumination unit
JP2006251732A (en) Exposure apparatus and method
JP7427352B2 (en) exposure equipment
JP2010262000A (en) Drawing apparatus
WO2021009791A1 (en) Light source device, projector, and light intensity distribution uniformization method
KR20190035066A (en) Exposure apparatus based on dmd capable high speed exposure and low speed exposure
KR100889954B1 (en) Exposure apparatus using integrated optics
KR20240013808A (en) Pattern exposure apparatus, exposure method, and device manufacturing method
KR20240010018A (en) Illumination optical system and exposure device
JP5470984B2 (en) Illumination apparatus, exposure apparatus, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150121

R150 Certificate of patent or registration of utility model

Ref document number: 5687013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250