WO2014002312A1 - Pattern drawing device, pattern drawing method - Google Patents

Pattern drawing device, pattern drawing method Download PDF

Info

Publication number
WO2014002312A1
WO2014002312A1 PCT/JP2012/082758 JP2012082758W WO2014002312A1 WO 2014002312 A1 WO2014002312 A1 WO 2014002312A1 JP 2012082758 W JP2012082758 W JP 2012082758W WO 2014002312 A1 WO2014002312 A1 WO 2014002312A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
illuminance
magnitude
pattern drawing
Prior art date
Application number
PCT/JP2012/082758
Other languages
French (fr)
Japanese (ja)
Inventor
小久保 正彦
昌一 馬越
大介 岸脇
康平 大森
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Publication of WO2014002312A1 publication Critical patent/WO2014002312A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams
    • G03F7/70391Addressable array sources specially adapted to produce patterns, e.g. addressable LED arrays

Definitions

  • the present invention relates to a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance equalizing element is modulated by the spatial light modulator and irradiated onto a substrate.
  • a pattern drawing apparatus that exposes a drawing target such as a substrate coated with a photosensitive material such as a resist solution in a pattern and draws a pattern on the drawing target.
  • a spatial light modulator composed of DMD (Digital Micromirror Device) is provided, and this spatial light modulator has a pattern to form light from an ultrahigh pressure mercury lamp. The pattern is drawn on the drawing target by modulating the light accordingly and irradiating the drawing target.
  • DMD Digital Micromirror Device
  • Patent Document 1 an integrator, which is an illuminance uniformizing element, is provided in the optical path from the ultrahigh pressure mercury lamp to the spatial light modulator, and light with improved illuminance distribution uniformity by the function of the integrator is provided.
  • the spatial light modulator is irradiated. Thereby, the illuminance distribution of the light irradiated to the drawing target is made uniform.
  • the luminance distribution of the emission point of the ultra-high pressure mercury lamp is not necessarily uniform and may have unevenness, which is condensed by an optical system such as an elliptical mirror and led to an illuminance uniformizing element such as an integrator.
  • an optical system such as an elliptical mirror
  • an illuminance uniformizing element such as an integrator.
  • a large unevenness occurs in the illuminance distribution at the integrator incident end.
  • the illuminance distribution at the integrator incident end may not be made uniform.
  • the ability of the integrator to make the illuminance distribution uniform is limited.
  • the uniformity of the illuminance distribution of the light applied to the drawing target cannot always be sufficiently ensured. That is, if the illuminance distribution at the integrator incident end is too large to be compensated for by the ability of the integrator, the illuminance distribution of the light irradiated to the drawing target may not be uniform. Alternatively, if the integrator itself has manufacturing errors and its function is low, or the uniformity of the illuminance distribution of the light irradiated to the drawing object due to unevenness of the transmittance and reflectance of the optical elements in the optical path may be insufficient there were.
  • an object of the present invention is to provide a technique that can improve the uniformity of the illuminance distribution of the irradiation light to the drawing target.
  • a pattern drawing apparatus provides a light emitting unit having a plurality of light emitting units that emit light at a luminance corresponding to the magnitude of a drive signal, and light incident from the light emitting unit to emit light illuminance.
  • the illuminance uniformity element that emits after uniforming the distribution
  • the spatial light modulator that modulates the light emitted from the illuminance uniformity element and irradiates the drawing object, and the size of the drive signal for each light emitting unit individually
  • a drive control unit for controlling.
  • a light emitting unit having a plurality of light emitting units that emit light with luminance according to the magnitude of the drive signal is provided, and the illuminance equalizing element has been incident from the light emitting unit.
  • the illuminance distribution is made uniform with respect to light.
  • size of a drive signal separately for every light emission part is provided. Therefore, it is possible to appropriately adjust the illuminance distribution of the light incident on the illuminance uniformizing element by individually controlling the luminance for each light emitting unit. As a result, in addition to the ability of the illuminance uniformizing element, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
  • the unit can configure the pattern drawing device so that light is irradiated to different positions in a second direction orthogonal to the first direction.
  • the configuration is such that the magnitude of the drive signal is individually controlled for each light emitting unit as described above, it is possible to effectively suppress the occurrence of such illuminance unevenness in the second direction. Is possible.
  • the pattern drawing device may be configured such that the plurality of light emitting units irradiate light at different positions in the second direction with respect to the illumination uniformizing element incident end.
  • the illuminance distribution of the light incident on the illuminance equalizing element incident end can be changed in the second direction by individually controlling the magnitude of the drive signal for each light emitting unit.
  • the illuminance distribution at the incident end of the illuminance uniforming element changes in the second direction
  • the illuminance distribution slightly changes in the second direction at the outgoing end of the illuminance uniformizing element accordingly.
  • the magnitude of the drive signal can be individually controlled for each light emitting unit to adjust the illuminance distribution of light after the illuminance uniforming element emission end. It is possible to effectively suppress the occurrence of uneven illuminance in the second direction described above.
  • the light emitting unit is configured by a plurality of light emitting elements each emitting light with a luminance corresponding to the magnitude of the drive signal and irradiating light to the positions arranged in a straight line in the first direction.
  • the patterning device may be configured to collectively control the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit. In such a configuration, the regions where the light emitting elements belonging to the same light emitting unit emit light are aligned in the direction in which the light emitting unit moves relative to the drawing target (first direction).
  • the plurality of light emitting elements belonging to the same light emitting unit irradiate light while moving in the first direction with respect to the drawing target, thereby performing exposure in the direction of integration in the same region. Therefore, even if the illumination light of each of these light emitting elements has uneven illuminance, there is little influence on the finally formed pattern. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit.
  • each of the light emitting units emits light with a luminance corresponding to the magnitude of the drive signal, and each of the light emitting units irradiates light at positions linearly aligned in the first direction at the illuminance equalizing element incident end.
  • the pattern drawing apparatus may be configured such that the drive control unit is configured by a light emitting element, and the control of the magnitude of the drive signal is collectively performed for a plurality of light emitting elements belonging to the same light emitting unit. In such a configuration, a region where a plurality of light emitting elements belonging to the same light emitting unit emit light is aligned in a direction (first direction) in which the light emitting unit relatively moves with respect to the drawing target at the illuminance equalizing element incident end.
  • the plurality of light emitting elements belonging to the same light emitting unit irradiate light while moving in the first direction with respect to the drawing target, thereby performing exposure in the direction of integration in the same region. Therefore, even if the illumination light of each of these light emitting elements has uneven illuminance, there is little influence on the finally formed pattern. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit.
  • an illuminance detector that detects an illuminance distribution of the light emitted from the illuminance equalizing element is further provided, and the drive control unit determines the magnitude of the drive signal for each light emitting unit according to the detection result of the illuminance detector.
  • the pattern drawing device may be configured to be individually controlled. In such a configuration, since the magnitude of the drive signal to each light emitting unit is controlled based on the result of detecting the illuminance distribution of the light emitted from the illuminance equalizing element, the irradiation light to the drawing target The uniformity of the illuminance distribution can be improved more reliably.
  • the illuminance detector may configure the pattern drawing device so as to detect the illuminance distribution of the light irradiated to the drawing target. Thereby, the uniformity of the illuminance distribution of the irradiation light to the drawing target can be further improved.
  • the pattern drawing device may be configured so that the spatial light modulator is a DMD.
  • the pattern drawing method individually controls the magnitude of the drive signal given to the plurality of light emitting sections that emit light with the luminance corresponding to the magnitude of the drive signal.
  • a step of making the light from a plurality of light emitting portions incident on an illuminance uniformizing element that homogenizes and emits incident light, and modulating the light emitted from the illuminance uniformizing element with a spatial light modulator And a step of irradiating the drawing target.
  • a plurality of light emitting portions that emit light at a luminance corresponding to the magnitude of the drive signal are provided, and the illuminance equalizing element applies to light incident from the plurality of light emitting portions.
  • the illuminance distribution is made uniform.
  • size of a drive signal separately for every light emission part is provided. Therefore, it is possible to appropriately adjust the illuminance distribution of the light incident on the illuminance uniformizing element by individually controlling the luminance for each light emitting unit. As a result, in addition to the ability of the illuminance uniformizing element, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
  • a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance equalizing element is modulated by the spatial light modulator and irradiated to a drawing object, In addition to the capability, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
  • FIG. 2 is a partial plan view schematically showing the pattern drawing apparatus of FIG. 1. It is a fragmentary top view which shows the conveyance mechanism of an optical sensor. It is a perspective view which shows typically the schematic structure with which an optical head is provided. It is a side view which shows typically schematic structure of a light source panel. It is a top view which shows typically schematic structure of a light source panel. It is a perspective view which shows typically schematic structure of a light source panel. It is the figure which showed the light ray figure of the light which injects into a rod integrator. It is the top view which showed typically an example of the image of the light emitting element irradiated to a rod integrator. It is a block diagram which shows an example of the circuit which controls a light emitting element separately.
  • FIG. 1 is a side view schematically showing an example of a pattern drawing apparatus to which the present invention is applicable.
  • FIG. 2 is a partial plan view schematically showing the pattern drawing apparatus of FIG.
  • FIG. 3 is a partial plan view showing the transport mechanism of the optical sensor.
  • XYZ orthogonal coordinate axes having the Z-axis direction as the vertical direction are appropriately shown.
  • the arrow side of each coordinate axis in the drawing is referred to as a positive side
  • the opposite side of each coordinate axis in the drawing is referred to as a negative side.
  • the pattern drawing apparatus 1 performs pattern drawing by exposure on the substrate S carried into the apparatus from the negative inlet 11 in the Y-axis direction, and the pattern has been drawn from the positive outlet 12 in the Y-axis direction.
  • the substrate S is unloaded.
  • the substrate S is a surface of a semiconductor substrate, an FPC (Flexible Printed Circuit) substrate, a plasma display device, an organic EL (Electro-Luminescence) display device, or the like on which an upper surface (one main surface) is coated with a photosensitive material such as a resist solution.
  • the pattern drawing apparatus 1 includes a support unit 3 that supports a substrate S that has been carried in, an exposure unit 5 that exposes the substrate S supported by the support unit 3, and an imaging unit 9 that captures an alignment mark on the substrate S. , And a controller 100 that controls each unit 3, 5, 9.
  • the support unit 3 is provided with a support stage 31 that sucks and supports the substrate S placed on the upper surface thereof, and a pair of peeling rollers 32 provided on both sides of the support stage 31 in the Y-axis direction. That is, the support stage 31 has a large number of suction holes on a horizontally formed upper surface, and a substrate placed on the upper surface of the support stage 31 by suction of each suction hole by a suction mechanism (not shown). S is adsorbed to the support stage. As a result, the substrate S that has been carried in is firmly supported by the support stage 31, and pattern drawing on the substrate S can be executed stably. Further, when the substrate S is unloaded after the pattern drawing is finished, the suction of the suction holes is stopped and the pair of peeling rollers 32 are raised to push up the substrate S, whereby the substrate S is peeled from the support stage 31.
  • the support stage 31 has a large number of suction holes on a horizontally formed upper surface, and a substrate placed on the upper surface of the
  • the support stage 31 is connected to the mover 37 a of the linear motor 37 through the lifting table 33, the rotary table 34 and the support plate 35. Therefore, the support stage 31 can be moved up and down by the lift table 33 and can be rotated by the rotary table 34. Furthermore, by driving the mover 37a along the stator 37b of the linear motor 37 extending in the Y-axis direction, the support stage 31 can be driven in the Y-axis direction in the range from the carry-in port 11 to the carry-out port 12. . A pair of peeling rollers 32 is also moved along with the support stage 31.
  • the support stage 31 includes an optical sensor SC that detects an illuminance distribution of the light irradiated by the optical head 6 on the surface of the substrate S supported by the support stage 31 (a position corresponding to the support stage 31), and A transport mechanism 20 that moves the optical sensor SC in the X-axis direction is provided at the front end of the support stage 31 in the Y-axis direction.
  • the optical sensor SC is disposed on the upper surface of the support stage 31 and on the (+ Y) side of the support stage 31.
  • the support stage 31 is moved along the main scanning direction (Y-axis direction), thereby the optical head 6. Is placed directly above the optical sensor SC.
  • the optical sensor SC has a structure in which a pinhole, a diffusion plate, and a photodiode as a light receiving element are arranged inside the housing 41.
  • the modulated light of the two-dimensional region irradiated from the optical head 6 is introduced into the housing 41 and the amount of light is detected.
  • the transport mechanism 20 is fixed on the ball screw 21 and the support stage 31 arranged in the sub-scanning direction (X-axis direction) and two guide rails 22 arranged in the sub-scanning direction for supporting the housing 41.
  • a motor 23 connected to the ball screw 21.
  • the ball screw 21 is rotated by the motor 23 of the transport mechanism 20 and the optical sensor SC is moved along the guide rail 22, that is, along the sub-scanning direction, in the operation of detecting the illuminance distribution of light described later. Is moved in a predetermined direction.
  • the modulated light emitted from the optical head 6 is sequentially received and detected for each light emitting element 601 by the photodiode of the optical sensor SC.
  • the detected optical signals are transmitted to and stored in the irradiation control unit 130, and predetermined calculation processing is performed.
  • the optical sensor SC moves while the optical sensor SC receives light, and the transport mechanism 20 is driven to detect light.
  • the specific form for detecting light is not limited to this. Therefore, the transport mechanism 20 may not be provided, and the optical sensor SC may be fixedly installed with respect to the support stage 31. In this case, the optical sensor SC moves relative to the optical head 6 to detect light by the movement of the support stage 31 in the main scanning direction and the support table 51 in the sub-scanning direction.
  • the exposure unit 5 has a plurality of optical heads 6 arranged on the upper side with respect to the movable region of the support stage 31.
  • Each optical head 6 exposes the substrate S by emitting light toward the substrate S supported by the support stage 31 below.
  • the plurality of optical heads 6 are arranged side by side in the X-axis direction, and are responsible for exposing different areas in the X-axis direction.
  • the support table 51 that supports the plurality of optical heads 6 is movable along a pair of linear guides 52 extending in the X-axis direction. Therefore, by driving the support table along the linear guide 52 by a linear motor (not shown), the plurality of optical heads 6 can be collectively moved in the X-axis direction.
  • the imaging unit 9 has two CCD (Charge Coupled Device) cameras 91 arranged at intervals in the X-axis direction. These CCD cameras 91 are configured to be movable in the X-axis direction by a driving mechanism (not shown), and move above the alignment mark formed on the substrate S to image the alignment mark.
  • CCD Charge Coupled Device
  • the above is the outline of the mechanical configuration of the pattern drawing apparatus 1.
  • the controller 100 that is an electrical configuration of the pattern drawing apparatus 1 will be described.
  • the controller 100 mainly performs an operation of scanning the surface of the substrate S supported by the support stage 31 with the irradiation light from the optical head 6 and drawing a pattern on the surface of the substrate S.
  • a control unit 120 and an irradiation control unit 130 are included.
  • the data processing unit 110 converts image data generated by CAD (computer aided design) or the like into drawing data and outputs it to the scanning control unit 120.
  • the scanning control unit 120 controls the movement of the support stage 31 and the optical head 6 during the pattern drawing operation based on the drawing data.
  • the irradiation control unit 130 controls light irradiation of the optical head 6 during the pattern drawing operation. More specifically, the pattern drawing operation is executed as follows.
  • the controller 100 In starting the pattern drawing operation, the controller 100 causes the imaging unit 9 to image the alignment mark attached to the substrate S. Then, the controller 100 adjusts the positional relationship between the support stage 31 and the optical head 6 based on the imaging result of the imaging unit 9, so that a plurality of optical devices are positioned at positions where exposure to the substrate S on the support stage 31 is started. The head 6 is positioned.
  • each of the plurality of optical heads 6 irradiates the surface of the substrate S that moves along with the support stage 31 with a pattern according to the drawing data.
  • each of the plurality of optical heads 6 scans the surface of the substrate S with irradiation light in the Y-axis direction (main scanning direction), thereby forming a pattern for one line (line pattern) on the surface of the substrate S.
  • a plurality of line patterns corresponding to the number of optical heads 6 are formed side by side in the X-axis direction.
  • the controller 100 moves the optical head 6 in the X-axis direction (sub-scanning direction). Accordingly, each of the plurality of optical heads 6 is opposed to the previously formed plurality of line patterns.
  • the support stage 31 starts to move to the other side in the Y-axis direction (for example, the Y-axis positive side) that is the opposite side to the previous stage, a plurality of the support stage 31 moves with respect to the surface of the substrate S that moves with the support stage 31.
  • Each of the optical heads 6 irradiates light of a pattern corresponding to the drawing data.
  • the irradiation light of the optical head 6 is scanned between each of the plurality of previously formed line patterns, and a new line pattern is formed.
  • a pattern is drawn on the entire surface of the substrate S by sequentially forming a plurality of line patterns while intermittently moving the optical head 6 in the X-axis direction.
  • FIG. 4 is a perspective view schematically showing a schematic configuration of the optical head.
  • the optical head 6 makes light emitted from the light source array 60 enter a spatial light modulator 80 that is a light modulator via a rod integrator 70 that is a rod-like integrator, and is spatially modulated by the spatial light modulator 80. Is applied to the irradiation region Re on the surface of the substrate S. As shown in FIG. 4, the optical head 6 is provided with two light source arrays 60, and a lens array 61 is disposed opposite to each of the light source arrays 60. The light source array 60 and the lens array 61 facing each other are integrated as a light source panel 62.
  • FIG. 5 is a side view schematically showing a schematic configuration of the light source panel.
  • FIG. 6 is a plan view schematically showing a schematic configuration of the light source panel.
  • FIG. 7 is a perspective view schematically showing a schematic configuration of the light source panel.
  • symbol Aoa indicates the optical axis direction of the optical head 6.
  • the two light source panels 62 differ only in the wavelength of light emitted from the light emitting elements, and the other configurations are the same. Therefore, the following description is basically made by showing one light source panel 62.
  • the light source array 60 of the light source panel 62 has a configuration in which twelve light emitting elements 601 are two-dimensionally arranged in three rows and four columns on a flat electrode substrate 602.
  • the intervals between adjacent light emitting elements 601 are equal in both the row direction and the column direction, and the plurality of light emitting elements 601 are uniformly arranged.
  • a set of three light emitting elements 601 arranged in the column direction is particularly referred to as a light emitting element column 601C.
  • Each light emitting element 601 emits light with a luminance corresponding to the drive current Id (FIG. 1), and specifically, an LED (Light Emitting Diode) bare chip. That is, in this embodiment, a plurality of LEDs are used side by side. More specifically, the light emitting element 601 is configured by a ceramic package in which an LED chip having a square light emitting region is housed. A cover glass for protecting the inside is provided on the front surface of each ceramic package.
  • LEDs have advantages such as high efficiency, long life, monochromatic light emission, and space saving over such an ultra-high pressure mercury lamp.
  • LEDs are used as light sources.
  • the amount of light required for exposure may be insufficient. Therefore, securing a sufficient amount of light is achieved by arranging a plurality of LEDs.
  • the LED is remarkably small as compared with the ultra-high pressure mercury lamp, the advantage of saving space is not impaired even when a plurality of LEDs are arranged.
  • this embodiment effectively draws out the advantages of LEDs while securing a sufficient amount of light by using a plurality of LEDs side by side.
  • the lens array 61 of the light source panel 62 corresponds to the 12 light emitting elements 601 on a one-to-one basis, and the lens group that forms an image of the light emitting area of each LED chip corresponds to the arrangement of the LED chips.
  • Each of the light emitting elements 601 is formed by arranging 12 ⁇ 3 ⁇ 4 in dimension, and when viewed from the light emitting element 601 side, two of a biconvex first lens 611 and a planoconvex second lens 612 are provided. It has a lens group composed of a single sheet and is constructed by assembling them into a frame.
  • each of the 12 first lenses 611 and the 12 second lenses 612 is arranged in 3 rows and 4 columns.
  • the two lenses 611 and 612 are opposed to each of the twelve light emitting elements 601, and light from each light emitting element 601 is transmitted through the first lens 611 and the second lens 612, and the light source panel 62. The outside is injected.
  • the optical head 6 is provided with the two light source panels 62.
  • the light emitting element 601 of the light source panel 62a emits light having a central wavelength of 385 [nm]
  • the light emitting element 601 of the light source panel 62b emits light having a central wavelength of 365 [nm]. That is, the light source panels 62a and 62b emit light having different center wavelengths.
  • the dichroic mirror 63 has one surface (transmission side) facing the light source panel 62a and the other surface (reflection side) facing the light source panel 62b.
  • Light (12 lights) from each light emitting element 601 of the light source panel 62a is transmitted from one surface of the dichroic mirror 63 to the other surface, and light from each light emitting element 601 of the light source panel 62b (12 lights).
  • Light) is reflected by the other surface of the dichroic mirror 63. In this way, light having different center wavelengths is synthesized by the dichroic mirror 63.
  • the dichroic mirror 63 since the difference in the center wavelength of the light synthesized by the dichroic mirror 63 is about 20 [nm], the dichroic mirror 63 needs a spectral reflectance (spectral transmittance) characteristic having a relatively steep edge. Become. On the other hand, when the incident angle to the dichroic mirror 63 is 45 degrees or more, separation occurs in the optical characteristics of the PS polarization component, and a steep characteristic cannot be obtained. Therefore, the incident angle at which the light emitted from each of the light source panels 62a and 62b enters the dichroic mirror 63 is set to be smaller than 40 degrees.
  • the lens array 64 has a configuration in which twelve lenses 641 are arranged in a one-to-one correspondence with the twelve light emitting elements 601. That is, the lens array 64 is provided with twelve lenses 641 corresponding to the twelve lights emitted from the dichroic mirror 63 on a one-to-one basis. Further, an enlarged projection image of each corresponding light emitting element 601 is formed on each lens 641, and each light emitting element 601 and each corresponding lens 641 are optically conjugate, and each lens 641 is a field. It functions as a lens.
  • the lens 641 After the light emitted from the dichroic mirror 63 passes through the lens 641, the principal ray travels parallel to the optical axis direction. In this way, twelve light beams whose chief rays are parallel to the optical axis are emitted from the lens array 64.
  • the light emitted from the lens array 64 enters an optical system 65 composed of three lenses 65a, 65b, and 65c.
  • This optical system 65 is a telecentric optical system on both sides, and projects the image of the lens array 64 on the incident end 70a of the rod integrator 70 in a reduced scale and is emitted from the optical system 65 so that the principal ray is parallel to the optical axis.
  • the incident light enters the rod integrator 70.
  • FIG. 8 is an optical path diagram of light incident on the rod integrator 70.
  • reference numeral Aoa indicates the optical axis direction of the optical head 6.
  • the light emitted from the light source array 60 is imaged on the lens array 64 by the lens array 61.
  • the imaging magnification at this time is set so that the image of the light emitting element 601 of the light source array 60 is larger than the outer shape of the lens 641 of the lens array 64.
  • the shape of the lens array 64 is similar to the shape of the incident end 70 a of the rod integrator 70.
  • the light transmitted through the lens array 64 is incident on the bilateral telecentric optical system 65 as parallel light whose principal ray is parallel to the optical axis direction Aoa.
  • the light emitted from the optical system 65 is reduced and projected onto the incident end 70a of the rod integrator 70 as light whose principal ray is parallel to the optical axis direction Aoa.
  • the rod integrator 70 equalizes the illuminance distribution of the light that has entered the incident end 70a and emits the light from the exit end 70b.
  • various types such as a hollow rod type and a solid rod type can be used.
  • the incident end 70a and the exit end 70b of the rod integrator 70 are similar to each other, but the respective dimensions do not have to be equal, and the rod integrator 70 formed in a tapered shape from the incident end 70a to 70b may be used. it can.
  • the light emitted from the exit end 70b of the rod integrator 70 enters the spatial light modulator 80 via the two lenses 66, the plane mirror 67a, and the concave mirror 67b.
  • the exit end 70b of the rod integrator 70 and the spatial light modulator 80 are in an optically conjugate relationship.
  • the spatial light modulator 80 is composed of a DMD in which a large number of micromirrors are arranged in a lattice pattern.
  • the micro mirror of the spatial light modulator 80 is controlled by a control signal from the irradiation control unit 130 and takes a posture corresponding to either the on state or the off state.
  • the micro mirror in the posture corresponding to the on state reflects the light from the rod integrator 70 toward the first projection lens 68.
  • the microlens in the posture corresponding to the off state reflects light from the rod integrator 70 in a direction away from the first projection lens 68. Therefore, the light from the rod integrator 70 is reflected by the minute mirror in the on state of the spatial light modulator 80 and enters the first projection lens 68.
  • the first projection lens 68 and the second projection lens 69 function as a pair of projection lenses. After the magnification adjustment is performed by changing the distance between the first projection lens 68 and the second projection lens 69, the image of the spatial light modulator 80 is transferred to the surface of the substrate S. Is projected onto the irradiation region Re. Note that the minute mirror of the spatial light modulator 80 and the irradiation region Re on the surface of the substrate S are in an optically conjugate relationship.
  • the optical head 6 shown in FIG. 4 includes an autofocus mechanism 95 that automatically adjusts the focus.
  • the autofocus mechanism 95 includes an irradiation unit 96 that irradiates light to the irradiation region Re, and a light receiving unit 97 that receives reflected light from the irradiation region Re. Based on the light reception result of the light receiving unit 97, the second projection is performed. The focus is automatically adjusted by driving the lens 69 in the vertical direction.
  • FIG. 9 is a plan view schematically showing an image of the light emitting element 601 irradiated on the rod integrator 70.
  • a unit image IM is an image obtained by irradiating the rod integrator 70 with light from one light emitting element 601.
  • 12 unit images IM are arranged in 3 rows and 4 columns.
  • the three unit images IM irradiated by the three light emitting elements 601 belonging to the same light emitting element row 601C are arranged in a straight line in the direction corresponding to the Y-axis direction of the substrate S to form the unit image row IMC.
  • three unit images IM belonging to the same unit image row IMC are arranged in a direction corresponding to the Y-axis direction of the substrate S, which is the light scanning direction on the substrate S.
  • the illumination intensity of the unit image IM can be changed separately.
  • the irradiation control unit 130 individually controls the magnitude of the drive current Id for each light emitting element 601. Thereby, the luminance is individually controlled for each light emitting element 601, and the illuminance of the unit image IM is individually controlled. Thereby, the illuminance distribution in the irradiation region Re is adjusted.
  • the irradiation control unit 130 controls the drive current Id of each light emitting element 601 based on the result of the optical sensor SC detecting the illuminance distribution of the irradiation region Re.
  • the light source array 60 having a plurality of light emitting elements 601 that emit light with a luminance corresponding to the magnitude of the drive current Id is provided, and the rod integrator 70 is incident from the light source array 60.
  • the illuminance distribution is made uniform with respect to the reflected light.
  • an irradiation control unit 130 that individually controls the magnitude of the drive signal Id for each light emitting element 601 is provided.
  • the rod integrator 70 has a characteristic that when the illuminance is uneven in one direction of the incident end 70a of the rod integrator 70, a slight illuminance distribution is generated in the same direction also at the exit end 70b of the rod integrator 70.
  • the luminance is individually controlled for each light emitting element 601, and the illuminance distribution at the emission end 70b of the rod integrator 70 can be appropriately adjusted.
  • the rod integrator 70 it is possible to improve the uniformity of the illuminance distribution at the exit end 70b of the rod integrator 70.
  • the pattern drawing apparatus 1 of this embodiment modulates the light emitted from the light source array 60 to the spatial light modulator 80 while moving the light source array 60 relative to the surface of the substrate S in the Y-axis direction. A pattern is drawn on the surface of S. At this time, if unevenness in the illuminance of the light applied to the surface of the substrate S occurs in the X-axis direction, a difference in exposure dose distribution appears on the surface of the substrate S, which is not preferable.
  • the emission end 70b of the rod integrator 70 is projected onto the spatial modulation element 80, and further projected onto the irradiation region Re by the first projection lens 68 and the second projection lens 69.
  • an optical sensor SC that detects the illuminance distribution of the light emitted from the optical head 6 is provided. Then, the irradiation control unit 130 individually controls the magnitude of the drive signal Id for each light emitting element 601 according to the detection result of the optical sensor SC. In such a configuration, since the magnitude of the drive signal Id to each light emitting element 601 is controlled based on the result of detecting the illuminance distribution of the light emitted from the rod integrator 70, The uniformity of the illuminance distribution of irradiation light can be improved more reliably.
  • the optical sensor SC detects the illuminance distribution of the light irradiated on the surface of the substrate S. Thereby, the uniformity of the illuminance distribution of the irradiation light on the surface of the substrate S can be further improved.
  • the pattern drawing device 1 corresponds to the “pattern drawing device” of the present invention
  • the substrate S corresponds to the “drawing target” of the present invention
  • the light emitting element 601 or the light emitting element array 601C is the book.
  • the light source array 60 corresponds to the “light emitting unit” of the present invention
  • the rod integrator 70 corresponds to the “illuminance uniformizing element” of the present invention
  • the spatial light modulator 80 corresponds to the present invention.
  • the irradiation controller 130 corresponds to the “drive controller” of the present invention
  • the drive current Id corresponds to the “drive signal” of the present invention
  • the Y-axis direction corresponds to the “spatial light modulator” of the present invention. It corresponds to the “first direction”, the X-axis direction corresponds to the “second direction” of the present invention, and the optical sensor SC corresponds to the “illuminance detector” of the present invention.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention.
  • the individual control of the drive current Id is performed for all the twelve light emitting elements 601 provided in the light source array 60.
  • the application mode of the present invention is not limited to this.
  • the present invention can be applied in the following modes.
  • the three light-emitting elements 601 belonging to the same light-emitting element array 601C irradiate light while moving relative to the surface of the substrate S to perform overlapping exposure on the same region. Therefore, even if the illumination light of each of the light emitting elements 601 has uneven illuminance, the influence on the finally formed pattern is small. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive current Id for the three light emitting elements 601 belonging to the same light emitting element row 601C.
  • the light emitting element array 601C corresponds to the “light emitting portion” of the present invention.
  • FIG. 10 is a block diagram illustrating a circuit of the irradiation control unit 130 that individually controls the light emitting elements 601.
  • Three light emitting elements 601 belonging to the same light emitting element row 601C are connected in series, and their input terminals and output terminals are connected to the power supply 100 via the DC-DC converter 102.
  • a current detector 103 is connected in series to the output side of these three light emitting elements 601, and the DC-DC converter 101 is connected to the DC-DC converter 101 in the irradiation controller 130 based on the detection result of the current detector 103.
  • the drive current Id given to these three light emitting elements 601 is controlled.
  • a circuit having the same configuration is provided for each of the four light emitting element rows 601C. Therefore, it is possible to individually control the drive current Id applied to the light emitting element 601 for each light emitting element array 601C.
  • the four DC-DC converters 101 corresponding to the different light emitting element arrays 601C are connected to the power supply 100 via the AC-DC converter 102 and are supplied with power.
  • the drive signal Id to the light emitting element 601 is controlled based on the result of detecting the illuminance distribution.
  • the integrated value (integrated light amount) of the light amount irradiated by exposure can be made uniform over substantially the entire area of the substrate S.
  • an integrated light amount profile indicating the relationship between the drive signal Id and the integrated light amount may be measured in advance and stored in the irradiation control unit 130 or the like. Then, by controlling the drive signal Id based on this integrated light quantity profile, it is possible to make the integrated light quantity uniform over substantially the entire area of the substrate S and perform better pattern drawing.
  • the luminance of the light emitting element 601 is adjusted by controlling the magnitude of the drive current Id applied to the light emitting element 601.
  • the luminance of the light emitting element 601 may be adjusted by controlling the drive voltage Vd applied to the light emitting element 601.
  • the values of the drive current Id and the drive voltage Vd may be larger than the rated current and the rated voltage. Specifically, the values may be two or more times or three or more times the rated current and the rated voltage. Accordingly, the luminance of the light emitting element 601 can be significantly improved.
  • the three unit images IM belonging to the same unit image row IMC are relatively moved in the same area on the surface of the substrate S, and the exposure is executed.
  • the surface of the substrate S may be exposed without using such exposure method.
  • the twelve light emitting elements 601 are turned on, and the twelve unit image IM substrates shown in FIG. You may comprise so that irradiation to S may be performed.
  • the arrangement of the plurality of light emitting elements 601 in the light source array 60 is not limited to the above. Therefore, the number of rows and columns in which a plurality of light emitting elements 601 are arranged can be changed as appropriate, and the interval between adjacent light emitting elements 601 can be changed as appropriate. Alternatively, a plurality of light emitting elements 601 may be arranged in a manner other than the matrix manner.
  • the substrate S and the optical head 6 are moved relative to each other by moving the substrate S in the Y-axis direction.
  • the substrate S and the optical head 6 may be moved relative to each other by moving the optical head 6 in the Y-axis direction.
  • the configuration of the optical sensor SC for detecting the light illuminance distribution is not limited to the above.
  • the illuminance distribution may be detected by a two-dimensional image sensor installed separately.
  • the position where the optical sensor SC detects the illuminance distribution is not limited to the surface of the substrate S. Therefore, a part of the light incident on the spatial light modulator 80 may be branched, and the illuminance distribution may be detected by the optical sensor SC or a separately installed two-dimensional image sensor.
  • the optical configuration of the optical head 6 is not limited to the above-described one, and addition, change, and deletion of each optical element constituting the optical head 6 can be appropriately executed. Therefore, the optical system 65 from the light source array 60 to the rod integrator 70 may be eliminated, and the rod integrator 70 may be disposed immediately after the lens array 64. Alternatively, all the optical configurations from the light source array 60 to the rod integrator 70 may be eliminated, and the rod integrator 70 may be disposed immediately after the light source array 60.
  • an integrator other than the rod integrator 70 It is also possible to use an integrator other than the rod integrator 70.
  • a fly eye integrator configured with a fly eye lens may be used.
  • the fly-eye integrator also functions as an integrator that makes the illuminance distribution uniform.
  • a fly eye integrator may be disposed in the optical system 65 at a position where the principal ray of light intersects the optical axis.
  • the shape of each lens constituting the fly eye integrator may be similar to the shape of the DMD 80.
  • two lights having different wavelengths are synthesized.
  • it may be configured not to perform such light synthesis.
  • a plurality of dichroic mirrors may be used, or a dichroic prism (cross prism, Philips type prism, Kester prism, etc.) may be used. Alternatively, these may be used in combination.
  • the type of the light emitting element 601 is not limited to the LED, and other various light sources can be used.
  • the present invention is used for a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance uniformizing element such as a rod integrator 70 is modulated by the spatial light modulator and irradiated onto a substrate. Can do.

Abstract

The uniformity of the illumination distribution of irradiation light (Re) on a substrate (S) may be improved for a pattern drawing device (1) wherein light incident on a spatial modulator (80) through a rod integrator (70) is modulated by a spatial light modulator (80) and irradiated onto the substrate (S). Provided is a light source array (60) having a plurality of light-emitting elements (601) which emits light with the brightness in accordance with the magnitude of a driving current (Id). The rod integrator (70) equalizes the illumination distribution for the light entering from the light source array (60). Also provided is an irradiation control unit (130) which individually controls the magnitude of the driving signal (Id) for each light-emitting element (601). Therefore, by individually controlling the brightness of the light-emitting element (601) the illumination distribution of the light incident on the subsequent rod integrator (70) can be suitably adjusted. As a result, it is possible to improve the uniformity of the illumination distribution of the irradiation light on an irradiation region (Re) using an optical head (6).

Description

パターン描画装置、パターン描画方法Pattern drawing apparatus and pattern drawing method
 この発明は、照度均一化素子を介して空間光変調器に入射させた光を空間光変調器により変調して基板に照射するパターン描画装置およびパターン描画方法に関する。 The present invention relates to a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance equalizing element is modulated by the spatial light modulator and irradiated onto a substrate.
 従来、レジスト液等の感光性材料が塗布された基板等の描画対象をパターン状に露光して、描画対象にパターンを描画するパターン描画装置が知られている。また、特許文献1のパターン描画装置では、DMD(Digital Micromirror Device)で構成された空間光変調器が設けられており、この空間光変調器が超高圧水銀ランプからの光を形成すべきパターンに応じて変調して描画対象へ照射することで、パターンが描画対象に描画される。 Conventionally, there has been known a pattern drawing apparatus that exposes a drawing target such as a substrate coated with a photosensitive material such as a resist solution in a pattern and draws a pattern on the drawing target. Further, in the pattern drawing apparatus of Patent Document 1, a spatial light modulator composed of DMD (Digital Micromirror Device) is provided, and this spatial light modulator has a pattern to form light from an ultrahigh pressure mercury lamp. The pattern is drawn on the drawing target by modulating the light accordingly and irradiating the drawing target.
 ちなみに、このようなパターン描画装置では、パターンをムラなく形成するために、描画対象に照射される光の照度分布が均一であることが求められる。そこで、特許文献1では、超高圧水銀ランプから空間光変調器に到る光路中に照度均一化素子であるインテグレータが設けられており、インテグレータの機能によって照度分布の均一性が向上された光が空間光変調器に照射されている。これによって、描画対象に照射される光の照度分布の均一化が図られている。 Incidentally, in such a pattern writing apparatus, it is required that the illuminance distribution of the light irradiated to the drawing target is uniform in order to form a pattern without unevenness. Therefore, in Patent Document 1, an integrator, which is an illuminance uniformizing element, is provided in the optical path from the ultrahigh pressure mercury lamp to the spatial light modulator, and light with improved illuminance distribution uniformity by the function of the integrator is provided. The spatial light modulator is irradiated. Thereby, the illuminance distribution of the light irradiated to the drawing target is made uniform.
特開2006-337475号公報JP 2006-337475 A
 しかしながら、超高圧水銀ランプの発光点の輝度分布は一様とは限らず、ムラを有することがあり、これを楕円鏡等の光学系で集光してインテグレータのような照度均一化素子に導くと、インテグレータ入射端の照度分布に大きなムラが生じる。また、個々のファイバーをランダム配列したバンドルファイバーを用いて、ランプハウスからの光をインテグレータに導く場合でも、インテグレータ入射端の照度分布を一様に出来ないことがある。このように、インテグレータ入射端の照度分布にムラがある場合、インテグレータの照度分布を均一化する能力には限界がある。そのため、ムラが大きいと、描画対象に照射される光の照度分布の均一性を必ずしも十分に確保できるとは限らなかった。つまり、インテグレータ入射端の照度分布がインテグレータの能力で補償しきれないほど大きいと、描画対象に照射される光の照度分布の均一性が不十分になることがあった。あるいは、インテグレータそのものに製造誤差があって機能が低い場合や、光路中の光学素子の透過率や反射率のムラによって描画対象に照射される光の照度分布の均一性が不十分になることもあった。 However, the luminance distribution of the emission point of the ultra-high pressure mercury lamp is not necessarily uniform and may have unevenness, which is condensed by an optical system such as an elliptical mirror and led to an illuminance uniformizing element such as an integrator. As a result, a large unevenness occurs in the illuminance distribution at the integrator incident end. Further, even when a bundle fiber in which individual fibers are randomly arranged is used to guide the light from the lamp house to the integrator, the illuminance distribution at the integrator incident end may not be made uniform. Thus, when the illuminance distribution at the integrator incident end is uneven, the ability of the integrator to make the illuminance distribution uniform is limited. Therefore, if the unevenness is large, the uniformity of the illuminance distribution of the light applied to the drawing target cannot always be sufficiently ensured. That is, if the illuminance distribution at the integrator incident end is too large to be compensated for by the ability of the integrator, the illuminance distribution of the light irradiated to the drawing target may not be uniform. Alternatively, if the integrator itself has manufacturing errors and its function is low, or the uniformity of the illuminance distribution of the light irradiated to the drawing object due to unevenness of the transmittance and reflectance of the optical elements in the optical path may be insufficient there were.
 この発明は上記課題に鑑みなされたものであり、照度均一化素子を介して空間光変調器に入射させた光を空間光変調器により変調して描画対象に照射するパターン描画装置およびパターン描画方法において、照度均一化素子の能力に加えて、描画対象への照射光の照度分布の均一性を向上可能とする技術の提供を目的とする。 The present invention has been made in view of the above problems, and a pattern drawing apparatus and a pattern drawing method for irradiating an object to be drawn by modulating light incident on a spatial light modulator via an illuminance uniformizing element with the spatial light modulator In addition, in addition to the capability of the illuminance uniformizing element, an object of the present invention is to provide a technique that can improve the uniformity of the illuminance distribution of the irradiation light to the drawing target.
 この発明にかかるパターン描画装置は、上記目的を達成するために、駆動信号の大きさに応じた輝度で発光する発光部を複数有する発光ユニットと、発光ユニットから入射してきた光を、光の照度分布を均一化してから射出する照度均一化素子と、照度均一化素子から射出された光を変調して描画対象に照射する空間光変調器と、駆動信号の大きさを発光部毎に個別に制御する駆動制御部とを備えたことを特徴としている。 In order to achieve the above object, a pattern drawing apparatus according to the present invention provides a light emitting unit having a plurality of light emitting units that emit light at a luminance corresponding to the magnitude of a drive signal, and light incident from the light emitting unit to emit light illuminance. The illuminance uniformity element that emits after uniforming the distribution, the spatial light modulator that modulates the light emitted from the illuminance uniformity element and irradiates the drawing object, and the size of the drive signal for each light emitting unit individually And a drive control unit for controlling.
 このように構成された発明(パターン描画装置)では、駆動信号の大きさに応じた輝度で発光する発光部を複数有する発光ユニットが設けられており、照度均一化素子は発光ユニットから入射してきた光に対して、照度分布の均一化を行う。そして、本発明では、駆動信号の大きさを発光部毎に個別に制御する駆動制御部が設けられている。そのため、発光部毎に輝度を個別に制御して、照度均一化素子に入射する光の照度分布を適宜調整することができる。その結果、照度均一化素子の能力に加えて、描画対象への照射光の照度分布の均一性を向上させることが可能となっている。 In the invention (pattern drawing apparatus) configured as described above, a light emitting unit having a plurality of light emitting units that emit light with luminance according to the magnitude of the drive signal is provided, and the illuminance equalizing element has been incident from the light emitting unit. The illuminance distribution is made uniform with respect to light. And in this invention, the drive control part which controls the magnitude | size of a drive signal separately for every light emission part is provided. Therefore, it is possible to appropriately adjust the illuminance distribution of the light incident on the illuminance uniformizing element by individually controlling the luminance for each light emitting unit. As a result, in addition to the ability of the illuminance uniformizing element, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
 ところで、描画対象に対して発光ユニットを第1方向へ相対移動させながら、発光ユニットが射出した光を空間光変調器に変調させて、描画対象にパターンを描画するパターン描画装置において、複数の発光部は、第1方向に直交する第2方向において互いに異なる位置に光を照射するようにパターン描画装置を構成することができる。このような構成では、描画対象に照射される光の照度ムラが第2方向に生じた場合、描画対象上で露光量分布の差が表れるため好ましくない。これに対して、上述したように駆動信号の大きさを発光部毎に個別に制御するように構成しておけば、このような第2方向への照度ムラの発生を効果的に抑制することが可能となる。 By the way, in a pattern drawing apparatus that draws a pattern on a drawing object by modulating the light emitted from the light emitting unit to the spatial light modulator while relatively moving the light emitting unit in the first direction with respect to the drawing object, The unit can configure the pattern drawing device so that light is irradiated to different positions in a second direction orthogonal to the first direction. In such a configuration, when the illuminance unevenness of the light irradiated to the drawing target is generated in the second direction, a difference in the exposure amount distribution appears on the drawing target, which is not preferable. On the other hand, if the configuration is such that the magnitude of the drive signal is individually controlled for each light emitting unit as described above, it is possible to effectively suppress the occurrence of such illuminance unevenness in the second direction. Is possible.
 具体的には、複数の発光部が照度均一化素子入射端に対して第2方向へ互いに異なる位置に光を照射するようにパターン描画装置を構成しても良い。このような構成では、駆動信号の大きさを発光部毎に個別に制御することで、照度均一化素子入射端に入射する光の照度分布を第2方向において変化させることができる。この際、照度均一化素子入射端での照度分布が第2方向に変化すれば、これに応じて、照度均一化素子出射端でも照度分布が第2方向に僅かに変化する。したがって、このような照度均一化素子の特性を利用することで、駆動信号の大きさを発光部毎に個別に制御して、照度均一化素子出射端以後の光の照度分布を調整することができ、上述した第2方向への照度ムラの発生を効果的に抑制することが可能となる。 Specifically, the pattern drawing device may be configured such that the plurality of light emitting units irradiate light at different positions in the second direction with respect to the illumination uniformizing element incident end. In such a configuration, the illuminance distribution of the light incident on the illuminance equalizing element incident end can be changed in the second direction by individually controlling the magnitude of the drive signal for each light emitting unit. At this time, if the illuminance distribution at the incident end of the illuminance uniforming element changes in the second direction, the illuminance distribution slightly changes in the second direction at the outgoing end of the illuminance uniformizing element accordingly. Therefore, by utilizing such characteristics of the illuminance uniformizing element, the magnitude of the drive signal can be individually controlled for each light emitting unit to adjust the illuminance distribution of light after the illuminance uniforming element emission end. It is possible to effectively suppress the occurrence of uneven illuminance in the second direction described above.
 この際、発光部は、それぞれが駆動信号の大きさに応じた輝度で発光して、第1方向に直線状に並んだ位置にそれぞれが光を照射する複数の発光素子で構成され、駆動制御部は、同一の発光部に属する複数の発光素子に対しては、駆動信号の大きさの制御を一括して行うようにパターン描画装置を構成しても良い。このような構成では、同一の発光部に属する複数の発光素子が光を照射する領域は、描画対象に対して発光ユニットが相対移動する方向(第1方向)に並んでいることになる。そのため、同一の発光部に属する複数の発光素子は、描画対象に対して第1方向に移動しつつ光を照射することで、同一領域に積算する方向に露光を行なうこととなる。したがって、これら発光素子のそれぞれの照射光に照度のムラがあったとしても、最終的に形成されるパターンへの影響は少ない。そこで、同一の発光部に属する複数の発光素子に対しては、駆動信号の大きさの制御を一括して行なうこととし、駆動制御の簡素化を図っても良い。 At this time, the light emitting unit is configured by a plurality of light emitting elements each emitting light with a luminance corresponding to the magnitude of the drive signal and irradiating light to the positions arranged in a straight line in the first direction. The patterning device may be configured to collectively control the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit. In such a configuration, the regions where the light emitting elements belonging to the same light emitting unit emit light are aligned in the direction in which the light emitting unit moves relative to the drawing target (first direction). For this reason, the plurality of light emitting elements belonging to the same light emitting unit irradiate light while moving in the first direction with respect to the drawing target, thereby performing exposure in the direction of integration in the same region. Therefore, even if the illumination light of each of these light emitting elements has uneven illuminance, there is little influence on the finally formed pattern. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit.
 具体的には、発光部は、それぞれが駆動信号の大きさに応じた輝度で発光して、照度均一化素子入射端において第1方向に直線状に並ぶ位置にそれぞれが光を照射する複数の発光素子で構成され、駆動制御部は、同一の発光部に属する複数の発光素子に対しては、駆動信号の大きさの制御を一括して行うようにパターン描画装置を構成しても良い。このような構成では、同一の発光部に属する複数の発光素子が光を照射する領域は、照度均一化素子入射端において描画対象に対して発光ユニットが相対移動する方向(第1方向)に並んでいることになる。そのため、同一の発光部に属する複数の発光素子は、描画対象に対して第1方向に移動しつつ光を照射することで、同一領域に積算する方向に露光を行なうこととなる。したがって、これら発光素子のそれぞれの照射光に照度のムラがあったとしても、最終的に形成されるパターンへの影響は少ない。そこで、同一の発光部に属する複数の発光素子に対しては、駆動信号の大きさの制御を一括して行なうこととし、駆動制御の簡素化を図っても良い。 Specifically, each of the light emitting units emits light with a luminance corresponding to the magnitude of the drive signal, and each of the light emitting units irradiates light at positions linearly aligned in the first direction at the illuminance equalizing element incident end. The pattern drawing apparatus may be configured such that the drive control unit is configured by a light emitting element, and the control of the magnitude of the drive signal is collectively performed for a plurality of light emitting elements belonging to the same light emitting unit. In such a configuration, a region where a plurality of light emitting elements belonging to the same light emitting unit emit light is aligned in a direction (first direction) in which the light emitting unit relatively moves with respect to the drawing target at the illuminance equalizing element incident end. It will be out. For this reason, the plurality of light emitting elements belonging to the same light emitting unit irradiate light while moving in the first direction with respect to the drawing target, thereby performing exposure in the direction of integration in the same region. Therefore, even if the illumination light of each of these light emitting elements has uneven illuminance, there is little influence on the finally formed pattern. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive signal for a plurality of light emitting elements belonging to the same light emitting unit.
 また、照度均一化素子から射出された後の光の照度分布を検出する照度検出器をさらに備え、駆動制御部は、照度検出器の検出結果に応じて、駆動信号の大きさを発光部毎に個別に制御するようにパターン描画装置を構成しても良い。このような構成では、照度均一化素子から射出された後の光の照度分布を検出した結果に基づいて、各発光部への駆動信号の大きさが制御されるため、描画対象への照射光の照度分布の均一性をより確実に向上させることができる。 In addition, an illuminance detector that detects an illuminance distribution of the light emitted from the illuminance equalizing element is further provided, and the drive control unit determines the magnitude of the drive signal for each light emitting unit according to the detection result of the illuminance detector. Alternatively, the pattern drawing device may be configured to be individually controlled. In such a configuration, since the magnitude of the drive signal to each light emitting unit is controlled based on the result of detecting the illuminance distribution of the light emitted from the illuminance equalizing element, the irradiation light to the drawing target The uniformity of the illuminance distribution can be improved more reliably.
 この際、照度検出器は、描画対象に照射された光の照度分布を検出するようにパターン描画装置を構成しても良い。これによって、描画対象への照射光の照度分布の均一性をさらに確実に向上させることができる。 At this time, the illuminance detector may configure the pattern drawing device so as to detect the illuminance distribution of the light irradiated to the drawing target. Thereby, the uniformity of the illuminance distribution of the irradiation light to the drawing target can be further improved.
 なお、空間光変調器としては種々のものを用いることができる。そこで、空間光変調器はDMDであるようにパターン描画装置を構成しても良い。 Various types of spatial light modulators can be used. Therefore, the pattern drawing device may be configured so that the spatial light modulator is a DMD.
 また、この発明にかかるパターン描画方法は、上記目的を達成するために、駆動信号の大きさに応じた輝度で発光する複数の発光部に与える駆動信号の大きさを発光部毎に個別に制御する工程と、入射してきた光を均一化して射出する照度均一化素子に複数の発光部からの光を入射させる工程と、照度均一化素子から射出された光を空間光変調器で変調して描画対象に照射する工程とを備えたことを特徴としている。 In addition, in order to achieve the above object, the pattern drawing method according to the present invention individually controls the magnitude of the drive signal given to the plurality of light emitting sections that emit light with the luminance corresponding to the magnitude of the drive signal. A step of making the light from a plurality of light emitting portions incident on an illuminance uniformizing element that homogenizes and emits incident light, and modulating the light emitted from the illuminance uniformizing element with a spatial light modulator And a step of irradiating the drawing target.
 このように構成された発明(パターン描画方法)では、駆動信号の大きさに応じた輝度で発光する発光部を複数設けられており、照度均一化素子は複数の発光部から入射してきた光に対して、照度分布の均一化を行う。そして、本発明では、駆動信号の大きさを発光部毎に個別に制御する工程が設けられている。そのため、発光部毎に輝度を個別に制御して、照度均一化素子に入射する光の照度分布を適宜調整することができる。その結果、照度均一化素子の能力に加えて、描画対象への照射光の照度分布の均一性を向上させることが可能となっている。 In the invention configured as described above (pattern drawing method), a plurality of light emitting portions that emit light at a luminance corresponding to the magnitude of the drive signal are provided, and the illuminance equalizing element applies to light incident from the plurality of light emitting portions. On the other hand, the illuminance distribution is made uniform. And in this invention, the process of controlling the magnitude | size of a drive signal separately for every light emission part is provided. Therefore, it is possible to appropriately adjust the illuminance distribution of the light incident on the illuminance uniformizing element by individually controlling the luminance for each light emitting unit. As a result, in addition to the ability of the illuminance uniformizing element, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
 本発明によれば、照度均一化素子を介して空間光変調器に入射させた光を空間光変調器により変調して描画対象に照射するパターン描画装置およびパターン描画方法において、照度均一化素子の能力に加えて、描画対象への照射光の照度分布の均一性を向上させることが可能となる。 According to the present invention, in a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance equalizing element is modulated by the spatial light modulator and irradiated to a drawing object, In addition to the capability, it is possible to improve the uniformity of the illuminance distribution of the irradiation light on the drawing target.
本発明を適用可能であるパターン描画装置の一例を模式的に示す側面図である。It is a side view which shows typically an example of the pattern drawing apparatus which can apply this invention. 図1のパターン描画装置を模式的に示す部分平面図である。FIG. 2 is a partial plan view schematically showing the pattern drawing apparatus of FIG. 1. 光学センサの搬送機構を示す部分平面図である。It is a fragmentary top view which shows the conveyance mechanism of an optical sensor. 光学ヘッドが備える概略構成を模式的に示す斜視図である。It is a perspective view which shows typically the schematic structure with which an optical head is provided. 光源パネルの概略構成を模式的に示す側面図である。It is a side view which shows typically schematic structure of a light source panel. 光源パネルの概略構成を模式的に示す平面図である。It is a top view which shows typically schematic structure of a light source panel. 光源パネルの概略構成を模式的に示す斜視図である。It is a perspective view which shows typically schematic structure of a light source panel. ロッドインテグレータに入射する光の光線図を示した図である。It is the figure which showed the light ray figure of the light which injects into a rod integrator. ロッドインテグレータに照射される発光素子の像の一例を模式的に示した平面図である。It is the top view which showed typically an example of the image of the light emitting element irradiated to a rod integrator. 発光素子を個別制御する回路の一例を示すブロック図である。It is a block diagram which shows an example of the circuit which controls a light emitting element separately.
 図1は、本発明を適用可能であるパターン描画装置の一例を模式的に示す側面図である。図2は、図1のパターン描画装置を模式的に示す部分平面図である。図3は、光学センサの搬送機構を示す部分平面図である。パターン描画装置1の各部の位置関係を示すために、これらの図では、Z軸方向を鉛直方向とするXYZ直交座標軸を適宜示すこととする。また、必要に応じて、各座標軸の図中矢印側を正側と称するとともに各座標軸の図中矢印の反対側を負側と称することとする。 FIG. 1 is a side view schematically showing an example of a pattern drawing apparatus to which the present invention is applicable. FIG. 2 is a partial plan view schematically showing the pattern drawing apparatus of FIG. FIG. 3 is a partial plan view showing the transport mechanism of the optical sensor. In order to show the positional relationship of each part of the pattern drawing apparatus 1, in these drawings, XYZ orthogonal coordinate axes having the Z-axis direction as the vertical direction are appropriately shown. Further, as necessary, the arrow side of each coordinate axis in the drawing is referred to as a positive side, and the opposite side of each coordinate axis in the drawing is referred to as a negative side.
 パターン描画装置1は、Y軸方向の負側の搬入口11から装置内部に搬入されてきた基板Sに露光によるパターン描画を実行して、Y軸方向の正側の搬出口12からパターン描画済みの基板Sを搬出するものである。基板Sは、レジスト液等の感光材料がその上面(一方主面)に塗布された半導体基板やFPC(Flexible Printed Circuits)用基板、プラズマ表示装置や有機EL(Electro-Luminescence)表示装置等の表面表示装置用のガラス基板、あるいはプリント配線基板等である。このパターン描画装置1は、搬入されてきた基板Sを支持する支持部3と、支持部3に支持された基板Sを露光する露光部5と、基板Sのアライメントマークを撮像する撮像部9と、各部3、5、9を制御するコントローラ100とからなる概略構成を有する。 The pattern drawing apparatus 1 performs pattern drawing by exposure on the substrate S carried into the apparatus from the negative inlet 11 in the Y-axis direction, and the pattern has been drawn from the positive outlet 12 in the Y-axis direction. The substrate S is unloaded. The substrate S is a surface of a semiconductor substrate, an FPC (Flexible Printed Circuit) substrate, a plasma display device, an organic EL (Electro-Luminescence) display device, or the like on which an upper surface (one main surface) is coated with a photosensitive material such as a resist solution. A glass substrate for a display device or a printed wiring board. The pattern drawing apparatus 1 includes a support unit 3 that supports a substrate S that has been carried in, an exposure unit 5 that exposes the substrate S supported by the support unit 3, and an imaging unit 9 that captures an alignment mark on the substrate S. , And a controller 100 that controls each unit 3, 5, 9.
 支持部3では、その上面に載置された基板Sを吸着して支持する支持ステージ31と、支持ステージ31のY軸方向両側に設けられた一対の剥離ローラ32とが設けられている。つまり、支持ステージ31は、水平に形成された上面に多数の吸引孔を有しており、図示を省略する吸引機構が各吸引孔を吸引することで、支持ステージ31上面に載置された基板Sが支持ステージに吸着される。これによって、搬入されてきた基板Sを支持ステージ31によりしっかりと支持して、基板Sへのパターン描画を安定して実行することができる。また、パターン描画を終えて基板Sを搬出する際には、吸引孔の吸引が停止されるとともに一対の剥離ローラ32が上昇して基板Sを突き上げることで、基板Sが支持ステージ31から剥離される。 The support unit 3 is provided with a support stage 31 that sucks and supports the substrate S placed on the upper surface thereof, and a pair of peeling rollers 32 provided on both sides of the support stage 31 in the Y-axis direction. That is, the support stage 31 has a large number of suction holes on a horizontally formed upper surface, and a substrate placed on the upper surface of the support stage 31 by suction of each suction hole by a suction mechanism (not shown). S is adsorbed to the support stage. As a result, the substrate S that has been carried in is firmly supported by the support stage 31, and pattern drawing on the substrate S can be executed stably. Further, when the substrate S is unloaded after the pattern drawing is finished, the suction of the suction holes is stopped and the pair of peeling rollers 32 are raised to push up the substrate S, whereby the substrate S is peeled from the support stage 31. The
 また、支持部3では、支持ステージ31は、昇降テーブル33、回転テーブル34および支持板35を介してリニアモータ37の可動子37aに接続されている。したがって、支持ステージ31は、昇降テーブル33により昇降自在であるとともに、回転テーブル34により回転自在になっている。さらに、Y軸方向に延びるリニアモータ37の固定子37bに沿って可動子37aを駆動することで、搬入口11から搬出口12までの範囲において支持ステージ31をY軸方向に駆動することができる。なお、支持ステージ31に伴って、一対の剥離ローラ32も移動するように構成されている。 Further, in the support unit 3, the support stage 31 is connected to the mover 37 a of the linear motor 37 through the lifting table 33, the rotary table 34 and the support plate 35. Therefore, the support stage 31 can be moved up and down by the lift table 33 and can be rotated by the rotary table 34. Furthermore, by driving the mover 37a along the stator 37b of the linear motor 37 extending in the Y-axis direction, the support stage 31 can be driven in the Y-axis direction in the range from the carry-in port 11 to the carry-out port 12. . A pair of peeling rollers 32 is also moved along with the support stage 31.
 さらに、支持ステージ31は、図3に示すように、当該支持ステージ31に支持される基板S表面(に相当する位置)に光学ヘッド6が照射する光の照度分布を検出する光学センサSC、および光学センサSCをX軸方向に移動する搬送機構20を、当該支持ステージ31のY軸方向先端部に備える。光学センサSCは支持ステージ31の上面であって、支持ステージ31の(+Y)側に配置されている。後に明らかになるように、光学ヘッド6による光の照度分布を調整する動作が行われる際には、支持ステージ31が主走査方向(Y軸方向)に沿って移動されることにより、光学ヘッド6が光学センサSCの真上に配置された状態とされる。 Further, as shown in FIG. 3, the support stage 31 includes an optical sensor SC that detects an illuminance distribution of the light irradiated by the optical head 6 on the surface of the substrate S supported by the support stage 31 (a position corresponding to the support stage 31), and A transport mechanism 20 that moves the optical sensor SC in the X-axis direction is provided at the front end of the support stage 31 in the Y-axis direction. The optical sensor SC is disposed on the upper surface of the support stage 31 and on the (+ Y) side of the support stage 31. As will be apparent later, when the operation of adjusting the illuminance distribution of light by the optical head 6 is performed, the support stage 31 is moved along the main scanning direction (Y-axis direction), thereby the optical head 6. Is placed directly above the optical sensor SC.
 光学センサSCは、ピンホール、拡散板、および受光素子であるフォトダイオードが筐体41の内部に配置された構造を有する。光学ヘッド6から照射された二次元領域の変調光は、筐体41内部に導入され、その光量を検出される。搬送機構20は、副走査方向(X軸方向)に配設されたボールネジ21、支持ステージ31上に固定されるとともに筐体41を支持する副走査方向に配設された2本のガイドレール22、およびボールネジ21に接続されるモータ23を備える。 The optical sensor SC has a structure in which a pinhole, a diffusion plate, and a photodiode as a light receiving element are arranged inside the housing 41. The modulated light of the two-dimensional region irradiated from the optical head 6 is introduced into the housing 41 and the amount of light is detected. The transport mechanism 20 is fixed on the ball screw 21 and the support stage 31 arranged in the sub-scanning direction (X-axis direction) and two guide rails 22 arranged in the sub-scanning direction for supporting the housing 41. And a motor 23 connected to the ball screw 21.
 パターン描画装置1は、後述する光の照度分布を検出する動作の際に、搬送機構20のモータ23によってボールネジ21が回転し、光学センサSCがガイドレール22に沿って、すなわち副走査方向に沿って所定方向に移動される。これによって、光学ヘッド6から照射される変調光は、光学センサSCのフォトダイオードによって発光素子601毎に順次受光および検出される。検出された光信号は、それぞれ照射制御部130に送信されて記憶されるとともに所定の演算処理が行われる。 In the pattern drawing apparatus 1, the ball screw 21 is rotated by the motor 23 of the transport mechanism 20 and the optical sensor SC is moved along the guide rail 22, that is, along the sub-scanning direction, in the operation of detecting the illuminance distribution of light described later. Is moved in a predetermined direction. Thereby, the modulated light emitted from the optical head 6 is sequentially received and detected for each light emitting element 601 by the photodiode of the optical sensor SC. The detected optical signals are transmitted to and stored in the irradiation control unit 130, and predetermined calculation processing is performed.
 なお、ここでは、光学センサSCが受光しつつ、搬送機構20の駆動により光学センサSCが移動することで、光を検出していた。しかしながら、光を検出する具体的形態はこれに限られない。したがって、搬送機構20が設けられておらず、光学センサSCが支持ステージ31に対して固定設置されている形態であっても構わない。この場合には、支持ステージ31の主走査方向および支持テーブル51の副走査方向における移動によって、光学センサSCは光学ヘッド6に対して相対的に移動して光を検出する。 In addition, here, the optical sensor SC moves while the optical sensor SC receives light, and the transport mechanism 20 is driven to detect light. However, the specific form for detecting light is not limited to this. Therefore, the transport mechanism 20 may not be provided, and the optical sensor SC may be fixedly installed with respect to the support stage 31. In this case, the optical sensor SC moves relative to the optical head 6 to detect light by the movement of the support stage 31 in the main scanning direction and the support table 51 in the sub-scanning direction.
 露光部5は、支持ステージ31の可動領域に対して上方側に配置された複数の光学ヘッド6を有する。各光学ヘッド6は、その下方で支持ステージ31に支持される基板Sへ向けて光を射出して、基板Sを露光するものである。なお、複数の光学ヘッド6は、X軸方向に並んで配置されており、X軸方向において互いに異なる領域の露光を担当する。また、複数の光学ヘッド6を支持する支持テーブル51は、X軸方向に延びる一対のリニアガイド52に沿って移動自在となっている。したがって、図示を省略するリニアモータにより支持テーブルをリニアガイド52に沿って駆動することで、複数の光学ヘッド6を一括してX軸方向へ移動させることができる。 The exposure unit 5 has a plurality of optical heads 6 arranged on the upper side with respect to the movable region of the support stage 31. Each optical head 6 exposes the substrate S by emitting light toward the substrate S supported by the support stage 31 below. The plurality of optical heads 6 are arranged side by side in the X-axis direction, and are responsible for exposing different areas in the X-axis direction. The support table 51 that supports the plurality of optical heads 6 is movable along a pair of linear guides 52 extending in the X-axis direction. Therefore, by driving the support table along the linear guide 52 by a linear motor (not shown), the plurality of optical heads 6 can be collectively moved in the X-axis direction.
 撮像部9は、X軸方向に間隔を空けて並ぶ2つのCCD(Charge Coupled Device)カメラ91を有する。これらCCDカメラ91は、図示を省略する駆動機構によって、X軸方向へ移動自在に構成されており、基板Sに形成されたアライメントマークの上方に移動して、当該アライメントマークを撮像する。 The imaging unit 9 has two CCD (Charge Coupled Device) cameras 91 arranged at intervals in the X-axis direction. These CCD cameras 91 are configured to be movable in the X-axis direction by a driving mechanism (not shown), and move above the alignment mark formed on the substrate S to image the alignment mark.
 以上が、パターン描画装置1の機械的構成の概要である。続いては、パターン描画装置1の電気的構成であるコントローラ100について説明する。コントローラ100は、光学ヘッド6からの照射光を支持ステージ31に支持される基板S表面に走査して、基板S表面にパターンを描画する動作を主として実行するものであり、データ処理部110、走査制御部120および照射制御部130で構成される。 The above is the outline of the mechanical configuration of the pattern drawing apparatus 1. Next, the controller 100 that is an electrical configuration of the pattern drawing apparatus 1 will be described. The controller 100 mainly performs an operation of scanning the surface of the substrate S supported by the support stage 31 with the irradiation light from the optical head 6 and drawing a pattern on the surface of the substrate S. A control unit 120 and an irradiation control unit 130 are included.
 データ処理部110は、CAD(computer aided design)等により生成された画像データを、描画データに変換して走査制御部120に出力する。一方、走査制御部120は、支持ステージ31および光学ヘッド6のパターン描画動作中の移動を描画データに基づいて制御する。また、照射制御部130は、パターン描画動作中における光学ヘッド6の光の照射を制御する。より具体的には、パターン描画動作は次のようにして実行される。 The data processing unit 110 converts image data generated by CAD (computer aided design) or the like into drawing data and outputs it to the scanning control unit 120. On the other hand, the scanning control unit 120 controls the movement of the support stage 31 and the optical head 6 during the pattern drawing operation based on the drawing data. The irradiation control unit 130 controls light irradiation of the optical head 6 during the pattern drawing operation. More specifically, the pattern drawing operation is executed as follows.
 パターン描画動作を開始するにあたっては、コントローラ100は、基板Sに付されたアライメントマークを撮像部9に撮像させる。そして、コントローラ100は、撮像部9の撮像結果に基づいて、支持ステージ31と光学ヘッド6の位置関係を調整することで、支持ステージ31上の基板Sへの露光を開始する位置に複数の光学ヘッド6を位置決めする。 In starting the pattern drawing operation, the controller 100 causes the imaging unit 9 to image the alignment mark attached to the substrate S. Then, the controller 100 adjusts the positional relationship between the support stage 31 and the optical head 6 based on the imaging result of the imaging unit 9, so that a plurality of optical devices are positioned at positions where exposure to the substrate S on the support stage 31 is started. The head 6 is positioned.
 この位置決めが完了すると、支持ステージ31がY軸方向の一方側(例えばY軸負側)への移動を開始する。そして、この支持ステージ31に伴って移動する基板Sの表面に対して、複数の光学ヘッド6のそれぞれが描画データに応じたパターンの光を照射する。これによって、複数の光学ヘッド6それぞれが、基板S表面に対して照射光をY軸方向(主走査方向)に走査して、1ライン分のパターン(ラインパターン)を基板S表面に形成する。こうして、光学ヘッド6の個数に応じた複数のラインパターンが、X軸方向に間隔を空けて並んで形成される。 When this positioning is completed, the support stage 31 starts moving to one side in the Y-axis direction (for example, the Y-axis negative side). Then, each of the plurality of optical heads 6 irradiates the surface of the substrate S that moves along with the support stage 31 with a pattern according to the drawing data. Thus, each of the plurality of optical heads 6 scans the surface of the substrate S with irradiation light in the Y-axis direction (main scanning direction), thereby forming a pattern for one line (line pattern) on the surface of the substrate S. In this way, a plurality of line patterns corresponding to the number of optical heads 6 are formed side by side in the X-axis direction.
 この複数のラインパターンの形成が完了すると、コントローラ100は光学ヘッド6をX軸方向(副走査方向)に移動させる。これによって、複数の光学ヘッド6のそれぞれは、先に形成された複数のラインパターンの間に対向する。そして、支持ステージ31が先程とは逆側であるY軸方向の他方側(例えばY軸正側)へ移動を開始すると、この支持ステージ31に伴って移動する基板Sの表面に対して、複数の光学ヘッド6のそれぞれが描画データに応じたパターンの光を照射する。 When the formation of the plurality of line patterns is completed, the controller 100 moves the optical head 6 in the X-axis direction (sub-scanning direction). Accordingly, each of the plurality of optical heads 6 is opposed to the previously formed plurality of line patterns. When the support stage 31 starts to move to the other side in the Y-axis direction (for example, the Y-axis positive side) that is the opposite side to the previous stage, a plurality of the support stage 31 moves with respect to the surface of the substrate S that moves with the support stage 31. Each of the optical heads 6 irradiates light of a pattern corresponding to the drawing data.
 こうして、先に形成された複数のラインパターンの各間に、光学ヘッド6の照射光が走査されて、新たなラインパターンが形成される。このようにして、光学ヘッド6をX軸方向に間欠移動させつつ、複数のラインパターンを順次形成することで、基板Sの表面全体に対してパターンが描画される。 Thus, the irradiation light of the optical head 6 is scanned between each of the plurality of previously formed line patterns, and a new line pattern is formed. In this way, a pattern is drawn on the entire surface of the substrate S by sequentially forming a plurality of line patterns while intermittently moving the optical head 6 in the X-axis direction.
 以上が、パターン描画装置1の概要である。続いては、光学ヘッド6の詳細について説明する。なお、複数の光学ヘッド6は互いに同一の構成を具備するため、ここでは、1つの光学ヘッド6についてのみ説明を行なう。図4は、光学ヘッドが備える概略構成を模式的に示す斜視図である。 The above is the outline of the pattern drawing apparatus 1. Next, details of the optical head 6 will be described. Since the plurality of optical heads 6 have the same configuration, only one optical head 6 will be described here. FIG. 4 is a perspective view schematically showing a schematic configuration of the optical head.
 光学ヘッド6は、光源アレイ60が射出する光を棒状のインテグレータであるロッドインテグレータ70を介して光変調器である空間光変調器80に入射して、空間光変調器80により空間変調された光を基板S表面の照射領域Reに照射する概略構成を備える。図4に示すように、光学ヘッド6では、2つの光源アレイ60が設けられており、これら光源アレイ60それぞれに対してはレンズアレイ61が対向配置されている。そして、互いに対向する光源アレイ60とレンズアレイ61とが光源パネル62として一体化されている。 The optical head 6 makes light emitted from the light source array 60 enter a spatial light modulator 80 that is a light modulator via a rod integrator 70 that is a rod-like integrator, and is spatially modulated by the spatial light modulator 80. Is applied to the irradiation region Re on the surface of the substrate S. As shown in FIG. 4, the optical head 6 is provided with two light source arrays 60, and a lens array 61 is disposed opposite to each of the light source arrays 60. The light source array 60 and the lens array 61 facing each other are integrated as a light source panel 62.
 図5は、光源パネルの概略構成を模式的に示す側面図である。図6は、光源パネルの概略構成を模式的に示す平面図である。図7は、光源パネルの概略構成を模式的に示す斜視図である。これらの図において、符号Aoaは光学ヘッド6の光軸方向を示す。なお、2つの光源パネル62は、発光素子から射出する光の波長においてのみ異なり、その他の構成は互いに同一である。したがって、以下の説明は、基本的には1個の光源パネル62を示して行う。図5~図7に示すように、光源パネル62の光源アレイ60は、12個の発光素子601を平板状の電極基板602に3行4列で二次元的に配列した構成を有する。この際、行方向および列方向のいずれにおいても隣接する発光素子601の間隔は等しく、複数の発光素子601は一様に配置されている。ここで、列方向に並ぶ3個の発光素子601からなる集合を特に、発光素子列601Cと称することとする。 FIG. 5 is a side view schematically showing a schematic configuration of the light source panel. FIG. 6 is a plan view schematically showing a schematic configuration of the light source panel. FIG. 7 is a perspective view schematically showing a schematic configuration of the light source panel. In these drawings, symbol Aoa indicates the optical axis direction of the optical head 6. Note that the two light source panels 62 differ only in the wavelength of light emitted from the light emitting elements, and the other configurations are the same. Therefore, the following description is basically made by showing one light source panel 62. As shown in FIGS. 5 to 7, the light source array 60 of the light source panel 62 has a configuration in which twelve light emitting elements 601 are two-dimensionally arranged in three rows and four columns on a flat electrode substrate 602. At this time, the intervals between adjacent light emitting elements 601 are equal in both the row direction and the column direction, and the plurality of light emitting elements 601 are uniformly arranged. Here, a set of three light emitting elements 601 arranged in the column direction is particularly referred to as a light emitting element column 601C.
 各発光素子601は、駆動電流Id(図1)に応じた輝度で発光するものであり、具体的には、紫外線光を射出するLED(Light
Emitting Diode)のベアチップで構成されている。つまり、この実施形態では、複数のLEDが並べて用いられている。さらに詳細には、発光素子601は角形の発光領域を有するLEDチップを内部に収めたセラミックパッケージにより構成されている。そして、各セラミックパッケージの前面には、内部の保護のためのカバーガラスが設けられている。
Each light emitting element 601 emits light with a luminance corresponding to the drive current Id (FIG. 1), and specifically, an LED (Light
Emitting Diode) bare chip. That is, in this embodiment, a plurality of LEDs are used side by side. More specifically, the light emitting element 601 is configured by a ceramic package in which an LED chip having a square light emitting region is housed. A cover glass for protecting the inside is provided on the front surface of each ceramic package.
 このように、複数のLEDを並べて用いる理由の1つは、次のとおりである。従来は、超高圧水銀ランプを光源として用いることが一般的であった。一方、このような超高圧水銀ランプに対して、LEDは高効率、長寿命、単色発光および省スペース等の利点を有している。この実施形態は、このような利点に着目して、光源としてLEDを用いたものである。ただし、単一のLEDでは露光に必要な光量が不十分となるおそれがある。そこで、複数のLEDを並べることで、十分な光量の確保が図られている。しかも、LEDは、超高圧水銀ランプと比較して著しく小型であるため、複数のLEDを並べても省スペースという利点が損なわれることはない。こうして、この実施形態は、複数のLEDを並べて用いることで、十分な光量を確保しつつ、LEDの持つ利点を効果的に引き出している。 Thus, one reason for using a plurality of LEDs side by side is as follows. Conventionally, it has been common to use an ultra-high pressure mercury lamp as a light source. On the other hand, LEDs have advantages such as high efficiency, long life, monochromatic light emission, and space saving over such an ultra-high pressure mercury lamp. In this embodiment, attention is given to such advantages, and LEDs are used as light sources. However, with a single LED, the amount of light required for exposure may be insufficient. Therefore, securing a sufficient amount of light is achieved by arranging a plurality of LEDs. Moreover, since the LED is remarkably small as compared with the ultra-high pressure mercury lamp, the advantage of saving space is not impaired even when a plurality of LEDs are arranged. Thus, this embodiment effectively draws out the advantages of LEDs while securing a sufficient amount of light by using a plurality of LEDs side by side.
 一方、光源パネル62のレンズアレイ61は、12個の発光素子601に一対一で対応して、各LEDチップの発光領域の像を形成するレンズ群をLEDチップの配列と対応して同じ縦横二次元に3×4の12個配列して形成したものであって、発光素子601の1個あたり発光素子601側から見て、両凸の第1レンズ611と平凸の第2レンズ612の2枚で構成されるレンズ群を有し、それらを枠に組み付けて構成される。つまり、光源アレイ60での発光素子601の配列と同様にして、レンズアレイ61では、12個の第1レンズ611および12個の第2レンズ612それぞれが3行4列で配列されている。こうして、12個の発光素子601のそれぞれには、2個のレンズ611、612が対向することとなり、各発光素子601からの光は第1レンズ611、第2レンズ612を透過して光源パネル62の外側へと射出される。なお、上述のとおり、光学ヘッド6には、2個の光源パネル62が設けられている。これらのうち、光源パネル62aの発光素子601は、中心波長が385[nm]の光を射出し、光源パネル62bの発光素子601は、中心波長が365[nm]の光を射出する。つまり、光源パネル62a、62bは、中心波長が互いに異なる光を射出する。 On the other hand, the lens array 61 of the light source panel 62 corresponds to the 12 light emitting elements 601 on a one-to-one basis, and the lens group that forms an image of the light emitting area of each LED chip corresponds to the arrangement of the LED chips. Each of the light emitting elements 601 is formed by arranging 12 × 3 × 4 in dimension, and when viewed from the light emitting element 601 side, two of a biconvex first lens 611 and a planoconvex second lens 612 are provided. It has a lens group composed of a single sheet and is constructed by assembling them into a frame. That is, in the same manner as the arrangement of the light emitting elements 601 in the light source array 60, in the lens array 61, each of the 12 first lenses 611 and the 12 second lenses 612 is arranged in 3 rows and 4 columns. Thus, the two lenses 611 and 612 are opposed to each of the twelve light emitting elements 601, and light from each light emitting element 601 is transmitted through the first lens 611 and the second lens 612, and the light source panel 62. The outside is injected. As described above, the optical head 6 is provided with the two light source panels 62. Among these, the light emitting element 601 of the light source panel 62a emits light having a central wavelength of 385 [nm], and the light emitting element 601 of the light source panel 62b emits light having a central wavelength of 365 [nm]. That is, the light source panels 62a and 62b emit light having different center wavelengths.
 図4に戻って光学ヘッド6の説明を続ける。2個の光源パネル62それぞれから射出された光は、ダイクロイックミラー63へと入射する。このダイクロイックミラー63は、その一方面(透過側)を光源パネル62aに向けるとともに、その他方面(反射側)を光源パネル62bに向けている。そして、光源パネル62aの各発光素子601からの光(12個の光)はダイクロイックミラー63の一方面から他方面へ透過し、また、光源パネル62bの各発光素子601からの光(12個の光)はダイクロイックミラー63の他方面で反射される。こうして、ダイクロイックミラー63によって、それぞれ中心波長の異なる光が合成される。 Returning to FIG. 4, the description of the optical head 6 will be continued. Light emitted from each of the two light source panels 62 enters the dichroic mirror 63. The dichroic mirror 63 has one surface (transmission side) facing the light source panel 62a and the other surface (reflection side) facing the light source panel 62b. Light (12 lights) from each light emitting element 601 of the light source panel 62a is transmitted from one surface of the dichroic mirror 63 to the other surface, and light from each light emitting element 601 of the light source panel 62b (12 lights). Light) is reflected by the other surface of the dichroic mirror 63. In this way, light having different center wavelengths is synthesized by the dichroic mirror 63.
 ちなみに、ダイクロイックミラー63が合成する光の中心波長の差は、20[nm]程度であるため、ダイクロイックミラー63には比較的急峻なエッジを持った分光反射率(分光透過率)特性が必要となる。これに対して、ダイクロイックミラー63への入射角が45度以上になると、PS偏光成分の光学特性に分離が生じて急峻な特性が得られない。そこで、光源パネル62a、62bそれぞれから射出された光がダイクロイックミラー63へ入射する入射角度は40度よりも小さく設定されている。 Incidentally, since the difference in the center wavelength of the light synthesized by the dichroic mirror 63 is about 20 [nm], the dichroic mirror 63 needs a spectral reflectance (spectral transmittance) characteristic having a relatively steep edge. Become. On the other hand, when the incident angle to the dichroic mirror 63 is 45 degrees or more, separation occurs in the optical characteristics of the PS polarization component, and a steep characteristic cannot be obtained. Therefore, the incident angle at which the light emitted from each of the light source panels 62a and 62b enters the dichroic mirror 63 is set to be smaller than 40 degrees.
 ダイクロイックミラー63から射出された12個の光は、レンズアレイ64へ入射する。このレンズアレイ64はレンズアレイ61と同様に、12個の発光素子601に一対一で対応して12個のレンズ641を配列した構成を有する。つまり、レンズアレイ64には、ダイクロイックミラー63から射出される12個の光に一対一で対応して12個のレンズ641が設けられている。また、各レンズ641上には対応する各発光素子601の拡大投影像が形成されており、各発光素子601と対応する各レンズ641とは光学的に共役な関係にあり、各レンズ641はフィールドレンズとして機能するものである。したがって、ダイクロイックミラー63から射出された各光はレンズ641を透過した後に主光線が光軸方向に平行に進行する。こうして、レンズアレイ64からは、主光線が光軸に平行な12個の光束が射出されることとなる。 Twelve lights emitted from the dichroic mirror 63 enter the lens array 64. Similar to the lens array 61, the lens array 64 has a configuration in which twelve lenses 641 are arranged in a one-to-one correspondence with the twelve light emitting elements 601. That is, the lens array 64 is provided with twelve lenses 641 corresponding to the twelve lights emitted from the dichroic mirror 63 on a one-to-one basis. Further, an enlarged projection image of each corresponding light emitting element 601 is formed on each lens 641, and each light emitting element 601 and each corresponding lens 641 are optically conjugate, and each lens 641 is a field. It functions as a lens. Therefore, after the light emitted from the dichroic mirror 63 passes through the lens 641, the principal ray travels parallel to the optical axis direction. In this way, twelve light beams whose chief rays are parallel to the optical axis are emitted from the lens array 64.
 レンズアレイ64から射出された光は、3枚のレンズ65a、65b、65cで構成された光学系65に入射する。この光学系65は両側テレセントリックの光学系であり、レンズアレイ64の像をロッドインテグレータ70の入射端70aに縮小投影するとともに、主光線が光軸と平行となるように、光学系65から射出された光がロッドインテグレータ70に入射する。 The light emitted from the lens array 64 enters an optical system 65 composed of three lenses 65a, 65b, and 65c. This optical system 65 is a telecentric optical system on both sides, and projects the image of the lens array 64 on the incident end 70a of the rod integrator 70 in a reduced scale and is emitted from the optical system 65 so that the principal ray is parallel to the optical axis. The incident light enters the rod integrator 70.
 図8は、ロッドインテグレータ70に入射する光の光路図である。同図において、符号Aoaは光学ヘッド6の光軸方向を示す。同図に示すように、光源アレイ60から射出された光は、レンズアレイ61によってレンズアレイ64上に結像される。この際の結像倍率は、光源アレイ60の発光素子601の像がレンズアレイ64のレンズ641の外形以上の大きさとなるように設定されている。また、レンズアレイ64の形状は、ロッドインテグレータ70の入射端70aの形状と相似になっている。このレンズアレイ64を透過した光は、主光線が光軸方向Aoaに平行な平行光として、両側テレセントリックな光学系65に入射する。そして、光学系65から射出された光は、主光線が光軸方向Aoaに平行な光として、ロッドインテグレータ70の入射端70aに縮小投影される。 FIG. 8 is an optical path diagram of light incident on the rod integrator 70. In the figure, reference numeral Aoa indicates the optical axis direction of the optical head 6. As shown in the figure, the light emitted from the light source array 60 is imaged on the lens array 64 by the lens array 61. The imaging magnification at this time is set so that the image of the light emitting element 601 of the light source array 60 is larger than the outer shape of the lens 641 of the lens array 64. The shape of the lens array 64 is similar to the shape of the incident end 70 a of the rod integrator 70. The light transmitted through the lens array 64 is incident on the bilateral telecentric optical system 65 as parallel light whose principal ray is parallel to the optical axis direction Aoa. The light emitted from the optical system 65 is reduced and projected onto the incident end 70a of the rod integrator 70 as light whose principal ray is parallel to the optical axis direction Aoa.
 図4に戻って説明を続ける。ロッドインテグレータ70は、入射端70aに入射してきた光を、当該光の照度分布を均一化して射出端70bから射出する。なお、ロッドインテグレータ70としては、中空ロッドタイプや中実ロッドタイプ等の種々のものを用いることができる。また、ロッドインテグレータ70の入射端70aと射出端70bとは互いに相似形状となるが、それぞれの寸法が等しい必要はなく、入射端70aから70bにかけてテーパー状に形成されたロッドインテグレータ70を用いることもできる。 Referring back to FIG. The rod integrator 70 equalizes the illuminance distribution of the light that has entered the incident end 70a and emits the light from the exit end 70b. As the rod integrator 70, various types such as a hollow rod type and a solid rod type can be used. In addition, the incident end 70a and the exit end 70b of the rod integrator 70 are similar to each other, but the respective dimensions do not have to be equal, and the rod integrator 70 formed in a tapered shape from the incident end 70a to 70b may be used. it can.
 ロッドインテグレータ70の射出端70bから射出された光は、2枚のレンズ66、平面ミラー67aおよび凹面ミラー67bを介して、空間光変調器80に入射する。なお、ロッドインテグレータ70の射出端70bと空間光変調器80とは光学的に共役な関係にある。この空間光変調器80は、多数の微小ミラーを格子状に配列したDMDで構成されている。空間光変調器80の微小ミラーは、照射制御部130からの制御信号により制御されて、オン状態とオフ状態のいずれかに対応する姿勢を取る。オン状態に対応する姿勢にある微小ミラーは、ロッドインテグレータ70からの光を第1投影レンズ68へ向けて反射する。一方、オフ状態に対応する姿勢にある微小レンズは、ロッドインテグレータ70からの光を第1投影レンズ68から外れた方向へ反射する。したがって、ロッドインテグレータ70からの光は、空間光変調器80のオン状態にある微小ミラーにより反射されて、第1投影レンズ68へと入射する。 The light emitted from the exit end 70b of the rod integrator 70 enters the spatial light modulator 80 via the two lenses 66, the plane mirror 67a, and the concave mirror 67b. The exit end 70b of the rod integrator 70 and the spatial light modulator 80 are in an optically conjugate relationship. The spatial light modulator 80 is composed of a DMD in which a large number of micromirrors are arranged in a lattice pattern. The micro mirror of the spatial light modulator 80 is controlled by a control signal from the irradiation control unit 130 and takes a posture corresponding to either the on state or the off state. The micro mirror in the posture corresponding to the on state reflects the light from the rod integrator 70 toward the first projection lens 68. On the other hand, the microlens in the posture corresponding to the off state reflects light from the rod integrator 70 in a direction away from the first projection lens 68. Therefore, the light from the rod integrator 70 is reflected by the minute mirror in the on state of the spatial light modulator 80 and enters the first projection lens 68.
 そして、第1投影レンズ68と第2投影レンズ69は一対で投影レンズとしての働きを持ち、互いの間隔を変更することで倍率調整を受けた後に、空間光変調器80の像を基板S表面の照射領域Reに投影する。なお、空間光変調器80の微小ミラーと基板S表面の照射領域Reとは光学的に共役な関係にある。また、図4に示す光学ヘッド6は、フォーカスを自動調整するオートフォーカス機構95を具備している。このオートフォーカス機構95は、照射領域Reに光を照射する照射部96と、照射領域Reからの反射光を受光する受光部97とで構成され、受光部97の受光結果に基づいて第2投影レンズ69を上下方向に駆動することで、フォーカスが自動調整される。 The first projection lens 68 and the second projection lens 69 function as a pair of projection lenses. After the magnification adjustment is performed by changing the distance between the first projection lens 68 and the second projection lens 69, the image of the spatial light modulator 80 is transferred to the surface of the substrate S. Is projected onto the irradiation region Re. Note that the minute mirror of the spatial light modulator 80 and the irradiation region Re on the surface of the substrate S are in an optically conjugate relationship. The optical head 6 shown in FIG. 4 includes an autofocus mechanism 95 that automatically adjusts the focus. The autofocus mechanism 95 includes an irradiation unit 96 that irradiates light to the irradiation region Re, and a light receiving unit 97 that receives reflected light from the irradiation region Re. Based on the light reception result of the light receiving unit 97, the second projection is performed. The focus is automatically adjusted by driving the lens 69 in the vertical direction.
 図9は、ロッドインテグレータ70に照射される発光素子601の像を模式的に示した平面図である。同図において、単位像IMは、1個の発光素子601からの光をロッドインテグレータ70に照射して得られる像である。同図に示すように、光源アレイ60における12個の発光素子601の3行4列配置に対応して、ロッドインテグレータ70では、12個の単位像IMが3行4列で並んでいる。その結果、同一の発光素子列601Cに属する3個の発光素子601が照射した3個の単位像IMは、基板SのY軸方向に相当する方向に直線状に並んで単位像列IMCを構成する。つまり、同一の単位像列IMCに属する3個の単位像IMは、基板Sでの光の走査方向である基板SのY軸方向に相当する方向に並ぶこととなる。 FIG. 9 is a plan view schematically showing an image of the light emitting element 601 irradiated on the rod integrator 70. In the figure, a unit image IM is an image obtained by irradiating the rod integrator 70 with light from one light emitting element 601. As shown in the figure, corresponding to the arrangement of 12 light emitting elements 601 in the light source array 60 in 3 rows and 4 columns, in the rod integrator 70, 12 unit images IM are arranged in 3 rows and 4 columns. As a result, the three unit images IM irradiated by the three light emitting elements 601 belonging to the same light emitting element row 601C are arranged in a straight line in the direction corresponding to the Y-axis direction of the substrate S to form the unit image row IMC. To do. That is, three unit images IM belonging to the same unit image row IMC are arranged in a direction corresponding to the Y-axis direction of the substrate S, which is the light scanning direction on the substrate S.
 そして、この実施形態では、図9に例示するようにロッドインテグレータ70に照射される光の照度分布を調整するために、単位像IMの照度が個別に変更可能となっている。具体的には、照射制御部130が駆動電流Idの大きさを発光素子601毎に個別に制御する。これによって、発光素子601毎にその輝度が個別に制御されて、単位像IMの照度が個別に制御される。これによって、照射領域Reでの照度分布が調整される。この際、照射制御部130は、光学センサSCが照射領域Reの照度分布を検出した結果に基づいて、各発光素子601の駆動電流Idを制御する。 And in this embodiment, in order to adjust the illumination distribution of the light irradiated to the rod integrator 70 so that it may illustrate in FIG. 9, the illumination intensity of the unit image IM can be changed separately. Specifically, the irradiation control unit 130 individually controls the magnitude of the drive current Id for each light emitting element 601. Thereby, the luminance is individually controlled for each light emitting element 601, and the illuminance of the unit image IM is individually controlled. Thereby, the illuminance distribution in the irradiation region Re is adjusted. At this time, the irradiation control unit 130 controls the drive current Id of each light emitting element 601 based on the result of the optical sensor SC detecting the illuminance distribution of the irradiation region Re.
 以上に説明したように、この実施形態では、駆動電流Idの大きさに応じた輝度で発光する発光素子601を複数有する光源アレイ60が設けられており、ロッドインテグレータ70は光源アレイ60から入射してきた光に対して、照度分布の均一化を行う。そして、この実施形態では、駆動信号Idの大きさを発光素子601毎に個別に制御する照射制御部130が設けられている。ロッドインテグレータ70は、ロッドインテグレータ70の入射端70aの一方向に照度ムラがある場合、ロッドインテグレータ70の出射端70bでも同一方向に僅かな照度分布が発生するという特性をもっている。そのため、発光素子601毎に輝度を個別に制御して、ロッドインテグレータ70の出射端70bの照度分布を適宜調整することができる。その結果、ロッドインテグレータ70の能力に加えて、ロッドインテグレータ70の出射端70bの照度分布の均一性を向上させることが可能となっている。 As described above, in this embodiment, the light source array 60 having a plurality of light emitting elements 601 that emit light with a luminance corresponding to the magnitude of the drive current Id is provided, and the rod integrator 70 is incident from the light source array 60. The illuminance distribution is made uniform with respect to the reflected light. In this embodiment, an irradiation control unit 130 that individually controls the magnitude of the drive signal Id for each light emitting element 601 is provided. The rod integrator 70 has a characteristic that when the illuminance is uneven in one direction of the incident end 70a of the rod integrator 70, a slight illuminance distribution is generated in the same direction also at the exit end 70b of the rod integrator 70. Therefore, the luminance is individually controlled for each light emitting element 601, and the illuminance distribution at the emission end 70b of the rod integrator 70 can be appropriately adjusted. As a result, in addition to the capability of the rod integrator 70, it is possible to improve the uniformity of the illuminance distribution at the exit end 70b of the rod integrator 70.
 ところで、この実施形態のパターン描画装置1は、基板S表面に対して光源アレイ60をY軸方向へ相対移動させながら、光源アレイ60が射出した光を空間光変調器80に変調させて、基板S表面にパターンを描画する。このとき、基板S表面に照射される光の照度ムラがX軸方向において生じた場合、基板S表面で露光量分布の差が表れるため好ましくない。これに対して、この実施形態では、ロッドインテグレータ70の出射端70bが空間変調素子80に投影され、さらに第1投影レンズ68、第2投影レンズ69によって照射領域Reに投影される構成において、X軸方向において互いに異なる領域を露光する4個の発光素子601の駆動信号Idの大きさが発光素子601毎に個別に制御されているため、X軸方向への照度ムラの発生を効果的に抑制することが可能となっている。 By the way, the pattern drawing apparatus 1 of this embodiment modulates the light emitted from the light source array 60 to the spatial light modulator 80 while moving the light source array 60 relative to the surface of the substrate S in the Y-axis direction. A pattern is drawn on the surface of S. At this time, if unevenness in the illuminance of the light applied to the surface of the substrate S occurs in the X-axis direction, a difference in exposure dose distribution appears on the surface of the substrate S, which is not preferable. On the other hand, in this embodiment, the emission end 70b of the rod integrator 70 is projected onto the spatial modulation element 80, and further projected onto the irradiation region Re by the first projection lens 68 and the second projection lens 69. Since the magnitudes of the drive signals Id of the four light emitting elements 601 that expose different areas in the axial direction are individually controlled for each light emitting element 601, the occurrence of uneven illuminance in the X axis direction is effectively suppressed. It is possible to do.
 また、この実施形態では、光学ヘッド6から射出された後の光の照度分布を検出する光学センサSCが設けられている。そして、照射制御部130は、光学センサSCの検出結果に応じて、駆動信号Idの大きさを発光素子601毎に個別に制御している。このような構成では、ロッドインテグレータ70から射出された後の光の照度分布を検出した結果に基づいて、各発光素子601への駆動信号Idの大きさが制御されるため、基板S表面への照射光の照度分布の均一性をより確実に向上させることができる。 In this embodiment, an optical sensor SC that detects the illuminance distribution of the light emitted from the optical head 6 is provided. Then, the irradiation control unit 130 individually controls the magnitude of the drive signal Id for each light emitting element 601 according to the detection result of the optical sensor SC. In such a configuration, since the magnitude of the drive signal Id to each light emitting element 601 is controlled based on the result of detecting the illuminance distribution of the light emitted from the rod integrator 70, The uniformity of the illuminance distribution of irradiation light can be improved more reliably.
 特に、この実施形態では、光学センサSCは、基板S表面に照射された光の照度分布が検出される。これによって、基板S表面への照射光の照度分布の均一性をさらに確実に向上させることができる。 In particular, in this embodiment, the optical sensor SC detects the illuminance distribution of the light irradiated on the surface of the substrate S. Thereby, the uniformity of the illuminance distribution of the irradiation light on the surface of the substrate S can be further improved.
 このように、この実施形態では、パターン描画装置1が本発明の「パターン描画装置」に相当し、基板Sが本発明の「描画対象」に相当し、発光素子601あるいは発光素子列601Cが本発明の「発光部」に相当し、光源アレイ60が本発明の「発光ユニット」に相当し、ロッドインテグレータ70が本発明の「照度均一化素子」に相当し、空間光変調器80が本発明の「空間光変調器」に相当し、照射制御部130が本発明の「駆動制御部」に相当し、駆動電流Idが本発明の「駆動信号」に相当し、Y軸方向が本発明の「第1方向」に相当し、X軸方向が本発明の「第2方向」に相当し、光学センサSCが本発明の「照度検出器」に相当する。 As described above, in this embodiment, the pattern drawing device 1 corresponds to the “pattern drawing device” of the present invention, the substrate S corresponds to the “drawing target” of the present invention, and the light emitting element 601 or the light emitting element array 601C is the book. The light source array 60 corresponds to the “light emitting unit” of the present invention, the rod integrator 70 corresponds to the “illuminance uniformizing element” of the present invention, and the spatial light modulator 80 corresponds to the present invention. The irradiation controller 130 corresponds to the “drive controller” of the present invention, the drive current Id corresponds to the “drive signal” of the present invention, and the Y-axis direction corresponds to the “spatial light modulator” of the present invention. It corresponds to the “first direction”, the X-axis direction corresponds to the “second direction” of the present invention, and the optical sensor SC corresponds to the “illuminance detector” of the present invention.
 なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、光源アレイ60に設けられた12個の発光素子601の全てについて、駆動電流Idの個別制御を行なっていた。しかしながら、本発明の適用態様はこれに限られず、例えば次のような態様で本発明を適用することもできる。 Note that the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit of the present invention. For example, in the above embodiment, the individual control of the drive current Id is performed for all the twelve light emitting elements 601 provided in the light source array 60. However, the application mode of the present invention is not limited to this. For example, the present invention can be applied in the following modes.
 上述したとおり、同一の発光素子列601Cに属する3個の発光素子601は、基板S表面に対して相対移動しつつ光を照射して、同一領域に重複露光を行なう。したがって、これら発光素子601のそれぞれの照射光に照度のムラがあったとしても、最終的に形成されるパターンへの影響は少ない。そこで、同一の発光素子列601Cに属する3個の発光素子601に対しては、駆動電流Idの大きさの制御を一括して行なうこととし、駆動制御の簡素化を図っても良い。ちなみに、かかる変形例では、発光素子列601Cが本発明の「発光部」に相当することとなる。 As described above, the three light-emitting elements 601 belonging to the same light-emitting element array 601C irradiate light while moving relative to the surface of the substrate S to perform overlapping exposure on the same region. Therefore, even if the illumination light of each of the light emitting elements 601 has uneven illuminance, the influence on the finally formed pattern is small. Therefore, it is possible to simplify the drive control by collectively controlling the magnitude of the drive current Id for the three light emitting elements 601 belonging to the same light emitting element row 601C. Incidentally, in such a modification, the light emitting element array 601C corresponds to the “light emitting portion” of the present invention.
 なお、この変形例においても、異なる発光素子列601Cの駆動電流Idの大きさを個別に制御することで、上記と同様の効果を奏することができる。図10は、発光素子601を個別制御する照射制御部130の回路を示すブロック図である。同一の発光素子列601Cに属する3個の発光素子601は直列に接続され、その入力端と出力端がDC-DCコンバータ102を介して電源100に接続される。また、これら3個の発光素子601の出力側には、電流検出部103が直列に接続されており、電流検出部103の検出結果に基づいて照射制御部130内でDC-DCコンバータ101への制御電圧を変更することで、これら3個の発光素子601に与える駆動電流Idが制御される。そして、同様の構成を有する回路が、4列の発光素子列601Cそれぞれに対して設けられている。したがって、発光素子列601C毎に発光素子601に与える駆動電流Idを個別に制御することができる。なお、互いに異なる発光素子列601Cに対応する4個のDC-DCコンバータ101は、AC-DCコンバータ102を介して電源100に接続され、電源供給を受ける。 In this modification, the same effect as described above can be obtained by individually controlling the magnitude of the drive current Id of the different light emitting element rows 601C. FIG. 10 is a block diagram illustrating a circuit of the irradiation control unit 130 that individually controls the light emitting elements 601. Three light emitting elements 601 belonging to the same light emitting element row 601C are connected in series, and their input terminals and output terminals are connected to the power supply 100 via the DC-DC converter 102. In addition, a current detector 103 is connected in series to the output side of these three light emitting elements 601, and the DC-DC converter 101 is connected to the DC-DC converter 101 in the irradiation controller 130 based on the detection result of the current detector 103. By changing the control voltage, the drive current Id given to these three light emitting elements 601 is controlled. A circuit having the same configuration is provided for each of the four light emitting element rows 601C. Therefore, it is possible to individually control the drive current Id applied to the light emitting element 601 for each light emitting element array 601C. Note that the four DC-DC converters 101 corresponding to the different light emitting element arrays 601C are connected to the power supply 100 via the AC-DC converter 102 and are supplied with power.
 また、上記実施形態では、照度分布を検出した結果に基づいて、発光素子601への駆動信号Idを制御していた。これによって、露光によって照射される光量の積算値(積算光量)が基板Sの略全域で均一とすることができる。この際、駆動信号Idと積算光量との関係を示す積算光量プロファイルを予め計測して、照射制御部130等に記憶しておいても良い。そして、この積算光量プロファイルに基づいて駆動信号Idを制御することで、基板Sの略全域で積算光量を均一として、より良好なパターン描画を実行することが可能となる。 In the above embodiment, the drive signal Id to the light emitting element 601 is controlled based on the result of detecting the illuminance distribution. As a result, the integrated value (integrated light amount) of the light amount irradiated by exposure can be made uniform over substantially the entire area of the substrate S. At this time, an integrated light amount profile indicating the relationship between the drive signal Id and the integrated light amount may be measured in advance and stored in the irradiation control unit 130 or the like. Then, by controlling the drive signal Id based on this integrated light quantity profile, it is possible to make the integrated light quantity uniform over substantially the entire area of the substrate S and perform better pattern drawing.
 また、上記実施形態では、発光素子601に与える駆動電流Idの大きさを制御して、発光素子601の輝度を調整していた。しかしながら、発光素子601に与える駆動電圧Vdを制御して、発光素子601の輝度を調整しても良い。 In the above embodiment, the luminance of the light emitting element 601 is adjusted by controlling the magnitude of the drive current Id applied to the light emitting element 601. However, the luminance of the light emitting element 601 may be adjusted by controlling the drive voltage Vd applied to the light emitting element 601.
 また、駆動電流Id、駆動電圧Vdの具体的な値については特に触れなかったが、これらの値についても種々の変形が可能である。したがって、例えば駆動電流Id、駆動電圧Vdの値を、定格電流、定格電圧より大きい値としても良く、具体的には、定格電流、定格電圧の2倍以上あるいは3倍以上としても良い。これによって、発光素子601の輝度を著しく向上させることができる。 Further, although specific values of the drive current Id and the drive voltage Vd were not particularly mentioned, various modifications can be made to these values. Therefore, for example, the values of the drive current Id and the drive voltage Vd may be larger than the rated current and the rated voltage. Specifically, the values may be two or more times or three or more times the rated current and the rated voltage. Accordingly, the luminance of the light emitting element 601 can be significantly improved.
 また、上記実施形態では、同一の単位像列IMCに属する3個の単位像IMが基板S表面の同一領域を相対移動して、露光が実行されていた。しかしながら、このような露光による方法を用いずに、基板S表面を露光しても良い。具体的には、単位像列IMCのX軸方向への長さずつ基板Sが移動する度に、12個の発光素子601を点灯させて、図9に示した12個の単位像IMの基板Sへの照射を行うように構成しても良い。 Further, in the above-described embodiment, the three unit images IM belonging to the same unit image row IMC are relatively moved in the same area on the surface of the substrate S, and the exposure is executed. However, the surface of the substrate S may be exposed without using such exposure method. Specifically, each time the substrate S moves by the length of the unit image row IMC in the X-axis direction, the twelve light emitting elements 601 are turned on, and the twelve unit image IM substrates shown in FIG. You may comprise so that irradiation to S may be performed.
 また、光源アレイ60における複数の発光素子601の配列態様は上記のものに限られない。したがって、複数の発光素子601が配列される行数や列数を適宜変更したり、隣接する発光素子601の間隔を適宜変更したりできる。あるいは、行列態様以外の態様で、複数の発光素子601を配列しても良い。 Further, the arrangement of the plurality of light emitting elements 601 in the light source array 60 is not limited to the above. Therefore, the number of rows and columns in which a plurality of light emitting elements 601 are arranged can be changed as appropriate, and the interval between adjacent light emitting elements 601 can be changed as appropriate. Alternatively, a plurality of light emitting elements 601 may be arranged in a manner other than the matrix manner.
 また、上記実施形態では、基板SをY軸方向に移動させることで、基板Sと光学ヘッド6とを相対移動させていた。しかしながら、光学ヘッド6をY軸方向に移動させることで、基板Sと光学ヘッド6とを相対移動させても良い。 In the above embodiment, the substrate S and the optical head 6 are moved relative to each other by moving the substrate S in the Y-axis direction. However, the substrate S and the optical head 6 may be moved relative to each other by moving the optical head 6 in the Y-axis direction.
 また、光照度分布を検出する光学センサSCの構成も上記のものに限られない。別途設置する二次元イメージセンサによって照度分布を検出しても良い。また、光学センサSCが照度分布を検出する位置は、基板S表面に限られない。そこで、空間光変調器80に入射する光の一部を分岐して、照度分布を光学センサSCや別途設置する二次元イメージセンサで検出するように構成しても良い。 Further, the configuration of the optical sensor SC for detecting the light illuminance distribution is not limited to the above. The illuminance distribution may be detected by a two-dimensional image sensor installed separately. Further, the position where the optical sensor SC detects the illuminance distribution is not limited to the surface of the substrate S. Therefore, a part of the light incident on the spatial light modulator 80 may be branched, and the illuminance distribution may be detected by the optical sensor SC or a separately installed two-dimensional image sensor.
 また、光学ヘッド6の光学的構成も上記のものに限られず、これを構成する各光学素子の追加・変更・削除を適宜実行可能である。そこで、光源アレイ60からロッドインテグレータ70までの光学系65を排除して、レンズアレイ64の直後にロッドインテグレータ70を配しても良い。あるいは、光源アレイ60からロッドインテグレータ70までの全ての光学的構成を排除して、光源アレイ60の直後にロッドインテグレータ70を配しても良い。 Further, the optical configuration of the optical head 6 is not limited to the above-described one, and addition, change, and deletion of each optical element constituting the optical head 6 can be appropriately executed. Therefore, the optical system 65 from the light source array 60 to the rod integrator 70 may be eliminated, and the rod integrator 70 may be disposed immediately after the lens array 64. Alternatively, all the optical configurations from the light source array 60 to the rod integrator 70 may be eliminated, and the rod integrator 70 may be disposed immediately after the light source array 60.
 また、ロッドインテグレータ70以外のインテグレータを用いることも可能であり、例えばフライアイレンズで構成されたフライアイインテグレータを用いても良い。つまり、フライアイインテグレータも、照度分布を均一化するインテグレータとしての機能を発揮する。この際、光学系65内において光の主光線が光軸と交わる位置にフライアイインテグレータを配置すると良い。また、フライアイインテグレータを構成する各レンズの形状は、DMD80の形状と相似に構成すると良い。 It is also possible to use an integrator other than the rod integrator 70. For example, a fly eye integrator configured with a fly eye lens may be used. In other words, the fly-eye integrator also functions as an integrator that makes the illuminance distribution uniform. At this time, a fly eye integrator may be disposed in the optical system 65 at a position where the principal ray of light intersects the optical axis. In addition, the shape of each lens constituting the fly eye integrator may be similar to the shape of the DMD 80.
 また、上記実施形態では、異なる波長の2個の光が合成されていた。しかしながら、このような光の合成を行わないように構成することもできる。あるいは、異なる波長の3個の光を合成するように構成しても良い。この場合、ダイクロイックミラーを複数用いても良いし、ダイクロイックプリズム(クロスプリズム、フィリップスタイププリズム、ケスタープリズム等)を用いても良い。あるいは、これらを組み合わせて用いても良い。 In the above embodiment, two lights having different wavelengths are synthesized. However, it may be configured not to perform such light synthesis. Or you may comprise so that three light of a different wavelength may be synthesize | combined. In this case, a plurality of dichroic mirrors may be used, or a dichroic prism (cross prism, Philips type prism, Kester prism, etc.) may be used. Alternatively, these may be used in combination.
 発光素子601の種類はLEDに限られず、その他の種々の光源を用いることができる。 The type of the light emitting element 601 is not limited to the LED, and other various light sources can be used.
 本発明は、ロッドインテグレータ70のような照度均一化素子を介して空間光変調器に入射させた光を空間光変調器により変調して基板に照射するパターン描画装置、パターン描画方法に利用することができる。 The present invention is used for a pattern drawing apparatus and a pattern drawing method in which light incident on a spatial light modulator via an illuminance uniformizing element such as a rod integrator 70 is modulated by the spatial light modulator and irradiated onto a substrate. Can do.
 1…パターン描画装置
 6…光学ヘッド
 60…光源アレイ
 601…発光素子
 601C…発光素子列
 62…光源パネル
 62a…光源パネル
 62b…光源パネル
 63…ダイクロイックミラー
 64…レンズアレイ
 65…光学系
 67a、67b…光学ミラー
 68…ズームレンズ
 69…対物レンズ
 70…ロッドインテグレータ
 70a…入射端
 70b…射出端
 80…空間光変調器
 IM…単位像
 IMC…単位像列
 SC…光学センサ
 100…コントローラ
 110…データ処理部
 120…走査制御部
 130…照射制御部
 S…基板
DESCRIPTION OF SYMBOLS 1 ... Pattern drawing apparatus 6 ... Optical head 60 ... Light source array 601 ... Light emitting element 601C ... Light emitting element row 62 ... Light source panel 62a ... Light source panel 62b ... Light source panel 63 ... Dichroic mirror 64 ... Lens array 65 ... Optical system 67a, 67b ... Optical mirror 68 ... Zoom lens 69 ... Objective lens 70 ... Rod integrator 70a ... Incident end 70b ... Emission end 80 ... Spatial light modulator IM ... Unit image IMC ... Unit image sequence SC ... Optical sensor 100 ... Controller 110 ... Data processing unit 120 ... Scanning control unit 130 ... Irradiation control unit S ... Substrate

Claims (7)

  1.  駆動信号の大きさに応じた輝度で発光する発光部を複数有する発光ユニットと、
     前記発光ユニットから入射してきた光を、前記光の照度分布を均一化してから射出する照度均一化素子と、
     前記照度均一化素子から射出された前記光を変調して描画対象に照射する空間光変調器と、
     前記駆動信号の大きさを前記発光部毎に個別に制御する駆動制御部と
    を備えたことを特徴とするパターン描画装置。
    A light emitting unit having a plurality of light emitting units that emit light at a luminance according to the magnitude of the drive signal;
    An illuminance uniformizing element that emits light incident from the light emitting unit after uniforming the illuminance distribution of the light, and
    A spatial light modulator that modulates the light emitted from the illuminance equalizing element and irradiates the drawing target;
    A pattern drawing apparatus comprising: a drive control unit that individually controls the magnitude of the drive signal for each light emitting unit.
  2.  前記描画対象に対して前記発光ユニットを第1方向へ相対移動させながら、前記発光ユニットが射出した前記光を前記空間光変調器に変調させて、前記描画対象にパターンを描画する請求項1に記載のパターン描画装置において、
     前記複数の発光部は、前記第1方向に直交する第2方向において互いに異なる位置に光を照射するパターン描画装置。
    2. The pattern is drawn on the drawing target by modulating the light emitted by the light emitting unit with the spatial light modulator while relatively moving the light emitting unit in the first direction with respect to the drawing target. In the described pattern drawing apparatus,
    The plurality of light emitting units irradiate light to different positions in a second direction orthogonal to the first direction.
  3.  前記発光部は、それぞれが前記駆動信号の大きさに応じた輝度で発光して、前記第1方向に直線状に並んだ位置にそれぞれが光を照射する複数の発光素子で構成され、
     前記駆動制御部は、同一の前記発光部に属する前記複数の発光素子に対しては、前記駆動信号の大きさの制御を一括して行う請求項2に記載のパターン描画装置。
    The light emitting unit is configured by a plurality of light emitting elements that each emit light at a luminance according to the magnitude of the drive signal, and each irradiates light at a position arranged linearly in the first direction,
    The pattern drawing apparatus according to claim 2, wherein the drive control unit collectively controls the magnitude of the drive signal for the plurality of light emitting elements belonging to the same light emitting unit.
  4.  前記照度均一化素子から射出された後の前記光の照度分布を検出する照度検出器をさらに備え、
     前記駆動制御部は、前記照度検出器の検出結果に応じて、前記駆動信号の大きさを前記発光部毎に個別に制御する請求項1ないし3のいずれか一項に記載のパターン描画装置。
    An illuminance detector for detecting an illuminance distribution of the light after being emitted from the illuminance equalizing element;
    4. The pattern drawing device according to claim 1, wherein the drive control unit individually controls the magnitude of the drive signal for each light emitting unit according to a detection result of the illuminance detector. 5.
  5.  前記照度検出器は、前記描画対象に照射された前記光の照度分布を検出する請求項4に記載のパターン描画装置。 5. The pattern drawing apparatus according to claim 4, wherein the illuminance detector detects an illuminance distribution of the light irradiated on the drawing target.
  6.  前記空間光変調器は、DMDである請求項1ないし5のいずれか一項に記載のパターン描画装置。 The pattern drawing apparatus according to any one of claims 1 to 5, wherein the spatial light modulator is a DMD.
  7.  駆動信号の大きさに応じた輝度で発光する複数の発光部に与える前記駆動信号の大きさを前記発光部毎に個別に制御する工程と、
     入射してきた光を均一化して射出する照度均一化素子に前記複数の発光部からの光を入射させる工程と、
     前記照度均一化素子から射出された光を空間光変調器で変調して描画対象に照射する工程と
    を備えたことを特徴とするパターン描画方法。
     
    Individually controlling the magnitude of the drive signal to be given to a plurality of light emitting sections that emit light at a luminance corresponding to the magnitude of the drive signal;
    Making the light from the plurality of light emitting parts incident on an illuminance uniformizing element that uniformizes and emits incident light; and
    And a step of modulating the light emitted from the illuminance equalizing element with a spatial light modulator and irradiating the object to be drawn.
PCT/JP2012/082758 2012-06-26 2012-12-18 Pattern drawing device, pattern drawing method WO2014002312A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012143226A JP2014006433A (en) 2012-06-26 2012-06-26 Pattern drawing device
JP2012-143226 2012-06-26

Publications (1)

Publication Number Publication Date
WO2014002312A1 true WO2014002312A1 (en) 2014-01-03

Family

ID=49782524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082758 WO2014002312A1 (en) 2012-06-26 2012-12-18 Pattern drawing device, pattern drawing method

Country Status (3)

Country Link
JP (1) JP2014006433A (en)
TW (1) TWI479279B (en)
WO (1) WO2014002312A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204176A (en) * 2021-04-27 2021-08-03 合肥芯碁微电子装备股份有限公司 Tool, detection system and method for detecting and debugging imaging light path of equipment

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5615207B2 (en) * 2011-03-03 2014-10-29 株式会社東芝 Manufacturing method of semiconductor device
JP6413570B2 (en) * 2014-09-30 2018-10-31 東芝ライテック株式会社 Light source device
KR102297802B1 (en) * 2014-09-22 2021-09-03 도시바 라이텍쿠 가부시키가이샤 Light source device
JP6529809B2 (en) * 2015-04-14 2019-06-12 株式会社サーマプレシジョン Light irradiation apparatus and exposure apparatus
JP7045890B2 (en) * 2018-03-20 2022-04-01 株式会社Screenホールディングス Pattern drawing device and pattern drawing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077533A1 (en) * 2003-02-28 2004-09-10 Kabushiki Kaisha Hayashi Soken Exposure apparatus
JP2004335826A (en) * 2003-05-09 2004-11-25 Nikon Corp Light source equipment, aligner, and exposure method
JP2006344747A (en) * 2005-06-08 2006-12-21 Shinko Electric Ind Co Ltd Method and device for surface light source control
JP2006350131A (en) * 2005-06-17 2006-12-28 Shinko Electric Ind Co Ltd Light source control device
JP2007140166A (en) * 2005-11-18 2007-06-07 Shinko Electric Ind Co Ltd Direct exposure apparatus and illumination adjustment method
JP2011014593A (en) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp Led light source, its manufacturing method, and led-based photolithography apparatus and method source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005079470A (en) * 2003-09-02 2005-03-24 Nikon Corp Adjustment method of illumination optical system, method and device for exposure, device manufacturing method
US7839487B2 (en) * 2006-04-13 2010-11-23 Asml Holding N.V. Optical system for increasing illumination efficiency of a patterning device
JP5687013B2 (en) * 2010-09-14 2015-03-18 株式会社Screenホールディングス Exposure apparatus and light source apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004077533A1 (en) * 2003-02-28 2004-09-10 Kabushiki Kaisha Hayashi Soken Exposure apparatus
JP2004335826A (en) * 2003-05-09 2004-11-25 Nikon Corp Light source equipment, aligner, and exposure method
JP2006344747A (en) * 2005-06-08 2006-12-21 Shinko Electric Ind Co Ltd Method and device for surface light source control
JP2006350131A (en) * 2005-06-17 2006-12-28 Shinko Electric Ind Co Ltd Light source control device
JP2007140166A (en) * 2005-11-18 2007-06-07 Shinko Electric Ind Co Ltd Direct exposure apparatus and illumination adjustment method
JP2011014593A (en) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp Led light source, its manufacturing method, and led-based photolithography apparatus and method source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113204176A (en) * 2021-04-27 2021-08-03 合肥芯碁微电子装备股份有限公司 Tool, detection system and method for detecting and debugging imaging light path of equipment

Also Published As

Publication number Publication date
TW201400989A (en) 2014-01-01
JP2014006433A (en) 2014-01-16
TWI479279B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
TWI448833B (en) An exposure device and a light source device
WO2014002312A1 (en) Pattern drawing device, pattern drawing method
TWI650613B (en) Light source device and exposure device
WO2016194378A1 (en) Light source device, exposure device, and light source control method
KR20190082264A (en) Method and device for transferring electronic components between substrates
WO2011105461A1 (en) Optical projection device for exposure apparatus, exposure apparatus, method for exposure, method for fabricating substrate, mask, and exposed substrate
CN109075185B (en) Micro LED array as illumination source
JP6013097B2 (en) Pattern drawing apparatus and pattern drawing method
WO2012157409A1 (en) Exposure device and light-shielding plate
TWI649632B (en) Exposure device and exposure method
JP6283798B2 (en) Exposure apparatus and illumination unit
JP2019117271A (en) Exposure device
KR102042012B1 (en) Exposure apparatus based on dmd capable high speed exposure and low speed exposure
KR102456281B1 (en) Auxiliary exposure device
TWI700550B (en) Pattern drawing apparatus and pattern drawing method
JP2014149392A (en) Pattern forming apparatus and pattern forming method
KR20120062513A (en) Method and apparatus of fabricating light guide plate, lcd module including light guide plate
JP2012220592A (en) Exposure device using micro lens array
JP2003004953A (en) Lighting optical equipment
JP2006228794A (en) Illuminating optical device, exposure device, and method of exposure
JP2007005517A (en) Light source unit, exposure device, and exposure method
TWM572064U (en) Scanning exposure equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12879881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12879881

Country of ref document: EP

Kind code of ref document: A1