JP6413570B2 - Light source device - Google Patents

Light source device Download PDF

Info

Publication number
JP6413570B2
JP6413570B2 JP2014202038A JP2014202038A JP6413570B2 JP 6413570 B2 JP6413570 B2 JP 6413570B2 JP 2014202038 A JP2014202038 A JP 2014202038A JP 2014202038 A JP2014202038 A JP 2014202038A JP 6413570 B2 JP6413570 B2 JP 6413570B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
solid
source device
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014202038A
Other languages
Japanese (ja)
Other versions
JP2016068052A (en
Inventor
祥平 前田
祥平 前田
剛雄 加藤
剛雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Priority to JP2014202038A priority Critical patent/JP6413570B2/en
Priority to KR1020150033797A priority patent/KR102297802B1/en
Priority to TW104109536A priority patent/TWI633376B/en
Priority to CN201520173129.2U priority patent/CN204516760U/en
Publication of JP2016068052A publication Critical patent/JP2016068052A/en
Application granted granted Critical
Publication of JP6413570B2 publication Critical patent/JP6413570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明の実施形態は、液晶の硬化などに用いられ、複数の固体発光素子を備えた光源装置に関する。   Embodiments described herein relate generally to a light source device that is used for curing liquid crystal or the like and includes a plurality of solid state light emitting elements.

現在、液晶パネルの硬化や重合、貼り合わせなどの光反応工程において、紫外線を放出する固体発光素子を有する光源装置が用いられる。光源装置は、複数の固体発光素子を直列に接続して構成される固体発光素子列を並列に複数接続して、所定の面積に紫外線を照射する。   Currently, a light source device having a solid light-emitting element that emits ultraviolet rays is used in a photoreaction process such as curing, polymerization, and bonding of a liquid crystal panel. The light source device irradiates a predetermined area with ultraviolet rays by connecting in parallel a plurality of solid light emitting element arrays configured by connecting a plurality of solid light emitting elements in series.

国際公開第2014/103598号International Publication No. 2014/103598

ところで、従来の光源装置においては、点灯時の固体発光素子列間の温度のばらつきにより、不均一な照度で紫外線を照射してしまうことがある。したがって、光源装置においては、被照射物に対する紫外線の不均一な照射を抑制することが求められる。   By the way, in the conventional light source device, ultraviolet rays may be irradiated with non-uniform illuminance due to temperature variation between solid-state light emitting element arrays during lighting. Therefore, in the light source device, it is required to suppress non-uniform irradiation of ultraviolet rays on the irradiation object.

本発明は、被照射物に対する紫外線の不均一な照射を抑制する光源装置を提供することを目的とする。   An object of this invention is to provide the light source device which suppresses the non-uniform irradiation of the ultraviolet-ray with respect to a to-be-irradiated object.

実施形態の光源装置は、発光部と、電流調整手段と、放熱手段と、制御手段を具備する。発光部は、直列に接続されかつ所定の線上に配置された、紫外線を放出する複数の固体発光素子を有する固体発光素子列を備える。発光部は、固体発光素子列を所定の線に交差する方向に複数並べて配置している。電流調整手段は、2以上設けられ、発光部の1以上の固体発光素子列に対応しかつ対応する固体発光素子列の固体発光素子に流れる電流値を変更可能である。放熱手段は、所定の線に交差する方向に流体を流動させて発光部の交差する方向に隣り合う2以上の固体発光素子列の固体発光素子が発する熱を放熱する。制御手段は、電流調整手段を制御する。制御手段は、複数の固体発光素子列の固体発光素子が放出する紫外線の相対照度が等しくなるように、電流調整手段に固体発光素子列の固体発光素子に流れる電流値を変更させる。   The light source device according to the embodiment includes a light emitting unit, a current adjusting unit, a heat radiating unit, and a control unit. The light emitting unit includes a solid light emitting element array having a plurality of solid light emitting elements that are connected in series and arranged on a predetermined line and emit ultraviolet rays. The light emitting unit has a plurality of solid light emitting element arrays arranged in a direction intersecting a predetermined line. Two or more current adjusting means are provided, and can correspond to one or more solid light emitting element rows of the light emitting section and can change a current value flowing through the solid light emitting elements of the corresponding solid light emitting element row. The heat dissipating means dissipates heat generated by the solid light emitting elements of two or more solid light emitting element arrays adjacent to each other in the direction in which the light emitting units intersect by flowing a fluid in a direction intersecting a predetermined line. The control means controls the current adjusting means. The control means causes the current adjusting means to change the value of the current flowing through the solid light emitting elements of the solid light emitting element array so that the relative illuminance of ultraviolet rays emitted from the solid light emitting elements of the plurality of solid light emitting element arrays becomes equal.

本発明によれば、被照射物に対する紫外線の不均一な照射を抑制する光源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the light source device which suppresses the non-uniform irradiation of the ultraviolet-ray with respect to a to-be-irradiated object can be provided.

図1は、実施形態に係る光源装置を備えた紫外線照射装置の概略の構成を示す図である。FIG. 1 is a diagram illustrating a schematic configuration of an ultraviolet irradiation device including a light source device according to an embodiment. 図2は、図1中のII−II線の断面図である。2 is a cross-sectional view taken along line II-II in FIG. 図3は、実施形態に係る光源装置の発光部を下方から示す概略の構成を示すブロック図である。FIG. 3 is a block diagram illustrating a schematic configuration of the light emitting unit of the light source device according to the embodiment from below. 図4は、実施形態1の変形例1に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。FIG. 4 is a block diagram illustrating a schematic configuration of a schematic configuration of the light source device according to the first modification of the first embodiment as viewed from below. 図5は、実施形態1の変形例2に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。FIG. 5 is a block diagram illustrating a schematic configuration of a schematic configuration of the light source device according to the second modification of the first embodiment as seen from below. 図6は、実施形態2に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。FIG. 6 is a block diagram illustrating a schematic configuration of the light source device according to the second embodiment, which is illustrated from below. 図7は、実施形態3に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。FIG. 7 is a block diagram illustrating a schematic configuration of the light source device according to the third embodiment, which is illustrated from below. 図8は、実施形態4に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。FIG. 8 is a block diagram illustrating a schematic configuration of the light source device according to the fourth embodiment, which is illustrated from below. 図9は、実施形態5に係る光源装置の構成を示す図である。FIG. 9 is a diagram illustrating a configuration of the light source device according to the fifth embodiment. 図10は、実施形態6に係る光源装置を備えた紫外線照射装置のY軸方向視の側面図である。FIG. 10 is a side view of the ultraviolet irradiation device including the light source device according to the sixth embodiment when viewed in the Y-axis direction. 図11は、実施形態6に係る光源装置の概略の構成を示す斜視図である。FIG. 11 is a perspective view illustrating a schematic configuration of the light source device according to the sixth embodiment. 図12は、実施形態6に係る光源装置の側面図である。FIG. 12 is a side view of the light source device according to the sixth embodiment. 図13は、実施形態6の変形例1に係る光源装置の概略の構成を示す斜視図である。FIG. 13 is a perspective view illustrating a schematic configuration of a light source device according to Modification 1 of Embodiment 6. 図14は、実施形態6の変形例2に係る光源装置の概略の構成を示す斜視図である。FIG. 14 is a perspective view illustrating a schematic configuration of a light source device according to Modification 2 of Embodiment 6.

以下で説明する実施形態等に係る光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2は、発光部20と、電流調整手段30と、放熱手段40と、制御手段70を具備する。発光部20は、直列に接続されかつ所定の線上に配置された、紫外線を放出する複数の固体発光素子23を有する固体発光素子列22を備える。発光部20は、固体発光素子列22を所定の線に交差する方向に複数並べて配置している。電流調整手段30は、2以上設けられ、発光部20の1以上の固体発光素子列22に対応しかつ対応する固体発光素子列22の固体発光素子23に流れる電流値を変更可能である。放熱手段40は、所定の線に交差する方向に流体を流動させて発光部20の交差する方向に隣り合う2以上の固体発光素子列22の固体発光素子23が発する熱を放熱する。制御手段70は、電流調整手段30を制御する。制御手段70は、複数の固体発光素子列22の固体発光素子23が放出する紫外線の相対照度が等しくなるように、電流調整手段30に固体発光素子列22の固体発光素子23に流れる電流値を変更させる。   The light source devices 1, 1-1, 1-2, 2, 4, 5, 6, 6-1, and 6-2 according to the embodiments and the like described below include a light emitting unit 20, a current adjusting unit 30, and the like. And a heat dissipating means 40 and a control means 70. The light emitting unit 20 includes a solid light emitting element array 22 having a plurality of solid light emitting elements 23 that are connected in series and arranged on a predetermined line and emit ultraviolet rays. The light emitting unit 20 has a plurality of solid light emitting element arrays 22 arranged in a direction intersecting a predetermined line. Two or more current adjusting means 30 are provided, and can correspond to one or more solid light emitting element rows 22 of the light emitting section 20 and can change a current value flowing through the solid light emitting element 23 of the corresponding solid light emitting element row 22. The heat dissipating means 40 dissipates heat generated by the solid light emitting elements 23 of the two or more solid light emitting element arrays 22 adjacent to each other in the intersecting direction of the light emitting units 20 by flowing a fluid in a direction intersecting a predetermined line. The control unit 70 controls the current adjustment unit 30. The control means 70 sets the current value flowing through the solid light emitting elements 23 of the solid light emitting element array 22 to the current adjusting means 30 so that the relative illuminance of ultraviolet rays emitted from the solid light emitting elements 23 of the plurality of solid light emitting element arrays 22 becomes equal. Change it.

また、以下で説明する実施形態等に係る光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2において、発光部20の所定の位置に設けられかつ所定の位置の温度を検出可能な温度検出手段60を具備し、制御手段70は、温度検出手段60の検出結果に基づいて、電流調整手段30に対応する固体発光素子列22の固体発光素子23に流れる電流値を変更させる。   Further, in the light source devices 1, 1-1, 1-2, 2, 3, 4, 5, 6-1, and 6-2 according to the embodiments and the like described below, The temperature detecting means 60 is provided and capable of detecting the temperature at a predetermined position. The control means 70 is based on the detection result of the temperature detecting means 60 and the solid state light emitting element array 22 corresponding to the current adjusting means 30. The value of the current flowing through the light emitting element 23 is changed.

また、以下で説明する実施形態等に係る光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2において、温度検出手段60を、流体の流動方向に沿って間隔をあけて複数設ける。   In the light source devices 1,1-1,1-2,2,3,4,5,6,6-1,6-2 according to the embodiments described below, the temperature detecting means 60 is connected to the fluid. A plurality are provided at intervals along the flow direction.

また、以下で説明する実施形態等に係る光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2において、固体発光素子23は、ピーク波長が240nm以上450nm以下の紫外線を放出する。   Further, in the light source devices 1, 1-1, 1-2, 2, 4, 4, 6, 6-1, and 6-2 according to the embodiments described below, the solid-state light emitting element 23 has a peak wavelength. Emits ultraviolet rays of 240 nm to 450 nm.

[実施形態1]
次に、本発明の実施形態1に係る光源装置1を図面に基づいて説明する。図1は、実施形態に係る光源装置を備えた紫外線照射装置の概略の構成を示す図、図2は、図1中のII−II線の断面図、図3は、実施形態に係る光源装置の発光部を下方から示す概略の構成を示すブロック図である。
[Embodiment 1]
Next, the light source device 1 according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a schematic configuration of an ultraviolet irradiation apparatus including a light source device according to the embodiment, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 is a light source device according to the embodiment. It is a block diagram which shows the schematic structure which shows the light emission part from the bottom.

実施形態1に係る光源装置1(以下、単に光源装置と記す)は、図1に示された紫外線照射装置100を構成する。紫外線照射装置100は、例えば、液晶パネルの硬化や重合、貼り合わせなどの光反応工程に用いられ、所定の波長の紫外線を被照射物W(図1に示す)に照射する装置である。   The light source device 1 according to the first embodiment (hereinafter simply referred to as the light source device) constitutes the ultraviolet irradiation device 100 shown in FIG. The ultraviolet irradiation apparatus 100 is an apparatus that irradiates an object W (shown in FIG. 1) with ultraviolet rays having a predetermined wavelength, for example, used in photoreaction processes such as curing, polymerization, and bonding of liquid crystal panels.

紫外線照射装置100は、図1に示すように、光源装置1と、被照射物Wを載置面10a上に載置するステージ10などを備えている。なお、以下、載置面10aと平行な互いに直交する方向をX軸方向、Y軸方向と記し、載置面10aと直交する方向をZ軸方向と記す。光源装置1は、発光部20と、複数の電流調整手段30(図3に示す)と、放熱手段40と、筺体50と、温度検出手段60と、制御手段70を具備する。   As shown in FIG. 1, the ultraviolet irradiation device 100 includes a light source device 1 and a stage 10 on which an object to be irradiated W is placed on a placement surface 10a. Hereinafter, directions orthogonal to each other parallel to the mounting surface 10a are referred to as an X-axis direction and a Y-axis direction, and a direction orthogonal to the mounting surface 10a is referred to as a Z-axis direction. The light source device 1 includes a light emitting unit 20, a plurality of current adjusting means 30 (shown in FIG. 3), a heat radiating means 40, a housing 50, a temperature detecting means 60, and a control means 70.

発光部20は、図1及び図3に示すように、実装基板21(基板に相当)と、複数の固体発光素子列22とを備える。実装基板21は、X軸方向及びY軸方向、即ち載置面10aと平行に配置される。実装基板21は、載置面10aとZ軸方向に沿って対向する表面21a上に固体発光素子列22を構成する複数の固体発光素子23を実装している。実装基板21は、固体発光素子23を、X軸方向とY軸方向との双方に沿って表面21aに並べて、面上に配置している。実装基板21は、固体発光素子23を予め定められたパターン通りに接続する。   As shown in FIGS. 1 and 3, the light emitting unit 20 includes a mounting substrate 21 (corresponding to a substrate) and a plurality of solid state light emitting element arrays 22. The mounting substrate 21 is disposed in the X-axis direction and the Y-axis direction, that is, parallel to the placement surface 10a. The mounting substrate 21 has a plurality of solid-state light-emitting elements 23 constituting the solid-state light-emitting element array 22 mounted on a surface 21 a that faces the mounting surface 10 a along the Z-axis direction. The mounting substrate 21 has the solid-state light emitting elements 23 arranged on the surface side by side on the surface 21a along both the X-axis direction and the Y-axis direction. The mounting substrate 21 connects the solid-state light emitting elements 23 according to a predetermined pattern.

複数の固体発光素子列22は、実装基板21の表面21a上に実装された複数の固体発光素子23を有する。各固体発光素子列22を構成する固体発光素子23は、実装基板21上に所定の線上としてのX軸方向と平行な直線上に配置され、かつアノードとカソードとが直列に接続されている。固体発光素子23は、紫外線を放出する。固体発光素子列22を構成する固体発光素子23には、直流電源24(図3に示す)からの電力が供給される。発光部20は、複数の固体発光素子列22を所定の線としてのX軸方向に直交(交差)するY軸方向に複数並べて配置している。複数の固体発光素子列22は、互いに並列に接続されて、直流電源24に対して並列に接続されている。このために、複数の固体発光素子列22には、直流電源24から供給される電力がX軸方向と平行な図1〜図3に示す矢印Kに沿って電流として流れることとなる。こうして、発光部20は、n(自然数)個の固体発光素子列22を有している。即ち、発光部20は、固体発光素子列として、第1固体発光素子列22、第2固体発光素子列22、・・・、第n−1固体発光素子列22、第n固体発光素子列22を有している。   The plurality of solid light emitting element arrays 22 have a plurality of solid light emitting elements 23 mounted on the surface 21 a of the mounting substrate 21. The solid light emitting elements 23 constituting each solid light emitting element array 22 are arranged on a straight line parallel to the X-axis direction as a predetermined line on the mounting substrate 21, and an anode and a cathode are connected in series. The solid state light emitting device 23 emits ultraviolet rays. Electric power from a DC power supply 24 (shown in FIG. 3) is supplied to the solid state light emitting elements 23 constituting the solid state light emitting element array 22. The light emitting unit 20 includes a plurality of solid state light emitting element arrays 22 arranged in the Y axis direction orthogonal to (crossing) the X axis direction as a predetermined line. The plurality of solid light emitting element arrays 22 are connected in parallel to each other and connected in parallel to the DC power supply 24. For this reason, the power supplied from the DC power supply 24 flows through the plurality of solid state light emitting element arrays 22 as current along the arrow K shown in FIGS. 1 to 3 parallel to the X-axis direction. Thus, the light emitting unit 20 has n (natural number) solid light emitting element rows 22. That is, the light emitting unit 20 includes a first solid light emitting element array 22, a second solid light emitting element array 22,..., An n-1 solid light emitting element array 22, an nth solid light emitting element array 22 as solid light emitting element arrays. have.

固体発光素子列22を構成する固体発光素子23は、一様にあらゆる方向に振動した紫外線を放出するものであり、LED(Light Emitting Diode)、LD(Laser Diode)などで構成される。固体発光素子23は、ピーク波長が240nm以上450nm以下の紫外線を放出するものである。なお、本明細書でいうピーク波長とは、固体発光素子23が放出する紫外線のうちの相対照度が最も強い紫外線の波長をいう。また、本発明でいう相対照度とは、光放出部10、すなわち、固体発光素子12から放出される紫外線の相対照度を表す指標である。相対照度は、例えばウシオ電機製の紫外線積算光量計UIT−250、受光器UVD−S365などのいわゆる照度計を用いて測定した照度を規格化し相対な照度として用いることができる。なお、照度計は上記に限定されず、例えばオーク製作所製のUV−MO3A、受光器UV−SN35を用いてもよい。また、相対照度は、例えば被照射物Wが置かれる位置に、紫外線を受光して電気信号を出力する受光素子を用いて相対的に紫外線の強度の変化を検出するものでもよい。   The solid-state light-emitting elements 23 constituting the solid-state light-emitting element array 22 emit ultraviolet rays that oscillate uniformly in all directions, and are composed of LEDs (Light Emitting Diodes), LDs (Laser Diodes), and the like. The solid state light emitting device 23 emits ultraviolet light having a peak wavelength of 240 nm or more and 450 nm or less. In addition, the peak wavelength as used in this specification means the wavelength of an ultraviolet-ray with the strongest relative illumination among the ultraviolet-rays which the solid light emitting element 23 discharge | releases. In addition, the relative illuminance referred to in the present invention is an index representing the relative illuminance of ultraviolet rays emitted from the light emitting unit 10, that is, the solid light emitting element 12. Relative illuminance can be used as relative illuminance by standardizing illuminance measured using a so-called illuminometer such as Ushio Electric's UV integrated light meter UIT-250, photoreceiver UVD-S365. The illuminance meter is not limited to the above, and for example, UV-MO3A manufactured by Oak Manufacturing Co., Ltd., or a light receiver UV-SN35 may be used. Further, the relative illuminance may be, for example, a value in which a change in the intensity of ultraviolet rays is relatively detected by using a light receiving element that receives ultraviolet rays and outputs an electrical signal at a position where the irradiated object W is placed.

電流調整手段30は、2以上設けられ、発光部20の1以上の固体発光素子列22に対応して設けられている。実施形態1では、電流調整手段30は、固体発光素子列22と1対1で対応している。電流調整手段30は、例えば、抵抗値が変更可能な可変抵抗器などで構成され、対応する固体発光素子列22を構成する複数の固体発光素子23と直列に接続されている。電流調整手段30は、抵抗値を変更することで、対応する固体発光素子列22の固体発光素子23に流れる電流値を変更可能なものである。電流調整手段30は、実装基板21に実装されてもよく、実装基板21外に配置されてもよい。   Two or more current adjusting means 30 are provided corresponding to one or more solid light emitting element rows 22 of the light emitting unit 20. In the first embodiment, the current adjusting unit 30 corresponds to the solid state light emitting element array 22 on a one-to-one basis. The current adjusting means 30 is composed of, for example, a variable resistor whose resistance value can be changed, and is connected in series with a plurality of solid state light emitting elements 23 constituting the corresponding solid state light emitting element array 22. The current adjusting means 30 can change the value of the current flowing through the solid light emitting element 23 of the corresponding solid light emitting element array 22 by changing the resistance value. The current adjusting unit 30 may be mounted on the mounting substrate 21 or may be disposed outside the mounting substrate 21.

放熱手段40は、所定の線としてのX軸方向に対して直交(交差)するY軸方向に実装基板21の裏面21bに沿って、流体としての気体を流動させて発光部20の交差する方向としてのY軸方向に隣り合う2以上の固体発光素子列22の固体発光素子23が発する熱を光源装置1外に放熱するものである。実施形態1では、放熱手段40は、Y軸方向に気体を流動させて、すべての固体発光素子列22の固体発光素子23が発する熱を光源装置1外に放熱する。放熱手段40は、図1及び図2に示すように、ヒートシンク41と、放熱ファン42などで構成されている。ヒートシンク41は、発光部20の実装基板21の表面21aの裏側の裏面21bに取り付けられている。ヒートシンク41は、アルミニウム合金などの熱抵抗の低い材料(金属など)で構成されている。本実施形態で、ヒートシンク41は、実装基板21の裏面21bに取り付けられた平板状の基板取付部41aと、基板取付部41aからステージ10から離れる方向に突出した複数のフィン41bとを一体に備えている。フィン41bは、基板取付部41aからZ軸方向に突出しかつY軸方向に直線状に延びた平板状に形成され、X軸方向に間隔をあけて等間隔に複数設けられている。   The heat dissipating means 40 causes the gas as a fluid to flow along the back surface 21b of the mounting substrate 21 in the Y-axis direction orthogonal to (intersects) the X-axis direction as a predetermined line, so that the light emitting unit 20 intersects. The heat generated by the solid light emitting elements 23 of the two or more solid light emitting element rows 22 adjacent to each other in the Y-axis direction is radiated to the outside of the light source device 1. In the first embodiment, the heat radiating means 40 dissipates heat generated by the solid light emitting elements 23 of all the solid light emitting element arrays 22 to the outside of the light source device 1 by flowing a gas in the Y-axis direction. As shown in FIGS. 1 and 2, the heat radiating means 40 includes a heat sink 41 and a heat radiating fan 42. The heat sink 41 is attached to the back surface 21 b on the back side of the front surface 21 a of the mounting substrate 21 of the light emitting unit 20. The heat sink 41 is made of a material having a low thermal resistance (metal or the like) such as an aluminum alloy. In the present embodiment, the heat sink 41 is integrally provided with a flat plate-like substrate attachment portion 41 a attached to the back surface 21 b of the mounting substrate 21 and a plurality of fins 41 b protruding from the substrate attachment portion 41 a in the direction away from the stage 10. ing. The fins 41b are formed in a flat plate shape protruding in the Z-axis direction and extending linearly in the Y-axis direction from the board mounting portion 41a, and a plurality of fins 41b are provided at regular intervals with an interval in the X-axis direction.

放熱ファン42は、ヒートシンク41のY軸方向の一端部に取り付けられて、回転することで、光源装置1外の流体としての気体をヒートシンク41のフィン41b間などに取り込み、フィン41b間に流動させた後、光源装置1外に排出する。放熱ファン42は、気体をフィン41b間に流動させることで、固体発光素子列22の固体発光素子23が発する熱を実装基板21、ヒートシンク41などを介して、光源装置1外に放熱する。   The heat radiating fan 42 is attached to one end of the heat sink 41 in the Y-axis direction, and rotates to take in gas as a fluid outside the light source device 1 between the fins 41b of the heat sink 41 and flow between the fins 41b. After that, it is discharged out of the light source device 1. The heat dissipating fan 42 dissipates heat generated by the solid light emitting elements 23 of the solid light emitting element array 22 to the outside of the light source device 1 through the mounting substrate 21 and the heat sink 41 by causing the gas to flow between the fins 41b.

また、本発明で、放熱手段40は、実装基板21の裏面21bに取り付けられかつ内側が密閉されて内側に流体としての液体が流動される箱状のヒートパイプと、ヒートパイプ内の液体を流動させるポンプなどで構成されてもよい。   Further, in the present invention, the heat radiating means 40 is attached to the back surface 21b of the mounting substrate 21 and sealed inside, and a liquid as a fluid flows inside, and a liquid in the heat pipe flows. It may be composed of a pump or the like.

筺体50は、実装基板21の裏面21b及び放熱手段40のヒートシンク41を覆うものである。本実施形態で、筺体50は、Y軸方向の両端部が開口した箱状に形成されている。筺体50は、放熱手段40の放熱ファン42が回転することで、放熱ファン42から離れた側の一方の開口部50aを通して流体としての気体を取り込み、放熱ファン42寄りの他方の開口部50bからヒートシンク41により加熱された気体を外部に排出する。   The housing 50 covers the back surface 21 b of the mounting substrate 21 and the heat sink 41 of the heat radiating means 40. In this embodiment, the housing 50 is formed in a box shape with both ends in the Y-axis direction being open. The housing 50 takes in gas as a fluid through one opening 50a on the side away from the heat radiating fan 42 as the heat radiating fan 42 of the heat radiating means 40 rotates, and heat sinks from the other opening 50b near the heat radiating fan 42. The gas heated by 41 is discharged outside.

温度検出手段60は、発光部20の所定の位置に設けられかつ所定の位置の温度を検出可能なものである。実施形態1では、温度検出手段60は、放熱手段40による流体としての気体の流動方向であるY軸方向に間隔をあけて発光部20に複数設けられている。実施形態1で、温度検出手段60は、実装基板21の表面21aの筺体50の一方の開口部50a寄りの端のX軸方向の中央と、実装基板21の表面21aの筺体50の他方の開口部50b寄りの端のX軸方向の中央とのそれぞれに設けられ、合計二つ設けられている。温度検出手段60は、検出結果を制御手段70に出力する。   The temperature detecting means 60 is provided at a predetermined position of the light emitting unit 20 and can detect the temperature at the predetermined position. In the first embodiment, a plurality of temperature detecting means 60 are provided in the light emitting unit 20 with an interval in the Y-axis direction that is the flow direction of the gas as the fluid by the heat radiating means 40. In the first embodiment, the temperature detecting means 60 includes the center in the X-axis direction of the end of the housing 50 on the surface 21a of the mounting substrate 21 near the one opening 50a and the other opening of the housing 50 on the surface 21a of the mounting substrate 21. A total of two are provided at each of the ends near the portion 50b and the center in the X-axis direction. The temperature detection unit 60 outputs the detection result to the control unit 70.

制御手段70は、紫外線照射装置100による紫外線の照射動作を制御するものである。制御手段70は、例えばCPU等で構成された演算処理装置やROM、RAM等を備える図示しないマイクロプロセッサを主体として構成されており、処理動作の状態を表示する表示手段や、オペレータが処理内容情報などを登録する際に用いる操作手段と接続されている。   The control means 70 controls the ultraviolet irradiation operation by the ultraviolet irradiation device 100. The control means 70 is mainly composed of an arithmetic processing unit constituted by a CPU or the like, and a microprocessor (not shown) provided with a ROM, a RAM, etc. Etc. are connected to the operation means used when registering.

制御手段70は、光源装置1の発光部20の各固体発光素子列22に対応して設けられた電流調整手段30を制御して、各固体発光素子列22内の固体発光素子23に流れる電流値を変更する。制御手段70は、各固体発光素子列22内の固体発光素子23に流れる電流値を変更する際に、複数の固体発光素子列22の固体発光素子23が放出する紫外線の相対照度が等しくなるように、温度検出手段60の検出結果に基づいて、各電流調整手段30に対応する固体発光素子列22内の固体発光素子23に流れる電流値を変更させる。   The control means 70 controls the current adjusting means 30 provided corresponding to each solid light emitting element array 22 of the light emitting unit 20 of the light source device 1, and the current flowing through the solid light emitting elements 23 in each solid light emitting element array 22. Change the value. When the control means 70 changes the value of the current flowing through the solid state light emitting elements 23 in each solid state light emitting element array 22, the relative illuminance of ultraviolet rays emitted from the solid state light emitting elements 23 of the plurality of solid state light emitting element arrays 22 becomes equal. Further, based on the detection result of the temperature detection means 60, the value of the current flowing through the solid state light emitting elements 23 in the solid state light emitting element array 22 corresponding to each current adjusting means 30 is changed.

次に、紫外線照射装置100の被照射物Wの処理動作を説明する。まず、オペレータが処理内容情報を制御手段70に登録し、処理動作の開始指示があった場合に、処理動作を開始する。処理動作が開始されると、制御手段70は、光源装置1の放熱手段40の放熱ファン42を作動させる。   Next, the processing operation of the irradiation object W of the ultraviolet irradiation device 100 will be described. First, the operator registers the processing content information in the control means 70, and starts the processing operation when there is an instruction to start the processing operation. When the processing operation is started, the control unit 70 operates the heat dissipation fan 42 of the heat dissipation unit 40 of the light source device 1.

そして、紫外線照射装置100は、放熱手段40の放熱ファン42を作動させてから所定時間経過すると、ステージ10の載置面10a上に被照射物Wを載置し、発光部20の各固体発光素子列22の各固体発光素子23から紫外線を放出して、載置面10a上の被照射物Wに紫外線を照射する。制御手段70は、電流調整手段30を制御して、各固体発光素子列22に電力を印加する。一定時間、紫外線が照射された被照射物Wは、ステージ10の載置面10a上から取り外され、紫外線照射前の被照射物Wがステージ10の載置面10aに載置される。前述した工程と同様に、紫外線を照射する。   Then, the ultraviolet irradiation device 100 places the irradiated object W on the placement surface 10a of the stage 10 after a predetermined time has elapsed since the heat radiation fan 42 of the heat radiation means 40 is operated, and each solid light emission of the light emitting unit 20. Ultraviolet rays are emitted from each solid state light emitting element 23 in the element row 22 to irradiate the irradiated object W on the mounting surface 10a with ultraviolet rays. The control means 70 controls the current adjusting means 30 to apply power to each solid state light emitting element array 22. The irradiated object W irradiated with ultraviolet rays for a certain period of time is removed from the placement surface 10 a of the stage 10, and the irradiated object W before ultraviolet irradiation is placed on the placement surface 10 a of the stage 10. In the same manner as described above, ultraviolet rays are irradiated.

本発明の紫外線照射装置100は、必要に応じて、光源装置1とステージ10との間にフィルタや光学素子を設けてよい。   The ultraviolet irradiation device 100 of the present invention may be provided with a filter or an optical element between the light source device 1 and the stage 10 as necessary.

前述した構成の実施形態に係る光源装置1は、制御手段70が複数の固体発光素子列22の固体発光素子23が放出する紫外線の相対照度が等しくなるように、各電流調整手段30に対応する固体発光素子列22の固体発光素子23に流れる電流値を変更させる。このために、光源装置1は、被照射物Wに照射される紫外線の照度ムラを抑制できる。よって、光源装置1は、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   The light source device 1 according to the embodiment having the configuration described above corresponds to each current adjusting unit 30 such that the control unit 70 equalizes the relative illuminance of ultraviolet rays emitted from the solid state light emitting elements 23 of the plurality of solid state light emitting element arrays 22. The value of the current flowing through the solid light emitting element 23 of the solid light emitting element array 22 is changed. For this reason, the light source device 1 can suppress the illuminance unevenness of the ultraviolet rays irradiated to the irradiated object W. Therefore, the light source device 1 can suppress non-uniform irradiation of ultraviolet rays onto the irradiation object W.

また、光源装置1は、発光部20の所定の位置としての実装基板21の表面21a上の温度を検出する温度検出手段60を備え、制御手段70が温度検出手段60の検出結果に基づいて、各電流調整手段30を制御する。このために、光源装置1は、被照射物Wに照射される紫外線の照度ムラを抑制できる。このために、光源装置1は、複数の固体発光素子列22の固体発光素子23が放出する紫外線の相対照度が極力等しくなるようにすることができ、被照射物Wに照射される紫外線の照度ムラを抑制できる。よって、光源装置1は、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Further, the light source device 1 includes a temperature detection unit 60 that detects a temperature on the surface 21a of the mounting substrate 21 as a predetermined position of the light emitting unit 20, and the control unit 70 is based on the detection result of the temperature detection unit 60. Each current adjusting means 30 is controlled. For this reason, the light source device 1 can suppress the illuminance unevenness of the ultraviolet rays irradiated to the irradiated object W. For this reason, the light source device 1 can make the relative illuminance of the ultraviolet rays emitted from the solid light emitting elements 23 of the plurality of solid light emitting element arrays 22 as equal as possible, and the illuminance of the ultraviolet rays irradiated to the irradiation object W. Unevenness can be suppressed. Therefore, the light source device 1 can suppress non-uniform irradiation of ultraviolet rays onto the irradiation object W.

また、光源装置1には、温度検出手段60を、流体の流動方向に沿って間隔をあけて複数設けることで、各電流調整手段30に対応する固体発光素子列22の固体発光素子23に流れる電流値を変更させることができる。このために、光源装置1は、複数の固体発光素子列22の固体発光素子23が放出する紫外線の相対照度が極力等しくなるようにすることができ、被照射物Wに照射される紫外線の照度ムラを抑制できる。よって、光源装置1は、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Further, the light source device 1 is provided with a plurality of temperature detecting means 60 at intervals along the fluid flow direction, so that the light flows into the solid light emitting elements 23 of the solid light emitting element array 22 corresponding to each current adjusting means 30. The current value can be changed. For this reason, the light source device 1 can make the relative illuminance of the ultraviolet rays emitted from the solid light emitting elements 23 of the plurality of solid light emitting element arrays 22 as equal as possible, and the illuminance of the ultraviolet rays irradiated to the irradiation object W. Unevenness can be suppressed. Therefore, the light source device 1 can suppress non-uniform irradiation of ultraviolet rays onto the irradiation object W.

また、光源装置1には、固体発光素子22のピーク波長が240nm以上450nm以下の紫外線を放出することで、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Further, the light source device 1 emits ultraviolet rays having a peak wavelength of 240 nm or more and 450 nm or less of the solid light emitting element 22, thereby suppressing uneven irradiation of the ultraviolet rays onto the object W to be irradiated.

[変形例1]
次に、本発明の実施形態1の変形例1に係る光源装置1−1を図面に基づいて説明する。図4は、実施形態1の変形例1に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。図4において、前述した実施形態1と同一部分には、同一符号を付して説明を省略する。
[Modification 1]
Next, the light source device 1-1 according to the first modification of the first embodiment of the present invention will be described with reference to the drawings. FIG. 4 is a block diagram illustrating a schematic configuration of a schematic configuration of the light source device according to the first modification of the first embodiment as viewed from below. In FIG. 4, the same parts as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

実施形態1の変形例1に係る光源装置1−1は、図4に示すように、温度検出手段60を具備していない。さらに、光源装置1−1の制御手段70は、予め記憶しておいた値に基づき、電流調整手段30を制御する。   The light source device 1-1 according to the first modification of the first embodiment does not include the temperature detection unit 60 as illustrated in FIG. Furthermore, the control means 70 of the light source device 1-1 controls the current adjusting means 30 based on a value stored in advance.

実施形態1の変形例1に係る光源装置1−1は、実施形態1と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Similarly to the first embodiment, the light source device 1-1 according to the first modification of the first embodiment can suppress unevenness in the illuminance of the ultraviolet rays irradiated to the irradiation object W, and uneven irradiation of the ultraviolet rays onto the irradiation object W. Can be suppressed.

[変形例2]
次に、本発明の実施形態1の変形例2に係る光源装置1−2を図面に基づいて説明する。図5は、実施形態1の変形例2に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。図5において、前述した実施形態1と同一部分には、同一符号を付して説明を省略する。
[Modification 2]
Next, a light source device 1-2 according to Modification 2 of Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 5 is a block diagram illustrating a schematic configuration of a schematic configuration of the light source device according to the second modification of the first embodiment as seen from below. In FIG. 5, the same parts as those of the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.

実施形態1の変形例2に係る光源装置1−2は、図5に示すように、各固体発光素子列22に対応させた温度検出手段60を具備している。即ち、変形例2に係る光源装置1−2は、固体発光素子列22と温度検出手段60とが1対1で対応し、対応している固体発光素子列22と温度検出手段60とが近接する位置に配置されている。   As illustrated in FIG. 5, the light source device 1-2 according to the second modification of the first embodiment includes a temperature detection unit 60 corresponding to each solid-state light emitting element array 22. That is, in the light source device 1-2 according to the modified example 2, the solid state light emitting element array 22 and the temperature detecting unit 60 correspond one-to-one, and the corresponding solid state light emitting element array 22 and the temperature detecting unit 60 are close to each other. It is arranged at the position to do.

実施形態1の変形例2に係る光源装置1−2は、実施形態1と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Similarly to the first embodiment, the light source device 1-2 according to the second modification of the first embodiment can suppress unevenness in the illuminance of the ultraviolet rays irradiated to the irradiation object W, and uneven irradiation of the ultraviolet rays onto the irradiation object W. Can be suppressed.

[実施形態2]
次に、本発明の実施形態2に係る光源装置2を図面に基づいて説明する。図6は、実施形態2に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。図6において、前述した実施形態1等と同一部分には、同一符号を付して説明を省略する。
[Embodiment 2]
Next, a light source device 2 according to Embodiment 2 of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram illustrating a schematic configuration of the light source device according to the second embodiment, which is illustrated from below. In FIG. 6, the same parts as those in the first embodiment described above are denoted by the same reference numerals, and the description thereof is omitted.

実施形態2に係る光源装置2は、図6に示すように、各固体発光素子列22がX軸方向と平行な複数の直線上に直列に接続した固体発光素子23を配置している。また、図6には、温度検出手段60を省略しているが、実施形態2では、温度検出手段60を実施形態1、変形例2と同様に配置してもよい。   In the light source device 2 according to the second embodiment, as shown in FIG. 6, the solid light emitting elements 23 in which the solid light emitting element arrays 22 are connected in series on a plurality of straight lines parallel to the X-axis direction are arranged. In FIG. 6, the temperature detection unit 60 is omitted, but in the second embodiment, the temperature detection unit 60 may be arranged in the same manner as in the first embodiment and the second modification.

実施形態2に係る光源装置2は、実施形態1と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   Similarly to the first embodiment, the light source device 2 according to the second embodiment can suppress unevenness in the illuminance of the ultraviolet rays irradiated on the irradiation object W, and can suppress uneven irradiation of the ultraviolet rays on the irradiation object W. .

[実施形態3]
次に、本発明の実施形態3に係る光源装置3を図面に基づいて説明する。図7は、実施形態3に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。図7において、前述した実施形態1、実施形態2等と同一部分には、同一符号を付して説明を省略する。
[Embodiment 3]
Next, a light source device 3 according to Embodiment 3 of the present invention will be described with reference to the drawings. FIG. 7 is a block diagram illustrating a schematic configuration of the light source device according to the third embodiment, which is illustrated from below. In FIG. 7, the same parts as those in the first embodiment, the second embodiment, and the like described above are denoted by the same reference numerals and description thereof is omitted.

実施形態3に係る光源装置3は、図7に示すように、各固体発光素子列22がX軸方向と平行な複数の直線上に直列に接続した固体発光素子23を配置している。なお、実施形態3では、実施形態1と同様に、各固体発光素子列22をX軸方向と平行な1本の直線上に固体発光素子23を配置してもよい。また、図7には、温度検出手段60を省略しているが、実施形態3では、温度検出手段60を実施形態1、変形例2と同様に配置してもよい。   In the light source device 3 according to Embodiment 3, as shown in FIG. 7, the solid light emitting elements 23 in which the solid light emitting element arrays 22 are connected in series on a plurality of straight lines parallel to the X-axis direction are arranged. In the third embodiment, as in the first embodiment, each solid light emitting element array 22 may be arranged on one straight line parallel to the X-axis direction. In FIG. 7, the temperature detection unit 60 is omitted, but in the third embodiment, the temperature detection unit 60 may be arranged in the same manner as in the first embodiment and the second modification.

さらに、実施形態3に係る光源装置3の放熱手段40は、図7に示すように、Y軸方向の両端に気体を筺体50内に吸引するファン43を設け、Y軸方向の中央から筺体50外に気体を排出する排出口44を設けている。   Furthermore, as shown in FIG. 7, the heat radiating means 40 of the light source device 3 according to Embodiment 3 is provided with fans 43 that suck gas into the housing 50 at both ends in the Y-axis direction, and the housing 50 from the center in the Y-axis direction. A discharge port 44 for discharging gas is provided outside.

実施形態3に係る光源装置3は、実施形態1等と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   The light source device 3 according to the third embodiment can suppress unevenness in the illuminance of ultraviolet rays irradiated to the irradiation object W and suppress uneven irradiation of ultraviolet rays on the irradiation object W, as in the first embodiment. it can.

[実施形態4]
次に、本発明の実施形態4に係る光源装置4を図面に基づいて説明する。図8は、実施形態4に係る光源装置の概略の構成を下方から示す概略の構成を示すブロック図である。図8において、前述した実施形態1等と同一部分には、同一符号を付して説明を省略する。
[Embodiment 4]
Next, a light source device 4 according to Embodiment 4 of the present invention will be described with reference to the drawings. FIG. 8 is a block diagram illustrating a schematic configuration of the light source device according to the fourth embodiment, which is illustrated from below. In FIG. 8, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.

実施形態4に係る光源装置4は、各固体発光素子列22をX軸方向と平行な直線状に形成し、図8に示すように、互いに隣り合う各固体発光素子列22に流れる電流の向きを逆向きにしている。また、図8には、温度検出手段60を省略しているが、実施形態4では、温度検出手段60を実施形態1、変形例2と同様に配置してもよい。さらに、図8で、電流調整手段30を省略しているが、本発明では、各固体発光素子列22に対応させて電流調整手段30を設けている。また、図8では、制御手段70を省略している。   In the light source device 4 according to the fourth embodiment, each solid light emitting element array 22 is formed in a straight line parallel to the X-axis direction, and the direction of current flowing through each adjacent solid light emitting element array 22 as shown in FIG. Is reversed. In FIG. 8, the temperature detection means 60 is omitted, but in the fourth embodiment, the temperature detection means 60 may be arranged in the same manner as in the first embodiment and the second modification. Further, in FIG. 8, the current adjusting unit 30 is omitted, but in the present invention, the current adjusting unit 30 is provided corresponding to each solid light emitting element array 22. In FIG. 8, the control means 70 is omitted.

実施形態4に係る光源装置4は、実施形態1等と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   As in the first embodiment, the light source device 4 according to the fourth embodiment can suppress unevenness in the illuminance of the ultraviolet rays irradiated to the irradiation object W, and can suppress uneven irradiation of the ultraviolet rays onto the irradiation object W. it can.

[実施形態5]
次に、本発明の実施形態5に係る光源装置5を図面に基づいて説明する。図9(a)は、実施形態5に係る光源装置の側面図であり、図9(b)は、実施形態5に係る光源装置の概略の構成を下方から示す平面図である。図9において、前述した実施形態1等と同一部分には、同一符号を付して説明を省略する。
[Embodiment 5]
Next, a light source device 5 according to Embodiment 5 of the present invention will be described with reference to the drawings. FIG. 9A is a side view of the light source device according to the fifth embodiment, and FIG. 9B is a plan view showing a schematic configuration of the light source device according to the fifth embodiment from below. In FIG. 9, the same parts as those of the first embodiment described above are denoted by the same reference numerals and the description thereof is omitted.

実施形態5に係る光源装置5は、図9(a)に示すように、裏面21bが互いに間隔をあけて対向するように実装基板21を一対設け、各実装基板21の表面21a上にX軸方向と平行な複数の固体発光素子列22を設けている。また、筺体50が、実装基板21のX軸方向の両端を連結し、放熱手段40が実装基板21間でY軸方向に沿って気体を流動させる。また、図9には、温度検出手段60を省略しているが、実施形態5では、温度検出手段60を実施形態1、変形例2と同様に配置してもよい。さらに、図9で、電流調整手段30を省略しているが、本発明では、各固体発光素子列22に対応させて電流調整手段30を設けている。また、図9では、制御手段70を省略している。   As shown in FIG. 9A, the light source device 5 according to the fifth embodiment is provided with a pair of mounting substrates 21 so that the back surfaces 21b face each other with a space therebetween, and the X axis is placed on the surface 21a of each mounting substrate 21. A plurality of solid light emitting element arrays 22 parallel to the direction are provided. In addition, the housing 50 connects both ends of the mounting substrate 21 in the X-axis direction, and the heat radiating means 40 flows the gas between the mounting substrates 21 along the Y-axis direction. In FIG. 9, the temperature detection unit 60 is omitted, but in the fifth embodiment, the temperature detection unit 60 may be arranged similarly to the first embodiment and the second modification. Further, in FIG. 9, the current adjusting means 30 is omitted, but in the present invention, the current adjusting means 30 is provided corresponding to each solid-state light emitting element array 22. In FIG. 9, the control means 70 is omitted.

実施形態5に係る光源装置5は、実施形態1等と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   As in the first embodiment, the light source device 5 according to the fifth embodiment can suppress unevenness in the illuminance of ultraviolet rays irradiated to the irradiation object W, and suppress uneven irradiation of ultraviolet rays on the irradiation object W. it can.

[実施形態6]
次に、本発明の実施形態6に係る光源装置6を図面に基づいて説明する。図10は、実施形態6に係る光源装置を備えた紫外線照射装置のY軸方向視の側面図であり、図11は、実施形態6に係る光源装置の概略の構成を示す斜視図であり、図12は、実施形態6に係る光源装置の側面図である。図13は、実施形態6の変形例1に係る光源装置の概略の構成を示す斜視図であり、図14は、実施形態6の変形例2に係る光源装置の概略の構成を示す斜視図である。図10〜図14において、前述した実施形態1等と同一部分には、同一符号を付して説明を省略する。
[Embodiment 6]
Next, a light source device 6 according to Embodiment 6 of the present invention will be described with reference to the drawings. FIG. 10 is a side view of the ultraviolet irradiation device including the light source device according to the sixth embodiment when viewed in the Y-axis direction, and FIG. 11 is a perspective view illustrating a schematic configuration of the light source device according to the sixth embodiment. FIG. 12 is a side view of the light source device according to the sixth embodiment. 13 is a perspective view illustrating a schematic configuration of a light source device according to Modification 1 of Embodiment 6. FIG. 14 is a perspective view illustrating a schematic configuration of a light source device according to Modification 2 of Embodiment 6. is there. 10 to 14, the same parts as those of the first embodiment described above are denoted by the same reference numerals and the description thereof is omitted.

実施形態6に係る光源装置6は、図11及び図12に示すように、断面円環状の実装基板21の外周面21aに複数の固体発光素子列22を設けている。固体発光素子列22は、実装基板21の外周面21a上に所定の線としての周上に配置されかつ直列に接続された複数の固体発光素子23を有している。複数の固体発光素子列22は、所定の線に直交(交差)するY軸方向に複数並べて配置されている。放熱手段40は、Y軸方向に沿って実装基板21の内側に流体としての気体を流動させて、固体発光素子23が発する熱を放熱する。また、温度検出手段60を実装基板21の外周面21aのY軸方向の両端に設けている。さらに、実施形態6に係る光源装置6を備えた紫外線照射装置100は、光源装置6の固体発光素子23が放出した紫外線をステージ10の載置面10a上の被照射物Wに向かって反射するミラー101を備えている。   As shown in FIGS. 11 and 12, the light source device 6 according to Embodiment 6 includes a plurality of solid state light emitting element arrays 22 on the outer peripheral surface 21 a of the mounting substrate 21 having an annular cross section. The solid-state light-emitting element array 22 includes a plurality of solid-state light-emitting elements 23 that are arranged on a circumference as a predetermined line on the outer peripheral surface 21 a of the mounting substrate 21 and connected in series. The plurality of solid state light emitting element rows 22 are arranged side by side in the Y-axis direction orthogonal to (intersect) a predetermined line. The heat radiating means 40 radiates heat generated by the solid state light emitting device 23 by flowing a gas as a fluid inside the mounting substrate 21 along the Y-axis direction. Further, the temperature detecting means 60 is provided at both ends of the outer peripheral surface 21a of the mounting substrate 21 in the Y-axis direction. Furthermore, the ultraviolet irradiation device 100 including the light source device 6 according to the sixth embodiment reflects the ultraviolet rays emitted from the solid light emitting element 23 of the light source device 6 toward the irradiation object W on the mounting surface 10 a of the stage 10. A mirror 101 is provided.

また、実施形態6の変形例1に係る光源装置6−1は、図13に示すように、各固体発光素子列22に対応して温度検出手段60を設け、実施形態6の変形例2に係る光源装置6−2は、図14に示すように、温度検出手段60を設けていない。   In addition, as shown in FIG. 13, the light source device 6-1 according to the first modification of the sixth embodiment is provided with a temperature detecting unit 60 corresponding to each solid-state light emitting element array 22, and the second modification of the sixth embodiment is used. As shown in FIG. 14, the light source device 6-2 does not include the temperature detection unit 60.

実施形態6、変形例1及び変形例2に係る光源装置6,6−1,6−2は、実施形態1等と同様に、被照射物Wに照射される紫外線の照度ムラを抑制でき、被照射物Wに対する紫外線の不均一な照射を抑制することができる。   The light source devices 6, 6-1 and 6-2 according to the sixth embodiment, the first modification, and the second modification can suppress the illuminance unevenness of the ultraviolet rays irradiated to the irradiation object W, similarly to the first embodiment and the like. The non-uniform irradiation of the ultraviolet rays with respect to the irradiation object W can be suppressed.

前述した実施形態1〜6等の光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2は、液晶パネルの硬化や重合、貼り合わせなどの光反応工程に用いられる紫外線照射装置100を構成する例を示している。しかしながら、本発明の光源装置1,1−1,1−2,2,3,4,5,6,6−1,6−2は、例えば、半導体製造装置や化学物質の光化学反応などの多種多様な装置を構成してもよい。   The light source devices 1,1-1,1-2,2,3,4,5,6,6-1,6-2 of the first to sixth embodiments described above are liquid crystal panel curing, polymerization, bonding, etc. The example which comprises the ultraviolet irradiation device 100 used for this photoreaction process is shown. However, the light source device 1,1-1,1-2,2,3,4,5,6,6-1,6-2 of the present invention includes, for example, various types such as a semiconductor manufacturing apparatus and a photochemical reaction of a chemical substance. Various devices may be configured.

また、前述した実施形態1〜5では、X軸方向と平行な直線上に直列に接続した複数の固体発光素子23を並べて固体発光素子列22を構成したが、本発明では、これに限定されない。例えば、直列に接続した複数の固体発光素子23を所定の線としての円上に並べて、固体発光素子列22を構成しても良い。この場合、複数の固体発光素子列22は、同心円上に配置されることが望ましい。   Moreover, in Embodiment 1-5 mentioned above, although the solid-state light-emitting element row | line | column 22 was comprised by arranging the some solid-state light-emitting element 23 connected in series on the straight line parallel to a X-axis direction, in this invention, it is not limited to this. . For example, the solid light emitting element array 22 may be configured by arranging a plurality of solid state light emitting elements 23 connected in series on a circle as a predetermined line. In this case, it is desirable that the plurality of solid state light emitting element arrays 22 be arranged concentrically.

本発明の実施形態及び変形例を説明したが、これらの実施形態及び変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態及び変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態及び変形例は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although embodiments and modifications of the present invention have been described, these embodiments and modifications are presented as examples and are not intended to limit the scope of the invention. These embodiments and modifications can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalents thereof.

1,1−1,1−2,2,3,4,5,6,6−1,6−2 光源装置
20 発光部
21 実装基板(基板)
22 固体発光素子列
23 固体発光素子
30 電流調整手段
40 放熱手段
60 温度検出手段
70 制御手段
W 被照射物
1,1-1,1-2,2,3,4,5,6,6-1,6-2 Light source device 20 Light emitting unit 21 Mounting substrate (substrate)
22 Solid-state light-emitting element array 23 Solid-state light-emitting element 30 Current adjustment means 40 Heat radiation means 60 Temperature detection means 70 Control means W Object to be irradiated

Claims (4)

直列に接続されかつ所定の線上に配置された、紫外線を放出する複数の固体発光素子を有する固体発光素子列を、前記所定の線に交差する方向に複数並べて基板上に配置した発光部と;
前記発光部の1以上の前記固体発光素子列に対応しかつ対応する固体発光素子列の固体発光素子に流れる電流値を変更可能な2以上の電流調整手段と;
前記基板が取り付けられる基板取付部と、前記基板取付部から離れる方向へ突出すると共に前記所定の線に交差する方向に沿って延びて前記発光部の前記交差する方向に隣り合う2以上の前記固体発光素子列にまたがる複数のフィンと、を有するヒートシンクと、前記複数のフィンの間に沿って前記所定の線に交差する方向における前記複数のフィンの上流側から下流側へ向かって前記複数のフィンの間を通過する流体を流動させるように配置されたファンと、を備え、前記発光部の前記交差する方向に隣り合う2以上の前記固体発光素子列の前記固体発光素子が発する熱を前記複数のフィンによって放熱する放熱手段と;
前記電流調整手段を制御する制御手段と;を具備し、
前記制御手段は、前記複数の固体発光素子列の前記固体発光素子が放出する紫外線の相対照度が等しくなるように、前記電流調整手段に前記固体発光素子列の前記固体発光素子に流れる電流値を変更させる光源装置。
A light-emitting section in which a plurality of solid-state light-emitting element arrays each having a plurality of solid-state light-emitting elements that emit ultraviolet rays that are connected in series and arranged on a predetermined line are arranged on the substrate in a direction intersecting the predetermined line;
Two or more current adjusting means corresponding to one or more of the solid-state light-emitting element rows of the light-emitting section and capable of changing a current value flowing through the solid-state light-emitting elements of the corresponding solid-state light-emitting element row;
A substrate mounting portion to which the substrate is mounted; and two or more solids that protrude in a direction away from the substrate mounting portion and extend in a direction intersecting the predetermined line and adjacent to the intersecting direction of the light emitting unit a heat sink for chromatic and a plurality of fins extending over the light-emitting element array, a plurality of the upstream side of the plurality of fins in the direction crossing the predetermined line along between the plurality of fins toward the downstream side And a fan arranged to flow a fluid passing between the fins, and the heat generated by the solid state light emitting elements of the two or more solid state light emitting element arrays adjacent to each other in the intersecting direction of the light emitting section. Heat radiating means for radiating heat with a plurality of fins;
Control means for controlling the current adjusting means;
The control means sets a current value flowing through the solid state light emitting elements in the solid state light emitting element array to the current adjusting means so that relative illuminances of ultraviolet rays emitted from the solid state light emitting element arrays of the plurality of solid state light emitting element arrays become equal. Light source device to be changed.
前記発光部の所定の位置に設けられかつ前記所定の位置の温度を検出可能な温度検出手段を具備し、
前記制御手段は、前記温度検出手段の検出結果に基づいて、前記電流調整手段に前記固体発光素子列の前記固体発光素子に流れる電流値を変更させる請求項1記載の光源装置。
Provided with a temperature detection means provided at a predetermined position of the light emitting unit and capable of detecting the temperature of the predetermined position;
2. The light source device according to claim 1, wherein the control unit causes the current adjustment unit to change a current value flowing through the solid state light emitting element of the solid state light emitting element array based on a detection result of the temperature detecting unit.
前記温度検出手段を、前記流体の流動方向に沿って間隔をあけて複数設けた請求項2記載の光源装置。   The light source device according to claim 2, wherein a plurality of the temperature detection units are provided at intervals along the flow direction of the fluid. 前記固体発光素子は、ピーク波長が240nm以上450nm以下の紫外線を放出する請求項1〜請求項3のうちいずれか一項に記載の光源装置。   The light source device according to any one of claims 1 to 3, wherein the solid-state light emitting element emits ultraviolet light having a peak wavelength of 240 nm or more and 450 nm or less.
JP2014202038A 2014-09-22 2014-09-30 Light source device Active JP6413570B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014202038A JP6413570B2 (en) 2014-09-30 2014-09-30 Light source device
KR1020150033797A KR102297802B1 (en) 2014-09-22 2015-03-11 Light source device
TW104109536A TWI633376B (en) 2014-09-22 2015-03-25 Light source apparatus and ultra-violet irradiation apparatus
CN201520173129.2U CN204516760U (en) 2014-09-22 2015-03-25 Light supply apparatus and ultraviolet lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014202038A JP6413570B2 (en) 2014-09-30 2014-09-30 Light source device

Publications (2)

Publication Number Publication Date
JP2016068052A JP2016068052A (en) 2016-05-09
JP6413570B2 true JP6413570B2 (en) 2018-10-31

Family

ID=55865559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014202038A Active JP6413570B2 (en) 2014-09-22 2014-09-30 Light source device

Country Status (1)

Country Link
JP (1) JP6413570B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135316B2 (en) * 2017-12-21 2022-09-13 東芝ライテック株式会社 Light irradiation device
JP6805123B2 (en) * 2017-12-27 2020-12-23 日機装株式会社 Fluid sterilizer
JP2019177551A (en) * 2018-03-30 2019-10-17 ウシオ電機株式会社 Ultraviolet ray irradiation device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852686Y2 (en) * 1979-05-09 1983-12-01 三菱電機株式会社 forced cooling stack
DE4225829A1 (en) * 1992-08-05 1994-02-10 Hoechst Ag Pretreatment device for printing forms to be exposed imagewise
DE4225828A1 (en) * 1992-08-05 1994-02-10 Hoechst Ag Laser exposure device for printing forms to be exposed imagewise
JP2003215809A (en) * 2002-01-28 2003-07-30 Pentax Corp Aligner and method for exposure
JP3878869B2 (en) * 2002-03-06 2007-02-07 浜松ホトニクス株式会社 Semiconductor light emitting device
JP2007512954A (en) * 2003-12-02 2007-05-24 スリーエム イノベイティブ プロパティズ カンパニー Irradiation device
JP2006147744A (en) * 2004-11-18 2006-06-08 Seiko Epson Corp Light source device and projector using the device
JP4414866B2 (en) * 2004-11-19 2010-02-10 九州ナノテック光学株式会社 UV exposure machine
JP2006294782A (en) * 2005-04-08 2006-10-26 Hitachi Ltd Semiconductor light source device
JP2008071895A (en) * 2006-09-13 2008-03-27 Toshiba Lighting & Technology Corp Lighting system
JP5005831B2 (en) * 2008-04-22 2012-08-22 ユーリヴィチ ミラチェブ、ウラジスラフ Method of curing a substance by ultraviolet rays
JP2010274256A (en) * 2009-01-29 2010-12-09 Kyocera Corp Light irradiation head, exposure device, image forming apparatus, liquid droplet curing device, and liquid droplet curing method
JP4893806B2 (en) * 2009-11-12 2012-03-07 ウシオ電機株式会社 Light emitting element light source unit
JP2012164512A (en) * 2011-02-07 2012-08-30 Jvc Kenwood Corp Light source device
JP2013004398A (en) * 2011-06-20 2013-01-07 Brintz Technologie:Kk Led lighting system and led arrangement method
JP2014006433A (en) * 2012-06-26 2014-01-16 Dainippon Screen Mfg Co Ltd Pattern drawing device
US9371984B2 (en) * 2012-08-31 2016-06-21 Kyocera Corporation Light irradiation apparatus and printing apparatus
US9561643B2 (en) * 2013-01-30 2017-02-07 Kyocera Corporation Light irradiation apparatus and printing apparatus

Also Published As

Publication number Publication date
JP2016068052A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
KR200484719Y1 (en) Deflectors for a lighting module
KR102297802B1 (en) Light source device
JP6885279B2 (en) Fluid sterilizer
JP6413570B2 (en) Light source device
JP2016066754A (en) Light source device
US10183481B2 (en) Energy efficient multi-spectrum screen exposure system
US9388967B2 (en) Edge weighted spacing of LEDs for improved uniformity range
JP2007026517A (en) Ultraviolet ray irradiation device
US10512136B2 (en) Ultraviolet irradiation device
JP3197315U (en) Wrap-around window for lighting module
JP2009262050A (en) Ultraviolet irradiation apparatus
TWI802626B (en) Ultraviolet curing apparatus
JP2015058392A (en) Light emission module and ultraviolet irradiator
JP2007335561A (en) Led ultraviolet-ray irradiating apparatus
JP6221550B2 (en) Light irradiation device
JP2015060744A (en) Irradiation unit
CN109073167B (en) Method and system for radiation curing with narrow width radiation
JP7008413B2 (en) Light irradiation device and printing device
KR102148856B1 (en) Exposure apparatus using uv-led light source
JP6693581B2 (en) Irradiator and irradiation device
JP2013077732A (en) Ultraviolet light irradiation device
JP6533507B2 (en) Light irradiation device
KR20160066874A (en) Uv cure apparatus using light emitting diode
KR20160030423A (en) Light emitting apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160301

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180917

R151 Written notification of patent or utility model registration

Ref document number: 6413570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151