WO2012157409A1 - Exposure device and light-shielding plate - Google Patents

Exposure device and light-shielding plate Download PDF

Info

Publication number
WO2012157409A1
WO2012157409A1 PCT/JP2012/060940 JP2012060940W WO2012157409A1 WO 2012157409 A1 WO2012157409 A1 WO 2012157409A1 JP 2012060940 W JP2012060940 W JP 2012060940W WO 2012157409 A1 WO2012157409 A1 WO 2012157409A1
Authority
WO
WIPO (PCT)
Prior art keywords
microlens array
light
pattern
mask
exposure
Prior art date
Application number
PCT/JP2012/060940
Other languages
French (fr)
Japanese (ja)
Inventor
敏成 新井
和重 橋本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2012157409A1 publication Critical patent/WO2012157409A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems

Definitions

  • the present invention relates to an exposure apparatus using a microlens array and a light shielding plate used in the exposure apparatus, and more particularly, to an exposure apparatus capable of highly efficiently exposing substrates having different cell layouts and a light shielding plate used in the exposure apparatus. .
  • liquid crystal display devices mounted on devices such as mobile phones and portable information terminals are required to have smaller panels and higher definition panels. .
  • An exposure apparatus used when manufacturing a liquid crystal display panel of such a portable device conventionally uses a stepper used for exposure of a semiconductor device for high-definition exposure.
  • the substrate to be exposed is, for example, a large 1.5 m square substrate, and the exposure is performed a plurality of times for each region to be one or a plurality of individual substrates.
  • the boundary of the exposure area of the objective lens May be located inside the panel. Then, in the panel, the areas on both sides of the boundary of the exposure area are exposed with different shots, and there is a problem that the position of the wiring or the like is shifted at the boundary. Therefore, at this boundary, it is necessary to perform a so-called “next” process such as thickening the wiring pattern, forming the inclined end portion, and overlapping the inclined portion. In addition, even if this “next” process is performed, the portions subjected to this “next” may be connected on a straight line, resulting in stripes. It must be discarded. Further, even when the exposure pattern is a pattern that is difficult to process next, it is necessary to discard the panel at the boundary of the exposure area without making it a product.
  • Patent Documents 1 and 2 an exposure apparatus using a microlens array has also been proposed (Patent Documents 1 and 2).
  • a conventional exposure apparatus using a microlens array exposes a panel for a large-sized liquid crystal display device such as a television, and when applied as it is to a liquid crystal display device for a portable device, In the case of this liquid crystal display panel, since the panel is small and has various sizes, there is a problem that the manufacturing efficiency is poor.
  • FIG. 10 is a schematic view showing an exposure apparatus using a conventional microlens array.
  • a substrate 40 to be exposed is arranged below a mask 20 held at a fixed position.
  • the mask 20 is provided with a plurality of pattern regions 20a in which patterns to be exposed are formed in the respective cells 40a corresponding to the layout of the regions (cells 40a in FIG. 10) to be the panels of the substrate 40.
  • the microlens array 22 supported by the microlens array holder 21 is inserted between the mask 20 and the substrate 40, and the microlens array 22 and the light source are emitted in one direction (first direction) while emitting the exposure light 15 from the light source.
  • the pattern area 20a of the mask 20 is scanned with the exposure light 15 by moving in one direction 1). Then, the exposure light transmitted through each pattern region 20a of the mask 20 is transmitted to each microlens array chip 22a of the microlens array 22, and an erecting equal-magnification image of each pattern is formed on the substrate 40 by the microlens array chip 22a. The images are sequentially formed.
  • FIG. 11 is a view showing the configuration of a microlens array corresponding to the cell layout in the conventional exposure apparatus shown in FIG.
  • masks 20 and 200 corresponding to the cell layout of the substrate 40 are used, and microlens arrays 220 and 221 are also used corresponding to the cell layout. That is, the microlens arrays 220 and 221 are each provided with a plurality of microlens array chips 22b and 22c or a microlens array chip 22d, and each microlens array chip is in a second direction orthogonal to the first direction 1. 2 correspond to the pattern areas 20a and 20b, respectively.
  • Each microlens array chip has an end located in a region between a plurality of pattern regions 20a and 20b arranged in a direction (second direction 2) orthogonal to the scanning direction (first direction 1) of the masks 20 and 200.
  • second direction 2 orthogonal to the scanning direction (first direction 1) of the masks 20 and 200.
  • the microlens array chip forms an overexposed region. In other cases, an unexposed region remains, and this region cannot be used for a panel. Therefore, in the case where the cell width is small (FIG. 11A) and the case where the cell width is large (FIG. 11B), the microlens arrays 220 and 221 cannot be shared. , Not only masks, but also microlens arrays.
  • the microlens array has each microlens array chip in the second direction 2. It is necessary to arrange one or more cells arranged in a row, and the end portion thereof must be located in a region between a plurality of cells arranged in the second direction 2, so that different microlens arrays are used depending on the cell layout. There is a need. Therefore, when exposing substrates having different cell layouts, it is necessary to replace the microlens array at the same time as the mask, resulting in a further reduction in manufacturing efficiency. Furthermore, since each microlens array is very expensive, there is a problem that the manufacturing cost of the panel increases.
  • the present invention has been made in view of such a problem, and an exposure apparatus capable of exposing a panel with high efficiency and low cost even when exposing substrates having different cell layouts, and a light shielding plate used in the exposure apparatus.
  • the purpose is to provide.
  • An exposure apparatus includes a light source for emitting exposure light, and a mask having a plurality of pattern regions in which exposure light from the light source is incident and a pattern to be exposed is formed corresponding to a plurality of panels.
  • a microlens array that allows the exposure light transmitted through the mask to enter and forms an erecting equal-magnification image of the mask pattern on the substrate; a holder that supports the microlens array;
  • the mask and the substrate are relatively positioned with respect to the light source and the microlens array in a state in which a light shielding plate for restricting a light transmission region of the microlens array and a positional relationship between the light source and the microlens array are fixed.
  • a driving device that moves and scans the exposure light in a first direction on the substrate; a control device that controls the driving device and the light source;
  • the microlens array is configured by arranging a plurality of microlens array chips in a second direction orthogonal to the first direction so that a part thereof overlaps the first direction.
  • the light shielding plate distributes the microlens array chips so that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip.
  • a region in the microlens array chip that does not require light transmission is shielded, and an opening is provided in the region that requires light transmission.
  • As the exposure light mercury lamp light or the like is used.
  • the panel in the present invention means a pixel region of a liquid crystal display panel and its peripheral region, and an exposure pattern formed on the mask includes a pixel region pattern and a peripheral region circuit pattern.
  • a plurality of light-shielding plates having different lengths in the second direction of the openings are prepared for the microlens array, and depending on the size of the pattern region, One of the plurality of light shielding plates is selected and used.
  • the light shielding plate includes a plurality of microlens array chips that receive exposure light transmitted through a mask having a plurality of pattern regions and form an erecting equal-magnification image of the mask pattern on the substrate.
  • a light-shielding plate that is attached to a holder that supports the microlens array with respect to the arranged microlens array and regulates a light transmission region of the microlens array
  • the plurality of microlens array chips are arranged such that some of them overlap each other in a direction perpendicular to the arrangement direction of the microlens array chips,
  • the shading plate is When the microlens array chips are allocated such that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip,
  • the lens array chip is characterized in that a region that does not require light transmission is shielded and an opening is provided in a region that requires light transmission.
  • the plurality of microlens array chips of the microlens array are provided large so that the portions thereof overlap each other, and the shape of the opening portion of the light shielding plate attached to the microlens array holder
  • the light shielding plate is changed to another one.
  • the end portion of the exposure light transmission region in the microlens array chip can be positioned in the gap region between the pattern regions according to the pattern region. . Therefore, overexposure and non-exposure of the end portion of the microlens array chip can be prevented, and the replacement of the microlens array is unnecessary, so that the manufacturing cost can be reduced.
  • FIG. 1 is a perspective view showing an exposure apparatus using a microlens array according to a first embodiment of the present invention. It is a perspective view which shows a mask stage and a micro lens array. It is a perspective view which shows the whole mask stage.
  • 5A and 5B are diagrams illustrating a microlens array provided with a light shielding plate, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line AA in FIG.
  • FIG. 11 is a diagram showing a configuration of a microlens array corresponding to a cell layout in the conventional exposure apparatus shown in FIG. 10.
  • FIG. 1A is a plan view showing a microlens array and a light shielding plate according to an embodiment of the present invention
  • FIG. 1B is a diagram showing a positional relationship between a microlens array provided with the light shielding plate and a pattern area of a mask.
  • FIG. 2 is a perspective view showing an exposure apparatus using the microlens array according to the first embodiment of the present invention
  • FIG. 3 is a perspective view showing the mask stage and the microlens array
  • FIG. 4 is a perspective view showing the entire mask stage. It is. As shown in FIG.
  • the exposure apparatus can move the glass substrate 40 in a scanning direction (first direction) 1 and a direction orthogonal to the scanning direction 1 (second direction 2).
  • a substrate stage 12 is installed on the XY stage 11 so as to be movable in the first direction 1.
  • a gantry 13 is installed above the XY stage 11 and the substrate stage 12, and four light sources 14 are fixedly installed on the gantry 13 as an example. These light sources 14 are, for example, high-pressure mercury lamp light sources, and irradiate ultraviolet exposure light 15 having a wavelength of 280 to 340 nm downward.
  • the irradiation area of the exposure light 15 is rectangular as shown in FIG.
  • a mask stage 18 is arranged below the light source 14 of the exposure light 15.
  • a first guide 16 extending in the second direction 2 is suspended from the gantry 13, and a second guide 17 extending in the first direction 1 is suspended from the first guide 16.
  • the first guide 16 is fixed on the gantry 13, and the second guide 17 is supported on the first guide 16 extending in the second direction 2 so as to be movable in the second direction 2.
  • the four mask stages 18 are supported so as to be movable in the first direction 1 on the second guide 17 extending in the first direction 1 while maintaining the positional relationship with each other.
  • the mask stage 18 is formed with a rectangular opening, and the mask 20 is supported in the opening. Accordingly, the mask 20 can be scanned with respect to the first direction 1 and can be shifted with respect to the second direction 2 by the first guide 16 and the second guide 17.
  • microlens array holder 21 is installed below the mask 20, and a plurality of microlens array chips 22a are supported in the opening of the holder 21, and are composed of a plurality of microlens array chips 22a.
  • a microlens array 22 is configured.
  • the microlens array chip 22a is formed with a large number of microlenses, and an erecting equal-magnification image of the pattern of the mask 20 is formed on the substrate 40 disposed below the microlens array 22 by each microlens. An image is formed.
  • the exposure apparatus includes the mask 20 supported by the mask stage 18 and the substrate 40 on the substrate stage 12 relatively simultaneously and integrally with the light source 14 and the microlens array 22.
  • a driving device for scanning in the first direction 1 is provided.
  • the substrate 40 on the substrate stage 12 is configured to be shiftable in the second direction 2 with respect to the light source 14, the mask 20, and the microlens array 22 by moving the substrate stage 12 in the second direction 2. Yes. Note that the movement of the substrate stage 12 in the second direction 2 may be performed manually or may be performed by providing a driving device for shifting the substrate 40 and using this driving device.
  • the plurality of microlens array chips 22 a are arranged in the second direction 2 and supported by the holder 21, and the holder 21 is fixed on the gantry 13. Accordingly, the exposure light 15 from the light source 14 is held on the substrate 40 by the microlens array 22, and the mask 40 and the substrate 40 move in the first direction 1 so that the substrate 40 is exposed. A pattern scanned in the light 15 and formed in the pattern area 20 a of the mask is exposed and transferred onto the substrate 40.
  • the scanning of the light source 14 and the microlens array 22 relative to the mask 20 and the substrate 40 by the first driving device in the first direction 1 is controlled by a control device (not shown). Then, after the exposure device scans the exposure light by controlling the drive device and the light source by the control device, when the substrate 40 is shifted in the second direction 2, the control device again controls the drive device and the light source. Repeat scanning the exposure light. Thereby, the scanning of the exposure light in the first direction 1 and the shift of the substrate 40 in the second direction 2 are sequentially performed, and the pattern forming region of the substrate is sequentially exposed.
  • the size of the mask 20 held on the mask stage 18 is, for example, a width in the second direction 2 of 400 mm.
  • the mask 20 is provided with a pattern region 20a in which a pattern to be exposed is formed corresponding to a plurality of panels.
  • a plurality of pattern regions 20 a are arranged in the first direction 1 continuously or at a predetermined pitch (illustrated example) to form pattern rows 20 c and 20 d, and this pattern row is in the second direction 2.
  • a plurality of rows are arranged at a predetermined pitch.
  • Each pattern region 20 a corresponds to each panel formed on the substrate, and a plurality of pattern regions 20 a are arranged corresponding to the layout of the cells 40 a on the substrate 40.
  • the microlens array 22 is configured by two microlens array chips 22a, and each microlens array chip 22a is mutually a part thereof. Are arranged so as to overlap in the first direction 1. Accordingly, when the microlens array 22 is scanned in the first direction 1 relative to the substrate 40 (see FIG. 8), each pattern row 20c, 20d arranged in the first direction 1 has two pieces. It corresponds to both or one of the microlens array chips 22a.
  • the microlens array 22 of the present embodiment is arranged so that a part of the microlens array chips 22a overlap in the first direction. A part of the transmitted light is incident on both microlens array chips 22a unless a light shielding plate 30 described later is provided. Therefore, a part of the panel formed by the pattern row 20d is overexposed by being exposed twice, and the remaining part is subjected to normal single exposure. A panel with such exposure unevenness cannot be used. Therefore, in order to avoid this, in the present embodiment, as shown in FIG. 1B, a light shielding plate 30 is provided to shield a region that does not require light transmission in the microlens array chip 22a.
  • the light shielding plate 30 is provided with a light shielding portion 30a and an opening 30b, and when the microlens array 22a is distributed so that the pattern region 20a corresponds to only one microlens array chip 22a, A region that does not require light transmission in the microlens array chip 22a is shielded by the light shielding portion 30a, and an opening 30b is provided in a region that requires light transmission in the microlens array chip 22a to transmit the transmitted light. That is, the light shielding unit 30b emits the exposure light to the micro lens array chip 22a on the side not corresponding to each pattern row so that the transmitted light of each pattern area of the mask is not incident on the two or more micro lens array chips 22a. Shield from light.
  • FIG. 5 is a view showing a microlens array provided with a light shielding plate
  • FIG. 5 (a) is a plan view
  • FIG. 5 (b) is a cross-sectional view taken along line AA of FIG. 5 (a).
  • the microlens array 22 is configured by fixing two microlens array chips 22 a inside a frame-shaped microlens array holder 21.
  • Each microlens array chip 22a is composed of four members, and each member is formed by two-dimensionally arranging convex microlenses on the front surface and / or back surface of the glass substrate.
  • a mask pattern is formed as an erecting equal-magnification image on the substrate.
  • the light shielding plate 30 is provided with a light shielding portion 30a and an opening 30b in a predetermined shape so as to correspond to the size of the pattern 20a of the mask 20, and the microlens array 22 is provided.
  • the peripheral edge is fixed to the microlens array holder 21 above.
  • the exposure light that is shielded by the light shielding portion 30 a and transmitted through the opening 30 b enters the microlens array 22.
  • the microlens array chip 22a is constituted by four members, but the present invention is not limited by the number of members constituting the microlens array chip 22a.
  • the microlens array chip 22a can use eight members or the like.
  • the light shielding plate 30 is, for example, stainless steel having a thickness of about 100 ⁇ m.
  • the light shielding plate 30 is fitted into a groove provided in the microlens array holder 21 to have a specific shape. It is configured to be fixed in position. Thereby, the accuracy of the light shielding position with respect to the microlens array chip 22a is improved.
  • the glass substrate 40 on which the resist film is formed is transferred onto the substrate stage 12 and set at a position facing the mask 20 supported by the four mask stages 18. Then, the guides 16 and 17 and the substrate stage 12 and the XY stage 11 hold the substrate 40 and the mask 20 in a fixed positional relationship and are driven simultaneously by a driving device.
  • the masks 20 are respectively held on the four mask stages 18, and the four exposure lights 15 from the four light sources 14 are incident on the masks 20.
  • the rectangular irradiation region of the exposure light 15 has a length in the width direction corresponding to the entire length of the mask 20 in the second direction 2 (direction orthogonal to the scanning direction).
  • the exposure light 15 is moved from the mask 20 and the substrate 40 simultaneously and relative to the exposure light 15 in the first direction 1. Is scanned in the scanning direction (first direction) indicated by the white arrow.
  • FIG. 7 is a perspective view showing a state in which the mask 20 is removed.
  • the exposure light 15 transmitted through each pattern region 20a of the mask 20 has two microlens array chips 22a whose rectangular irradiation regions are supported in the openings of the microlens array holder 21. Are in the microlens formation region.
  • the positional relationship between the exposure light 15 and the microlens array 22 is fixed.
  • the exposure light 15 is generated while the mask 20 and the substrate 40 are moved together at the same time.
  • the microlens array 22 is scanned relative to the mask 20 and the substrate 40 in the scanning direction indicated by the white arrow, and the exposure light 15 transmitted through the mask 20 is imaged on the substrate 40.
  • the pattern of the mask 20 is transferred onto the substrate 40 as an erecting equal-magnification image, and a strip-shaped exposure pattern 41 is formed on the five-row resist.
  • the microlens array 22 is provided with two microlens array chips 22a, and the microlens array chips 22a are arranged so that some of them overlap each other in the first direction. ing.
  • the light shielding plate 30 is fixed to the microlens array holder 21, and thus the microlens array 22a is arranged so that the pattern region 20a corresponds to only one microlens array chip 22a.
  • the area where light transmission is unnecessary in the microlens array chip 22a is shielded by the light shielding part 30a, and the opening 30b is provided in the area where light transmission is necessary in the microlens array chip 22a to transmit the transmitted light.
  • the mask is usually about 400 mm in width, but if such a long microlens array is to be manufactured, the cost increases.
  • a microlens array having a chip shape having a length (width) of about 150 mm has a low relative manufacturing cost per unit length. Therefore, a plurality of microlens array chips are connected to form a microlens array corresponding to the mask width, or the microlens array holder 21 is provided with a microlens array chip having a length of 150 mm, for example. It is necessary to form a Cr film on the mask portion in the area where the lens array chip does not exist to block transmission of exposure light.
  • microlens array chips are arranged in the second direction, and the microlens array is constituted by a plurality of microlens array chips each corresponding to the mask width.
  • the microlens array chips 22a are arranged so that parts thereof overlap each other in the first direction 1, and a part of the light transmission region is shielded by the light shielding plate 30.
  • one of the microlens array chips 22a corresponds to each pattern row of the mask 20 formed by being arranged in the first direction 1, so-called “next" is in the exposure pattern 41 of the panel.
  • it is efficient.
  • FIG. 9A two microlens array chips 22a are used, and a part of the microlens array chip 22a is shielded by the light shielding plate 30 in the second direction 2.
  • the light transmitted through the five patterned regions 20a arranged is made incident on one of the microlens array chips 22a.
  • FIG. 9B a mask corresponding to the substrate 40 having a different cell layout.
  • the microlens array 22 can be shared only by changing the light shielding plate 30. That is, in the mask 200 shown in FIG. 9B, four pattern regions 20b are formed in the second direction 2, and each pattern region 20b corresponds to each pattern region 20a in the mask 20 in FIG. The size in the second direction 2 is larger than that.
  • a plurality of light shielding plates having different lengths in the second direction 2 of the openings 30b are prepared in advance in correspondence with masks having different pattern region sizes.
  • one of a plurality of light shielding plates can be selected and used. That is, in the case of the mask 200 shown in FIG. 9B, the light shielding plate 31 corresponding to the size of the pattern region 20b is selected and used.
  • the exposure light is transmitted through the microlens array chip 22a by using a light shielding plate having a different length in the second direction 2 of the opening 30b.
  • region can be located in the clearance gap area
  • the light shielding plate 30 in the present embodiment is configured to shield the incident light from the mask 20 to the microlens array 22, the light shielding plate 30 shields the exposure light transmitted through the microlens array 22. It may be configured.
  • the light shielding plate is provided with the light shielding portion 30a and the opening 30b so that the transmitted light of the pattern region 20a of the mask 20 does not pass through the two or more microlens array chips 22a and irradiate the substrate.
  • the light shielding plate 30 may not be fixed to the microlens array holder 21.
  • the microlens array 22 of the present embodiment is configured by two microlens array chips 22a.
  • the microlens array 22 includes three or more microlens array chips 22a. Are arranged so that a part thereof overlaps with each other in the first direction, and a microlens array chip in which all of the exposure light transmitted through each pattern region 20a of the mask 20 overlaps with each other in the first direction. It may be configured to be transmitted through any of 22a.
  • the present invention when exchanging a mask corresponding to a different cell layout, it is only necessary to change the light shielding plate, and it is not necessary to replace the microlens array, which is extremely useful for exposure of substrates having different cell layouts. .
  • the present invention is required for high-definition and liquid crystal display panels for portable devices, and is useful for low-cost manufacturing of small panels.
  • 1 first direction (scan direction), 2: second direction (direction orthogonal to the scan direction), 11: XY stage, 12: substrate stage, 13: mount, 14: light source, 15: exposure light, 16 : First guide, 17: Second guide, 18: Mask stage, 20: Mask, 20a, 20b: Pattern region, 20c, 20d: Pattern row, 21: Micro lens array holder, 22: Micro lens array, 22a: Micro Lens array chip, 30, 31: light shielding plate, 30a: light shielding portion, 30b: opening, 40: substrate, 41: exposure pattern

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An exposure mask is provided with a plurality of pattern regions that correspond to display panels. A micro-lens array has first and second micro-lens array chips in the direction perpendicular to the scanning direction so that the chips partially overlap with each other in the direction perpendicular to the scanning direction. A light-shielding plate shields a part of these micro-lens array chips (22a) from light. An opening in the light-shielding plate restricts transmission of light through the micro-lens array chips such that the first micro-lens array chip exposes only two pattern regions and the second micro-lens array chip exposes only three other pattern regions. This makes it possible to expose a panel efficiently and inexpensively when substrates of different cell layouts are exposed.

Description

露光装置及び遮光板Exposure apparatus and shading plate
 本発明は、マイクロレンズアレイを使用した露光装置及びこの露光装置に使用される遮光板に関し、特に、セルレイアウトが異なる基板を高効率で露光できる露光装置及びこの露光装置に使用される遮光板に関する。 The present invention relates to an exposure apparatus using a microlens array and a light shielding plate used in the exposure apparatus, and more particularly, to an exposure apparatus capable of highly efficiently exposing substrates having different cell layouts and a light shielding plate used in the exposure apparatus. .
 携帯電話及び携帯型情報端末等の機器に搭載される液晶表示装置は、テレビジョン等の大型の液晶表示装置と異なり、パネルが小型になると共に、パネルはより高精細であることが要求される。 Unlike large liquid crystal display devices such as televisions, liquid crystal display devices mounted on devices such as mobile phones and portable information terminals are required to have smaller panels and higher definition panels. .
 このような携帯型機器の液晶表示パネルを製造する際に使用される露光装置は、従来、高精細の露光のために、半導体装置の露光に使用されているステッパが使用されている。 An exposure apparatus used when manufacturing a liquid crystal display panel of such a portable device conventionally uses a stepper used for exposure of a semiconductor device for high-definition exposure.
 従来、ステッパにより携帯機器用の小型の液晶表示パネルを露光する際には、マスクのパターンを透過した光を、縮小光学系に透過された後、基板に照射する。この際、露光対象の基板は、例えば1.5m角の大型の基板であり、露光の際には、1又は複数枚の個別基板となる領域ごとに複数回露光される。そして、複数回の露光により個別基板となる領域の全てが露光された基板は、分割されて、複数枚のガラス基板が製造される。 Conventionally, when a small liquid crystal display panel for a portable device is exposed by a stepper, light transmitted through a mask pattern is transmitted through a reduction optical system and then irradiated onto a substrate. At this time, the substrate to be exposed is, for example, a large 1.5 m square substrate, and the exposure is performed a plurality of times for each region to be one or a plurality of individual substrates. And the board | substrate with which all the area | regions used as an individual board | substrate by multiple times of exposure was divided | segmented, and a several glass substrate is manufactured.
 しかしながら、このステッパにおいては、1個の対物レンズにより露光される領域の大きさが決まっているため、1枚のガラス基板上に複数枚のパネルを作製する際、その対物レンズの露光領域の境界が、パネルの内部に位置する場合が生じる。そうすると、そのパネルにおいては、露光領域の境界を挟んで両側の領域が別のショットで露光されることになり、境界において、配線等の位置がずれてしまうという問題点がある。このため、この境界においては、配線パターンを太くしたり、端部を傾斜して形成してその傾斜部で重ねあわせる等の所謂「つぎ」の処理を行う必要がある。また、この「つぎ」の処理を施しても、この「つぎ」を施した部分が直線上に連なって、縞が生じてしまうことがあり、そうすると、この縞が生じたパネルについては、製品とならず、廃棄せざるを得ない。更に、露光パターンがこの「つぎ」の処理が困難なパターンの場合にも、露光領域の境界のパネルについては、製品とせずに廃棄することが必要になる。 However, in this stepper, since the size of the area exposed by one objective lens is determined, when producing a plurality of panels on one glass substrate, the boundary of the exposure area of the objective lens May be located inside the panel. Then, in the panel, the areas on both sides of the boundary of the exposure area are exposed with different shots, and there is a problem that the position of the wiring or the like is shifted at the boundary. Therefore, at this boundary, it is necessary to perform a so-called “next” process such as thickening the wiring pattern, forming the inclined end portion, and overlapping the inclined portion. In addition, even if this “next” process is performed, the portions subjected to this “next” may be connected on a straight line, resulting in stripes. It must be discarded. Further, even when the exposure pattern is a pattern that is difficult to process next, it is necessary to discard the panel at the boundary of the exposure area without making it a product.
 而して、マイクロレンズアレイを使用した露光装置も提案されている(特許文献1及び2)。しかしながら、従来のマイクロレンズアレイを使用した露光装置は、テレビジョン等の大型液晶表示装置用のパネルを露光するものであり、それをそのまま、携帯機器用の液晶表示装置に適用すると、携帯機器用の液晶表示パネルの場合は、パネルが小さく、また種々の大きさがあるため、製造効率が悪いという問題点がある。 Thus, an exposure apparatus using a microlens array has also been proposed (Patent Documents 1 and 2). However, a conventional exposure apparatus using a microlens array exposes a panel for a large-sized liquid crystal display device such as a television, and when applied as it is to a liquid crystal display device for a portable device, In the case of this liquid crystal display panel, since the panel is small and has various sizes, there is a problem that the manufacturing efficiency is poor.
 図10は、従来のマイクロレンズアレイを使用した露光装置を示す模式図である。図10に示す従来の露光装置においては、一定の位置に保持されたマスク20の下方に露光対象の基板40が配置されている。マスク20には、基板40の各パネルとなる領域(図10におけるセル40a)のレイアウトに対応して、夫々のセル40aに露光すべきパターンが形成された複数個のパターン領域20aが設けられている。このマスク20と基板40との間に、マイクロレンズアレイホルダ21に支持されたマイクロレンズアレイ22を挿入し、光源からの露光光15を出射させながら、マイクロレンズアレイ22を光源と共に1方向(第1方向1)に移動させ、マスク20のパターン領域20aを露光光15でスキャンしていく。そうすると、マスク20の各パターン領域20aを透過した露光光は、マイクロレンズアレイ22の各マイクロレンズアレイチップ22aに透過され、マイクロレンズアレイチップ22aにより、各パターンの正立等倍像が基板40上に順次結像されていく。 FIG. 10 is a schematic view showing an exposure apparatus using a conventional microlens array. In the conventional exposure apparatus shown in FIG. 10, a substrate 40 to be exposed is arranged below a mask 20 held at a fixed position. The mask 20 is provided with a plurality of pattern regions 20a in which patterns to be exposed are formed in the respective cells 40a corresponding to the layout of the regions (cells 40a in FIG. 10) to be the panels of the substrate 40. Yes. The microlens array 22 supported by the microlens array holder 21 is inserted between the mask 20 and the substrate 40, and the microlens array 22 and the light source are emitted in one direction (first direction) while emitting the exposure light 15 from the light source. The pattern area 20a of the mask 20 is scanned with the exposure light 15 by moving in one direction 1). Then, the exposure light transmitted through each pattern region 20a of the mask 20 is transmitted to each microlens array chip 22a of the microlens array 22, and an erecting equal-magnification image of each pattern is formed on the substrate 40 by the microlens array chip 22a. The images are sequentially formed.
 図11は、図10に示す従来の露光装置において、セルレイアウトに対応したマイクロレンズアレイの構成を示す図である。図11に示すように、従来の露光装置においては、基板40のセルレイアウトに対応したマスク20,200が使用され、マイクロレンズアレイ220,221もセルレイアウトに対応したものが使用される。即ち、マイクロレンズアレイ220,221には、夫々複数個のマイクロレンズアレイチップ22b,22c又はマイクロレンズアレイチップ22dが設けられており、各マイクロレンズアレイチップが第1方向1に直交する第2方向2に配置されることにより、夫々パターン領域20a,20bに対応している。 FIG. 11 is a view showing the configuration of a microlens array corresponding to the cell layout in the conventional exposure apparatus shown in FIG. As shown in FIG. 11, in the conventional exposure apparatus, masks 20 and 200 corresponding to the cell layout of the substrate 40 are used, and microlens arrays 220 and 221 are also used corresponding to the cell layout. That is, the microlens arrays 220 and 221 are each provided with a plurality of microlens array chips 22b and 22c or a microlens array chip 22d, and each microlens array chip is in a second direction orthogonal to the first direction 1. 2 correspond to the pattern areas 20a and 20b, respectively.
 各マイクロレンズアレイチップは、その端部が、マスク20,200のスキャン方向(第1方向1)に直交する方向(第2方向2)に並ぶ複数個のパターン領域20a,20b間の領域に位置するように配置されている。即ち、従来の露光装置においては、マイクロレンズアレイチップ22b,22c,22d同士の継ぎ目において、各マイクロレンズアレイチップ同士が第1方向1に重なるように配置された場合、基板40には、2枚のマイクロレンズアレイチップにより、過露光の領域が形成され、それ以外の場合には、未露光の領域が残されるため、この領域は、パネルに使用することができない。よって、セルの幅が小さい場合(図11(a))とセルの幅が大きい場合(図11(b))とでは、マイクロレンズアレイ220,221を共用することができず、セルのレイアウトにより、マスクだけではなく、マイクロレンズアレイも使い分けている。 Each microlens array chip has an end located in a region between a plurality of pattern regions 20a and 20b arranged in a direction (second direction 2) orthogonal to the scanning direction (first direction 1) of the masks 20 and 200. Are arranged to be. That is, in the conventional exposure apparatus, when the microlens array chips 22b, 22c, and 22d are arranged so that the microlens array chips are overlapped with each other in the first direction 1, two substrates are provided on the substrate 40. The microlens array chip forms an overexposed region. In other cases, an unexposed region remains, and this region cannot be used for a panel. Therefore, in the case where the cell width is small (FIG. 11A) and the case where the cell width is large (FIG. 11B), the microlens arrays 220 and 221 cannot be shared. , Not only masks, but also microlens arrays.
特開2010-102149号公報JP 2010-102149 A 特開2008-197226号公報JP 2008-197226 A
 上述のように、携帯機器用の液晶表示パネルのように、高精細が要求されると共に、小型のパネルの場合、従来のステッパを使用すると、露光パターンの「つぎ」が必要となり、マイクロレンズアレイを使用すると、製造効率が悪いという問題点がある。 As described above, high-definition is required as in liquid crystal display panels for portable devices, and in the case of a small panel, the use of a conventional stepper requires a “next” exposure pattern, and a microlens array However, there is a problem that the production efficiency is poor.
 また、マイクロレンズアレイを使用した露光装置においては、マスクには、基板の各セルのレイアウトに対応するパターンが形成されており、更に、マイクロレンズアレイは、各マイクロレンズアレイチップを第2方向2に並ぶ1以上のセルに対応させ、その端部を第2方向2に並ぶ複数個のセル間の領域に位置するように配置する必要があることから、セルのレイアウトにより、マイクロレンズアレイを使い分ける必要がある。従って、セルレイアウトが異なる基板を露光する場合には、マスクと同時にマイクロレンズアレイも取り換える必要があり、製造効率が更に低下するという問題点がある。更に、個々のマイクロレンズアレイは非常に高価であるため、パネルの製造コストも増大するという問題点がある。 Further, in an exposure apparatus using a microlens array, a pattern corresponding to the layout of each cell of the substrate is formed on the mask. Further, the microlens array has each microlens array chip in the second direction 2. It is necessary to arrange one or more cells arranged in a row, and the end portion thereof must be located in a region between a plurality of cells arranged in the second direction 2, so that different microlens arrays are used depending on the cell layout. There is a need. Therefore, when exposing substrates having different cell layouts, it is necessary to replace the microlens array at the same time as the mask, resulting in a further reduction in manufacturing efficiency. Furthermore, since each microlens array is very expensive, there is a problem that the manufacturing cost of the panel increases.
 本発明はかかる問題点に鑑みてなされたものであって、セルレイアウトが異なる基板を露光する際にも、高効率且つ低コストでパネルを露光できる露光装置及びこの露光装置に使用される遮光板を提供することを目的とする。 The present invention has been made in view of such a problem, and an exposure apparatus capable of exposing a panel with high efficiency and low cost even when exposing substrates having different cell layouts, and a light shielding plate used in the exposure apparatus. The purpose is to provide.
 本発明に係る露光装置は、露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、このマスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、このホルダに取り付けられ前記マイクロレンズアレイの光透過領域を規制する遮光板と、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、
を有し、
前記マイクロレンズアレイは、前記第1方向に直交する第2方向に複数個のマイクロレンズアレイチップがその一部が相互に前記第1方向に重なるように配置されて構成され、
前記遮光板は、各前記マイクロレンズアレイチップが1又は複数個の前記パターン領域に対応し、各前記パターン領域が1個のマイクロレンズアレイチップにのみ対応するように、前記マイクロレンズアレイチップを振り分けた場合に、マイクロレンズアレイチップにおける光透過が不要な領域を遮光し、光透過が必要な領域に開口部を有するものであることを特徴とする。
 露光光としては、水銀ランプ光等が使用される。なお、本発明におけるパネルとは、液晶表示パネルの画素領域及びその周辺領域を意味し、マスクに形成される露光用パターンは、画素領域のパターン及びその周辺領域の回路パターンを含むものである。
An exposure apparatus according to the present invention includes a light source for emitting exposure light, and a mask having a plurality of pattern regions in which exposure light from the light source is incident and a pattern to be exposed is formed corresponding to a plurality of panels. A microlens array that allows the exposure light transmitted through the mask to enter and forms an erecting equal-magnification image of the mask pattern on the substrate; a holder that supports the microlens array; The mask and the substrate are relatively positioned with respect to the light source and the microlens array in a state in which a light shielding plate for restricting a light transmission region of the microlens array and a positional relationship between the light source and the microlens array are fixed. A driving device that moves and scans the exposure light in a first direction on the substrate; a control device that controls the driving device and the light source;
Have
The microlens array is configured by arranging a plurality of microlens array chips in a second direction orthogonal to the first direction so that a part thereof overlaps the first direction.
The light shielding plate distributes the microlens array chips so that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip. In this case, a region in the microlens array chip that does not require light transmission is shielded, and an opening is provided in the region that requires light transmission.
As the exposure light, mercury lamp light or the like is used. The panel in the present invention means a pixel region of a liquid crystal display panel and its peripheral region, and an exposure pattern formed on the mask includes a pixel region pattern and a peripheral region circuit pattern.
 本発明に係る露光装置において、例えば、前記マイクロレンズアレイに対し、前記開口部の前記第2方向の長さが異なる複数個の遮光板が用意され、前記パターン領域の大きさに応じて、前記複数個の遮光板のうちの一つが選択されて使用される。 In the exposure apparatus according to the present invention, for example, a plurality of light-shielding plates having different lengths in the second direction of the openings are prepared for the microlens array, and depending on the size of the pattern region, One of the plurality of light shielding plates is selected and used.
 本発明に係る遮光板は、複数個のパターン領域を有するマスクを透過した露光光が入射され、前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップが配列されたマイクロレンズアレイに対し、このマイクロレンズアレイを支持するホルダに取り付けられ、前記マイクロレンズアレイの光透過領域を規制する遮光板であって、
前記複数個のマイクロレンズアレイチップは、その一部が相互に前記マイクロレンズアレイチップの配列方向に垂直の方向に重なるように配置されており、
前記遮光板は、
各前記マイクロレンズアレイチップが1又は複数個の前記パターン領域に対応し、各前記パターン領域が1個のマイクロレンズアレイチップにのみ対応するように、前記マイクロレンズアレイチップを振り分けた場合に、マイクロレンズアレイチップにおける光透過が不要な領域を遮光し、光透過が必要な領域に開口部を有するものであることを特徴とする。
The light shielding plate according to the present invention includes a plurality of microlens array chips that receive exposure light transmitted through a mask having a plurality of pattern regions and form an erecting equal-magnification image of the mask pattern on the substrate. A light-shielding plate that is attached to a holder that supports the microlens array with respect to the arranged microlens array and regulates a light transmission region of the microlens array,
The plurality of microlens array chips are arranged such that some of them overlap each other in a direction perpendicular to the arrangement direction of the microlens array chips,
The shading plate is
When the microlens array chips are allocated such that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip, The lens array chip is characterized in that a region that does not require light transmission is shielded and an opening is provided in a region that requires light transmission.
 本発明の露光装置によれば、マイクロレンズアレイの複数個のマイクロレンズアレイチップをその一部が相互に重なるように大きく設けておき、マイクロレンズアレイ用ホルダに取り付けられる遮光板の開口部の形状及び位置を、パターン領域に合わせて設定することにより、マスクに形成されたパターン領域、即ち、露光すべき表示パネルの大きさが、変更になっても、この遮光板を別のものに変更するだけで、マイクロレンズアレイ自体は、そのまま使用しても、パターン領域に応じて、そのパターン領域の間の隙間領域に、マイクロレンズアレイチップにおける露光光の透過領域の端部を位置させることができる。よって、マイクロレンズアレイチップの端部の過露光及び未露光を防止することができると共に、マイクロレンズアレイの交換は不要であるので、製造コストを低減することができる。 According to the exposure apparatus of the present invention, the plurality of microlens array chips of the microlens array are provided large so that the portions thereof overlap each other, and the shape of the opening portion of the light shielding plate attached to the microlens array holder By setting the position and position according to the pattern area, even if the pattern area formed on the mask, that is, the size of the display panel to be exposed is changed, the light shielding plate is changed to another one. Even if the microlens array itself is used as it is, the end portion of the exposure light transmission region in the microlens array chip can be positioned in the gap region between the pattern regions according to the pattern region. . Therefore, overexposure and non-exposure of the end portion of the microlens array chip can be prevented, and the replacement of the microlens array is unnecessary, so that the manufacturing cost can be reduced.
(a)は本発明の実施形態に係るマイクロレンズアレイ及び遮光板を示す平面図、(b)は遮光板を設置したマイクロレンズアレイとマスクのパターン領域との位置関係を示す図である。(A) is a top view which shows the micro lens array and light-shielding plate which concern on embodiment of this invention, (b) is a figure which shows the positional relationship of the micro lens array which installed the light-shielding plate, and the pattern area | region of a mask. 本発明の第1実施形態に係るマイクロレンズアレイを使用した露光装置を示す斜視図である。1 is a perspective view showing an exposure apparatus using a microlens array according to a first embodiment of the present invention. マスクステージとマイクロレンズアレイを示す斜視図である。It is a perspective view which shows a mask stage and a micro lens array. マスクステージ全体を示す斜視図である。It is a perspective view which shows the whole mask stage. 遮光板を設置したマイクロレンズアレイを示す図であり、(a)は平面図、(b)は図5(a)のA-A断面図である。5A and 5B are diagrams illustrating a microlens array provided with a light shielding plate, where FIG. 5A is a plan view and FIG. 5B is a cross-sectional view taken along line AA in FIG. スキャン露光工程における露光光とマスクとの関係を示す図である。It is a figure which shows the relationship between the exposure light and mask in a scanning exposure process. スキャン露光工程における露光光とマイクロレンズアレイとの関係を示す図である。It is a figure which shows the relationship between the exposure light in a scanning exposure process, and a micro lens array. 図7の次の工程を示す図である。It is a figure which shows the next process of FIG. (a)及び(b)は、セルレイアウトが異なる基板を露光する場合におけるマイクロレンズアレイ及び遮光板を示す図である。(A) And (b) is a figure which shows the microlens array and light shielding board in the case of exposing the board | substrate from which a cell layout differs. 従来のマイクロレンズアレイを使用した露光装置を示す模式図である。It is a schematic diagram which shows the exposure apparatus using the conventional microlens array. 図10に示す従来の露光装置において、セルレイアウトに対応したマイクロレンズアレイの構成を示す図である。FIG. 11 is a diagram showing a configuration of a microlens array corresponding to a cell layout in the conventional exposure apparatus shown in FIG. 10.
 以下、本発明の実施形態について、添付の図面を参照して具体的に説明する。図1(a)は本発明の実施形態に係るマイクロレンズアレイ及び遮光板を示す平面図、図1(b)は遮光板を設置したマイクロレンズアレイとマスクのパターン領域との位置関係を示す図である。図2は本発明の第1実施形態に係るマイクロレンズアレイを使用した露光装置を示す斜視図、図3は同じくマスクステージとマイクロレンズアレイを示す斜視図、図4はマスクステージ全体を示す斜視図である。本実施形態に係る露光装置は、図2に示すように、ガラス基板40を、スキャン方向(第1方向)1及びこのスキャン方向1に直交する方向(第2方向2)に移動させることができるX-Yステージ11の上に基板ステージ12が第1方向1に移動可能に設置されている。このX-Yステージ11及び基板ステージ12の上方に、架台13が設置されており、この架台13上に、一例として、4個の光源14が固定設置されている。これらの光源14は、例えば、高圧水銀ランプ光源であり、波長が280乃至340nmの紫外光の露光光15を、下方に向けて照射する。この露光光15の照射領域は、図4に示すように矩形である。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1A is a plan view showing a microlens array and a light shielding plate according to an embodiment of the present invention, and FIG. 1B is a diagram showing a positional relationship between a microlens array provided with the light shielding plate and a pattern area of a mask. It is. 2 is a perspective view showing an exposure apparatus using the microlens array according to the first embodiment of the present invention, FIG. 3 is a perspective view showing the mask stage and the microlens array, and FIG. 4 is a perspective view showing the entire mask stage. It is. As shown in FIG. 2, the exposure apparatus according to the present embodiment can move the glass substrate 40 in a scanning direction (first direction) 1 and a direction orthogonal to the scanning direction 1 (second direction 2). A substrate stage 12 is installed on the XY stage 11 so as to be movable in the first direction 1. A gantry 13 is installed above the XY stage 11 and the substrate stage 12, and four light sources 14 are fixedly installed on the gantry 13 as an example. These light sources 14 are, for example, high-pressure mercury lamp light sources, and irradiate ultraviolet exposure light 15 having a wavelength of 280 to 340 nm downward. The irradiation area of the exposure light 15 is rectangular as shown in FIG.
 この露光光15の光源14の下方には、図3に示すように、マスクステージ18が配置されている。架台13には、第2方向2に延びる第1ガイド16が懸架されており、この第1ガイド16に第1方向1に延びる第2ガイド17が懸架されている。第1ガイド16は架台13上に固定されており、第2ガイド17は第2方向2に延びる第1ガイド16上に第2方向2に移動可能に支持されている。そして、4個のマスクステージ18は相互にその位置関係を保持したまま、第1方向1に延びる第2ガイド17上に第1方向1に移動可能に支持されている。このマスクステージ18には、矩形の開口が形成されており、この開口にマスク20が支持されている。従って、マスク20は、第1ガイド16及び第2ガイド17により、第1方向1に対して、スキャンすることができ、第2方向2に対して、シフトすることができる。 As shown in FIG. 3, a mask stage 18 is arranged below the light source 14 of the exposure light 15. A first guide 16 extending in the second direction 2 is suspended from the gantry 13, and a second guide 17 extending in the first direction 1 is suspended from the first guide 16. The first guide 16 is fixed on the gantry 13, and the second guide 17 is supported on the first guide 16 extending in the second direction 2 so as to be movable in the second direction 2. The four mask stages 18 are supported so as to be movable in the first direction 1 on the second guide 17 extending in the first direction 1 while maintaining the positional relationship with each other. The mask stage 18 is formed with a rectangular opening, and the mask 20 is supported in the opening. Accordingly, the mask 20 can be scanned with respect to the first direction 1 and can be shifted with respect to the second direction 2 by the first guide 16 and the second guide 17.
 このマスク20の下方には、マイクロレンズアレイホルダ21が設置されており、このホルダ21の開口部内に、マイクロレンズアレイチップ22aが複数個支持されており、複数個のマイクロレンズアレイチップ22aからなるマイクロレンズアレイ22が構成されている。マイクロレンズアレイチップ22aは、夫々、多数のマイクロレンズが形成されており、各マイクロレンズにより、マスク20のパターンの正立等倍像が、マイクロレンズアレイ22の下方に配置される基板40上に結像されるようになっている。 Below the mask 20, a microlens array holder 21 is installed, and a plurality of microlens array chips 22a are supported in the opening of the holder 21, and are composed of a plurality of microlens array chips 22a. A microlens array 22 is configured. The microlens array chip 22a is formed with a large number of microlenses, and an erecting equal-magnification image of the pattern of the mask 20 is formed on the substrate 40 disposed below the microlens array 22 by each microlens. An image is formed.
 本実施形態においては、露光装置には、マスクステージ18に支持されたマスク20と、基板ステージ12上の基板40とを、光源14及びマイクロレンズアレイ22に対して、相対的に同時一体的に第1方向1にスキャンする駆動装置が設けられている。また、基板ステージ12上の基板40は、基板ステージ12を第2方向2に移動させることにより、光源14、マスク20及びマイクロレンズアレイ22に対して、第2方向2にシフト可能に構成されている。なお、基板ステージ12の第2方向2への移動は、手動で行っても、基板40のシフト用に駆動装置を設け、この駆動装置により行ってもよい。本実施形態においては、複数個のマイクロレンズアレイチップ22aは、第2方向2に配列されてホルダ21に支持されており、ホルダ21は架台13上に固定されている。従って、光源14からの露光光15がマイクロレンズアレイ22により基板40上に集光される状態を保持して、マスク20と基板40とが第1方向1に移動することにより、基板40が露光光15によりスキャンされ、マスクのパターン領域20aに形成されたパターンが基板40上に露光されて転写される。 In the present embodiment, the exposure apparatus includes the mask 20 supported by the mask stage 18 and the substrate 40 on the substrate stage 12 relatively simultaneously and integrally with the light source 14 and the microlens array 22. A driving device for scanning in the first direction 1 is provided. The substrate 40 on the substrate stage 12 is configured to be shiftable in the second direction 2 with respect to the light source 14, the mask 20, and the microlens array 22 by moving the substrate stage 12 in the second direction 2. Yes. Note that the movement of the substrate stage 12 in the second direction 2 may be performed manually or may be performed by providing a driving device for shifting the substrate 40 and using this driving device. In the present embodiment, the plurality of microlens array chips 22 a are arranged in the second direction 2 and supported by the holder 21, and the holder 21 is fixed on the gantry 13. Accordingly, the exposure light 15 from the light source 14 is held on the substrate 40 by the microlens array 22, and the mask 40 and the substrate 40 move in the first direction 1 so that the substrate 40 is exposed. A pattern scanned in the light 15 and formed in the pattern area 20 a of the mask is exposed and transferred onto the substrate 40.
 第1の駆動装置によるマスク20及び基板40に対する光源14及びマイクロレンズアレイ22の相対的第1方向1へのスキャンは、図示しない制御装置により制御されている。そして、露光装置は、制御装置により駆動装置及び光源を制御して露光光をスキャンした後、基板40が第2方向2にシフトされると、再度、制御装置により駆動装置及び光源を制御して露光光をスキャンすることを繰り返す。これにより、第1方向1への露光光のスキャンと第2方向2への基板40のシフトとが順次行われて、基板のパターン形成用領域が順次露光されていく。 The scanning of the light source 14 and the microlens array 22 relative to the mask 20 and the substrate 40 by the first driving device in the first direction 1 is controlled by a control device (not shown). Then, after the exposure device scans the exposure light by controlling the drive device and the light source by the control device, when the substrate 40 is shifted in the second direction 2, the control device again controls the drive device and the light source. Repeat scanning the exposure light. Thereby, the scanning of the exposure light in the first direction 1 and the shift of the substrate 40 in the second direction 2 are sequentially performed, and the pattern forming region of the substrate is sequentially exposed.
 マスクステージ18に保持されるマスク20の大きさは、例えば、第2方向2の幅が400mmである。そして、マスク20には、露光すべきパターンが複数個のパネルに対応して形成されたパターン領域20aが設けられている。本実施形態においては、パターン領域20aが第1方向1に連続的又は所定ピッチ(図示例)で複数個配置されてパターン列20c,20dが形成されており、このパターン列が第2方向2に所定ピッチで複数列配列されている。そして、各パターン領域20aは、夫々、基板上に形成する各パネルに対応し、複数個のパターン領域20aが基板40上のセル40aのレイアウトに対応して配置されている。 The size of the mask 20 held on the mask stage 18 is, for example, a width in the second direction 2 of 400 mm. The mask 20 is provided with a pattern region 20a in which a pattern to be exposed is formed corresponding to a plurality of panels. In the present embodiment, a plurality of pattern regions 20 a are arranged in the first direction 1 continuously or at a predetermined pitch (illustrated example) to form pattern rows 20 c and 20 d, and this pattern row is in the second direction 2. A plurality of rows are arranged at a predetermined pitch. Each pattern region 20 a corresponds to each panel formed on the substrate, and a plurality of pattern regions 20 a are arranged corresponding to the layout of the cells 40 a on the substrate 40.
 本実施形態においては、図1(a)に示すように、マイクロレンズアレイ22は、2個のマイクロレンズアレイチップ22aにより構成されており、各マイクロレンズアレイチップ22aは、相互に、その一部が第1方向1に重なるように配置されている。従って、マイクロレンズアレイ22が基板40(図8参照)に対して相対的に第1方向1に走査されたときに、第1方向1に配置された各パターン列20c,20dは、2個のマイクロレンズアレイチップ22aの双方又はいずれか一方に対応している。 In the present embodiment, as shown in FIG. 1A, the microlens array 22 is configured by two microlens array chips 22a, and each microlens array chip 22a is mutually a part thereof. Are arranged so as to overlap in the first direction 1. Accordingly, when the microlens array 22 is scanned in the first direction 1 relative to the substrate 40 (see FIG. 8), each pattern row 20c, 20d arranged in the first direction 1 has two pieces. It corresponds to both or one of the microlens array chips 22a.
 図1(a)に示すように、本実施形態のマイクロレンズアレイ22は、マイクロレンズアレイチップ22a同士の一部が第1方向に重なるように配置されているため、ある特定のパターン列20dの透過光の一部は、後述する遮光板30が設けられていないと、双方のマイクロレンズアレイチップ22aに入射される。よって、このパターン列20dにより形成されるパネルは、一部が2回露光されて過露光となり、残部が通常の1回露光となる。このような露光ムラが生じたパネルは、使用することができない。よって、これを回避するために、本実施形態においては、図1(b)に示すように、マイクロレンズアレイチップ22aにおける光透過が不要な領域を遮光する遮光板30が設けられている。即ち、遮光板30には、遮光部30a及び開口部30bが設けられており、パターン領域20aが1個のマイクロレンズアレイチップ22aにのみ対応するように、マイクロレンズアレイ22aを振り分けた場合に、マイクロレンズアレイチップ22aにおける光透過が不要な領域を遮光部30aにより遮光し、マイクロレンズアレイチップ22aにおける光透過が必要な領域に開口部30bを設けて透過光を透過させる。即ち、遮光部30bは、マスクの各パターン領域の透過光が2以上のマイクロレンズアレイチップ22aに入射されないように、各パターン列に対応していない側のマイクロレンズアレイチップ22aへの露光光を遮光する。 As shown in FIG. 1A, the microlens array 22 of the present embodiment is arranged so that a part of the microlens array chips 22a overlap in the first direction. A part of the transmitted light is incident on both microlens array chips 22a unless a light shielding plate 30 described later is provided. Therefore, a part of the panel formed by the pattern row 20d is overexposed by being exposed twice, and the remaining part is subjected to normal single exposure. A panel with such exposure unevenness cannot be used. Therefore, in order to avoid this, in the present embodiment, as shown in FIG. 1B, a light shielding plate 30 is provided to shield a region that does not require light transmission in the microlens array chip 22a. That is, the light shielding plate 30 is provided with a light shielding portion 30a and an opening 30b, and when the microlens array 22a is distributed so that the pattern region 20a corresponds to only one microlens array chip 22a, A region that does not require light transmission in the microlens array chip 22a is shielded by the light shielding portion 30a, and an opening 30b is provided in a region that requires light transmission in the microlens array chip 22a to transmit the transmitted light. That is, the light shielding unit 30b emits the exposure light to the micro lens array chip 22a on the side not corresponding to each pattern row so that the transmitted light of each pattern area of the mask is not incident on the two or more micro lens array chips 22a. Shield from light.
 図5は、遮光板を設置したマイクロレンズアレイを示す図であり、図5(a)は平面図、図5(b)は図5(a)のA-A断面図である。図5に示すように、マイクロレンズアレイ22は、枠状のマイクロレンズアレイホルダ21の内側に2個のマイクロレンズアレイチップ22aが固定されて構成されている。各マイクロレンズアレイチップ22aは、4枚の部材により構成されており、各部材は、ガラス基板の表面及び/又は裏面に凸レンズのマイクロレンズを2次元的に配置して形成されている。このマイクロレンズアレイチップ22aに平行光を透過させることにより、基板上に、マスクのパターンが正立等倍像で結像される。図5(b)に示すように、遮光板30は、マスク20のパターン20aの大きさに対応するように、遮光部30a及び開口部30bが所定の形状で設けられており、マイクロレンズアレイ22の上方にて、その周縁部がマイクロレンズアレイホルダ21に固定されている。これにより、本実施形態においては、遮光部30aにより遮光され、開口部30bを透過した露光光が、マイクロレンズアレイ22に入射する。なお、本実施形態においては、マイクロレンズアレイチップ22aは4枚の部材により構成されているが、本発明はマイクロレンズアレイチップ22aを構成する部材の数により限定されない。例えば、マイクロレンズアレイチップ22aは、8枚等の部材を使用することもできる。 FIG. 5 is a view showing a microlens array provided with a light shielding plate, FIG. 5 (a) is a plan view, and FIG. 5 (b) is a cross-sectional view taken along line AA of FIG. 5 (a). As shown in FIG. 5, the microlens array 22 is configured by fixing two microlens array chips 22 a inside a frame-shaped microlens array holder 21. Each microlens array chip 22a is composed of four members, and each member is formed by two-dimensionally arranging convex microlenses on the front surface and / or back surface of the glass substrate. By transmitting parallel light through the microlens array chip 22a, a mask pattern is formed as an erecting equal-magnification image on the substrate. As shown in FIG. 5B, the light shielding plate 30 is provided with a light shielding portion 30a and an opening 30b in a predetermined shape so as to correspond to the size of the pattern 20a of the mask 20, and the microlens array 22 is provided. The peripheral edge is fixed to the microlens array holder 21 above. Thereby, in the present embodiment, the exposure light that is shielded by the light shielding portion 30 a and transmitted through the opening 30 b enters the microlens array 22. In the present embodiment, the microlens array chip 22a is constituted by four members, but the present invention is not limited by the number of members constituting the microlens array chip 22a. For example, the microlens array chip 22a can use eight members or the like.
 遮光板30は、例えば厚さが100μm程度のステンレス鋼であり、本実施形態においては、図5(b)に示すように、マイクロレンズアレイホルダ21に設けられた溝に嵌め込むことにより特定の位置で固定されるように構成されている。これにより、マイクロレンズアレイチップ22aに対する遮光位置の精度が向上する。なお、遮光板30を固定する際には、例えばマイクロレンズアレイホルダ21に接着により貼り付けてもよい。 The light shielding plate 30 is, for example, stainless steel having a thickness of about 100 μm. In the present embodiment, as shown in FIG. 5B, the light shielding plate 30 is fitted into a groove provided in the microlens array holder 21 to have a specific shape. It is configured to be fixed in position. Thereby, the accuracy of the light shielding position with respect to the microlens array chip 22a is improved. In addition, when fixing the light shielding plate 30, you may affix on the microlens array holder 21, for example by adhesion | attachment.
 次に、上述の如く構成されたマイクロレンズアレイを使用した露光装置の動作について説明する。レジスト膜が形成されたガラス基板40は、基板ステージ12上に搬送されてきて、4個のマスクステージ18に支持されたマスク20と正対する位置に設定される。そして、ガイド16,17並びに基板ステージ12及びX-Yステージ11により、基板40とマスク20とは一定の位置関係を保持して、駆動装置により同時に駆動される。 Next, the operation of the exposure apparatus using the microlens array configured as described above will be described. The glass substrate 40 on which the resist film is formed is transferred onto the substrate stage 12 and set at a position facing the mask 20 supported by the four mask stages 18. Then, the guides 16 and 17 and the substrate stage 12 and the XY stage 11 hold the substrate 40 and the mask 20 in a fixed positional relationship and are driven simultaneously by a driving device.
 本実施形態においては、図4に示すように、4個のマスクステージ18に夫々マスク20が保持されており、4個の光源14からの4個の露光光15は、各マスク20に入射し、露光光15の矩形の照射領域は、その幅方向の長さが、マスク20の第2方向2(スキャン方向に直交する方向)の全域の長さに対応するようになっている。この露光光15は、図6に示すように、マスク20及び基板40が、同時一体的に第1方向1に露光光15に対して相対的に移動することにより、露光光15は、マスク20を白抜き矢印にて示すスキャン方向(第1方向)にスキャンする。 In the present embodiment, as shown in FIG. 4, the masks 20 are respectively held on the four mask stages 18, and the four exposure lights 15 from the four light sources 14 are incident on the masks 20. The rectangular irradiation region of the exposure light 15 has a length in the width direction corresponding to the entire length of the mask 20 in the second direction 2 (direction orthogonal to the scanning direction). As shown in FIG. 6, the exposure light 15 is moved from the mask 20 and the substrate 40 simultaneously and relative to the exposure light 15 in the first direction 1. Is scanned in the scanning direction (first direction) indicated by the white arrow.
 図7は、マスク20を取り除いた状態を示す斜視図である。この図7に示すように、マスク20の各パターン領域20aを透過した露光光15は、その矩形の照射領域が、マイクロレンズアレイホルダ21の開口部内に支持された2個のマイクロレンズアレイチップ22aのいずれかのマイクロレンズ形成領域内にある。そして、この露光光15と、マイクロレンズアレイ22とは、その位置関係が固定されており、マスク20及び基板40が一体的に同時に移動する間に、図8に示すように、露光光15が白抜き矢印にて示すスキャン方向にマスク20及び基板40に対して相対的にスキャンされ、マイクロレンズアレイ22は、マスク20を透過してきた露光光15を基板40上に結像させる。これにより、基板40上に、マスク20のパターンが、正立等倍像として転写され、帯状の露光パターン41が5列レジスト上に形成される。 FIG. 7 is a perspective view showing a state in which the mask 20 is removed. As shown in FIG. 7, the exposure light 15 transmitted through each pattern region 20a of the mask 20 has two microlens array chips 22a whose rectangular irradiation regions are supported in the openings of the microlens array holder 21. Are in the microlens formation region. The positional relationship between the exposure light 15 and the microlens array 22 is fixed. As shown in FIG. 8, the exposure light 15 is generated while the mask 20 and the substrate 40 are moved together at the same time. The microlens array 22 is scanned relative to the mask 20 and the substrate 40 in the scanning direction indicated by the white arrow, and the exposure light 15 transmitted through the mask 20 is imaged on the substrate 40. As a result, the pattern of the mask 20 is transferred onto the substrate 40 as an erecting equal-magnification image, and a strip-shaped exposure pattern 41 is formed on the five-row resist.
 本実施形態においては、マイクロレンズアレイ22には、2個のマイクロレンズアレイチップ22aが設けられており、マイクロレンズアレイチップ22a同士は、その一部が相互に第1方向に重なるように配置されている。しかし、本実施形態においては、マイクロレンズアレイホルダ21に遮光板30が固定されており、これにより、パターン領域20aが1個のマイクロレンズアレイチップ22aにのみ対応するように、マイクロレンズアレイ22aを振り分け、マイクロレンズアレイチップ22aにおける光透過が不要な領域を遮光部30aにより遮光し、マイクロレンズアレイチップ22aにおける光透過が必要な領域に開口部30bを設けて透過光を透過させ、遮光部30bは、マスクの各パターン領域の透過光が2以上のマイクロレンズアレイチップ22aに入射されないように、各パターン列に対応していない側のマイクロレンズアレイチップ22aへの露光光を遮光する。そして、ガラス基板40上のレジスト膜に対する1回のスキャン動作により、5枚のパネルを同時に露光することができ、露光動作を高効率化することができる。また、このとき、各パネルについては、その内部にマイクロレンズアレイチップ22aの継ぎ目は存在しないため、露光パターンにおいて、従来の所謂「つぎ」の処理を行う必要はなく、過露光の領域も存在しないため、露光パターンに露光ムラが発生することはない。 In the present embodiment, the microlens array 22 is provided with two microlens array chips 22a, and the microlens array chips 22a are arranged so that some of them overlap each other in the first direction. ing. However, in the present embodiment, the light shielding plate 30 is fixed to the microlens array holder 21, and thus the microlens array 22a is arranged so that the pattern region 20a corresponds to only one microlens array chip 22a. The area where light transmission is unnecessary in the microlens array chip 22a is shielded by the light shielding part 30a, and the opening 30b is provided in the area where light transmission is necessary in the microlens array chip 22a to transmit the transmitted light. Shields the exposure light to the microlens array chip 22a on the side not corresponding to each pattern row so that the transmitted light of each pattern region of the mask does not enter two or more microlens array chips 22a. Then, by performing a single scanning operation on the resist film on the glass substrate 40, five panels can be exposed at the same time, and the exposure operation can be made highly efficient. At this time, since there is no seam of the microlens array chip 22a in each panel, it is not necessary to perform the so-called “next” process in the exposure pattern, and there is no overexposed region. Therefore, exposure unevenness does not occur in the exposure pattern.
 マスクは、通常、幅が400mm程度であるが、このような長寸のマイクロレンズアレイを製造しようとすると、コストが高くなる。マイクロレンズアレイは、通常、150mm程度の長さ(幅)のチップ状のものが、単位長あたりの相対的な製造コストは低い。よって、複数枚のマイクロレンズアレイチップをつなぎ合わせて、マスク幅に対応するマイクロレンズアレイを構成するか、又は、マイクロレンズアレイホルダ21に例えば長さが150mmのマイクロレンズアレイチップを設け、このマイクロレンズアレイチップが存在しない領域のマスク部分には、Cr膜を形成して、露光光の透過を遮断するという作業が必要である。後者の場合は、ガラス基板40に使用しない領域(パネルとならない領域)が生じてしまうので、無駄である。そこで、複数枚のマイクロレンズアレイチップを第2方向に配列して、夫々マスク幅に対応した複数枚のマイクロレンズアレイチップによりマイクロレンズアレイを構成することが好ましい。このとき、本実施形態のように、各マイクロレンズアレイチップ22aを、相互に、その一部が第1方向1に重なるように配置し、遮光板30によりその光透過領域の一部を遮光して、第1方向1に複数個配置されて形成されたマスク20の各パターン列にいずれかのマイクロレンズアレイチップ22aが対応するように構成すれば、所謂「つぎ」がパネルの露光パターン41内に存在せず、しかも可及的に多数及び他種類のパネルを一度に露光処理できるため、効率的である。 The mask is usually about 400 mm in width, but if such a long microlens array is to be manufactured, the cost increases. In general, a microlens array having a chip shape having a length (width) of about 150 mm has a low relative manufacturing cost per unit length. Therefore, a plurality of microlens array chips are connected to form a microlens array corresponding to the mask width, or the microlens array holder 21 is provided with a microlens array chip having a length of 150 mm, for example. It is necessary to form a Cr film on the mask portion in the area where the lens array chip does not exist to block transmission of exposure light. In the latter case, an area that is not used for the glass substrate 40 (an area that does not become a panel) is generated, which is useless. Therefore, it is preferable that a plurality of microlens array chips are arranged in the second direction, and the microlens array is constituted by a plurality of microlens array chips each corresponding to the mask width. At this time, as in the present embodiment, the microlens array chips 22a are arranged so that parts thereof overlap each other in the first direction 1, and a part of the light transmission region is shielded by the light shielding plate 30. Thus, if one of the microlens array chips 22a corresponds to each pattern row of the mask 20 formed by being arranged in the first direction 1, so-called "next" is in the exposure pattern 41 of the panel. In addition, since a large number of panels and other types of panels can be exposed at the same time, it is efficient.
 本実施形態においては、図9(a)に示すように、2個のマイクロレンズアレイチップ22aを使用し、遮光板30により、マイクロレンズアレイチップ22aの一部を遮光して第2方向2に並ぶ5個のパターン領域20aを透過した光がいずれかのマイクロレンズアレイチップ22aに入射するようにしたものであるが、図9(b)のように、セルレイアウトが異なる基板40に対応したマスク200を使用する場合においては、遮光板30を変更するだけで、マイクロレンズアレイ22を共用化できる。即ち、図9(b)に示すマスク200には、第2方向2に4個のパターン領域20bが形成されており、各パターン領域20bは、図9(a)のマスク20における各パターン領域20aよりも第2方向2の大きさが大きい。このような場合に、露光装置には、予め、パターン領域の大きさが異なるマスクに対応させて、開口部30bの第2方向2の長さが異なる複数個の遮光板を用意しておき、パターン領域の大きさに応じて、複数個の遮光板のうちの一つを選択して使用することができる。即ち、図9(b)に示すマスク200の場合においては、パターン領域20bの大きさに対応する遮光板31を選択して使用する。このように、パターン領域の大きさが異なるマスクを使用する場合においても、開口部30bの第2方向2の長さが異なる遮光板を使用することにより、マイクロレンズアレイチップ22aにおける露光光の透過領域の端部をパターン領域の間の隙間領域に位置させることができ、マイクロレンズアレイチップ22aの端部の過露光及び未露光を防止することができる。そして、異なるセルレイアウトのパネルを露光する際においても、マイクロレンズアレイ22を交換することなく露光できるので、高い製造効率でパネルを露光できる。また、セルレイアウトに対応して異なるマイクロレンズを設ける必要もないため、パネルの製造コストの増大も防止できる。 In the present embodiment, as shown in FIG. 9A, two microlens array chips 22a are used, and a part of the microlens array chip 22a is shielded by the light shielding plate 30 in the second direction 2. The light transmitted through the five patterned regions 20a arranged is made incident on one of the microlens array chips 22a. As shown in FIG. 9B, a mask corresponding to the substrate 40 having a different cell layout. When 200 is used, the microlens array 22 can be shared only by changing the light shielding plate 30. That is, in the mask 200 shown in FIG. 9B, four pattern regions 20b are formed in the second direction 2, and each pattern region 20b corresponds to each pattern region 20a in the mask 20 in FIG. The size in the second direction 2 is larger than that. In such a case, in the exposure apparatus, a plurality of light shielding plates having different lengths in the second direction 2 of the openings 30b are prepared in advance in correspondence with masks having different pattern region sizes. Depending on the size of the pattern region, one of a plurality of light shielding plates can be selected and used. That is, in the case of the mask 200 shown in FIG. 9B, the light shielding plate 31 corresponding to the size of the pattern region 20b is selected and used. As described above, even when a mask having a different pattern area size is used, the exposure light is transmitted through the microlens array chip 22a by using a light shielding plate having a different length in the second direction 2 of the opening 30b. The edge part of an area | region can be located in the clearance gap area | region between pattern areas, and the overexposure and unexposure of the edge part of the micro lens array chip | tip 22a can be prevented. And when exposing the panel of a different cell layout, since it can expose without exchanging the micro lens array 22, a panel can be exposed with high manufacturing efficiency. Further, since it is not necessary to provide different microlenses corresponding to the cell layout, it is possible to prevent an increase in manufacturing cost of the panel.
 なお、本実施形態における遮光板30は、マスク20からマイクロレンズアレイ22への入射光を遮光するように構成されているが、遮光板30はマイクロレンズアレイ22を透過した露光光を遮光するように構成されていてもよい。また、本発明においては、遮光板は、マスク20のパターン領域20aの透過光が2以上のマイクロレンズアレイチップ22aを透過して基板に照射されないように遮光部30a及び開口部30bが設けられている限り、上記態様に限定されることはない。例えば、遮光板30は、マイクロレンズアレイホルダ21に固定されていなくてもよい。 Although the light shielding plate 30 in the present embodiment is configured to shield the incident light from the mask 20 to the microlens array 22, the light shielding plate 30 shields the exposure light transmitted through the microlens array 22. It may be configured. In the present invention, the light shielding plate is provided with the light shielding portion 30a and the opening 30b so that the transmitted light of the pattern region 20a of the mask 20 does not pass through the two or more microlens array chips 22a and irradiate the substrate. As long as it is, it is not limited to the said aspect. For example, the light shielding plate 30 may not be fixed to the microlens array holder 21.
 また、本実施形態のマイクロレンズアレイ22は、2個のマイクロレンズアレイチップ22aにより構成されているが、本発明においては、マイクロレンズアレイ22は、3個以上の複数個のマイクロレンズアレイチップ22aがその一部が相互に第1方向に重なるように配置されて構成され、マスク20の各パターン領域20aを透過した露光光の全てが、第1方向に重なるように配置されたマイクロレンズアレイチップ22aのいずれかに透過されるように構成されていてもよい。 In addition, the microlens array 22 of the present embodiment is configured by two microlens array chips 22a. However, in the present invention, the microlens array 22 includes three or more microlens array chips 22a. Are arranged so that a part thereof overlaps with each other in the first direction, and a microlens array chip in which all of the exposure light transmitted through each pattern region 20a of the mask 20 overlaps with each other in the first direction. It may be configured to be transmitted through any of 22a.
 本発明によれば、異なるセルレイアウトに対応させてマスクを交換する際に、遮光板を変更するだけで、マイクロレンズアレイの交換は不要であり、セルレイアウトが異なる基板の露光において極めて有用である。また、本発明は、携帯機器用の液晶表示パネルのように、高精細が要求されると共に、小型のパネルの低コストの製造に有益である。 According to the present invention, when exchanging a mask corresponding to a different cell layout, it is only necessary to change the light shielding plate, and it is not necessary to replace the microlens array, which is extremely useful for exposure of substrates having different cell layouts. . In addition, the present invention is required for high-definition and liquid crystal display panels for portable devices, and is useful for low-cost manufacturing of small panels.
1:第1方向(スキャン方向)、2:第2方向(スキャン方向に直交する方向)、11:X-Yステージ、12:基板ステージ、13:架台、14:光源、15:露光光、16:第1ガイド、17:第2ガイド、18:マスクステージ、20:マスク、20a,20b:パターン領域、20c,20d:パターン列、21:マイクロレンズアレイホルダ、22:マイクロレンズアレイ、22a:マイクロレンズアレイチップ、30,31:遮光板、30a:遮光部、30b:開口部、40:基板、41:露光パターン 1: first direction (scan direction), 2: second direction (direction orthogonal to the scan direction), 11: XY stage, 12: substrate stage, 13: mount, 14: light source, 15: exposure light, 16 : First guide, 17: Second guide, 18: Mask stage, 20: Mask, 20a, 20b: Pattern region, 20c, 20d: Pattern row, 21: Micro lens array holder, 22: Micro lens array, 22a: Micro Lens array chip, 30, 31: light shielding plate, 30a: light shielding portion, 30b: opening, 40: substrate, 41: exposure pattern

Claims (3)

  1. 露光光を発光する光源と、この光源からの露光光が入射され露光すべきパターンが複数個のパネルに対応して夫々形成された複数個のパターン領域を有するマスクと、このマスクを透過した露光光が入射され前記マスクのパターンの正立等倍像を基板上に結像させるマイクロレンズアレイと、このマイクロレンズアレイを支持するホルダと、このホルダに取り付けられ前記マイクロレンズアレイの光透過領域を規制する遮光板と、前記光源と前記マイクロレンズアレイとの位置関係を固定した状態で、前記マスク及び前記基板を前記光源及び前記マイクロレンズアレイに対して相対的に移動させて前記露光光を前記基板上で第1方向にスキャンする駆動装置と、前記駆動装置及び前記光源を制御する制御装置と、
    を有し、
    前記マイクロレンズアレイは、前記第1方向に直交する第2方向に複数個のマイクロレンズアレイチップがその一部が相互に前記第1方向に重なるように配置されて構成され、
    前記遮光板は、各前記マイクロレンズアレイチップが1又は複数個の前記パターン領域に対応し、各前記パターン領域が1個のマイクロレンズアレイチップにのみ対応するように、前記マイクロレンズアレイチップを振り分けた場合に、マイクロレンズアレイチップにおける光透過が不要な領域を遮光し、光透過が必要な領域に開口部を有するものであることを特徴とする露光装置。
    A light source that emits exposure light, a mask having a plurality of pattern areas in which exposure light from the light source is incident and a pattern to be exposed is formed corresponding to a plurality of panels, and exposure through the mask A microlens array that allows light to enter and forms an erecting equal-magnification image of the mask pattern on the substrate, a holder that supports the microlens array, and a light transmission region of the microlens array that is attached to the holder. The exposure light is moved by moving the mask and the substrate relative to the light source and the microlens array in a state where the positional relationship between the light shielding plate to be regulated, the light source and the microlens array is fixed. A driving device that scans in a first direction on the substrate; a control device that controls the driving device and the light source;
    Have
    The microlens array is configured by arranging a plurality of microlens array chips in a second direction orthogonal to the first direction so that a part thereof overlaps the first direction.
    The light shielding plate distributes the microlens array chips so that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip. An exposure apparatus characterized in that, in the microlens array chip, an area that does not require light transmission is shielded and an opening is provided in the area that requires light transmission.
  2. 前記マイクロレンズアレイに対し、前記開口部の前記第2方向の長さが異なる複数個の遮光板が用意され、前記パターン領域の大きさに応じて、前記複数個の遮光板のうちの一つが選択されて使用されることを特徴とする請求項1に記載の露光装置。 A plurality of light shielding plates having different lengths in the second direction of the openings are prepared for the microlens array, and one of the plurality of light shielding plates is provided according to the size of the pattern region. 2. The exposure apparatus according to claim 1, wherein the exposure apparatus is selected and used.
  3. 複数個のパターン領域を有するマスクを透過した露光光が入射され、前記マスクのパターンの正立等倍像を基板上に結像させる複数個のマイクロレンズアレイチップが配列されたマイクロレンズアレイに対し、このマイクロレンズアレイを支持するホルダに取り付けられ、前記マイクロレンズアレイの光透過領域を規制する遮光板であって、
    前記複数個のマイクロレンズアレイチップは、その一部が相互に前記マイクロレンズアレイチップの配列方向に垂直の方向に重なるように配置されており、
    前記遮光板は、
    各前記マイクロレンズアレイチップが1又は複数個の前記パターン領域に対応し、各前記パターン領域が1個のマイクロレンズアレイチップにのみ対応するように、前記マイクロレンズアレイチップを振り分けた場合に、マイクロレンズアレイチップにおける光透過が不要な領域を遮光し、光透過が必要な領域に開口部を有するものであることを特徴とする遮光板。
    With respect to a microlens array in which a plurality of microlens array chips are arranged so that exposure light transmitted through a mask having a plurality of pattern areas is incident and an erecting equal-magnification image of the mask pattern is formed on a substrate A light-shielding plate that is attached to a holder that supports the microlens array and regulates a light transmission region of the microlens array
    The plurality of microlens array chips are arranged such that some of them overlap each other in a direction perpendicular to the arrangement direction of the microlens array chips,
    The shading plate is
    When the microlens array chips are allocated such that each microlens array chip corresponds to one or a plurality of the pattern areas, and each pattern area corresponds to only one microlens array chip, A light-shielding plate characterized by shielding an area that does not require light transmission in a lens array chip and having an opening in an area that requires light transmission.
PCT/JP2012/060940 2011-05-16 2012-04-24 Exposure device and light-shielding plate WO2012157409A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-109765 2011-05-16
JP2011109765A JP5825470B2 (en) 2011-05-16 2011-05-16 Exposure apparatus and shading plate

Publications (1)

Publication Number Publication Date
WO2012157409A1 true WO2012157409A1 (en) 2012-11-22

Family

ID=47176745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/060940 WO2012157409A1 (en) 2011-05-16 2012-04-24 Exposure device and light-shielding plate

Country Status (3)

Country Link
JP (1) JP5825470B2 (en)
TW (1) TW201248337A (en)
WO (1) WO2012157409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118657110A (en) * 2024-08-21 2024-09-17 合肥晶合集成电路股份有限公司 Layout structure forming method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6131607B2 (en) * 2013-01-21 2017-05-24 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP6497056B2 (en) * 2014-12-12 2019-04-10 三菱電機株式会社 Manufacturing method of liquid crystal display device
JP6428839B2 (en) * 2017-04-20 2018-11-28 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
CN115457299B (en) * 2022-11-14 2023-03-31 中国科学院光电技术研究所 Matching method of sensor chip projection photoetching machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
JP2009277900A (en) * 2008-05-15 2009-11-26 V Technology Co Ltd Exposure device and photomask
JP2010197628A (en) * 2009-02-25 2010-09-09 Nikon Corp Exposure device, exposure method and method of manufacturing device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3348467B2 (en) * 1993-06-30 2002-11-20 株式会社ニコン Exposure apparatus and method
JPH09244255A (en) * 1996-03-13 1997-09-19 Nikon Corp Exposure device for liquid crystal
JP4092753B2 (en) * 1997-10-22 2008-05-28 株式会社ニコン Scanning exposure apparatus and scanning exposure method
JP2005221596A (en) * 2004-02-04 2005-08-18 Dainippon Screen Mfg Co Ltd Pattern drawing system
US7061581B1 (en) * 2004-11-22 2006-06-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4773160B2 (en) * 2005-08-24 2011-09-14 株式会社ブイ・テクノロジー Exposure equipment
JP2007108559A (en) * 2005-10-17 2007-04-26 Nikon Corp Scanning exposure apparatus and method for manufacturing device
JP4764237B2 (en) * 2006-04-11 2011-08-31 株式会社ブイ・テクノロジー Exposure equipment
JP2008197226A (en) * 2007-02-09 2008-08-28 Fujifilm Corp Positive photosensitive composition and pattern forming method
US8009269B2 (en) * 2007-03-14 2011-08-30 Asml Holding N.V. Optimal rasterization for maskless lithography
JP5034632B2 (en) * 2007-04-12 2012-09-26 株式会社ニコン Pattern generator, pattern forming apparatus, and pattern generation method
KR20090040531A (en) * 2007-10-22 2009-04-27 삼성전자주식회사 Exposure system and control method thereof
JP5493403B2 (en) * 2008-06-19 2014-05-14 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP5190609B2 (en) * 2008-08-21 2013-04-24 株式会社ブイ・テクノロジー Exposure apparatus and photomask used therefor
JP5382412B2 (en) * 2008-10-24 2014-01-08 株式会社ブイ・テクノロジー Exposure apparatus and photomask
JP5760292B2 (en) * 2011-02-28 2015-08-05 株式会社ブイ・テクノロジー Exposure system using microlens array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335864A (en) * 2003-05-09 2004-11-25 Nikon Corp Aligner and exposure method
JP2009277900A (en) * 2008-05-15 2009-11-26 V Technology Co Ltd Exposure device and photomask
JP2010197628A (en) * 2009-02-25 2010-09-09 Nikon Corp Exposure device, exposure method and method of manufacturing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118657110A (en) * 2024-08-21 2024-09-17 合肥晶合集成电路股份有限公司 Layout structure forming method

Also Published As

Publication number Publication date
JP2012242454A (en) 2012-12-10
TW201248337A (en) 2012-12-01
JP5825470B2 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
JP5190860B2 (en) Projection exposure apparatus and projection exposure method
KR100859400B1 (en) Light irradiation apparatus
JP5294488B2 (en) Exposure equipment
JP5825470B2 (en) Exposure apparatus and shading plate
WO2013018572A1 (en) Microlens array and scanning exposure device using same
KR101325431B1 (en) Exposure method, color filter manufacturing method, and exposure device
CN111108000B (en) Image exposure apparatus
US8072580B2 (en) Maskless exposure apparatus and method of manufacturing substrate for display using the same
KR20130002954A (en) Exposing method and device thereof
JP5704535B2 (en) Exposure system using microlens array
JP5760292B2 (en) Exposure system using microlens array
JP5747305B2 (en) Exposure apparatus and microlens array structure
JP2013054315A (en) Exposure device
JP2010122619A (en) Pattern drawing device, pattern drawing method and mask for pattern drawing
KR101883186B1 (en) Exposure apparatus having blind and method of driving the same
JP2008105066A (en) Laser beam machining method and laser beam machining apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12786060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12786060

Country of ref document: EP

Kind code of ref document: A1