WO2020217288A1 - Optical system device - Google Patents

Optical system device Download PDF

Info

Publication number
WO2020217288A1
WO2020217288A1 PCT/JP2019/017105 JP2019017105W WO2020217288A1 WO 2020217288 A1 WO2020217288 A1 WO 2020217288A1 JP 2019017105 W JP2019017105 W JP 2019017105W WO 2020217288 A1 WO2020217288 A1 WO 2020217288A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
irradiation
light
units
unit
Prior art date
Application number
PCT/JP2019/017105
Other languages
French (fr)
Japanese (ja)
Inventor
大川 剛史
正英 林
裕 根本
裕史 錦織
Original Assignee
カンタム・ウシカタ株式会社
株式会社エクモス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カンタム・ウシカタ株式会社, 株式会社エクモス filed Critical カンタム・ウシカタ株式会社
Priority to PCT/JP2019/017105 priority Critical patent/WO2020217288A1/en
Priority to JP2021515333A priority patent/JPWO2020217288A1/ja
Priority to TW109112595A priority patent/TW202045978A/en
Publication of WO2020217288A1 publication Critical patent/WO2020217288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the technique disclosed in this specification relates to an optical system device that irradiates irradiation light with a light source.
  • an ultraviolet light irradiation device using a large number of ultraviolet light emitting elements such as ultraviolet LEDs has been used for curing an ultraviolet curable resin, etc., so that the curing of the ultraviolet curable resin does not cause unevenness in curing. Therefore, it is required to have uniform illuminance on the irradiated surface. Further, when exposure is performed by LED light using a mask, a gap is generated between the exposure target and the mask, and the radiation angle of the LED light is about 120 °. Therefore, in order to improve the accuracy, the irradiation surface It is necessary to parallelize the irradiation light so that the irradiation light is perpendicular to the light. Generally, a parabolic mirror or the like is used for parallelizing the irradiation light.
  • a fly array lens or the like is generally used to make the optics uniform on the irradiation surface, and as a technique related to this, an LED array light source in which a plurality of light emitting elements are arranged on a plane and light emitted from each light emitting element are emitted. It has a first illumination optical system that collimates the light, a second illumination optical system that collects the light emitted from the first illumination optical system at the focal position, and a plurality of lenses arranged on a plane. 2 It is equipped with a fly-eye integrator that enhances the uniformity of illuminance by incident light emitted from the illumination optical system on the incident surface of each lens, and the incident surface of the fly-eye integrator is the focal position of the second illumination optical system.
  • each light emitting element has a conjugate relationship with the incident surface of the flyeye integrator, and an image of each light emitting element is formed on the incident surface of the flyeye integrator.
  • An irradiation device is known (see Patent Document 1).
  • the irradiation light provided in the irradiation direction of the irradiation light and having a first surface located on the incident side in the irradiation direction and a second surface located on the exit side in the irradiation direction, and the second surface incident on the irradiation light.
  • a biconvex lens formed with a parallel radius of curvature and a biconvex lens formed with a radius of curvature whose first surface equalizes the illuminance on the irradiated surface due to the irradiation light emitted by the second surface and between the biconvex lens and the light source.
  • the irradiation light can be parallelized and irradiated in a space-saving manner without the need for a device for making the illuminance uniform and a device for parallelizing the irradiation light.
  • An optical system device that equalizes the illuminance on the surface irradiated with light is known (see Patent Document 2).
  • the optical system such as the above-mentioned optical system device irradiates the irradiation light only to a part of the irradiation area. Therefore, for example, when it is desired to increase or decrease the irradiation area, the design of the optical system device must be changed each time, which causes a problem of inconvenience.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a more convenient optical system device.
  • one aspect of the present invention includes a plurality of optical system units each having a lens that parallelizes the irradiation light emitted from the light source and makes the illuminance of the irradiation surface by the irradiation light uniform, and the above-mentioned It is characterized by including a connecting portion in which a plurality of optical system units are connected in parallel and each of them is detachably connected.
  • (A) is a figure for demonstrating the illuminance of an irradiation surface at the time of light irradiation of an optical system apparatus in the state of having no oscillation and (b) with oscillation. It is a schematic side view of the optical system apparatus which concerns on 2nd Embodiment. It is a top view which shows the lattice reflector. It is a schematic side view of the optical system apparatus which concerns on 3rd Embodiment. It is a schematic plan view which shows the optical system unit of the optical system apparatus which concerns on 4th Embodiment. (A) and (b) are schematic side views of the optical system apparatus according to the fifth embodiment as viewed from directions orthogonal to each other.
  • FIG. 1 is a perspective view showing an optical system device according to the present embodiment
  • FIG. 2 is a side view of the optical system device.
  • the direction of light irradiation irradiation direction
  • the axes orthogonal to the Z axis and orthogonal to each other will be referred to as the X axis and the Y axis.
  • the optical system device 1 has a first support frame 10 connected to a vibration device (not shown) and a second support fixed on the first support frame 10. It is configured to include a frame 20 and a plurality of optical system units 30 detachably connected to the second support frame 20.
  • the first support frame 10 is a frame body having an opening formed in the center, and a plurality of optical system units 30 are inserted through the opening.
  • the second support frame 20 is fixed to the upper surface of the first support frame 10.
  • the second support frame 20 is a frame body having an opening 21 formed in the center like the first support frame 10, and a plurality of optical system units 30 are inserted through the opening 21. Therefore, the plurality of optical system units 30 are inserted into the openings of the first and second support frames 10 and 20 to penetrate them as shown in FIG. 2, and the biconvex lens 340 of the optical system unit 30 described later is inserted. It is exposed downward.
  • the configuration of the second support frame 20 will be described in detail.
  • the second support frame 20 includes a pair of X-axis rails 210 extending in the X-axis direction and three XY-axis sliders 220 extending in the Y-axis direction, thereby providing a plurality of optical system units 30. It can be moved and detachably connected.
  • the pair of X-axis rails 210 are each formed in a columnar shape, and are positioned near the periphery of the opening 21 of the second support frame 20 so as to face each other in the Y-axis direction with the opening 21 in between, and both ends thereof. Each is pivotally supported by a bearing portion 211 fixed on the second support frame 20.
  • the pair of X-axis rails 210 movably support the three XY-axis sliders 220.
  • FIG. 3 is a perspective view showing one XY-axis slider in a state where the optical system unit is supported.
  • the XY-axis slider 220 is formed in a hollow rectangular tubular shape, and both ends in the Y-axis direction are slidably supported by the X-axis rail 210 in the X-axis direction (see FIG. 1). Further, the XY-axis slider 220 supports the optical system unit 30 so as to be movable in the Y-axis direction, and therefore can support the optical system unit 30 with a degree of freedom in the two-axis directions of the X-axis and the Y-axis.
  • a pair of X-axis movable plates 222 parallel to the X-axis direction and a pair of Y-axis movable plates 224 parallel to the Y-axis direction are assembled in a square tube shape. It is formed.
  • the XY axis slider 220 supports three optical system units 30, but the number thereof may be appropriately set depending on the size of the irradiation surface, the intended use, and the like.
  • the pair of X-axis movable plates 222 each includes two plates, an outer plate 222a and an inner plate 222b. These plates are detachably connected so as to sandwich the X-axis rail 21 between them. Such a connection is preferably realized by a fastener such as a screw. By tightening the fasteners in the direction of approaching each other, the X-axis movable plate 222 can be immovably fixed to the X-axis rail 210.
  • the X-axis movable plate 222 is attached to the X-axis movable plate 222 in a state where the outer plate 222a and the inner plate 222b are loosely connected. It can be easily moved along the rail 21.
  • Each of the pair of Y-axis movable plates 224 is supported by the pair of X-axis movable plates 222 by connecting both ends to the inner plates 222b of the pair of X-axis movable plates 222. Further, three elongated hole portions 224a extending in the Y-axis direction and penetrating in the X-axis direction are formed. Two fasteners 224b such as screws are inserted into the elongated hole portion 224a, and the fasteners 224b are fastened to the light absorbing portion 380 described later of the optical system unit 30 in the inserted state.
  • the screw head of the fastener 224b abuts on the inner peripheral wall of the elongated hole portion 224a, and a step portion 224c for preventing the fastener 224b from being embedded is formed along the peripheral wall, whereby each of the elongated hole portions 224a is formed.
  • the inner inner wall is smaller than the outer inner wall. Therefore, the light absorbing portion 380 can be immovably fixed to the Y-axis movable plate 224 by being tightened by the fastener 224b in the direction in which the Y-axis movable plate 224 and the light absorbing portion 380 approach each other.
  • the fastener 224b can be easily moved along the elongated hole portion 224a in a state where the fastener 224b and the light absorbing portion 380 are loosely fastened. can do.
  • the XY-axis slider 220 can support the optical system unit 30 with a degree of freedom in the two-axis directions of the X-axis and the Y-axis, so that the optical system unit 30 can be easily attached and detached. Moreover, the fine adjustment of the position can be performed extremely easily.
  • FIG. 4 is a perspective view showing the optical system unit
  • FIG. 5 is an exploded perspective view thereof.
  • FIG. 6 is a schematic vertical sectional view of the optical system unit. Note that FIG. 6 shows a cut surface cut by a plane passing through the optical axis and parallel to the optical axis only for the aperture 360 and the light absorbing portion 380 described later, and the lens holder 346 described later is illustrated for explanation. Absent. As shown in FIGS.
  • the optical system unit 30 includes an irradiation unit 320 that irradiates the irradiation light, a biconvex lens 340 in which the irradiation light from the irradiation unit 320 can be incidentally arranged, an irradiation unit 320, and a biconvex lens. It includes an aperture 360 arranged on the irradiation unit 320 side between the irradiation unit 320 and a light absorption unit 380 arranged on the biconvex lens 340 side between the irradiation unit 320 and the biconvex lens 340. According to the optical system unit 30, the irradiation light emitted by the irradiation unit 320 forms an irradiation surface orthogonal to the optical axis direction of the biconvex lens 340.
  • the irradiation unit 320 is provided below a heat sink 322 connected to a cooling device such as an air cooling fan (not shown), and is a so-called ultraviolet LED light source that irradiates ultraviolet light as irradiation light.
  • the aperture 360 is a plate-shaped member having a plane orthogonal to the optical axis direction of the biconvex lens 340, and a hole portion 362 penetrating in the optical axis direction is formed.
  • the hole portion 362 is formed in a circular shape so that the center of the circle coincides with the optical axis of the biconvex lens 340. According to such an aperture 360, a part of the irradiation light by the irradiation unit 320 is emitted from the hole portion 362, and as a result, the size of the light source of the incident light with respect to the biconvex lens 340 is defined.
  • the light absorption unit 380 is a member formed in a hollow square cylinder shape and a light absorption surface is formed on the inner wall surface thereof, and is an incident side, that is, an irradiation unit 320 and an aperture 360 side, and an emission side, that is, a biconvex lens 340 side.
  • Each of the openings is formed, and these openings are formed as an incident side opening 382 and an outgoing side opening 384.
  • An aperture 360 is arranged in the light absorbing portion 380 so that only the irradiation light that has passed through the hole portion 362 is incident on the incident side opening 382. Further, the irradiation light emitted from the exit side opening 384 is incident on the biconvex lens 340.
  • the inner wall surface of the light absorbing portion 380 that is, the light absorbing surface has a remarkably low reflectance, preferably 4% or less, whereby the inner wall is irradiated with the irradiation light incident on the light absorbing portion 380. Most of the irradiated light is absorbed by the inner wall surface and is not emitted from the exit side opening 384.
  • the light absorbing unit 380 is not limited to a hollow square tubular member, but as a tubular member opened on the incident side and the outgoing side, only the irradiation light incident at an angle that can be parallelized by the biconvex lens 340 is opened on the outgoing side. It suffices if it is formed so that it can be emitted from the portion 384.
  • the length of the light absorbing portion 380 in the optical axis direction is a length based on the focal length of the biconvex lens 340.
  • Reference numeral 386 shown in FIGS. 4 and 5 is a light receiving element for detecting the irradiation light emitted from the irradiation unit 320 and applying feedback.
  • the optical system unit 30 according to the present embodiment includes a feedback circuit (not shown), and feeds back the illuminance of each optical system unit 30 based on the irradiation light detected by the light receiving element 386, and is used for each optical system unit 30.
  • the intensity of the irradiation light of the optical system unit 30 is automatically adjusted in real time so that the illuminance becomes uniform.
  • the biconvex lens 340 has a curved surface of a first surface 342 facing the incident side of the irradiation light and a second surface 344 facing the emitting side, and can be brought close to or in contact with the biconvex lens 340 of another adjacent optical system unit 30.
  • the side surfaces thereof are formed in a flat shape, and are connected to the light absorbing portion 380 via a square tubular lens holder 346. More specifically, the biconvex lens 340 has four side surfaces formed so as to be flush with the side surface of the light absorbing portion 380, and has a substantially square columnar shape.
  • the biconvex lens 340 can be brought close to or in contact with another biconvex lens 340 adjacent to the lens 340, and can be tessellated in a collaborative manner.
  • the shapes of the first surface 342 and the second surface 344 of the biconvex lens 340 are different, and in the present embodiment, both are formed to be aspherical in order to improve accuracy, but they are formed to be spherical. Is also good.
  • the first surface 342 mainly has a function of equalizing the illuminance on the irradiation surface by the irradiation light emitted from the biconvex lens 340, and the second surface 344 has a function of parallelizing the irradiation light incident on the biconvex lens 340. Mainly has.
  • the feedback control using the biconvex lens 340 and the light receiving element 386 described above makes the illuminance more reliable.
  • the radius of curvature r2 of the second surface 344 assumes that the first surface 342 is a plane when the light angle is ⁇ , the size of the light source (diameter of the hole 362) is X, and the focal length of the biconvex lens 340 is f.
  • the optical angle ⁇ is defined from the equation of X ⁇ f ⁇ tan ⁇ , that is, the equation of r2 ⁇ tan ⁇ . Is decided on.
  • the side surface of the biconvex lens 340 is a light absorbing surface having a remarkably low reflectance, preferably 4% or less, like the inner wall surface of the light absorbing portion 380. It is possible to reduce so-called stray light in which the irradiation light incident on the biconvex lens 340 is incident on the adjacent biconvex lens 340.
  • a vibration device (not shown) is connected to the first support frame 10.
  • the vibrating device has a mechanical mechanism such as a gear and a cam, and is configured to vibrate the first support frame 10 and thus the optical system device 1.
  • the irradiation unit 320 irradiates light
  • the optical system device 1 Is vibrated (oscillated).
  • FIG. 7 is a schematic side view for explaining the oscillation of the optical system device according to the present embodiment
  • FIG. 7B is a schematic side view for explaining another oscillation pattern.
  • the oscillation is preferably performed parallel to the irradiation surface (horizontal direction), and in the present embodiment, the oscillation is performed so that a reciprocating linear motion is performed along the Y axis. I do.
  • the position angle of the illuminance distribution between the optical system units 30 can be periodically moved, and the illuminance per fixed time on the irradiation surface can be made uniform.
  • the oscillation pattern is not limited to this, and is a pattern along the X-axis, a pattern that vibrates in a direction inclined with respect to the X-axis or the Y-axis, and around the Z-axis as shown in FIG. 7B.
  • a pattern of turning or rotating can be considered.
  • FIG. 8A is a diagram for explaining the illuminance of the irradiation surface at the time of light irradiation of the optical system device in the state without oscillation and in the state with oscillation.
  • the illuminance is slightly low between the connected optical system units 30, that is, at the joint of the irradiation surfaces, but is shown in FIG. 8 (b). It can be seen that by performing the oscillation so as to eliminate the seams whose illuminance is low, the illuminance on the irradiated surface can be made uniform.
  • the optical system device 1 since a plurality of optical system units 30 can be detachably connected to the second support frame 20, it is extremely easy to increase or decrease the irradiation area. This can be done, and the convenience can be improved as compared with the conventional case. Also, Depending on the scale of the device, the type of the irradiation unit 320, and the like, a seam having low illuminance may occur between the irradiation surfaces of the plurality of engineering units 30, but according to the optical system device 1 according to the present embodiment, oscillation is performed. As a result, the illuminance on the irradiated surface can be made uniform. This is the same even if the device is expanded to increase the number of optical system units 30.
  • the biconvex lens 340 and the light absorbing portion 380 are formed into a quadrangular prism, but the present invention is not limited to this, and a polygon such as a triangular prism, a pentagonal prism, a hexagonal prism, etc. It may be a columnar shape, in other words, a shape that can be tessellated.
  • the optical system units 30 are connected in parallel in a 3 ⁇ 3 square shape
  • the number of connected optical units 30 may be appropriately set, and the parallel shape may be a circular shape or a line shape regardless of the square shape. It may be connected in parallel.
  • first and second support frames 10 and 20 are vibrated together with the optical system unit 30, one of the frames may be fixed and the other frame may be vibrated, and only the optical system unit 30 is vibrated. You may let it.
  • ⁇ Second embodiment> In the first embodiment described above, the irradiation light irradiated by the optical system device 1 is directly applied to the irradiation surface, but a homogenization means for equalizing the illuminance is provided between the biconvex lens 340 and the irradiation surface. You may. In the present embodiment, an optical system device including the homogenizing means will be described.
  • FIG. 9 is a schematic side view of the optical system device according to the present embodiment
  • FIG. 10 is a plan view showing a grid reflector.
  • the optical system device 1a according to the present embodiment has a different configuration from the optical system device 1 according to the first embodiment in that a lattice reflector 40 is provided between the optical system device 1a and the irradiation surface as a uniform means. ..
  • the lattice reflector 40 is a plate-shaped member in which hexagonal holes 401 are continuously formed, and the inner wall surface of the holes 401 is a reflecting surface capable of reflecting irradiation light. , The irradiation light can be divided by passing it through the hole 401.
  • the irradiation light can be divided, so that the illuminance distribution of the irradiation surface becomes more uniform. It becomes possible to do.
  • the reflector 40 may be oscillated by a vibrating device without oscillating the optical system unit 30, or both may be oscillated.
  • the grid reflector 40 is used as the homogenizing means, but a cover glass may be used.
  • a cover glass may be used.
  • an optical system device provided with a cover glass as a homogenizing means will be described.
  • FIG. 11 is a schematic side view of the optical system device according to the present embodiment.
  • the optical system device 1b according to the present embodiment is different from the optical system device 1 according to the first embodiment in that a cover glass 50 is provided between the optical system device 1b and the irradiation surface as a uniform means. ..
  • the cover glass 50 is a flat plate-shaped glass member that is inclined at a predetermined angle from the irradiation surface and is rotatably provided around a rotation axis perpendicular to the irradiation surface, that is, parallel to the Z axis.
  • the irradiation surface by irradiating the irradiation surface with the irradiation light through the rotating cover glass 50, the irradiation surface can be rotated in a state where the optical axis of the irradiation light is shifted. It becomes possible to make the illuminance distribution of.
  • the cover glass 50 may be oscillated by a vibrating device without oscillating the optical system unit 30, or both may be oscillated.
  • so-called surface irradiation is performed by arranging the optical system units 30 in parallel so as to form a quadrangle continuously in the X-axis and Y-axis directions.
  • the optical system units 30 may be connected in parallel in a line shape so as to perform so-called line irradiation in which the optical system device is moved (sweep) in one direction to irradiate.
  • an optical system device for line irradiation will be described, which includes an optical system unit connected in parallel in a line shape.
  • FIG. 12 is a schematic plan view showing an optical system unit of the optical system device according to the present embodiment.
  • the optical system device 1c according to the present embodiment is a device that moves in the moving direction M along the Y-axis direction to perform exposure while maintaining the irradiation of the irradiation light.
  • the optical system device 1c includes a first unit group 30a composed of a plurality of optical system units 30 arranged in parallel so as to be continuous in a predetermined direction inclined with respect to the X-axis direction (width direction) orthogonal to the moving direction M, and the first unit.
  • the configuration differs from that of the first embodiment in that the unit group 30a includes a second unit group 30b adjacent to the unit group 30a in a direction orthogonal to a predetermined direction.
  • the lengths of the first and second unit groups 30a and 30b in the X-axis direction are the same, and in the second unit group 30b between the two optical system units 30 in the first unit group 30a when viewed from the moving direction M. It is provided so that one optical system unit 30 is located.
  • the first and second unit groups 30a and 30b are tilted with respect to the moving direction M, and the other unit 30 is filled between the optical system units 30 in either the front or the back or both. Since the optical system unit 30 is positioned, it is possible to improve the uniformity of the illuminance of the seams on the irradiation surface of each optical system unit 30 without performing oscillation, and further improvement can be realized by adding oscillation to this. ..
  • the X-axis rail 210 provided on the second support frame 20 and the three XY-axis sliders 220 extending in the Y-axis direction make the three sets of optical system units 30 X.
  • the mode in which the individual optical system units 30 are movable in the axial direction and only the Y axis is movablely supported has been described.
  • the individual optical system units 30 may be movably supported in the X-axis and Y-axis directions.
  • an optical system device that movably supports each optical system unit 30 will be described.
  • FIG. 13 (a) and 13 (b) are schematic side views of the optical system apparatus according to the present embodiment as viewed from directions orthogonal to each other.
  • the first and second support plates 10a and 20a are interposed between the light absorption unit 380 of the optical system unit 30 and the lens holder 346, respectively.
  • the configuration is different from that of the optical system device 1 according to the first embodiment in that the X-axis rail 210 and the three XY-axis sliders 220 extending in the Y-axis direction are not provided.
  • the first and second support frames 10a and 20a are the same as the first and second support frames 10 and 20 in that they are frames having an opening at substantially the center, but one for each optical system unit 30.
  • a lower rail 62 is provided between the first support frame 10a and the second support frame 20a, and an upper rail 64 is provided between the light absorbing portion 380 and the second support frame 20a.
  • the lower and upper rails 62, 64 are cylindrical, preferably easily slidable, unidirectional metal members.
  • the lower and upper rails 62 and 64 are arranged so as to be orthogonal to each other, and two rails are paired with each other for one optical system unit 30 between the light absorbing unit 380 and the lens holder 346. They are located apart from each other in the Z-axis direction.
  • a character-shaped groove is formed, and the lower and upper rails 62 and 64 are inserted between the grooves so as to overlap each other.
  • the shape of the groove may be U-shaped or U-shaped as well as V-shaped, but it is preferable that the groove is V-shaped from the viewpoint of position accuracy.
  • the first support frame 10a and the lens holder 346 are not connected, but the light absorption unit 380 and the lens holder 346 are connected so that one or both of them are within the openings of the first and second support frames 10a and 20a. It may be located. Needless to say, the extending directions of the lower rail 62 and the upper rail 64 may be reversed.
  • a plurality of optical system units 30 having a structure in which a biconvex lens 340 is attached to a light absorbing unit 380 via a lens holder 346 are connected, but a lens array having a plurality of lenses formed is used.
  • the device may be miniaturized by realizing a plurality of optical system units.
  • an optical system device including a lens array will be described.
  • FIG. 14 is a schematic side view for explaining the optical system device according to the present embodiment.
  • the aperture 360 and the light absorbing unit 380 are omitted for the sake of explanation.
  • the optical system device 1e according to the present embodiment has a lens array 70, and irradiation light is incident on the lens array 70 from the irradiation unit 320. It is preferable that a small ultraviolet LED light source such as a ⁇ LED or a diffuser is used for the irradiation unit 320 here.
  • the lens array 70 is formed so that a plurality of biconvex lenses 340 are connected to each other.
  • the biconvex lenses 340 are provided so as to be continuous in a plane at a pitch of several microns to several millimeters.
  • One irradiation unit 320 is positioned above the one biconvex lens 340 in the lens array 70. Further, it is preferable that a light absorbing surface is formed on the side surface of the biconvex lens 340 as in the first embodiment.
  • the biconvex lens 340 is connected by the lens array 70, it is not necessary to separately use the first and second support frames 10 and 20, and each element is further connected. Since the lens can be made smaller, the entire device can be made smaller, and the joint portion having low illuminance formed on the irradiation surface can also be made smaller.
  • the device is formed on the irradiation surface by a method of providing a homogenizing means represented by a vibrating device or a reflector, a method of sweeping the device itself, a method of using a lens array, or the like.
  • the uniformity of the illuminance at the seams was improved.
  • FIG. 16 by not incorporating these methods and appropriately setting the curved surface ratio and shape of the first surface 342 and / or the second surface 344 of the biconvex lens 340 and the distance between the second surface 344 and the irradiation surface, FIG. And, as shown in FIG. 16, the illuminance of the irradiation surface may be made uniform.
  • the value of the illuminance (mW / cm 2 ) on the irradiation surface formed in the plane of 120 mm square is shown, and it can be seen that the uniformity is good.

Abstract

This optical system device comprises: a plurality of optical units 30, each having a biconvex lens 340 that collimates irradiation light radiated by a radiation part 320 and equalizes the luminous intensity of a surface irradiated by the irradiation light; and a second support frame 20 on which the plurality of optical units 30 are aligned and detachably linked.

Description

光学系装置Optical system equipment
 この明細書に開示される技術は、光源により照射光を照射する光学系装置に関する。 The technique disclosed in this specification relates to an optical system device that irradiates irradiation light with a light source.
 従来、多数の紫外線LEDなどの紫外線発光素子を用いた紫外光照射装置は、紫外線硬化型樹脂の硬化などに用いられ、この紫外線硬化型樹脂の硬化には、硬化にムラが生じないようにするため、照射面において均一の照度を持つことが求められている。また、マスクを用いてLED光により露光を行う場合には、露光対象とマスクとの間に隙間が生じ、またLED光の放射角度が120°程度であることから、精度を高めるには照射面に対して照射光が垂直となるように照射光を平行化する必要がある。一般的に、この照射光の平行化には放物面ミラーなどが用いられる。 Conventionally, an ultraviolet light irradiation device using a large number of ultraviolet light emitting elements such as ultraviolet LEDs has been used for curing an ultraviolet curable resin, etc., so that the curing of the ultraviolet curable resin does not cause unevenness in curing. Therefore, it is required to have uniform illuminance on the irradiated surface. Further, when exposure is performed by LED light using a mask, a gap is generated between the exposure target and the mask, and the radiation angle of the LED light is about 120 °. Therefore, in order to improve the accuracy, the irradiation surface It is necessary to parallelize the irradiation light so that the irradiation light is perpendicular to the light. Generally, a parabolic mirror or the like is used for parallelizing the irradiation light.
 照射面における照度の均一化には、一般的に、フライアレイレンズなどが用いられ、これに関連する技術として、複数の発光素子を平面上に配列したLEDアレイ光源と、各発光素子から出射された光をそれぞれコリメートする第1照明光学系と、第1照明光学系から出射された光を焦点位置に集光させる第2照明光学系と、平面上に配列した複数のレンズを有し、第2照明光学系から出射された光を各レンズの入射面で入射して照度の均一性を高めるフライアイ・インテグレータとを備え、フライアイ・インテグレータの入射面は、第2照明光学系の焦点位置に配置され、各発光素子の発光面は、フライアイ・インテグレータの入射面と共役関係にあり、各発光素子の像が、フライアイ・インテグレータの入射面に結像されることを特徴とする光照射装置が知られている(特許文献1参照)。 A fly array lens or the like is generally used to make the optics uniform on the irradiation surface, and as a technique related to this, an LED array light source in which a plurality of light emitting elements are arranged on a plane and light emitted from each light emitting element are emitted. It has a first illumination optical system that collimates the light, a second illumination optical system that collects the light emitted from the first illumination optical system at the focal position, and a plurality of lenses arranged on a plane. 2 It is equipped with a fly-eye integrator that enhances the uniformity of illuminance by incident light emitted from the illumination optical system on the incident surface of each lens, and the incident surface of the fly-eye integrator is the focal position of the second illumination optical system. The light emitting surface of each light emitting element has a conjugate relationship with the incident surface of the flyeye integrator, and an image of each light emitting element is formed on the incident surface of the flyeye integrator. An irradiation device is known (see Patent Document 1).
 また、照射光の照射方向に設けられ、照射方向における入射側に位置する第1面と、照射方向における出射側に位置する第2面とを有し、第2面が入射された照射光を平行化する曲率半径に形成され、第1面が第2面により出射される照射光による照射面における照度を均一化する曲率半径に形成される両凸レンズと、該両凸レンズと光源との間に配置され、照射光の一部を通過させるアパーチャとを備えることにより、照度を均一とする装置と照射光を平行化する装置とを必要とせずに、省スペースで照射光を平行化し、且つ照射光による照射面における照度を均一化する光学系装置が知られている(特許文献2参照)。 Further, the irradiation light provided in the irradiation direction of the irradiation light and having a first surface located on the incident side in the irradiation direction and a second surface located on the exit side in the irradiation direction, and the second surface incident on the irradiation light. Between a biconvex lens formed with a parallel radius of curvature and a biconvex lens formed with a radius of curvature whose first surface equalizes the illuminance on the irradiated surface due to the irradiation light emitted by the second surface, and between the biconvex lens and the light source. By providing an aperture that is arranged and allows a part of the irradiation light to pass through, the irradiation light can be parallelized and irradiated in a space-saving manner without the need for a device for making the illuminance uniform and a device for parallelizing the irradiation light. An optical system device that equalizes the illuminance on the surface irradiated with light is known (see Patent Document 2).
特開2016-200787号公報Japanese Unexamined Patent Publication No. 2016-200787 特願2018-084991号Japanese Patent Application No. 2018-084991
 しかしながら、上述した光学系装置等の光学系は、一部の照射エリアのみに対して照射光を照射するものである。そのため、例えば照射エリアを増減させたい場合等には、都度光学系装置の設計変更を行うこととなり、利便性が悪いという問題があった。 However, the optical system such as the above-mentioned optical system device irradiates the irradiation light only to a part of the irradiation area. Therefore, for example, when it is desired to increase or decrease the irradiation area, the design of the optical system device must be changed each time, which causes a problem of inconvenience.
 本発明は、上述した問題点を解決するためになされたものであり、より利便性の良い光学系装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a more convenient optical system device.
 上述した課題を解決するため、本発明の一態様は、光源より照射された照射光を平行化し且つ該照射光による照射面の照度を均一化するレンズをそれぞれ有する複数の光学系ユニットと、前記複数の光学系ユニットを並列してそれぞれを着脱自在に連結する連結部とを備えることを特徴とする。 In order to solve the above-mentioned problems, one aspect of the present invention includes a plurality of optical system units each having a lens that parallelizes the irradiation light emitted from the light source and makes the illuminance of the irradiation surface by the irradiation light uniform, and the above-mentioned It is characterized by including a connecting portion in which a plurality of optical system units are connected in parallel and each of them is detachably connected.
 本発明によれば、より利便性の良い光学系装置を提供することができる。 According to the present invention, it is possible to provide a more convenient optical system device.
第1の実施形態に係る光学系装置を示す斜視図である。It is a perspective view which shows the optical system apparatus which concerns on 1st Embodiment. 第1の実施形態に係る光学系装置を示す側面図である。It is a side view which shows the optical system apparatus which concerns on 1st Embodiment. 光学系ユニットを支持した状態にある1つのXY軸スライダを示す斜視図である。It is a perspective view which shows one XY axis slider in the state which supported the optical system unit. 光学系ユニットを示す斜視図である。It is a perspective view which shows the optical system unit. 光学系ユニットを示す分解斜視図である。It is an exploded perspective view which shows the optical system unit. 光学系ユニットの概略縦断面図である。It is a schematic vertical sectional view of an optical system unit. (a)は本実施形態に係る光学系装置のオシレーションを説明するための概略側面図であり、(b)は他のオシレーションパターンを説明するための概略側面図である。(A) is a schematic side view for explaining the oscillation of the optical system apparatus according to the present embodiment, and (b) is a schematic side view for explaining another oscillation pattern. (a)はオシレーション無し、(b)はオシレーション有りの状態における、光学系装置の光照射時における照射面の照度を説明するための図である。(A) is a figure for demonstrating the illuminance of an irradiation surface at the time of light irradiation of an optical system apparatus in the state of having no oscillation and (b) with oscillation. 第2の実施形態に係る光学系装置の概略側面図である。It is a schematic side view of the optical system apparatus which concerns on 2nd Embodiment. 格子リフレクタを示す平面図である。It is a top view which shows the lattice reflector. 第3の実施形態に係る光学系装置の概略側面図である。It is a schematic side view of the optical system apparatus which concerns on 3rd Embodiment. 第4の実施形態に係る光学系装置の光学系ユニットを示す概略平面図である。It is a schematic plan view which shows the optical system unit of the optical system apparatus which concerns on 4th Embodiment. (a)及び(b)は、第5の実施形態に係る光学系装置における互いに直交する方向から見た概略側面図である。(A) and (b) are schematic side views of the optical system apparatus according to the fifth embodiment as viewed from directions orthogonal to each other. 第6の実施形態に係る光学系装置を説明するための概略側面図である。It is a schematic side view for demonstrating the optical system apparatus which concerns on 6th Embodiment. 他の実施形態に係る光学系装置の光照射時における照射面の照度を説明するための図である。It is a figure for demonstrating the illuminance of the irradiation surface at the time of light irradiation of the optical system apparatus which concerns on another embodiment. 他の実施形態に係る光学系装置の光照射時における照射面の照度の値を説明するための図である。It is a figure for demonstrating the value of the illuminance of the irradiation surface at the time of light irradiation of the optical system apparatus which concerns on another embodiment.
 以下、図面を参照しながら、本発明に係る実施形態について説明する。なお、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. In the present specification and the drawings, components having substantially the same function are designated by the same reference numerals, so that duplicate description will be omitted.
<第1の実施形態>
(全体構成)
 本実施形態に係る光学系装置について説明する。図1は本実施形態に係る光学系装置を示す斜視図であり、図2は光学系装置の側面図である。なお、本実施形態においては、光が照射する方向(照射方向)をZ軸、当該Z軸に直交すると共に互いに直交する軸をX軸及びY軸として以後説明を行う。図1及び図2に示されるように、本実施形態に係る光学系装置1は、図示しない振動装置に連結された第1支持フレーム10と、第1支持フレーム10上に固定された第2支持フレーム20と、第2支持フレーム20に着脱自在に連結された複数の光学系ユニット30とを備えて構成されている。
<First Embodiment>
(overall structure)
The optical system apparatus according to this embodiment will be described. FIG. 1 is a perspective view showing an optical system device according to the present embodiment, and FIG. 2 is a side view of the optical system device. In the present embodiment, the direction of light irradiation (irradiation direction) will be referred to as the Z axis, and the axes orthogonal to the Z axis and orthogonal to each other will be referred to as the X axis and the Y axis. As shown in FIGS. 1 and 2, the optical system device 1 according to the present embodiment has a first support frame 10 connected to a vibration device (not shown) and a second support fixed on the first support frame 10. It is configured to include a frame 20 and a plurality of optical system units 30 detachably connected to the second support frame 20.
 第1支持フレーム10は、中央に開口が形成された枠体であり、当該開口に複数の光学系ユニット30が挿通されている。第1支持フレーム10の上面には第2支持フレーム20が固定されている。 The first support frame 10 is a frame body having an opening formed in the center, and a plurality of optical system units 30 are inserted through the opening. The second support frame 20 is fixed to the upper surface of the first support frame 10.
 第2支持フレーム20は、第1支持フレーム10と同様に中央に開口21が形成された枠体であり、当該開口21に複数の光学系ユニット30が挿通されている。したがって複数の光学系ユニット30は第1及び第2支持フレーム10,20それぞれの開口に挿通されることで図2に示されるようにこれらを貫通し、後述する光学系ユニット30の両凸レンズ340が下方に露出した状態となっている。以下、第2支持フレーム20の構成について詳細に説明する。 The second support frame 20 is a frame body having an opening 21 formed in the center like the first support frame 10, and a plurality of optical system units 30 are inserted through the opening 21. Therefore, the plurality of optical system units 30 are inserted into the openings of the first and second support frames 10 and 20 to penetrate them as shown in FIG. 2, and the biconvex lens 340 of the optical system unit 30 described later is inserted. It is exposed downward. Hereinafter, the configuration of the second support frame 20 will be described in detail.
(第2支持フレーム20)
 第2支持フレーム20は、X軸方向に延在する一対のX軸レール210と、Y軸方向に延在する3つのXY軸スライダ220とを備えており、これらにより複数の光学系ユニット30を移動可能に且つ着脱自在に連結することができる。
(Second support frame 20)
The second support frame 20 includes a pair of X-axis rails 210 extending in the X-axis direction and three XY-axis sliders 220 extending in the Y-axis direction, thereby providing a plurality of optical system units 30. It can be moved and detachably connected.
 一対のX軸レール210は、それぞれ円柱状に形成されており、第2支持フレーム20の開口21周縁近傍において、当該開口21を挟んで互いにY軸方向に対向するよう位置付けられて、その両端がそれぞれ第2支持フレーム20上に固定された軸受部211により軸支されている。本実施形態においては、この一対のX軸レール210が3つのXY軸スライダ220を移動可能に支持している。 The pair of X-axis rails 210 are each formed in a columnar shape, and are positioned near the periphery of the opening 21 of the second support frame 20 so as to face each other in the Y-axis direction with the opening 21 in between, and both ends thereof. Each is pivotally supported by a bearing portion 211 fixed on the second support frame 20. In this embodiment, the pair of X-axis rails 210 movably support the three XY-axis sliders 220.
 図3は光学系ユニットを支持した状態にある1つのXY軸スライダを示す斜視図である。XY軸スライダ220は、中空長方の角筒状に形成されており、そのY軸方向両端がX軸レール210にX軸方向に摺動可能に支持されている(図1参照)。また、XY軸スライダ220は、光学系ユニット30をY軸方向に移動可能に支持しており、したがってX軸及びY軸の2軸方向に自由度をもって光学系ユニット30を支持することができる。より具体的には、XY軸スライダ220は、X軸方向に平行な一対のX軸可動プレート222と、Y軸方向に平行な一対のY軸可動プレート224とが角筒状に組まれることで形成されている。なお、本実施形態においては、XY軸スライダ220は3つの光学系ユニット30を支持しているが、その個数は照射面のサイズや用途等により適宜設定すればよい。 FIG. 3 is a perspective view showing one XY-axis slider in a state where the optical system unit is supported. The XY-axis slider 220 is formed in a hollow rectangular tubular shape, and both ends in the Y-axis direction are slidably supported by the X-axis rail 210 in the X-axis direction (see FIG. 1). Further, the XY-axis slider 220 supports the optical system unit 30 so as to be movable in the Y-axis direction, and therefore can support the optical system unit 30 with a degree of freedom in the two-axis directions of the X-axis and the Y-axis. More specifically, in the XY-axis slider 220, a pair of X-axis movable plates 222 parallel to the X-axis direction and a pair of Y-axis movable plates 224 parallel to the Y-axis direction are assembled in a square tube shape. It is formed. In the present embodiment, the XY axis slider 220 supports three optical system units 30, but the number thereof may be appropriately set depending on the size of the irradiation surface, the intended use, and the like.
 一対のX軸可動プレート222はそれぞれ、外方プレート222a及び内方プレート222bの2枚のプレートを備える。これらプレートは、間にX軸レール21を挟み込む形で着脱自在に連結されている。このような連結は、例えばネジ等の締結具によって実現することが好ましい。締結具を互いに接近する方向に締め付けることにより、X軸可動プレート222をX軸レール210に対して移動不能に固定することができる。一方、締結具を互いに離間する方向に緩めることにより、固定された状態を解除することができるため、外方プレート222aと内方プレート222bとが緩く連結した状態においてX軸可動プレート222をX軸レール21に沿って容易に移動させることができる。 The pair of X-axis movable plates 222 each includes two plates, an outer plate 222a and an inner plate 222b. These plates are detachably connected so as to sandwich the X-axis rail 21 between them. Such a connection is preferably realized by a fastener such as a screw. By tightening the fasteners in the direction of approaching each other, the X-axis movable plate 222 can be immovably fixed to the X-axis rail 210. On the other hand, since the fixed state can be released by loosening the fasteners in the direction of separating from each other, the X-axis movable plate 222 is attached to the X-axis movable plate 222 in a state where the outer plate 222a and the inner plate 222b are loosely connected. It can be easily moved along the rail 21.
 一対のY軸可動プレート224のそれぞれは、両端部が一対のX軸可動プレート222における内方プレート222bに連結されることにより、一対のX軸可動プレート222により支持されている。また、Y軸方向に延在すると共にX軸方向に貫通する長孔部224aが3つ形成されている。長孔部224aにはネジ等の締結具224bが2つ挿通されており、挿通された状態において締結具224bは、光学系ユニット30の後述する光吸収部380と締結している。なお、長孔部224a内周壁には締結具224bのネジ頭が当接して締結具224bの没入を防止する段部224cが周壁に沿って形成されており、これにより長孔部224aのそれぞれは、外方の内周壁よりも内方の内周壁が小さくされている。したがって、締結具224bによってY軸可動プレート224と光吸収部380とが互いに接近する方向に締め付けられることにより、光吸収部380をY軸可動プレート224に対して移動不能に固定することができる。一方、締結具224bを緩めるのみで固定された状態を解除することができるため、締結具224bと光吸収部380とが緩く締結した状態において締結具224bを長孔部224aに沿って容易に移動することができる。 Each of the pair of Y-axis movable plates 224 is supported by the pair of X-axis movable plates 222 by connecting both ends to the inner plates 222b of the pair of X-axis movable plates 222. Further, three elongated hole portions 224a extending in the Y-axis direction and penetrating in the X-axis direction are formed. Two fasteners 224b such as screws are inserted into the elongated hole portion 224a, and the fasteners 224b are fastened to the light absorbing portion 380 described later of the optical system unit 30 in the inserted state. The screw head of the fastener 224b abuts on the inner peripheral wall of the elongated hole portion 224a, and a step portion 224c for preventing the fastener 224b from being embedded is formed along the peripheral wall, whereby each of the elongated hole portions 224a is formed. , The inner inner wall is smaller than the outer inner wall. Therefore, the light absorbing portion 380 can be immovably fixed to the Y-axis movable plate 224 by being tightened by the fastener 224b in the direction in which the Y-axis movable plate 224 and the light absorbing portion 380 approach each other. On the other hand, since the fixed state can be released only by loosening the fastener 224b, the fastener 224b can be easily moved along the elongated hole portion 224a in a state where the fastener 224b and the light absorbing portion 380 are loosely fastened. can do.
 以上の構成により、XY軸スライダ220はX軸及びY軸の2軸方向に自由度をもって光学系ユニット30を支持することができるため、光学系ユニット30を容易に着脱することが可能であり、またその位置の微調整も極めて簡単に行うことができる。 With the above configuration, the XY-axis slider 220 can support the optical system unit 30 with a degree of freedom in the two-axis directions of the X-axis and the Y-axis, so that the optical system unit 30 can be easily attached and detached. Moreover, the fine adjustment of the position can be performed extremely easily.
(光学系ユニット30)
 光学系ユニット30としては、本発明者らが先に出願した上記の特許文献2記載の光学系装置を用いることができる。以下、本実施形態に係る光学系ユニット30について説明する。図4は光学系ユニットを示す斜視図であり、図5はその分解斜視図である。図6は光学系ユニットの概略縦断面図である。なお、図6においては、後述するアパーチャ360及び光吸収部380のみ光軸を通り且つ光軸に平行する平面により切断した切断面が示されており、後述するレンズホルダ346は説明上図示されていない。図4~図6に示されるように、光学系ユニット30は、照射光を照射する照射部320、当該照射部320による照射光が入射可能に配される両凸レンズ340、照射部320と両凸レンズ340との間において照射部320側に配されるアパーチャ360、及び照射部320と両凸レンズ340との間において両凸レンズ340側に配される光吸収部380を備える。この光学系ユニット30によれば、照射部320による照射光によって、両凸レンズ340の光軸方向に直交する照射面が形成される。
(Optical system unit 30)
As the optical system unit 30, the optical system device described in Patent Document 2 described above, which the present inventors have previously applied for, can be used. Hereinafter, the optical system unit 30 according to this embodiment will be described. FIG. 4 is a perspective view showing the optical system unit, and FIG. 5 is an exploded perspective view thereof. FIG. 6 is a schematic vertical sectional view of the optical system unit. Note that FIG. 6 shows a cut surface cut by a plane passing through the optical axis and parallel to the optical axis only for the aperture 360 and the light absorbing portion 380 described later, and the lens holder 346 described later is illustrated for explanation. Absent. As shown in FIGS. 4 to 6, the optical system unit 30 includes an irradiation unit 320 that irradiates the irradiation light, a biconvex lens 340 in which the irradiation light from the irradiation unit 320 can be incidentally arranged, an irradiation unit 320, and a biconvex lens. It includes an aperture 360 arranged on the irradiation unit 320 side between the irradiation unit 320 and a light absorption unit 380 arranged on the biconvex lens 340 side between the irradiation unit 320 and the biconvex lens 340. According to the optical system unit 30, the irradiation light emitted by the irradiation unit 320 forms an irradiation surface orthogonal to the optical axis direction of the biconvex lens 340.
 照射部320は図示しない空冷ファン等の冷却装置と連結したヒートシンク322の下方に設けられており、紫外線光を照射光として照射する所謂紫外線LED光源である。 The irradiation unit 320 is provided below a heat sink 322 connected to a cooling device such as an air cooling fan (not shown), and is a so-called ultraviolet LED light source that irradiates ultraviolet light as irradiation light.
 アパーチャ360は、両凸レンズ340の光軸方向と直交する平面を有する板状の部材であり、光軸方向に貫通する孔部362が形成されている。この孔部362は円状に形成されこの円の中心が両凸レンズ340の光軸に一致するようになっている。このようなアパーチャ360によれば、照射部320による照射光の一部が孔部362から出射されるようになり、結果として両凸レンズ340に対する入射光の光源のサイズが規定される。 The aperture 360 is a plate-shaped member having a plane orthogonal to the optical axis direction of the biconvex lens 340, and a hole portion 362 penetrating in the optical axis direction is formed. The hole portion 362 is formed in a circular shape so that the center of the circle coincides with the optical axis of the biconvex lens 340. According to such an aperture 360, a part of the irradiation light by the irradiation unit 320 is emitted from the hole portion 362, and as a result, the size of the light source of the incident light with respect to the biconvex lens 340 is defined.
 光吸収部380は、中空となった角筒状に形成されてその内壁面に光吸収面が形成された部材であり、入射側即ち照射部320及びアパーチャ360側、出射側即ち両凸レンズ340側にそれぞれ開口が形成され、これらの開口が入射側開口部382、出射側開口部384として形成されている。入射側開口部382に対しては、光吸収部380内に孔部362を通過した照射光のみが入射されるようアパーチャ360が配置されている。また、出射側開口部384より出射される照射光は両凸レンズ340に入射されるようになっている。また、光吸収部380の内壁表面、即ち光吸収面は、反射率が著しく低く、望ましくは4%以下となっており、これによって、光吸収部380に入射した照射光のうち、内壁に照射される照射光のほとんどが内壁表面で吸収され、出射側開口部384から出射されないようになっている。なお、光吸収部380は、中空の角筒状に限らず、入射側及び出射側において開口した筒状の部材として、両凸レンズ340により平行化可能な角度で入射する照射光のみが出射側開口部384より出射可能に形成されていれば良い。なお、光吸収部380の光軸方向長さ、即ち、入射側開口部382から出射側開口部384までの距離は両凸レンズ340の焦点距離に基づく長さとなっている。なお、図4及び図5に示される符号386は照射部320から照射される照射光を検知し、フィードバックをかけるための受光素子である。本実施形態に係る光学系ユニット30は図示しないフィードバック回路を備えており、この受光素子386により検知された照射光に基づいて、各光学系ユニット30の照度をフィードバックし、光学系ユニット30毎の照度が均一になるように光学系ユニット30の照射光の強さをリアルタイムで自動調整するようにしている。 The light absorption unit 380 is a member formed in a hollow square cylinder shape and a light absorption surface is formed on the inner wall surface thereof, and is an incident side, that is, an irradiation unit 320 and an aperture 360 side, and an emission side, that is, a biconvex lens 340 side. Each of the openings is formed, and these openings are formed as an incident side opening 382 and an outgoing side opening 384. An aperture 360 is arranged in the light absorbing portion 380 so that only the irradiation light that has passed through the hole portion 362 is incident on the incident side opening 382. Further, the irradiation light emitted from the exit side opening 384 is incident on the biconvex lens 340. Further, the inner wall surface of the light absorbing portion 380, that is, the light absorbing surface has a remarkably low reflectance, preferably 4% or less, whereby the inner wall is irradiated with the irradiation light incident on the light absorbing portion 380. Most of the irradiated light is absorbed by the inner wall surface and is not emitted from the exit side opening 384. The light absorbing unit 380 is not limited to a hollow square tubular member, but as a tubular member opened on the incident side and the outgoing side, only the irradiation light incident at an angle that can be parallelized by the biconvex lens 340 is opened on the outgoing side. It suffices if it is formed so that it can be emitted from the portion 384. The length of the light absorbing portion 380 in the optical axis direction, that is, the distance from the incident side opening 382 to the emitting side opening 384 is a length based on the focal length of the biconvex lens 340. Reference numeral 386 shown in FIGS. 4 and 5 is a light receiving element for detecting the irradiation light emitted from the irradiation unit 320 and applying feedback. The optical system unit 30 according to the present embodiment includes a feedback circuit (not shown), and feeds back the illuminance of each optical system unit 30 based on the irradiation light detected by the light receiving element 386, and is used for each optical system unit 30. The intensity of the irradiation light of the optical system unit 30 is automatically adjusted in real time so that the illuminance becomes uniform.
 両凸レンズ340は、照射光の入射側を向く第1面342と出射側を向く第2面344との曲面を有し、隣接する他の光学系ユニット30の両凸レンズ340と近接または当接可能にその側面がそれぞれ平面状に形成されて、角筒状のレンズホルダ346を介して光吸収部380と連結されている。より具体的には両凸レンズ340は、側面が光吸収部380の側面と面一となるよう、それぞれ4つの側面が形成されて略四角柱状をなしている。したがって両凸レンズ340は隣接する他の両凸レンズ340と近接または当接可能となっており、協働して平面充填された状態とすることができる。両凸レンズ340の第1面342と第2面344との形状は異なっており、本実施形態においては、精度を向上させるためにいずれも非球面に形成されているが、球面に形成されていても良い。第1面342は両凸レンズ340より出射された照射光による照射面における照度を均一化する機能を主に有し、第2面344は両凸レンズ340に入射される照射光を平行化する機能を主に有する。この両凸レンズ340と上述した受光素子386を用いたフィードバック制御とにより、照度の均一化をより確実なものとしている。 The biconvex lens 340 has a curved surface of a first surface 342 facing the incident side of the irradiation light and a second surface 344 facing the emitting side, and can be brought close to or in contact with the biconvex lens 340 of another adjacent optical system unit 30. The side surfaces thereof are formed in a flat shape, and are connected to the light absorbing portion 380 via a square tubular lens holder 346. More specifically, the biconvex lens 340 has four side surfaces formed so as to be flush with the side surface of the light absorbing portion 380, and has a substantially square columnar shape. Therefore, the biconvex lens 340 can be brought close to or in contact with another biconvex lens 340 adjacent to the lens 340, and can be tessellated in a collaborative manner. The shapes of the first surface 342 and the second surface 344 of the biconvex lens 340 are different, and in the present embodiment, both are formed to be aspherical in order to improve accuracy, but they are formed to be spherical. Is also good. The first surface 342 mainly has a function of equalizing the illuminance on the irradiation surface by the irradiation light emitted from the biconvex lens 340, and the second surface 344 has a function of parallelizing the irradiation light incident on the biconvex lens 340. Mainly has. The feedback control using the biconvex lens 340 and the light receiving element 386 described above makes the illuminance more reliable.
 第2面344の曲率半径r2は、光角度をθ、光源の大きさ(孔部362の直径)をX、両凸レンズ340の焦点距離をfとした場合、第1面342を平面と仮定してf=r2/2とし、また、X=2となるように孔部362を形成した上で、X×f×tanθの式、即ち、r2×tanθの式から、光角度θを規定するように決定される。ここで、光角度θは、照射面に直交する垂線と、両凸レンズ340から出射された照射光とが成す角度であり、θ=0の場合に理想の平行光となるが、実際的には、例えば1°など可能な限り0に近い値に設定される。 The radius of curvature r2 of the second surface 344 assumes that the first surface 342 is a plane when the light angle is θ, the size of the light source (diameter of the hole 362) is X, and the focal length of the biconvex lens 340 is f. After forming the hole 362 so that f = r2 / 2 and X = 2, the optical angle θ is defined from the equation of X × f × tan θ, that is, the equation of r2 × tan θ. Is decided on. Here, the light angle θ is an angle formed by a perpendicular line orthogonal to the irradiation surface and the irradiation light emitted from the biconvex lens 340, and is ideal parallel light when θ = 0, but in practice. , For example, 1 °, which is set to a value as close to 0 as possible.
 第1面342の曲率半径r1は、上述のように決定された曲率半径r2に形成された第2面344からの出射光について、光軸に直交する平面上における照度部分布が均一となるように決定される。つまり、第1面342の曲率半径r1は、第2面の曲率半径r2に基づくものとなっている。具体的には、第1面342においては、その入射側の曲率半径r1とレンズ直径dとの間にはr1=5.64×dという式が成り立つ。なお、実際的には、あるレンズ直径dを有する第1面342において、上式における一次係数5.64が±15%の範囲内に収まるような曲率半径r1とすると良い。 The radius of curvature r1 of the first surface 342 is such that the distribution of the illuminance portion on the plane orthogonal to the optical axis is uniform with respect to the light emitted from the second surface 344 formed in the radius of curvature r2 determined as described above. Is decided on. That is, the radius of curvature r1 of the first surface 342 is based on the radius of curvature r2 of the second surface. Specifically, on the first surface 342, the equation r1 = 5.64 × d holds between the radius of curvature r1 on the incident side and the lens diameter d. In practice, it is preferable that the radius of curvature r1 is such that the linear coefficient 5.64 in the above equation falls within the range of ± 15% on the first surface 342 having a certain lens diameter d.
 また、両凸レンズ340の側面は、光吸収部380の内壁面と同様に、反射率が著しく低く、望ましくは4%以下である光吸収面とすることが好ましい。両凸レンズ340に入射した照射光が隣接する両凸レンズ340に入射する、所謂迷光を低減することができる。 Further, it is preferable that the side surface of the biconvex lens 340 is a light absorbing surface having a remarkably low reflectance, preferably 4% or less, like the inner wall surface of the light absorbing portion 380. It is possible to reduce so-called stray light in which the irradiation light incident on the biconvex lens 340 is incident on the adjacent biconvex lens 340.
(装置動作)
 次に、上述した本実施形態に係る光学系装置1の動作について詳細に説明する。本実施形態においては、上述したように第1支持フレーム10に図示しない振動装置が連結されている。振動装置はギアやカム等のメカ機構を有して第1支持フレーム10、延いては光学系装置1を振動可能に構成されたものであり、照射部320による光の照射時に光学系装置1を振動(オシレーション)させる。
(Device operation)
Next, the operation of the optical system device 1 according to the above-described embodiment will be described in detail. In the present embodiment, as described above, a vibration device (not shown) is connected to the first support frame 10. The vibrating device has a mechanical mechanism such as a gear and a cam, and is configured to vibrate the first support frame 10 and thus the optical system device 1. When the irradiation unit 320 irradiates light, the optical system device 1 Is vibrated (oscillated).
 図7は本実施形態に係る光学系装置のオシレーションを説明するための概略側面図であり、(b)は他のオシレーションパターンを説明するための概略側面図である。図7(a)に示されるようにオシレーションは照射面に対して平行(水平方向)になされることが好ましく、本実施形態においてはY軸に沿って往復直線運動がなされるようにオシレーションを行う。このオシレーションを実行することにより、各光学系ユニット30間における照度分布の位置角度を周期的に動かし、照射面における一定時間当たりの照度を均一にすることが可能となる。なお、オシレーションパターンはこれに限定されるものではなく、X軸に沿うパターンやX軸またはY軸に対して傾斜する方向に振動させるパターン、図7(b)に示されるようにZ軸周りに旋回や回転するパターン等が考えられる。 FIG. 7 is a schematic side view for explaining the oscillation of the optical system device according to the present embodiment, and FIG. 7B is a schematic side view for explaining another oscillation pattern. As shown in FIG. 7A, the oscillation is preferably performed parallel to the irradiation surface (horizontal direction), and in the present embodiment, the oscillation is performed so that a reciprocating linear motion is performed along the Y axis. I do. By executing this oscillation, the position angle of the illuminance distribution between the optical system units 30 can be periodically moved, and the illuminance per fixed time on the irradiation surface can be made uniform. The oscillation pattern is not limited to this, and is a pattern along the X-axis, a pattern that vibrates in a direction inclined with respect to the X-axis or the Y-axis, and around the Z-axis as shown in FIG. 7B. A pattern of turning or rotating can be considered.
 図8(a)はオシレーション無し、(b)はオシレーション有りの状態における、光学系装置の光照射時における照射面の照度を説明するための図である。図8(a)に示されるように、オシレーションを行わない場合、連結された光学系ユニット30間、即ち照射面の継ぎ目においてわずかながら照度が低くなっているが、図8(b)に示されるようにオシレーションを行うことによりその照度が低い継ぎ目がなくなり、照射面の照度を均一にできていることがわかる。 FIG. 8A is a diagram for explaining the illuminance of the irradiation surface at the time of light irradiation of the optical system device in the state without oscillation and in the state with oscillation. As shown in FIG. 8 (a), when the oscillation is not performed, the illuminance is slightly low between the connected optical system units 30, that is, at the joint of the irradiation surfaces, but is shown in FIG. 8 (b). It can be seen that by performing the oscillation so as to eliminate the seams whose illuminance is low, the illuminance on the irradiated surface can be made uniform.
 以上に説明した本実施形態に係る光学系装置1によれば、第2支持フレーム20に対して複数の光学系ユニット30を着脱自在に連結することができるため、照射エリアの増減を極めて容易に行うことができ、従来と比較して利便性を向上させることが可能となる。また、
装置規模や照射部320の種類等により複数の工学系ユニット30の照射面間で照度が低い継ぎ目が生じる可能性があるが、本実施形態に係る光学系装置1によればオシレーションが行われることにより、照射面の照度を均一にすることができる。これは装置を拡張して光学系ユニット30の数を増大させても同様である。
According to the optical system device 1 according to the present embodiment described above, since a plurality of optical system units 30 can be detachably connected to the second support frame 20, it is extremely easy to increase or decrease the irradiation area. This can be done, and the convenience can be improved as compared with the conventional case. Also,
Depending on the scale of the device, the type of the irradiation unit 320, and the like, a seam having low illuminance may occur between the irradiation surfaces of the plurality of engineering units 30, but according to the optical system device 1 according to the present embodiment, oscillation is performed. As a result, the illuminance on the irradiated surface can be made uniform. This is the same even if the device is expanded to increase the number of optical system units 30.
 なお、本実施形態においては両凸レンズ340及び光吸収部380を四角柱状に形成するとしたがこれに限定するものではなく、三角柱や五角柱、六角柱等の互いに側面が近接または当接可能な多角柱状、換言すれば平面充填可能な形状であればよい。 In the present embodiment, the biconvex lens 340 and the light absorbing portion 380 are formed into a quadrangular prism, but the present invention is not limited to this, and a polygon such as a triangular prism, a pentagonal prism, a hexagonal prism, etc. It may be a columnar shape, in other words, a shape that can be tessellated.
 また、光学系ユニット30を3×3の正方形状に並列させて連結した形態を説明したが、当然連結する個数は適宜設定すればよく、その並列形状も角形によらず円形状やライン状に並列されて連結するようにしてもよい。 Further, although the form in which the optical system units 30 are connected in parallel in a 3 × 3 square shape has been described, the number of connected optical units 30 may be appropriately set, and the parallel shape may be a circular shape or a line shape regardless of the square shape. It may be connected in parallel.
 また、第1及び第2支持フレーム10,20を光学系ユニット30と共に振動させると説明したが、いずれか一方のフレームを固定し他方のフレームを振動させてもよく、光学系ユニット30のみを振動させるようにしてもよい。 Further, although it has been explained that the first and second support frames 10 and 20 are vibrated together with the optical system unit 30, one of the frames may be fixed and the other frame may be vibrated, and only the optical system unit 30 is vibrated. You may let it.
<第2の実施形態>
 上述した第1の実施形態では、光学系装置1が照射した照射光を直接照射面に照射したが、両凸レンズ340と照射面との間に、照度を均一化するための均一化手段を設けてもよい。本実施形態においては、その均一化手段を備えた光学系装置を説明する。
<Second embodiment>
In the first embodiment described above, the irradiation light irradiated by the optical system device 1 is directly applied to the irradiation surface, but a homogenization means for equalizing the illuminance is provided between the biconvex lens 340 and the irradiation surface. You may. In the present embodiment, an optical system device including the homogenizing means will be described.
 図9は本実施形態に係る光学系装置の概略側面図であり、図10は格子リフレクタを示す平面図である。図9に示されるように、本実施形態に係る光学系装置1aは照射面との間に均一化手段として格子リフレクタ40を備える点で第1の実施形態に係る光学系装置1と構成が異なる。格子リフレクタ40は、図10に示されるように六角形状の孔部401が連続して形成された板状部材であり、孔部401の内壁面が照射光を反射可能な反射面となっており、照射光をこの孔部401に通すことで分断させることができる。 FIG. 9 is a schematic side view of the optical system device according to the present embodiment, and FIG. 10 is a plan view showing a grid reflector. As shown in FIG. 9, the optical system device 1a according to the present embodiment has a different configuration from the optical system device 1 according to the first embodiment in that a lattice reflector 40 is provided between the optical system device 1a and the irradiation surface as a uniform means. .. As shown in FIG. 10, the lattice reflector 40 is a plate-shaped member in which hexagonal holes 401 are continuously formed, and the inner wall surface of the holes 401 is a reflecting surface capable of reflecting irradiation light. , The irradiation light can be divided by passing it through the hole 401.
 以上に説明した本実施形態によれば、格子リフレクタ40を介して照射光を照射面に照射することにより、照射光を分断させることができるため、延いては照射面の照度分布をより均一にすることが可能となる。なお、光学系ユニット30をオシレーションせずにリフレクタ40を振動装置によりオシレーションさせてもよく、双方ともにオシレーションさせるようにしてもよい。 According to the present embodiment described above, by irradiating the irradiation surface with the irradiation light via the lattice reflector 40, the irradiation light can be divided, so that the illuminance distribution of the irradiation surface becomes more uniform. It becomes possible to do. The reflector 40 may be oscillated by a vibrating device without oscillating the optical system unit 30, or both may be oscillated.
<第3の実施形態>
 上述した第2の実施形態では、均一化手段として格子リフレクタ40を用いたが、カバーガラスを用いるようにしてもよい。本実施形態においては、均一化手段としてカバーガラスを備えた光学系装置を説明する。
<Third embodiment>
In the second embodiment described above, the grid reflector 40 is used as the homogenizing means, but a cover glass may be used. In the present embodiment, an optical system device provided with a cover glass as a homogenizing means will be described.
 図11は本実施形態に係る光学系装置の概略側面図である。図11に示されるように、本実施形態に係る光学系装置1bは照射面との間に均一化手段としてカバーガラス50を備える点で第1の実施形態に係る光学系装置1と構成が異なる。カバーガラス50は、照射面から所定の角度傾斜し、照射面に対して垂直、即ちZ軸に平行な回転軸周りに回転可能に設けられた平板状のガラス部材である。傾斜したカバーガラス50にZ軸方向に沿って垂直に入射、即ちカバーガラス50からしてみれば上面に斜めに入射された照射光は、カバーガラス50を通過する際にその光軸にズレが生じる。したがってカバーガラス50を回転させることにより光軸を中心に照度分布も水平にこの光軸のズレ分だけ回転することとなる。 FIG. 11 is a schematic side view of the optical system device according to the present embodiment. As shown in FIG. 11, the optical system device 1b according to the present embodiment is different from the optical system device 1 according to the first embodiment in that a cover glass 50 is provided between the optical system device 1b and the irradiation surface as a uniform means. .. The cover glass 50 is a flat plate-shaped glass member that is inclined at a predetermined angle from the irradiation surface and is rotatably provided around a rotation axis perpendicular to the irradiation surface, that is, parallel to the Z axis. Irradiation light that is vertically incident on the inclined cover glass 50 along the Z-axis direction, that is, obliquely incident on the upper surface when viewed from the cover glass 50, is displaced in its optical axis when passing through the cover glass 50. Occurs. Therefore, by rotating the cover glass 50, the illuminance distribution is also horizontally rotated about the optical axis by the deviation of the optical axis.
 以上に説明した本実施形態によれば、回転するカバーガラス50を介して照射光を照射面に照射することにより、照射光の光軸をずらした状態で回転させせることができるため、照射面の照度分布をより均一にすることが可能となる。なお、光学系ユニット30をオシレーションせずにカバーガラス50を振動装置によりオシレーションさせてもよく、双方ともにオシレーションさせるようにしてもよい。 According to the present embodiment described above, by irradiating the irradiation surface with the irradiation light through the rotating cover glass 50, the irradiation surface can be rotated in a state where the optical axis of the irradiation light is shifted. It becomes possible to make the illuminance distribution of. The cover glass 50 may be oscillated by a vibrating device without oscillating the optical system unit 30, or both may be oscillated.
<第4の実施形態>
 上述した第1の実施形態では、光学系ユニット30がX軸及びY軸方向に連続して四角形を形成するように並列することにより、所謂面照射がなされるようにした。一方、光学系装置を一方向に移動(スイープ)させて照射する、所謂ライン照射を行うように、光学系ユニット30がライン状に並列するように連結されていてもよい。本実施形態では、ライン状に並列するよう連結した光学系ユニットを備えた、ライン照射用の光学系装置を説明する。
<Fourth Embodiment>
In the first embodiment described above, so-called surface irradiation is performed by arranging the optical system units 30 in parallel so as to form a quadrangle continuously in the X-axis and Y-axis directions. On the other hand, the optical system units 30 may be connected in parallel in a line shape so as to perform so-called line irradiation in which the optical system device is moved (sweep) in one direction to irradiate. In the present embodiment, an optical system device for line irradiation will be described, which includes an optical system unit connected in parallel in a line shape.
 図12は、本実施形態に係る光学系装置の光学系ユニットを示す概略平面図である。図12に示されるように、本実施形態に係る光学系装置1cは、照射光の照射を維持しながらY軸方向に沿う移動方向Mに移動して露光を行う装置である。光学系装置1cは、移動方向Mに直交するX軸方向(幅方向)対して傾斜した所定方向に連続するように並列した複数の光学系ユニット30からなる第1ユニット群30aと、当該第1ユニット群30aに、所定方向に対して直交する方向に隣接した第2ユニット群30bとを備える点で第1の実施形態と構成が異なる。第1及び第2ユニット群30a,30bのX軸方向長さは同一であり、また移動方向Mから見て第1ユニット群30aにおける2つの光学系ユニット30の間に、第2ユニット群30bにおける1つの光学系ユニット30が位置するように設けられる。このように第1ユニット群30a個々の光学系ユニット30の間に第2ユニット群30bの個々の光学系ユニット30が位置することにより、光学系装置1cが移動方向Mに沿って移動(またはロール搬送等の被照射対象物が移動)した場合、照射面の継ぎ目の部分の照度の均一性を向上させることができる。 FIG. 12 is a schematic plan view showing an optical system unit of the optical system device according to the present embodiment. As shown in FIG. 12, the optical system device 1c according to the present embodiment is a device that moves in the moving direction M along the Y-axis direction to perform exposure while maintaining the irradiation of the irradiation light. The optical system device 1c includes a first unit group 30a composed of a plurality of optical system units 30 arranged in parallel so as to be continuous in a predetermined direction inclined with respect to the X-axis direction (width direction) orthogonal to the moving direction M, and the first unit. The configuration differs from that of the first embodiment in that the unit group 30a includes a second unit group 30b adjacent to the unit group 30a in a direction orthogonal to a predetermined direction. The lengths of the first and second unit groups 30a and 30b in the X-axis direction are the same, and in the second unit group 30b between the two optical system units 30 in the first unit group 30a when viewed from the moving direction M. It is provided so that one optical system unit 30 is located. By locating the individual optical system units 30 of the second unit group 30b between the individual optical system units 30 of the first unit group 30a in this way, the optical system device 1c moves (or rolls) along the moving direction M. When the object to be irradiated such as being transported moves), the uniformity of illuminance at the joint portion of the irradiation surface can be improved.
 以上に説明した本実施形態によれば、移動方向Mに対して第1及び第2ユニット群30a,30bが傾斜し、前後のいずれかまたは両方で光学系ユニット30の間を埋めるように他の光学系ユニット30が位置付けられるため、オシレーションを行わずとも各光学系ユニット30の照射面における継ぎ目の照度の均一性を向上させることができ、これにオシレーションを加えれば更なる向上を実現できる。 According to the present embodiment described above, the first and second unit groups 30a and 30b are tilted with respect to the moving direction M, and the other unit 30 is filled between the optical system units 30 in either the front or the back or both. Since the optical system unit 30 is positioned, it is possible to improve the uniformity of the illuminance of the seams on the irradiation surface of each optical system unit 30 without performing oscillation, and further improvement can be realized by adding oscillation to this. ..
<第5の実施形態>
 上述した第1の実施形態では、第2支持フレーム20に設けられたX軸レール210と、Y軸方向に延在する3つのXY軸スライダ220とにより、3つセットの光学系ユニット30をX軸方向に移動可能とし、個々の光学系ユニット30についてはY軸のみ移動可能に支持する形態を説明した。しかしながら、個々の光学系ユニット30をX軸及びY軸方向に移動可能に支持するようにしてもよい。本実施形態では、個々の光学系ユニット30を移動可能に支持する光学系装置を説明する。
<Fifth Embodiment>
In the first embodiment described above, the X-axis rail 210 provided on the second support frame 20 and the three XY-axis sliders 220 extending in the Y-axis direction make the three sets of optical system units 30 X. The mode in which the individual optical system units 30 are movable in the axial direction and only the Y axis is movablely supported has been described. However, the individual optical system units 30 may be movably supported in the X-axis and Y-axis directions. In this embodiment, an optical system device that movably supports each optical system unit 30 will be described.
 図13(a)及び(b)は、本実施形態に係る光学系装置における互いに直交する方向から見た概略側面図である。図13に示されるように本実施形態に係る光学系装置1dは、第1及び第2支持プレート10a,20aがそれぞれ光学系ユニット30の光吸収部380とレンズホルダ346との間に介在しており、X軸レール210と、Y軸方向に延在する3つのXY軸スライダ220とが設けられていない点で第1の実施形態に係る光学系装置1と構成が異なる。 13 (a) and 13 (b) are schematic side views of the optical system apparatus according to the present embodiment as viewed from directions orthogonal to each other. As shown in FIG. 13, in the optical system device 1d according to the present embodiment, the first and second support plates 10a and 20a are interposed between the light absorption unit 380 of the optical system unit 30 and the lens holder 346, respectively. The configuration is different from that of the optical system device 1 according to the first embodiment in that the X-axis rail 210 and the three XY-axis sliders 220 extending in the Y-axis direction are not provided.
 第1及び第2支持フレーム10a,20aは、略中央に開口を有する枠体である点は第1及び第2支持フレーム10,20と同様であるが、1つの光学系ユニット30に対しそれぞれ1つ設けられており、且つ第1支持フレーム10aと第2支持フレーム20aとの間に下方レール62、光吸収部380と第2支持フレーム20aとの間に上方レール64がそれぞれ設けられている。下方及び上方レール62,64は、円柱状の好ましくは容易に摺動可能な一方向に延在する金属部材である。下方及び上方レール62,64は、互いに直交するよう配設されており、1つの光学系ユニット30に対してそれぞれ2本のレールが対をなして光吸収部380とレンズホルダ346との間にZ軸方向に離間して位置している。 The first and second support frames 10a and 20a are the same as the first and second support frames 10 and 20 in that they are frames having an opening at substantially the center, but one for each optical system unit 30. A lower rail 62 is provided between the first support frame 10a and the second support frame 20a, and an upper rail 64 is provided between the light absorbing portion 380 and the second support frame 20a. The lower and upper rails 62, 64 are cylindrical, preferably easily slidable, unidirectional metal members. The lower and upper rails 62 and 64 are arranged so as to be orthogonal to each other, and two rails are paired with each other for one optical system unit 30 between the light absorbing unit 380 and the lens holder 346. They are located apart from each other in the Z-axis direction.
 下方及び上方レール62,64を上下で挟持するように囲う第1及び第2支持フレーム10a,20a及び光吸収部380は、各レールとの当接部分においてそれぞれレールと同方向に延在するV字状の溝が形成されており、当該溝が上下で重なり合う形でそれらの間に下方及び上方レール62,64が挿入された状態となっている。溝の形状はV字のみならずU字状やコ字状にしてもよいが、位置精度の面からみてV字状とすることが好ましい。光吸収部380と第2支持フレーム20aとの間、第2支持フレーム20aと第1支持フレーム10aとの間、第1支持フレーム10aとレンズホルダ346との間は、それぞれネジといった締結具等により互いに移動不能に固定されている。 The first and second support frames 10a and 20a and the light absorbing portion 380 that surround the lower and upper rails 62 and 64 so as to sandwich the lower and upper rails 62 and 64 vertically extend in the same direction as the rail at the contact portion with each rail. A character-shaped groove is formed, and the lower and upper rails 62 and 64 are inserted between the grooves so as to overlap each other. The shape of the groove may be U-shaped or U-shaped as well as V-shaped, but it is preferable that the groove is V-shaped from the viewpoint of position accuracy. Between the light absorbing portion 380 and the second support frame 20a, between the second support frame 20a and the first support frame 10a, and between the first support frame 10a and the lens holder 346, respectively, with fasteners such as screws. They are fixed to each other so that they cannot move.
 以上に説明した本実施形態によれば、光吸収部380と第2支持フレーム20aとの間で一方向に移動することができ、第2支持フレーム20aと第1支持フレーム10aとの間で当該一方向に直交する多方向に移動することができるため、個々の光学系ユニット30においてX軸及びY軸方向に移動することが可能となる。また、V字状の溝に設けられた下方及び上方レール62,64上を各構成要素が移動するため、位置精度が溝の切削精度に依存することから光軸の微調整等、高い精度での移動を実現することができる。 According to the present embodiment described above, it is possible to move in one direction between the light absorbing unit 380 and the second support frame 20a, and the said thing is between the second support frame 20a and the first support frame 10a. Since it can move in multiple directions orthogonal to one direction, it is possible to move in the X-axis and Y-axis directions in each optical system unit 30. In addition, since each component moves on the lower and upper rails 62 and 64 provided in the V-shaped groove, the position accuracy depends on the cutting accuracy of the groove, so that the optical axis can be finely adjusted with high accuracy. Can be realized.
 なお、第1支持フレーム10aとレンズホルダ346とを連結せず、光吸収部380とレンズホルダ346とを連結していずれか一方または両方が第1及び第2支持フレーム10a,20aの開口内に位置するようにしてもよい。なお、下方レール62と上方レール64との延在方向を逆に設けてもよいことは言うまでもない。 The first support frame 10a and the lens holder 346 are not connected, but the light absorption unit 380 and the lens holder 346 are connected so that one or both of them are within the openings of the first and second support frames 10a and 20a. It may be located. Needless to say, the extending directions of the lower rail 62 and the upper rail 64 may be reversed.
<第6の実施形態>
 上述した第1の実施形態では、光吸収部380にレンズホルダ346を介して両凸レンズ340を取り付けた構造の光学系ユニット30を複数連結すると説明したが、複数のレンズを形成したレンズアレイを用いて複数の光学系ユニットを実現することで装置を小型化するようにしてもよい。本実施形態においては、レンズアレイを備えた光学系装置を説明する。
<Sixth Embodiment>
In the first embodiment described above, it has been described that a plurality of optical system units 30 having a structure in which a biconvex lens 340 is attached to a light absorbing unit 380 via a lens holder 346 are connected, but a lens array having a plurality of lenses formed is used. The device may be miniaturized by realizing a plurality of optical system units. In this embodiment, an optical system device including a lens array will be described.
 図14は、本実施形態に係る光学系装置を説明するための概略側面図である。なお、図14では説明上、アパーチャ360や光吸収部380を省略している。図14に示されるように、本実施形態に係る光学系装置1eは、レンズアレイ70を有し、レンズアレイ70に対して照射部320から照射光が入射される。ここでの照射部320はμLEDや拡散板等の小型の紫外線LED光源が用いられることが好ましい。レンズアレイ70は複数の両凸レンズ340が連結するように形成されており、例えば数ミクロン~数ミリピッチで両凸レンズ340が平面状に連続するよう設けられている。このレンズアレイ70における1つの両凸レンズ340に対して1つの照射部320が上方に位置付けられる。また、両凸レンズ340の側面には第1の実施形態と同様に光吸収面が形成されることが好ましい。 FIG. 14 is a schematic side view for explaining the optical system device according to the present embodiment. In FIG. 14, the aperture 360 and the light absorbing unit 380 are omitted for the sake of explanation. As shown in FIG. 14, the optical system device 1e according to the present embodiment has a lens array 70, and irradiation light is incident on the lens array 70 from the irradiation unit 320. It is preferable that a small ultraviolet LED light source such as a μLED or a diffuser is used for the irradiation unit 320 here. The lens array 70 is formed so that a plurality of biconvex lenses 340 are connected to each other. For example, the biconvex lenses 340 are provided so as to be continuous in a plane at a pitch of several microns to several millimeters. One irradiation unit 320 is positioned above the one biconvex lens 340 in the lens array 70. Further, it is preferable that a light absorbing surface is formed on the side surface of the biconvex lens 340 as in the first embodiment.
 以上に説明した本実施形態によれば、レンズアレイ70により両凸レンズ340が連結された状態にあるため、別途第1及び第2支持フレーム10,20を用いて連結する必要が無く、更に各要素を小型にすることができるため、装置全体を小型とすることができ、延いては照射面に形成される照度の低い継ぎ目部分も小さくすることができる。 According to the present embodiment described above, since the biconvex lens 340 is connected by the lens array 70, it is not necessary to separately use the first and second support frames 10 and 20, and each element is further connected. Since the lens can be made smaller, the entire device can be made smaller, and the joint portion having low illuminance formed on the irradiation surface can also be made smaller.
 なお、上述した第1~第6の実施形態では、振動装置やリフレクタに代表される均一化手段を設ける手法、装置自体をスイープ移動させる手法、レンズアレイを用いる手法等により、照射面に形成される継ぎ目の照度の均一性を向上させるようにした。しかしながら、これらの手法を取り入れず、両凸レンズ340の第1面342及び/または第2面344の曲面率や形状、第2面344と照射面との距離を適切に設定することにより、図15及び図16に示されるように照射面の照度を均一にするようにしてもよい。なお、図16においては、120mm角の平面内に形成された照射面における照度の値(mW/cm)が示されており、良好に均一化がされていることがわかる。 In the first to sixth embodiments described above, the device is formed on the irradiation surface by a method of providing a homogenizing means represented by a vibrating device or a reflector, a method of sweeping the device itself, a method of using a lens array, or the like. The uniformity of the illuminance at the seams was improved. However, by not incorporating these methods and appropriately setting the curved surface ratio and shape of the first surface 342 and / or the second surface 344 of the biconvex lens 340 and the distance between the second surface 344 and the irradiation surface, FIG. And, as shown in FIG. 16, the illuminance of the irradiation surface may be made uniform. In addition, in FIG. 16, the value of the illuminance (mW / cm 2 ) on the irradiation surface formed in the plane of 120 mm square is shown, and it can be seen that the uniformity is good.
 本発明は、その要旨または主要な特徴から逸脱することなく、他の様々な形で実施することができる。そのため、前述の各実施形態は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。本発明の範囲は、特許請求の範囲によって示すものであって、明細書本文には、何ら拘束されない。更に、特許請求の範囲の均等範囲に属する全ての変形、様々な改良、代替および改質は、全て本発明の範囲内のものである。 The present invention can be implemented in various other forms without departing from its gist or main features. Therefore, each of the above embodiments is merely an example in all respects and should not be construed in a limited way. The scope of the present invention is shown by the scope of claims, and is not bound by the text of the specification. Moreover, all modifications, modifications, substitutions and modifications that fall within the equivalent scope of the claims are all within the scope of the present invention.
1,1a~1e 光学系装置
10,10a 第1支持フレーム
20,20a 第2支持フレーム
30 光学系ユニット
30a 第1ユニット群
30b 第2ユニット群
320 照射部
340 両凸レンズ
40 格子リフレクタ
50 カバーガラス
70 レンズアレイ
1,1a to 1e Optical system devices 10, 10a 1st support frame 20, 20a 2nd support frame 30 Optical system unit 30a 1st unit group 30b 2nd unit group 320 Irradiation unit 340 Biconvex lens 40 Lattice reflector 50 Cover glass 70 Lens array

Claims (14)

  1.  光源より照射された照射光を平行化し且つ該照射光による照射面の照度を均一化するレンズをそれぞれ有する複数の光学系ユニットと、
     前記複数の光学系ユニットを並列してそれぞれを着脱自在に連結する連結部と
     を備えることを特徴とする光学系装置。
    A plurality of optical system units each having a lens that parallelizes the irradiation light emitted from the light source and equalizes the illuminance of the irradiation surface by the irradiation light, and
    An optical system device including a connecting portion for connecting a plurality of optical system units in parallel and detachably connecting each of them.
  2.  前記連結部は、前記レンズが互いに当接または近接するように前記複数の光学系ユニットを連結する
     ことを特徴とする請求項1記載の光学系装置。
    The optical system device according to claim 1, wherein the connecting portion connects the plurality of optical system units so that the lenses are in contact with each other or close to each other.
  3.  前記連結部は、照射方向に直交する第1方向に沿って前記光学系ユニットを移動可能に支持する第1支持部と、前記照射方向及び前記第1方向に直交する第2方向に沿って前記光学系ユニットを移動可能に支持する第2支持部とを有する
     ことを特徴とする請求項1記載の光学系装置。
    The connecting portion includes a first supporting portion that movably supports the optical system unit along a first direction orthogonal to the irradiation direction, and the connecting portion along the irradiation direction and a second direction orthogonal to the first direction. The optical system apparatus according to claim 1, further comprising a second support portion that movably supports the optical system unit.
  4.  前記光学系ユニットは、前記レンズと光源との間に配置され、照射光の一部を通過させる通過部を有し、
     前記連結部は、前記通過部を着脱自在に支持することにより前記光学系ユニットと連結される
     ことを特徴とする請求項1記載の光学系装置。
    The optical system unit is arranged between the lens and the light source, and has a passing portion through which a part of the irradiation light is passed.
    The optical system device according to claim 1, wherein the connecting portion is connected to the optical system unit by detachably supporting the passing portion.
  5.  前記複数の光学系ユニットは照射面に対して平行に揺動する
     ことを特徴とする請求項1記載の光学系装置。
    The optical system apparatus according to claim 1, wherein the plurality of optical system units swing in parallel with an irradiation surface.
  6.  前記複数の光学系ユニットは照射面に対して平行に回転する
     ことを特徴とする請求項1記載の光学系装置。
    The optical system apparatus according to claim 1, wherein the plurality of optical system units rotate in parallel with an irradiation surface.
  7.  前記複数の光学系ユニットのそれぞれは、それぞれの照度をフィードバックするための受光素子を備え、該受光素子により前記複数の光学系ユニットそれぞれの照度が均一になるように調整する
     ことを特徴とする請求項1記載の光学系装置。
    Each of the plurality of optical system units is provided with a light receiving element for feeding back the illuminance of each of the plurality of optical system units, and the light receiving element adjusts the illuminance of each of the plurality of optical system units so as to be uniform. Item 1. The optical system device according to item 1.
  8.  前記光学系ユニットと照射面との間には、照射面の照度を均一化するための均一化手段が設けられている
     ことを特徴とする請求項1記載の光学系装置。
    The optical system apparatus according to claim 1, wherein a homogenizing means for equalizing the illuminance of the irradiation surface is provided between the optical system unit and the irradiation surface.
  9.  前記均一化手段は、照射面に対して傾斜し、その回転軸が照射面に対して垂直となるように回転可能な板状のガラス部材である
     ことを特徴とする請求項8記載の光学系装置。
    The optical system according to claim 8, wherein the homogenizing means is a plate-shaped glass member that is inclined with respect to the irradiation surface and can be rotated so that its rotation axis is perpendicular to the irradiation surface. apparatus.
  10.  前記均一化手段は、内壁が反射面となった孔が連続して形成されたリフレクタである
     ことを特徴とする請求項8記載の光学系装置。
    The optical system device according to claim 8, wherein the homogenizing means is a reflector in which holes having an inner wall as a reflecting surface are continuously formed.
  11.  前記均一化手段は、照射面に対して平行に揺動する
     ことを特徴とする請求項8記載の光学系装置。
    The optical system device according to claim 8, wherein the homogenizing means swings in parallel with an irradiation surface.
  12.  前記光学系ユニットが一方向に連設された第1光学系ユニット群と、前記光学系ユニットが前記一方向に連設され、該一方向と直交する方向において前記第1光学系ユニット群と隣接する第2光学系ユニット群とを備え、
     前記第1及び第2光学系ユニット群が連設する前記一方向と傾斜して交わる又は直交して交わる移動方向に沿って移動する前記光学系装置において、
     前記移動方向から見て前記第1光学系ユニット群における2つの光学系ユニットの間に、前記第2光学系ユニット群における1つの光学系ユニットが設けられる
     ことを特徴とする請求項1記載の光学系装置。
    A first optical system unit group in which the optical system units are connected in one direction and the optical system unit are connected in the one direction and adjacent to the first optical system unit group in a direction orthogonal to the one direction. It is equipped with a second optical system unit group.
    In the optical system apparatus in which the first and second optical system units are connected in succession and move along a moving direction in which the first and second optical system units intersect in an inclined manner or orthogonally to the one direction.
    The optical according to claim 1, wherein one optical system unit in the second optical system unit group is provided between two optical system units in the first optical system unit group when viewed from the moving direction. System equipment.
  13.  複数の前記光学系ユニットが並列することにより前記レンズが並列し、該並列したレンズと前記連結部とがレンズアレイを形成する
     ことを特徴とする請求項1記載の光学系装置。
    The optical system apparatus according to claim 1, wherein the lenses are arranged in parallel by arranging a plurality of the optical system units in parallel, and the parallel lenses and the connecting portion form a lens array.
  14.  前記レンズと該レンズに隣接する他のレンズと間には、光を吸収可能な光吸収部が設けられる
     ことを特徴とする請求項1記載の光学系装置。
    The optical system apparatus according to claim 1, wherein a light absorbing portion capable of absorbing light is provided between the lens and another lens adjacent to the lens.
PCT/JP2019/017105 2019-04-22 2019-04-22 Optical system device WO2020217288A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/017105 WO2020217288A1 (en) 2019-04-22 2019-04-22 Optical system device
JP2021515333A JPWO2020217288A1 (en) 2019-04-22 2019-04-22
TW109112595A TW202045978A (en) 2019-04-22 2020-04-15 Optical system device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017105 WO2020217288A1 (en) 2019-04-22 2019-04-22 Optical system device

Publications (1)

Publication Number Publication Date
WO2020217288A1 true WO2020217288A1 (en) 2020-10-29

Family

ID=72941614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017105 WO2020217288A1 (en) 2019-04-22 2019-04-22 Optical system device

Country Status (3)

Country Link
JP (1) JPWO2020217288A1 (en)
TW (1) TW202045978A (en)
WO (1) WO2020217288A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125836A1 (en) * 2009-04-28 2010-11-04 株式会社 アルバック Light irradiation method for light irradiation device and light irradiation device
JP2013021265A (en) * 2011-07-14 2013-01-31 Nikon Corp Illumination device, exposure device, exposure method, and manufacturing method of device
JP2015106015A (en) * 2013-11-29 2015-06-08 株式会社ブイ・テクノロジー Polarized light irradiation device, polarized light irradiation method and polarized light irradiation program
JP2017151259A (en) * 2016-02-24 2017-08-31 株式会社ブイ・テクノロジー Illuminating device for exposure, exposure apparatus and exposure method
JP2018189958A (en) * 2017-05-01 2018-11-29 カンタムエレクトロニクス株式会社 Optical system device, and double-convex lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517573B2 (en) * 1997-11-27 2004-04-12 キヤノン株式会社 Illumination apparatus and projection exposure apparatus using the same
JP5687013B2 (en) * 2010-09-14 2015-03-18 株式会社Screenホールディングス Exposure apparatus and light source apparatus
JP2015108642A (en) * 2012-03-12 2015-06-11 富士フイルム株式会社 Cemented lens
KR101848072B1 (en) * 2016-09-27 2018-04-11 (주)블루코어 UV LED light source module unit for exposure photolithography process and exposure photolithography apparatus used the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125836A1 (en) * 2009-04-28 2010-11-04 株式会社 アルバック Light irradiation method for light irradiation device and light irradiation device
JP2013021265A (en) * 2011-07-14 2013-01-31 Nikon Corp Illumination device, exposure device, exposure method, and manufacturing method of device
JP2015106015A (en) * 2013-11-29 2015-06-08 株式会社ブイ・テクノロジー Polarized light irradiation device, polarized light irradiation method and polarized light irradiation program
JP2017151259A (en) * 2016-02-24 2017-08-31 株式会社ブイ・テクノロジー Illuminating device for exposure, exposure apparatus and exposure method
JP2018189958A (en) * 2017-05-01 2018-11-29 カンタムエレクトロニクス株式会社 Optical system device, and double-convex lens

Also Published As

Publication number Publication date
JPWO2020217288A1 (en) 2020-10-29
TW202045978A (en) 2020-12-16

Similar Documents

Publication Publication Date Title
KR100953112B1 (en) Light modulating engine
EP2516920B1 (en) Light collector with extended center lens
US4516832A (en) Apparatus for transformation of a collimated beam into a source of _required shape and numerical aperture
KR102413481B1 (en) Illumination system for euv projection lithography
JP4808733B2 (en) Light homogenizer
JP2015501508A (en) Light source system and laser light source
JP2007531229A (en) Floodlight with variable beam
CN101295141B (en) Exposure drawing device
WO2011048877A1 (en) Laser exposure device
JPS60158872A (en) Light emitter
US9625810B2 (en) Source multiplexing illumination for mask inspection
KR20110120872A (en) Laser exposure device
KR20070057074A (en) Device for homogenizing light and arrangement for illuminating or focussing with said device
WO2020217288A1 (en) Optical system device
KR102048129B1 (en) Euv light source for generating a usable output beam for a projection exposure apparatus
CN1303476C (en) Improved lighting system for micro-offset printing
JP2006011051A (en) Aspherical collimating mirror and method for adjusting same
US10845010B2 (en) Light source device
JP5465123B2 (en) High-incidence angle variable irradiation device for image measurement device
JPH1197340A (en) Exposing optical system, optical processing device, exposing device, and photocoupler
TW201109727A (en) Integrator and optical irradiation apparatus using the same
CN112445076B (en) Photoetching machine, exposure system, off-axis illumination method and off-axis illumination device
JP2005128271A (en) Polarized light irradiation device for optical alignment and method for adjusting axis of polarization in polarized light irradiation device for optical alignment
JP2007226020A (en) Image projection device
KR101619504B1 (en) Illumination optical system module for exposure apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926300

Country of ref document: EP

Kind code of ref document: A1