WO2011048877A1 - Laser exposure device - Google Patents

Laser exposure device Download PDF

Info

Publication number
WO2011048877A1
WO2011048877A1 PCT/JP2010/065236 JP2010065236W WO2011048877A1 WO 2011048877 A1 WO2011048877 A1 WO 2011048877A1 JP 2010065236 W JP2010065236 W JP 2010065236W WO 2011048877 A1 WO2011048877 A1 WO 2011048877A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fly
laser
laser light
lens
Prior art date
Application number
PCT/JP2010/065236
Other languages
French (fr)
Japanese (ja)
Inventor
畑中 誠
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2011048877A1 publication Critical patent/WO2011048877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/48Laser speckle optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection

Definitions

  • the present invention relates to a laser exposure apparatus including a fly-eye lens in which a plurality of condensing lenses are arranged in a plane substantially orthogonal to the optical axis of laser light, and more specifically, interference fringes of laser light generated by the fly-eye lens. And a laser exposure apparatus that enables uniform exposure by reducing illuminance unevenness of laser light.
  • a conventional laser exposure apparatus includes a beam expander that expands the diameter of the laser beam and a fly that equalizes the intensity distribution of the laser beam with the expanded diameter in order to uniformly irradiate the object with the laser beam.
  • Optical integrators such as eye lenses are used.
  • an optical path difference adjusting member is provided between the beam expander and the fly's eye lens in order to reduce interference fringes caused by interference of the light transmitted through the fly's eye lens due to the coherency of the laser light.
  • the optical path difference adjusting member is provided only between the beam expander and the fly-eye lens, so that the interference fringes due to the transmitted light of the fly-eye lens are completely removed.
  • the present invention addresses such problems, averages the interference fringes of the laser light produced by the fly-eye lens, and reduces the unevenness of the illuminance of the laser light to enable uniform exposure.
  • the purpose is to provide.
  • a laser exposure apparatus includes a laser light source that emits laser light, and a plurality of unit lenses that are arranged in a plane substantially orthogonal to the optical axis of the laser light source.
  • a first fly-eye lens that equalizes the intensity distribution of the light in the orthogonal plane, condenses the emitted light, and then diverges radially to enlarge the cross-sectional shape of the laser light; and the first fly-eye lens
  • a condenser lens that emits laser light whose cross-sectional shape is expanded by emitting an eye lens, and a plurality of unit lenses provided on a downstream side of the condenser lens in the light traveling direction and substantially perpendicular to the optical axis thereof Are arranged, and a second fly-eye lens that equalizes the light intensity distribution in the illumination area on the photomask illuminated by the laser light, and between the first fly-eye lens and the condenser lens A diffusing plate for diffusing the laser beam; and provided on the
  • laser light is emitted from the laser light source, and a plurality of unit lenses are arranged in a plane substantially orthogonal to the optical axis of the laser light source, and the first fly-eye lens is in the plane orthogonal to the optical axis.
  • the light intensity distribution is made uniform, and the emitted light is once condensed, then radially diverged to enlarge the cross-sectional shape of the laser light, and the first fly-eye lens is emitted from the condenser lens to enlarge the cross-sectional shape.
  • the laser beam is converted into parallel light, and is provided on the downstream side in the light traveling direction of the condenser lens.
  • the second fly-eye lens in which a plurality of lenses are arranged in a plane substantially perpendicular to the optical axis
  • the light intensity distribution in the illumination area of the illuminated photomask is made uniform.
  • the laser beam is diffused by a diffusion plate provided between the first fly-eye lens and the condenser lens, and the interference fringes of the laser beam generated on the second fly-eye lens are averaged, and the second A transparent rotating plate provided on the laser beam emission side of the fly-eye lens and having a surface inclined with respect to the optical axis is rotated about the optical axis to finely move the illumination area on the photomask by the laser beam. Further uniformize the interference fringes of the laser beam.
  • the plurality of unit lenses of the first fly-eye lens are arranged at a pitch that can sufficiently disperse the energy of the laser light so that the laser light condensed by each unit lens does not turn air into plasma. . Thereby, the energy of the laser beam is sufficiently dispersed by each unit lens of the first fly-eye lens, and even if the laser beam is collected by each unit lens, the air is prevented from being turned into plasma.
  • the diffusion plate is a ground glass plate in which fine uneven patterns are randomly formed on the surface.
  • the diffusion angle of the laser beam is controlled to a predetermined value with a ground glass plate on which fine uneven patterns are randomly formed on the surface.
  • the second fly-eye lens a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are opposed to each other, and a principal ray of diffused light that is diffused and incident by the diffuser plate is used as an optical axis. It is configured to inject in parallel.
  • the principal ray of the diffused light that is diffused by the diffuser plate and incident by the second fly-eye lens in which a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are opposed to each other is made parallel to the optical axis. Eject.
  • the rotating plate is adapted to rotate at least once from the start to the end of the multiple exposure when one exposure is a multiple exposure by a plurality of shots of the laser beam.
  • the rotating plate is rotated at least one time from the start to the end of the multiple exposure to reduce the unevenness of the laser light on the photomask. To reduce.
  • the condenser plate further includes another condenser lens that converts the laser light applied to the photomask into parallel light on the downstream side in the light traveling direction of the rotating plate, and is close to the exit side face of the other condenser lens.
  • a transparent protective plate for preventing foreign matter from adhering to the surface is detachably provided.
  • the interference fringes of the laser light generated by the fly-eye lens can be averaged, and the illuminance unevenness of the laser light can be reduced to uniformly illuminate the photomask. Therefore, uniform exposure can be performed and a fine pattern can be easily exposed on the object to be exposed. Further, since the first fly-eye lens has both the function of uniformizing the intensity distribution of the laser light and the function of expanding the beam diameter, it is not necessary to provide a separate beam expander, and the number of parts can be reduced. .
  • the energy of the laser beam is sufficiently dispersed by each unit lens of the first fly-eye lens, and even if the laser beam is condensed by each unit lens, the air is turned into plasma.
  • the light utilization efficiency can be improved. Therefore, since it is not necessary to make the vicinity of the condensing point of the laser beam by the first fly-eye lens in a vacuum atmosphere in order to prevent air from being turned into plasma, the configuration of the apparatus can be simplified.
  • the arrangement pitch of the unit lenses of the first fly-eye lens is approximately one order of magnitude smaller than the arrangement pitch of the unit lenses of the fly-eye lens that is generally used, the laser emitted from the laser light source Even if the light profile is non-uniform, it can be made uniform by the first fly-eye lens. Thereby, the illuminance distribution on the photomask can be made more uniform.
  • the diffusion angle of the laser light diffused by the diffusion plate can be controlled to a predetermined value. Therefore, it is possible to average the interference fringes caused by the light emitted from each unit lens of the first fly-eye lens while suppressing the diffusion angle of the laser light to a predetermined value.
  • the laser light diffused by the diffusion plate can be squeezed by the second fly-eye lens and irradiated onto the photomask, and the utilization efficiency of the laser light can be improved.
  • the protective plate is detachably provided, the protective plate can be easily removed and cleaned. Therefore, if the protective plate is periodically cleaned, the exposure can always be performed under certain conditions, and the exposure can be stabilized.
  • FIG. 1 is a front view showing an embodiment of a laser exposure apparatus according to the present invention.
  • This laser exposure apparatus exposes an object to be exposed by irradiating a laser beam through a photomask.
  • the laser light source 1 is an ultraviolet pulse laser oscillator, and an excimer laser or a YAG laser can be used.
  • a first fly-eye lens 2 is provided in front of the laser light source 1 in the radiation direction of the laser light.
  • the first fly-eye lens 2 makes the light intensity distribution in a plane orthogonal to the optical axis 9 of the laser light source 1 uniform, condenses the laser light once, and then diverges radially to cross-section the laser light. It functions as a beam expander that expands the shape.
  • ⁇ 100 are arranged in a matrix.
  • a diffusion plate 3 is provided on the downstream side of the first fly-eye lens 2 in the traveling direction of the laser light.
  • This diffusing plate 3 averages interference fringes generated by diffusing the laser light and emitting each unit lens of the first fly-eye lens 2 to interfere on the second fly-eye lens 5 described later.
  • It is a ground glass-like plate in which fine irregular patterns of about 5 ⁇ m are randomly formed on the surface.
  • the diffusion angle of the laser beam can be controlled to about 1 °, for example.
  • the disposition position of the diffusion plate 3 can be arbitrarily selected between the back focal position of the first fly-eye lens 2 and the first condenser lens 4 described later.
  • a first condenser lens 4 is provided on the downstream side of the diffusion plate 3 in the traveling direction of the laser light.
  • the first condenser lens 4 is a plano-convex lens that emits the first fly-eye lens 2 and converts the laser light radially diffused by the diffusion plate 3 into parallel light, and has a flat light incident side.
  • the front focal position is substantially matched with the rear focal position of the first fly-eye lens 2.
  • a second fly-eye lens 5 is provided on the downstream side of the first condenser lens 4 in the traveling direction of the laser light.
  • the second fly's eye lens 5 includes a plurality of unit lenses (condensing lenses) arranged in a matrix at a pitch of, for example, several mm in a plane substantially orthogonal to the optical axis 9 of the first condenser lens 4.
  • the light intensity distribution in the illumination area of the photomask 12 illuminated with light is made uniform, a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are arranged facing each other, and diffused by the diffusion plate 3
  • the principal ray of the diffused light incident thereon is emitted in parallel with the optical axis 9.
  • the second fly-eye lens 5 includes a first lens array 10 disposed on the upstream side in the light traveling direction and a second lens array 11 disposed on the downstream side.
  • the optical axes of the unit lenses 10a and 11a corresponding to each other in the lens arrays 10 and 11 are made to coincide with each other.
  • the front focal position of the unit lens 11 a of the second lens array 11 matches the approximate vertex position of the curved surface of the unit lens 10 a of the first fly-eye lens 2.
  • the principal ray of the diffused light (laser light 13) diffused by the diffusing plate 3 and incident on the first lens array 10 can be emitted parallel to the optical axis 9 by the second lens array 11. Therefore, the laser beam 13 diffused by the diffusion plate 3 can be squeezed by the second fly-eye lens 5 to irradiate the photomask 12, and the utilization efficiency of the laser beam 13 can be improved.
  • the back focal position of the first lens array 10 is a substantially vertex position of the curved surface of the unit lens 11a of the second lens array 11. Therefore, the second lens array 11 may be damaged by the laser light 13 collected by the first lens array 10. Accordingly, the unit lens 10 a of the first lens array 10 has a longer focal length than the unit lens 11 a of the second lens array 11 so that the laser beam 13 is not condensed on the second lens array 11. Alternatively, a short one may be selected.
  • a rotating plate 6 is provided on the downstream side of the second fly-eye lens 5 in the traveling direction of the laser beam 13.
  • the rotating plate 6 finely moves the illumination region 14 (see FIG. 3B) of the laser beam 13 on the photomask 12, and the laser beam 13 emitted from the plurality of unit lenses 11a of the second fly-eye lens 5 is emitted.
  • An interference fringe generated by interference is averaged to make it inconspicuous, and is made of a transparent quartz plate having a surface 6a inclined with respect to the optical axis 9 and rotating around the optical axis 9. is there.
  • the light emitting side surface 6a is a so-called wedge substrate formed with an inclination of about 1 ° with respect to a surface orthogonal to the optical axis 9.
  • the laser beam 13 incident on the rotating plate 6 is refracted and emitted by the inclined surface 6a on the emission side, and the illumination area of the laser beam 13 on the photomask 12 (shown with diagonal lines shown in FIG. 5B).
  • the center of the region 14 is shifted laterally from the center O of the irradiation region 15 (the region surrounded by the broken line shown in FIG. 5B).
  • a broken line indicated by an arrow in FIG. 5B is a locus drawn by the center of the illumination area 14 while the rotating plate 6 is rotated once.
  • the rotation of the rotating plate 6 is controlled so as to rotate at least once from the start to the end of the multiple exposure when the single exposure is a multiple exposure by a plurality of shots of the laser beam 13.
  • the irradiation region 15 on the photomask 12 is illuminated with the laser beam 13 without excess or deficiency.
  • a second condenser lens 7 is provided on the downstream side of the rotating plate 6 in the traveling direction of the laser beam 13.
  • the second condenser lens 7 is for converting the laser beam 13 emitted from the second fly-eye lens 5 into parallel light and allowing it to enter the photomask 12 vertically, and two plano-convex lenses 7a and 7b.
  • the front focal position of the second fly-eye lens 5 is substantially matched with the rear focal position of the second fly-eye lens 5.
  • a protective plate 8 is detachably provided in the vicinity of the exit side surface of the second condenser lens 7.
  • the protective plate 8 is a transparent quartz substrate for preventing foreign matters such as mist of a photosensitive material from adhering to the surface of the second condenser lens 7 and causing the lens to become fogged.
  • reference numerals 16, 17, and 18 denote planar reflecting mirrors that bend the optical path.
  • the laser beam 13 emitted from the laser light source 1 is reflected by the two plane reflecting mirrors 16 and 17 and enters the first fly-eye lens 2.
  • the plurality of laser beams 13 emitted from the plurality of minute unit lenses of the first fly-eye lens 2 are condensed at the rear focal points of the respective unit lenses, and then radiate radially.
  • the unit lenses of the first fly-eye lens 2 are arranged in a matrix at a minute pitch of about 100 ⁇ m to about 300 ⁇ m, the profile of the laser light 13 emitted from the laser light source 1 is, for example, FIG. Even if it is non-uniform as shown in (a), it is mixed when exiting the first fly-eye lens 2 and is made substantially uniform as shown in FIG. Furthermore, since the energy of the laser beam 13 is dispersed by a large number of minute unit lenses, air is not turned into plasma even if the laser beam 13 is collected by the unit lens. Therefore, there is no possibility that the plasmaized air will diffusely reflect the laser beam 13 and reduce the luminance of the laser beam 13 irradiated to the photomask 12.
  • the laser beam 13 emitted from the first fly-eye lens 2 and diverging radially is incident on the diffusion plate 3 formed of a ground glass plate having a fine uneven pattern of about 5 ⁇ m randomly formed on the surface.
  • the incident laser beam 13 is diffused with the diffusion angle controlled to about 1 °.
  • each unit lens of the first fly-eye lens 2 is emitted, and the interference fringes of the laser beam 13 that interferes on the incident-side surface of the second fly-eye lens 5 are averaged.
  • the diffusion angle of the laser beam 13 is controlled to about 1 °, excessive divergence of the laser beam 13 is suppressed, and almost all of the laser beam 13 emitted from the laser light source 1 is used for illumination of the photomask 12. It can be used effectively.
  • the radial laser beam 13 emitted from the diffusion plate 3 is collimated by the first condenser lens 4 and then enters the second fly-eye lens 5.
  • the diffused light (laser light 13) diffused by the diffuser 3 and incident on the unit lens 10a of the first lens array 10 has its principal ray as shown in FIG.
  • the unit lens 11 a corresponding to the second lens array 11 is made parallel to the optical axis 9. Thereby, the diffused light diffused by the diffusion plate 3 is narrowed down by the second fly-eye lens 5 and is effectively used for illumination of the photomask 12.
  • the laser beam 13 emitted from the second fly-eye lens 5 is incident on the rotating plate 6 and is refracted by the exit-side surface 6a provided to be inclined with respect to the optical axis 9 as shown in FIG. After that, the light is collimated by the second condenser lens 7 and is incident on the photomask 12 substantially perpendicularly. As a result, the center of the illumination region 14 of the laser beam 13 on the photomask 12 is shifted laterally from the center O of the irradiation region 15 of the photomask 12 as shown in FIG. At this time, since the rotating plate 6 rotates about the optical axis 9, the illumination area 14 of the laser light 13 moves so as to make a circular motion about the center O of the irradiation area 15. Thereby, the entire region of the irradiation region 15 is illuminated by the laser beam 13.
  • the rotation of the rotating plate 6 is controlled so that it rotates at least once from the start to the end of the multiple exposure when the single exposure is a multiple exposure with a plurality of shots of the laser beam 13.
  • the irradiation area 15 on the photomask 12 is illuminated by the laser beam 13 without excess or deficiency.
  • interference fringes generated on the photomask 12 due to the interference of the laser beams 13 emitted from the plurality of unit lenses 11a of the second fly-eye lens 5 can be averaged and made inconspicuous. Therefore, the entire irradiation region 15 on the photomask 12 can be uniformly illuminated with the laser beam 13, and a fine pattern of the photomask 12 can be accurately exposed on the object to be exposed.
  • the present invention is not limited to this, and the second embodiment Instead of the condenser lens 7, a collimation mirror may be arranged at the position of the plane reflection mirror 18. In this case, the front focal position of the collimation mirror may be substantially matched with the rear focal position of the second fly-eye lens 5.
  • SYMBOLS 1 Laser light source 2 ... 1st fly eye lens 3 ... Diffusing plate 4 ... 1st condenser lens (condenser lens) 5 ... Second fly-eye lens 6 ... Rotating plate 6a ... Surface inclined with respect to optical axis of rotating plate 7 ... Second condenser lens (another condenser lens) DESCRIPTION OF SYMBOLS 8 ... Protection board 9 ... Optical axis 10 ... 1st lens array 10a ... Unit lens of 1st lens array 11 ... 2nd lens array 11a ... Unit lens of 2nd lens array 12 ... Photomask 13 ... Laser beam

Abstract

Disclosed is a laser exposure device provided with: a laser light source (1); a first fly-eye lens (2) which uniformizes the light intensity distribution within a plane orthogonal to a light axis (9), and also after temporarily focusing emitted light, radially diverges the focused light to thereby enlarge the cross-sectional shape of the laser light; a first condenser lens (4) which converts the laser light the cross-sectional shape of which is enlarged into parallel light; a second fly-eye lens (5) which uniformizes the light intensity distribution within an illumination region on a photomask (12) illuminated by the laser light; a diffuser plate (3) which is provided between the first fly-eye lens (2) and the first condenser lens (4) and diffuses the laser light; and a transparent rotation plate (6) which is provided on the laser light emission side of the second fly-eye lens (5), has a surface (6a) inclined with respect to the light axis (9), and rotates around the light axis (9). Consequently, it becomes possible to average interference fringes of the laser light, which are generated by the fly-eye lenses, and reduce the illumination unevenness of the laser light, thereby enabling uniform exposure.

Description

レーザ露光装置Laser exposure equipment
 本発明は、レーザ光の光軸に略直交する面内に複数の集光レンズを並べて配置したフライアイレンズを備えて成るレーザ露光装置に関し、詳しくは、フライアイレンズにより生じるレーザ光の干渉縞を平均化すると共に、レーザ光の照度ムラを低減して均一な露光を可能にするレーザ露光装置に係るものである。 The present invention relates to a laser exposure apparatus including a fly-eye lens in which a plurality of condensing lenses are arranged in a plane substantially orthogonal to the optical axis of laser light, and more specifically, interference fringes of laser light generated by the fly-eye lens. And a laser exposure apparatus that enables uniform exposure by reducing illuminance unevenness of laser light.
 従来のレーザ露光装置は、レーザ光を被露光体に均一に照射させるために、レーザ光の径を拡大するビームエキスパンダ、及び径が拡大されたレーザ光の強度分布を均一化するためのフライアイレンズ等のオプティカルインテグレータ等が用いられている。更に、レーザ光のコヒーレンシー(可干渉性)によりフライアイレンズの透過光が干渉して発生する干渉縞を低減させるために、ビームエキスパンダとフライアイレンズとの間に光路差調整部材を設けたものがある(例えば、特許文献1参照)。 A conventional laser exposure apparatus includes a beam expander that expands the diameter of the laser beam and a fly that equalizes the intensity distribution of the laser beam with the expanded diameter in order to uniformly irradiate the object with the laser beam. Optical integrators such as eye lenses are used. Furthermore, an optical path difference adjusting member is provided between the beam expander and the fly's eye lens in order to reduce interference fringes caused by interference of the light transmitted through the fly's eye lens due to the coherency of the laser light. There are some (see, for example, Patent Document 1).
特開2004-12757号公報JP 2004-12757 A
 しかし、このような従来のレーザ露光装置においては、光路差調整部材がビームエキスパンダとフライアイレンズとの間だけに設けられているため、フライアイレンズの透過光による干渉縞を完全には除去することができず、僅かに残った干渉縞により被露光体上に照度ムラが発生して微細なパターンの形成を困難にしていた。 However, in such a conventional laser exposure apparatus, the optical path difference adjusting member is provided only between the beam expander and the fly-eye lens, so that the interference fringes due to the transmitted light of the fly-eye lens are completely removed. However, it is difficult to form a fine pattern due to uneven illuminance on the object to be exposed due to slightly remaining interference fringes.
 そこで、本発明は、このような問題点に対処し、フライアイレンズにより生じるレーザ光の干渉縞を平均化すると共に、レーザ光の照度ムラを低減して均一な露光を可能にするレーザ露光装置を提供することを目的とする。 Accordingly, the present invention addresses such problems, averages the interference fringes of the laser light produced by the fly-eye lens, and reduces the unevenness of the illuminance of the laser light to enable uniform exposure. The purpose is to provide.
 上記目的を達成するために、本発明によるレーザ露光装置は、レーザ光を放射するレーザ光源と、前記レーザ光源の光軸に略直交する面内に複数の単位レンズが配列され、前記光軸に直交する面内の光の強度分布を均一化すると共に、射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大する第1のフライアイレンズと、前記第1のフライアイレンズを射出し断面形状が拡大されたレーザ光を平行光にするコンデンサレンズと、前記コンデンサレンズの光の進行方向下流側に設けられ、その光軸に略直交する面内に複数の単位レンズが配列されて、レーザ光により照明されるフォトマスク上の照明領域内の光強度分布を均一化する第2のフライアイレンズと、前記第1のフライアイレンズと前記コンデンサレンズとの間に設けられ、レーザ光を拡散させる拡散板と、前記第2のフライアイレンズのレーザ光の射出側に設けられ、その光軸に対して傾いた面を有し、該光軸を中心に回転する透明な回転板と、を備えたものである。 In order to achieve the above object, a laser exposure apparatus according to the present invention includes a laser light source that emits laser light, and a plurality of unit lenses that are arranged in a plane substantially orthogonal to the optical axis of the laser light source. A first fly-eye lens that equalizes the intensity distribution of the light in the orthogonal plane, condenses the emitted light, and then diverges radially to enlarge the cross-sectional shape of the laser light; and the first fly-eye lens A condenser lens that emits laser light whose cross-sectional shape is expanded by emitting an eye lens, and a plurality of unit lenses provided on a downstream side of the condenser lens in the light traveling direction and substantially perpendicular to the optical axis thereof Are arranged, and a second fly-eye lens that equalizes the light intensity distribution in the illumination area on the photomask illuminated by the laser light, and between the first fly-eye lens and the condenser lens A diffusing plate for diffusing the laser beam; and provided on the laser beam emission side of the second fly-eye lens, having a surface inclined with respect to the optical axis, and rotating about the optical axis A transparent rotating plate.
 このような構成により、レーザ光源からレーザ光を放射し、このレーザ光源の光軸に略直交する面内に複数の単位レンズが配列され第1のフライアイレンズで上記光軸に直交する面内の光の強度分布を均一化すると共に、射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大し、コンデンサレンズで第1のフライアイレンズを射出し断面形状が拡大されたレーザ光を平行光にし、このコンデンサレンズの光の進行方向下流側に設けられ、その光軸に略直交する面内に複数のレンズが配列された第2のフライアイレンズでレーザ光により照明されるフォトマスクの照明領域内の光強度分布を均一化する。この場合、第1のフライアイレンズとコンデンサレンズとの間に設けられた拡散板でレーザ光を拡散させて第2のフライアイレンズ上で発生するレーザ光の干渉縞を平均化し、第2のフライアイレンズのレーザ光の射出側に設けられ、その光軸に対して傾いた面を有する透明な回転板を光軸を中心に回転してレーザ光によるフォトマスク上の照明領域を微動させてレーザ光の干渉縞をさらに均一化する。 With such a configuration, laser light is emitted from the laser light source, and a plurality of unit lenses are arranged in a plane substantially orthogonal to the optical axis of the laser light source, and the first fly-eye lens is in the plane orthogonal to the optical axis. The light intensity distribution is made uniform, and the emitted light is once condensed, then radially diverged to enlarge the cross-sectional shape of the laser light, and the first fly-eye lens is emitted from the condenser lens to enlarge the cross-sectional shape. The laser beam is converted into parallel light, and is provided on the downstream side in the light traveling direction of the condenser lens. The second fly-eye lens in which a plurality of lenses are arranged in a plane substantially perpendicular to the optical axis The light intensity distribution in the illumination area of the illuminated photomask is made uniform. In this case, the laser beam is diffused by a diffusion plate provided between the first fly-eye lens and the condenser lens, and the interference fringes of the laser beam generated on the second fly-eye lens are averaged, and the second A transparent rotating plate provided on the laser beam emission side of the fly-eye lens and having a surface inclined with respect to the optical axis is rotated about the optical axis to finely move the illumination area on the photomask by the laser beam. Further uniformize the interference fringes of the laser beam.
 また、前記第1のフライアイレンズの複数の単位レンズは、各単位レンズにより集光されるレーザ光が空気をプラズマ化しない程度にレーザ光のエネルギーを十分に分散可能なピッチで配列されている。これにより、第1のフライアイレンズの各単位レンズでレーザ光のエネルギーを十分に分散し、各単位レンズによりレーザ光が集光されても空気がプラズマ化するのを防止する。 The plurality of unit lenses of the first fly-eye lens are arranged at a pitch that can sufficiently disperse the energy of the laser light so that the laser light condensed by each unit lens does not turn air into plasma. . Thereby, the energy of the laser beam is sufficiently dispersed by each unit lens of the first fly-eye lens, and even if the laser beam is collected by each unit lens, the air is prevented from being turned into plasma.
 さらに、前記拡散板は、表面に微細な凹凸パターンをランダムに形成したスリガラス状の板である。これにより、表面に微細な凹凸パターンをランダムに形成したスリガラス状の板でレーザ光の拡散角を所定値に制御する。 Furthermore, the diffusion plate is a ground glass plate in which fine uneven patterns are randomly formed on the surface. Thereby, the diffusion angle of the laser beam is controlled to a predetermined value with a ground glass plate on which fine uneven patterns are randomly formed on the surface.
 そして、前記第2のフライアイレンズは、平面内に複数の単位レンズを配列した一対のレンズアレイを対向して配置し、前記拡散板で拡散されて入射する拡散光の主光線を光軸に平行にして射出するように構成されたものである。これにより、平面内に複数の単位レンズを配列した一対のレンズアレイを対向して配置した第2のフライアイレンズで拡散板により拡散されて入射する拡散光の主光線を光軸に平行にして射出する。 In the second fly-eye lens, a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are opposed to each other, and a principal ray of diffused light that is diffused and incident by the diffuser plate is used as an optical axis. It is configured to inject in parallel. As a result, the principal ray of the diffused light that is diffused by the diffuser plate and incident by the second fly-eye lens in which a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are opposed to each other is made parallel to the optical axis. Eject.
 また、前記回転板は、1回の露光が前記レーザ光の複数ショットによる多重露光である場合に、前記多重露光が開始されてから終了するまでに少なくとも1回転するようにされたものである。これにより、1回の露光がレーザ光の複数ショットによる多重露光である場合に、回転板を多重露光が開始されてから終了するまでに少なくとも1回転させてフォトマスク上のレーザ光の照度ムラを低減する。 The rotating plate is adapted to rotate at least once from the start to the end of the multiple exposure when one exposure is a multiple exposure by a plurality of shots of the laser beam. As a result, when one exposure is a multiple exposure using a plurality of shots of laser light, the rotating plate is rotated at least one time from the start to the end of the multiple exposure to reduce the unevenness of the laser light on the photomask. To reduce.
 さらに、前記回転板の光の進行方向下流側に前記フォトマスクに照射するレーザ光を平行光にする別のコンデンサレンズをさらに備え、該別のコンデンサレンズの射出側の面に近接して該面に異物が付着するのを防止する透明な保護板を着脱可能に設けたものである。これにより、回転板の光の進行方向下流側に備えた別のコンデンサレンズでフォトマスクに照射するレーザ光を平行光にし、該別のコンデンサレンズの射出側の面に近接して着脱可能に設けた透明な保護板で別のコンデンサレンズの上記面に異物が付着するのを防止する。 Further, the condenser plate further includes another condenser lens that converts the laser light applied to the photomask into parallel light on the downstream side in the light traveling direction of the rotating plate, and is close to the exit side face of the other condenser lens. A transparent protective plate for preventing foreign matter from adhering to the surface is detachably provided. As a result, the laser beam applied to the photomask by another condenser lens provided on the downstream side of the light traveling direction of the rotating plate is converted into parallel light, and is detachably provided close to the exit side surface of the other condenser lens. A transparent protective plate prevents foreign matter from adhering to the surface of another condenser lens.
 請求項1に係るレーザ露光装置の発明によれば、フライアイレンズにより生じるレーザ光の干渉縞を平均化すると共に、レーザ光の照度ムラを低減してフォトマスクを均一に照明することができる。したがって、均一な露光を可能にして被露光体に微細なパターンの露光を容易に行なうことができる。また、第1のフライアイレンズは、レーザ光の強度分布の均一化機能とビーム径拡大機能の両方を有しているので、別にビームエキスパンダを備える必要が無く、部品点数を減らすことができる。 According to the laser exposure apparatus of the first aspect, the interference fringes of the laser light generated by the fly-eye lens can be averaged, and the illuminance unevenness of the laser light can be reduced to uniformly illuminate the photomask. Therefore, uniform exposure can be performed and a fine pattern can be easily exposed on the object to be exposed. Further, since the first fly-eye lens has both the function of uniformizing the intensity distribution of the laser light and the function of expanding the beam diameter, it is not necessary to provide a separate beam expander, and the number of parts can be reduced. .
 また、請求項2に係る発明によれば、第1のフライアイレンズの各単位レンズでレーザ光のエネルギーを十分に分散し、各単位レンズによりレーザ光が集光されても空気がプラズマ化するのを防止して光利用効率を向上することができる。したがって、空気がプラズマ化するのを防止するために第1のフライアイレンズによるレーザ光の集光点近傍を真空雰囲気にする必要がないので、装置の構成を簡素化することができる。さらに、第1のフライアイレンズの各単位レンズの配列ピッチが一般に使用されているフライアイレンズの各単位レンズの配列ピッチに比べて略一桁小さい値となるため、レーザ光源から放射されるレーザ光のプロファイルが不均一なものであっても、上記第1のフライアイレンズにより均一化することができる。これにより、フォトマスク上の照度分布をより均一化することができる。 According to the second aspect of the present invention, the energy of the laser beam is sufficiently dispersed by each unit lens of the first fly-eye lens, and even if the laser beam is condensed by each unit lens, the air is turned into plasma. The light utilization efficiency can be improved. Therefore, since it is not necessary to make the vicinity of the condensing point of the laser beam by the first fly-eye lens in a vacuum atmosphere in order to prevent air from being turned into plasma, the configuration of the apparatus can be simplified. Furthermore, since the arrangement pitch of the unit lenses of the first fly-eye lens is approximately one order of magnitude smaller than the arrangement pitch of the unit lenses of the fly-eye lens that is generally used, the laser emitted from the laser light source Even if the light profile is non-uniform, it can be made uniform by the first fly-eye lens. Thereby, the illuminance distribution on the photomask can be made more uniform.
 さらに、請求項3に係る発明によれば、拡散板で拡散されるレーザ光の拡散角を所定値に制御することができる。したがって、レーザ光の拡散角を所定値に抑えながら第1のフライアイレンズの各単位レンズの射出光による干渉縞を平均化することができる。 Further, according to the invention of claim 3, the diffusion angle of the laser light diffused by the diffusion plate can be controlled to a predetermined value. Therefore, it is possible to average the interference fringes caused by the light emitted from each unit lens of the first fly-eye lens while suppressing the diffusion angle of the laser light to a predetermined value.
 そして、請求項4に係る発明によれば、拡散板で拡散されたレーザ光を第2のフライアイレンズで絞ってフォトマスクに照射させることができ、レーザ光の利用効率を向上することができる。 According to the fourth aspect of the present invention, the laser light diffused by the diffusion plate can be squeezed by the second fly-eye lens and irradiated onto the photomask, and the utilization efficiency of the laser light can be improved. .
 また、請求項5に係る発明によれば、レーザ光の1ショット毎に干渉縞を移動してフォトマスク上の全照射領域を均一に照明することができる。 Further, according to the invention of claim 5, it is possible to uniformly illuminate the entire irradiation region on the photomask by moving the interference fringe for each shot of the laser beam.
 さらに、請求項6に係る発明によれば、例えば感光材のミストが別のコンデンサレンズの表面に付着してレンズを曇らせてしまうのを防止することができる。この場合、保護板を着脱可能に設けているので、保護板を容易に取り外して洗浄することができる。したがって、保護板を定期的に洗浄すれば、露光を常に一定の条件で実施することができ、露光を安定化することができる。 Furthermore, according to the invention of claim 6, for example, it is possible to prevent the mist of the photosensitive material from adhering to the surface of another condenser lens and fogging the lens. In this case, since the protective plate is detachably provided, the protective plate can be easily removed and cleaned. Therefore, if the protective plate is periodically cleaned, the exposure can always be performed under certain conditions, and the exposure can be stabilized.
本発明によるレーザ露光装置の実施形態を示す正面図である。It is a front view which shows embodiment of the laser exposure apparatus by this invention. 上記レーザ露光装置に使用される第2のフライアイレンズの構成を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the structure of the 2nd fly eye lens used for the said laser exposure apparatus. 上記レーザ露光装置に使用される回転板の形状及びその機能を示す説明図である。It is explanatory drawing which shows the shape of the rotating plate used for the said laser exposure apparatus, and its function. レーザ光のプロファイルを示す説明図であり、(a)はレーザ光源から放射されたレーザ光のプロファイルの一例を示し、(b)は第1のフライアイレンズで均一化されたプロファイルの例を示すものである。It is explanatory drawing which shows the profile of a laser beam, (a) shows an example of the profile of the laser beam radiated | emitted from the laser light source, (b) shows the example of the profile homogenized with the 1st fly eye lens. Is.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザ露光装置の実施形態を示す正面図である。このレーザ露光装置は、フォトマスクを介して被露光体にレーザ光を照射して露光するもので、レーザ光源1と、第1のフライアイレンズ2と、拡散板3と、第1のコンデンサレンズ4と、第2のフライアイレンズ5と、回転板6と、第2のコンデンサレンズ7と、保護板8とを備えて構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing an embodiment of a laser exposure apparatus according to the present invention. This laser exposure apparatus exposes an object to be exposed by irradiating a laser beam through a photomask. The laser light source 1, the first fly-eye lens 2, the diffusion plate 3, and the first condenser lens 4, a second fly-eye lens 5, a rotating plate 6, a second condenser lens 7, and a protective plate 8.
 上記レーザ光源1は、紫外線パルスレーザ発振器であり、エキシマレーザ又はYAGレーザ等を使用することができる。 The laser light source 1 is an ultraviolet pulse laser oscillator, and an excimer laser or a YAG laser can be used.
 上記レーザ光源1のレーザ光の放射方向前方には、第1のフライアイレンズ2が設けられている。この第1のフライアイレンズ2は、レーザ光源1の光軸9に直交する面内の光強度分布を均一化すると共に、レーザ光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大するビームエキスパンダの機能を果たすもので、レーザ光の光軸9に略直交する面内に複数の微小な単位レンズ(集光レンズ)を例えば約100μm~約300μmピッチで例えば100個×100個のマトリクス状に配列したものである。 A first fly-eye lens 2 is provided in front of the laser light source 1 in the radiation direction of the laser light. The first fly-eye lens 2 makes the light intensity distribution in a plane orthogonal to the optical axis 9 of the laser light source 1 uniform, condenses the laser light once, and then diverges radially to cross-section the laser light. It functions as a beam expander that expands the shape. For example, a plurality of minute unit lenses (condensing lenses) with a pitch of about 100 μm to about 300 μm, for example, in a plane substantially perpendicular to the optical axis 9 of the laser beam. × 100 are arranged in a matrix.
 レーザ光の進行方向にて上記第1のフライアイレンズ2の下流側には、拡散板3が設けられている。この拡散板3は、レーザ光を拡散させて第1のフライアイレンズ2の各単位レンズを射出した各レーザ光が後述の第2のフライアイレンズ5上で干渉して発生する干渉縞を平均化するもので、表面に5μm程度の微細な凹凸パターンをランダムに形成したスリガラス状の板である。これにより、レーザ光の拡散角を例えば1°程度に制御できるようになっている。なお、拡散板3の配設位置は、第1のフライアイレンズ2の後焦点位置と後述の第1のコンデンサレンズ4との間で任意に選択することができる。 A diffusion plate 3 is provided on the downstream side of the first fly-eye lens 2 in the traveling direction of the laser light. This diffusing plate 3 averages interference fringes generated by diffusing the laser light and emitting each unit lens of the first fly-eye lens 2 to interfere on the second fly-eye lens 5 described later. It is a ground glass-like plate in which fine irregular patterns of about 5 μm are randomly formed on the surface. Thereby, the diffusion angle of the laser beam can be controlled to about 1 °, for example. In addition, the disposition position of the diffusion plate 3 can be arbitrarily selected between the back focal position of the first fly-eye lens 2 and the first condenser lens 4 described later.
 レーザ光の進行方向にて上記拡散板3の下流側には、第1のコンデンサレンズ4が設けられている。この第1のコンデンサレンズ4は、第1のフライアイレンズ2を射出し、拡散板3で放射状に拡散されたレーザ光を平行光にするためのものであり、光の入射側が平らな平凸レンズで、その前焦点位置を第1のフライアイレンズ2の後焦点位置に略合致させて配置されている。 A first condenser lens 4 is provided on the downstream side of the diffusion plate 3 in the traveling direction of the laser light. The first condenser lens 4 is a plano-convex lens that emits the first fly-eye lens 2 and converts the laser light radially diffused by the diffusion plate 3 into parallel light, and has a flat light incident side. Thus, the front focal position is substantially matched with the rear focal position of the first fly-eye lens 2.
 レーザ光の進行方向にて上記第1のコンデンサレンズ4の下流側には、第2のフライアイレンズ5が設けられている。この第2のフライアイレンズ5は、第1のコンデンサレンズ4の光軸9に略直交する面内に複数の単位レンズ(集光レンズ)が例えば数mmピッチでマトリクス状に配列されて、レーザ光により照明されるフォトマスク12の照明領域内の光強度分布を均一化するものであり、平面内に複数の単位レンズを配列した一対のレンズアレイを対向して配置し、拡散板3で拡散されて入射する拡散光の主光線を光軸9に平行にして射出するように構成されている。 A second fly-eye lens 5 is provided on the downstream side of the first condenser lens 4 in the traveling direction of the laser light. The second fly's eye lens 5 includes a plurality of unit lenses (condensing lenses) arranged in a matrix at a pitch of, for example, several mm in a plane substantially orthogonal to the optical axis 9 of the first condenser lens 4. The light intensity distribution in the illumination area of the photomask 12 illuminated with light is made uniform, a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are arranged facing each other, and diffused by the diffusion plate 3 Thus, the principal ray of the diffused light incident thereon is emitted in parallel with the optical axis 9.
 具体的には、第2のフライアイレンズ5は、図2に示すように、光進行方向の上流側に配置された第1のレンズアレイ10と下流側に配置された第2のレンズアレイ11とからなり、各レンズアレイ10,11の互いに対応する単位レンズ10a,11aの光軸を合致させた構成となっている。この場合、第2のレンズアレイ11の単位レンズ11aの前焦点位置は、第1のフライアイレンズ2の単位レンズ10aの曲面の略頂点位置に合致している。これにより、拡散板3で拡散されて第1のレンズアレイ10に入射する拡散光(レーザ光13)の主光線を第2のレンズアレイ11で光軸9に平行にして射出させることができる。したがって、拡散板3で拡散されたレーザ光13を第2のフライアイレンズ5で絞ってフォトマスク12に照射させることができ、レーザ光13の利用効率を向上することができる。 Specifically, as shown in FIG. 2, the second fly-eye lens 5 includes a first lens array 10 disposed on the upstream side in the light traveling direction and a second lens array 11 disposed on the downstream side. The optical axes of the unit lenses 10a and 11a corresponding to each other in the lens arrays 10 and 11 are made to coincide with each other. In this case, the front focal position of the unit lens 11 a of the second lens array 11 matches the approximate vertex position of the curved surface of the unit lens 10 a of the first fly-eye lens 2. As a result, the principal ray of the diffused light (laser light 13) diffused by the diffusing plate 3 and incident on the first lens array 10 can be emitted parallel to the optical axis 9 by the second lens array 11. Therefore, the laser beam 13 diffused by the diffusion plate 3 can be squeezed by the second fly-eye lens 5 to irradiate the photomask 12, and the utilization efficiency of the laser beam 13 can be improved.
 なお、第1及び第2のレンズアレイ10,11が同一のものである場合には、第1のレンズアレイ10の後焦点位置が第2のレンズアレイ11の単位レンズ11aの曲面の略頂点位置に合致するため、第1のレンズアレイ10で集光されたレーザ光13により第2のレンズアレイ11が損傷を受けるおそれがある。したがって、第1のレンズアレイ10の単位レンズ10aとしては、レーザ光13が第2のレンズアレイ11上に集光しないように、第2のレンズアレイ11の単位レンズ11aよりも焦点距離の長いもの又は短いものを選択するとよい。 When the first and second lens arrays 10 and 11 are the same, the back focal position of the first lens array 10 is a substantially vertex position of the curved surface of the unit lens 11a of the second lens array 11. Therefore, the second lens array 11 may be damaged by the laser light 13 collected by the first lens array 10. Accordingly, the unit lens 10 a of the first lens array 10 has a longer focal length than the unit lens 11 a of the second lens array 11 so that the laser beam 13 is not condensed on the second lens array 11. Alternatively, a short one may be selected.
 レーザ光13の進行方向にて上記第2のフライアイレンズ5の下流側には、回転板6が設けられている。この回転板6は、フォトマスク12上のレーザ光13の照明領域14(図3(b)参照)を微動させ、第2のフライアイレンズ5の複数の単位レンズ11aを射出したレーザ光13の干渉により発生する干渉縞を平均化させて目立たなくさせるためのもので、光軸9に対して傾いた面6aを有し、該光軸9を中心に回転する透明な石英板からなるものである。 A rotating plate 6 is provided on the downstream side of the second fly-eye lens 5 in the traveling direction of the laser beam 13. The rotating plate 6 finely moves the illumination region 14 (see FIG. 3B) of the laser beam 13 on the photomask 12, and the laser beam 13 emitted from the plurality of unit lenses 11a of the second fly-eye lens 5 is emitted. An interference fringe generated by interference is averaged to make it inconspicuous, and is made of a transparent quartz plate having a surface 6a inclined with respect to the optical axis 9 and rotating around the optical axis 9. is there.
 具体的には、図3(a)に示すように、光の射出側の面6aが光軸9に直交する面に対して1°程度傾いて形成されたいわゆるウェッジ基板である。これにより、回転板6に入射したレーザ光13は、射出側の傾斜した面6aで屈折されて射出し、フォトマスク12上のレーザ光13の照明領域(同図(b)に示す斜線を付した領域)14の中心が照射領域15(同図(b)に示す破線で囲まれた領域)の中心Oから側方にシフトする。したがって、この状態で回転板6を光軸9を中心に回転させると、レーザ光13の照明領域14が照射領域15の中心Oを軸として同図(b)に示す破線で囲まれた領域内を円運動するように移動し、照射領域15の全領域がレーザ光13によって照明される。なお、同図(b)に矢印を付して示す破線は、回転板6が1回転中に照明領域14の中心が描く軌跡である。 Specifically, as shown in FIG. 3A, the light emitting side surface 6a is a so-called wedge substrate formed with an inclination of about 1 ° with respect to a surface orthogonal to the optical axis 9. As a result, the laser beam 13 incident on the rotating plate 6 is refracted and emitted by the inclined surface 6a on the emission side, and the illumination area of the laser beam 13 on the photomask 12 (shown with diagonal lines shown in FIG. 5B). The center of the region 14 is shifted laterally from the center O of the irradiation region 15 (the region surrounded by the broken line shown in FIG. 5B). Therefore, when the rotating plate 6 is rotated around the optical axis 9 in this state, the illumination area 14 of the laser beam 13 is within the area surrounded by the broken line shown in FIG. Are moved so as to make a circular motion, and the entire region of the irradiation region 15 is illuminated by the laser beam 13. A broken line indicated by an arrow in FIG. 5B is a locus drawn by the center of the illumination area 14 while the rotating plate 6 is rotated once.
 このとき、回転板6は、1回の露光がレーザ光13の複数ショットによる多重露光である場合に、多重露光が開始されてから終了するまでに少なくとも1回転するように回転が制御される。これにより、フォトマスク12上の照射領域15がレーザ光13により過不足なく照明される。 At this time, the rotation of the rotating plate 6 is controlled so as to rotate at least once from the start to the end of the multiple exposure when the single exposure is a multiple exposure by a plurality of shots of the laser beam 13. Thereby, the irradiation region 15 on the photomask 12 is illuminated with the laser beam 13 without excess or deficiency.
 レーザ光13の進行方向にて上記回転板6の下流側には、第2のコンデンサレンズ7が設けられている。この第2のコンデンサレンズ7は、第2のフライアイレンズ5を射出したレーザ光13を平行光にして、フォトマスク12に垂直に入射させるためのものであり、二枚の平凸レンズ7a,7bを組み合わせて構成され、その前焦点位置を第2のフライアイレンズ5の後焦点位置に略合致させて配置されている。 A second condenser lens 7 is provided on the downstream side of the rotating plate 6 in the traveling direction of the laser beam 13. The second condenser lens 7 is for converting the laser beam 13 emitted from the second fly-eye lens 5 into parallel light and allowing it to enter the photomask 12 vertically, and two plano-convex lenses 7a and 7b. The front focal position of the second fly-eye lens 5 is substantially matched with the rear focal position of the second fly-eye lens 5.
 上記第2のコンデンサレンズ7の射出側の面に近接して保護板8が着脱可能に設けられている。この保護板8は、例えば感光材のミスト等の異物が第2のコンデンサレンズ7の表面に付着してレンズを曇らせてしまうのを防止するためのものであり、透明な石英基板である。なお、図1において、符号16,17,18は、光路を折り曲げる平面反射ミラーである。 A protective plate 8 is detachably provided in the vicinity of the exit side surface of the second condenser lens 7. The protective plate 8 is a transparent quartz substrate for preventing foreign matters such as mist of a photosensitive material from adhering to the surface of the second condenser lens 7 and causing the lens to become fogged. In FIG. 1, reference numerals 16, 17, and 18 denote planar reflecting mirrors that bend the optical path.
 次に、このように構成されたレーザ露光装置の動作について説明する。
 レーザ光源1から放射されたレーザ光13は、二つの平面反射ミラー16,17で反射されて、第1のフライアイレンズ2に入射する。そして、第1のフライアイレンズ2の微小な複数の単位レンズを射出した複数のレーザ光13は、夫々各単位レンズの後焦点に集光した後、放射状に発散する。
Next, the operation of the thus configured laser exposure apparatus will be described.
The laser beam 13 emitted from the laser light source 1 is reflected by the two plane reflecting mirrors 16 and 17 and enters the first fly-eye lens 2. The plurality of laser beams 13 emitted from the plurality of minute unit lenses of the first fly-eye lens 2 are condensed at the rear focal points of the respective unit lenses, and then radiate radially.
 この場合、第1のフライアイレンズ2の各単位レンズは、約100μm~約300μmの微小ピッチでマトリクス状に配列されているため、レーザ光源1から放射されるレーザ光13のプロファイルが例えば図4(a)に示すように不均一なものであっても、第1のフライアイレンズ2を射出する際に混合されて同図(b)に示すように略均一化される。さらに、レーザ光13のエネルギーは、多数の微小な単位レンズによって分散されるため、レーザ光13が単位レンズによって集光されても空気がプラズマ化されることがない。したがって、プラズマ化した空気がレーザ光13を乱反射して、フォトマスク12に照射するレーザ光13の輝度を低下させるおそれがない。 In this case, since the unit lenses of the first fly-eye lens 2 are arranged in a matrix at a minute pitch of about 100 μm to about 300 μm, the profile of the laser light 13 emitted from the laser light source 1 is, for example, FIG. Even if it is non-uniform as shown in (a), it is mixed when exiting the first fly-eye lens 2 and is made substantially uniform as shown in FIG. Furthermore, since the energy of the laser beam 13 is dispersed by a large number of minute unit lenses, air is not turned into plasma even if the laser beam 13 is collected by the unit lens. Therefore, there is no possibility that the plasmaized air will diffusely reflect the laser beam 13 and reduce the luminance of the laser beam 13 irradiated to the photomask 12.
 第1のフライアイレンズ2を射出し放射状に発散したレーザ光13は、表面に5μm程度の微細な凹凸パターンをランダムに形成したスリガラス状の板からなる拡散板3に入射する。この拡散板3では、入射したレーザ光13が拡散角を1°程度に制御されて拡散される。これにより、第1のフライアイレンズ2の各単位レンズを射出し、第2のフライアイレンズ5の入射側の面上で干渉するレーザ光13の干渉縞が平均化される。また、レーザ光13の拡散角が1°程度に制御されているため、レーザ光13の過度の発散が抑えられ、レーザ光源1から放射される略全てのレーザ光13をフォトマスク12の照明に有効に利用することができる。 The laser beam 13 emitted from the first fly-eye lens 2 and diverging radially is incident on the diffusion plate 3 formed of a ground glass plate having a fine uneven pattern of about 5 μm randomly formed on the surface. In this diffusing plate 3, the incident laser beam 13 is diffused with the diffusion angle controlled to about 1 °. Thereby, each unit lens of the first fly-eye lens 2 is emitted, and the interference fringes of the laser beam 13 that interferes on the incident-side surface of the second fly-eye lens 5 are averaged. Further, since the diffusion angle of the laser beam 13 is controlled to about 1 °, excessive divergence of the laser beam 13 is suppressed, and almost all of the laser beam 13 emitted from the laser light source 1 is used for illumination of the photomask 12. It can be used effectively.
 拡散板3を射出した放射状のレーザ光13は、第1のコンデンサレンズ4により平行光にされた後、第2のフライアイレンズ5に入射する。この第2のフライアイレンズ5において、拡散板3で拡散されて第1のレンズアレイ10の単位レンズ10aに入射する拡散光(レーザ光13)は、図2に示すように、その主光線が第2のレンズアレイ11の対応する単位レンズ11aによって光軸9に平行となるようにされる。これにより、拡散板3で拡散された拡散光が第2のフライアイレンズ5によって絞られ、フォトマスク12の照明に有効に利用される。 The radial laser beam 13 emitted from the diffusion plate 3 is collimated by the first condenser lens 4 and then enters the second fly-eye lens 5. In the second fly-eye lens 5, the diffused light (laser light 13) diffused by the diffuser 3 and incident on the unit lens 10a of the first lens array 10 has its principal ray as shown in FIG. The unit lens 11 a corresponding to the second lens array 11 is made parallel to the optical axis 9. Thereby, the diffused light diffused by the diffusion plate 3 is narrowed down by the second fly-eye lens 5 and is effectively used for illumination of the photomask 12.
 第2のフライアイレンズ5を射出したレーザ光13は、回転板6に入射し、図3(a)に示すように光軸9に対して傾斜して設けられた射出側の面6aで屈折された後、第2のコンデンサレンズ7によって平行光にされてフォトマスク12に略垂直に入射する。これにより、フォトマスク12上のレーザ光13の照明領域14は、同図(b)に示すように、その中心がフォトマスク12の照射領域15の中心Oから側方にシフトする。このとき、回転板6は、光軸9を中心にして回転しているため、レーザ光13の照明領域14が照射領域15の中心Oを軸として円運動するように移動する。これにより、照射領域15の全領域がレーザ光13により照明される。 The laser beam 13 emitted from the second fly-eye lens 5 is incident on the rotating plate 6 and is refracted by the exit-side surface 6a provided to be inclined with respect to the optical axis 9 as shown in FIG. After that, the light is collimated by the second condenser lens 7 and is incident on the photomask 12 substantially perpendicularly. As a result, the center of the illumination region 14 of the laser beam 13 on the photomask 12 is shifted laterally from the center O of the irradiation region 15 of the photomask 12 as shown in FIG. At this time, since the rotating plate 6 rotates about the optical axis 9, the illumination area 14 of the laser light 13 moves so as to make a circular motion about the center O of the irradiation area 15. Thereby, the entire region of the irradiation region 15 is illuminated by the laser beam 13.
 なお、回転板6は、1回の露光がレーザ光13の複数ショットによる多重露光である場合に、多重露光が開始されてから終了するまでに少なくとも1回転するように回転が制御されるため、フォトマスク12上の照射領域15がレーザ光13により過不足なく照明される。 Note that the rotation of the rotating plate 6 is controlled so that it rotates at least once from the start to the end of the multiple exposure when the single exposure is a multiple exposure with a plurality of shots of the laser beam 13. The irradiation area 15 on the photomask 12 is illuminated by the laser beam 13 without excess or deficiency.
 このようにして、第2のフライアイレンズ5の複数の単位レンズ11aを射出した各レーザ光13の干渉によりフォトマスク12上で発生する干渉縞を平均化して、目立たなくすることができる。したがって、フォトマスク12上の照射領域15の全域をレーザ光13で均一に照明することができ、被露光体上にフォトマスク12の微細なパターンを精度よく露光することができる。 In this way, interference fringes generated on the photomask 12 due to the interference of the laser beams 13 emitted from the plurality of unit lenses 11a of the second fly-eye lens 5 can be averaged and made inconspicuous. Therefore, the entire irradiation region 15 on the photomask 12 can be uniformly illuminated with the laser beam 13, and a fine pattern of the photomask 12 can be accurately exposed on the object to be exposed.
 なお、上記実施形態においては、第2のフライアイレンズ5を射出したレーザ光13を第2のコンデンサレンズ7により平行光にする場合について説明したが、本発明はこれに限られず、第2のコンデンサレンズ7に替えて平面反射ミラー18の位置にコリメーションミラーを配置してもよい。この場合、コリメーションミラーの前焦点位置を第2のフライアイレンズ5の後焦点位置に略合致させるとよい。 In the above embodiment, the case where the laser light 13 emitted from the second fly-eye lens 5 is converted into parallel light by the second condenser lens 7 has been described. However, the present invention is not limited to this, and the second embodiment Instead of the condenser lens 7, a collimation mirror may be arranged at the position of the plane reflection mirror 18. In this case, the front focal position of the collimation mirror may be substantially matched with the rear focal position of the second fly-eye lens 5.
 1…レーザ光源
 2…第1のフライアイレンズ
 3…拡散板
 4…第1のコンデンサレンズ(コンデンサレンズ)
 5…第2のフライアイレンズ
 6…回転板
 6a…回転板の光軸に対して傾いた面
 7…第2のコンデンサレンズ(別のコンデンサレンズ)
 8…保護板
 9…光軸
 10…第1のレンズアレイ
 10a…第1のレンズアレイの単位レンズ
 11…第2のレンズアレイ
 11a…第2のレンズアレイの単位レンズ
 12…フォトマスク
 13…レーザ光
DESCRIPTION OF SYMBOLS 1 ... Laser light source 2 ... 1st fly eye lens 3 ... Diffusing plate 4 ... 1st condenser lens (condenser lens)
5 ... Second fly-eye lens 6 ... Rotating plate 6a ... Surface inclined with respect to optical axis of rotating plate 7 ... Second condenser lens (another condenser lens)
DESCRIPTION OF SYMBOLS 8 ... Protection board 9 ... Optical axis 10 ... 1st lens array 10a ... Unit lens of 1st lens array 11 ... 2nd lens array 11a ... Unit lens of 2nd lens array 12 ... Photomask 13 ... Laser beam

Claims (6)

  1.  レーザ光を放射するレーザ光源と、
     前記レーザ光源の光軸に略直交する面内に複数の単位レンズが配列され、前記光軸に直交する面内の光の強度分布を均一化すると共に、射出光を一旦集光した後、放射状に発散させてレーザ光の断面形状を拡大する第1のフライアイレンズと、
     前記第1のフライアイレンズを射出し断面形状が拡大されたレーザ光を平行光にするコンデンサレンズと、
     前記コンデンサレンズの光の進行方向下流側に設けられ、その光軸に略直交する面内に複数の単位レンズが配列されて、レーザ光により照明されるフォトマスク上の照明領域内の光強度分布を均一化する第2のフライアイレンズと、
     前記第1のフライアイレンズと前記コンデンサレンズとの間に設けられ、レーザ光を拡散させる拡散板と、
     前記第2のフライアイレンズのレーザ光の射出側に設けられ、その光軸に対して傾いた面を有し、該光軸を中心に回転する透明な回転板と、
    を備えたことを特徴とするレーザ露光装置。
    A laser light source that emits laser light;
    A plurality of unit lenses are arranged in a plane substantially orthogonal to the optical axis of the laser light source, uniformizing the light intensity distribution in the plane orthogonal to the optical axis, and condensing the emitted light once, then radially A first fly-eye lens that diverges into a laser beam and expands the cross-sectional shape of the laser light
    A condenser lens that emits the first fly-eye lens and converts the laser light having an enlarged cross-sectional shape into parallel light;
    A light intensity distribution in an illumination area on a photomask that is provided downstream of the condenser lens in the light traveling direction and in which a plurality of unit lenses are arranged in a plane substantially orthogonal to the optical axis and is illuminated by laser light A second fly-eye lens that equalizes
    A diffusion plate that is provided between the first fly-eye lens and the condenser lens and diffuses laser light;
    A transparent rotating plate provided on the laser beam emission side of the second fly-eye lens, having a surface inclined with respect to the optical axis, and rotating about the optical axis;
    A laser exposure apparatus comprising:
  2.  前記第1のフライアイレンズの複数の単位レンズは、各単位レンズにより集光されるレーザ光が空気をプラズマ化しない程度にレーザ光のエネルギーを十分に分散可能なピッチで配列されていることを特徴とする請求項1記載のレーザ露光装置。 The plurality of unit lenses of the first fly-eye lens are arranged at a pitch capable of sufficiently dispersing the energy of the laser light so that the laser light collected by each unit lens does not turn the air into plasma. 2. The laser exposure apparatus according to claim 1, wherein:
  3.  前記拡散板は、表面に微細な凹凸パターンをランダムに形成したスリガラス状の板であることを特徴とする請求項1記載のレーザ露光装置。 2. The laser exposure apparatus according to claim 1, wherein the diffusion plate is a ground glass plate having a fine uneven pattern randomly formed on a surface thereof.
  4.  前記第2のフライアイレンズは、平面内に複数の単位レンズを配列した一対のレンズアレイを対向して配置し、前記拡散板で拡散されて入射する拡散光の主光線を光軸に平行にして射出するように構成されたことを特徴とする請求項1記載のレーザ露光装置。 In the second fly-eye lens, a pair of lens arrays in which a plurality of unit lenses are arranged in a plane are arranged to face each other, and a principal ray of diffused light that is diffused and incident by the diffusion plate is made parallel to the optical axis. The laser exposure apparatus according to claim 1, wherein the laser exposure apparatus is configured to emit light.
  5.  前記回転板は、1回の露光が前記レーザ光の複数ショットによる多重露光である場合に、前記多重露光が開始されてから終了するまでに少なくとも1回転するようにされたことを特徴とする請求項1記載のレーザ露光装置。 The rotating plate is configured to rotate at least once from the start to the end of the multiple exposure when one exposure is a multiple exposure by a plurality of shots of the laser light. Item 2. A laser exposure apparatus according to Item 1.
  6.  前記回転板の光の進行方向下流側に前記フォトマスクに照射するレーザ光を平行光にする別のコンデンサレンズをさらに備え、該別のコンデンサレンズの射出側の面に近接して該面に異物が付着するのを防止する透明な保護板を着脱可能に設けたことを特徴とする請求項1~5のいずれか1項に記載のレーザ露光装置。 There is further provided another condenser lens that converts the laser light applied to the photomask to parallel light downstream of the rotating plate in the light traveling direction, and a foreign substance is placed on the surface in the vicinity of the surface on the emission side of the other condenser lens. The laser exposure apparatus according to any one of claims 1 to 5, wherein a transparent protective plate for preventing the attachment of said film is detachably provided.
PCT/JP2010/065236 2009-10-22 2010-09-06 Laser exposure device WO2011048877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009242948A JP2011091177A (en) 2009-10-22 2009-10-22 Laser exposure device
JP2009-242948 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011048877A1 true WO2011048877A1 (en) 2011-04-28

Family

ID=43900117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065236 WO2011048877A1 (en) 2009-10-22 2010-09-06 Laser exposure device

Country Status (3)

Country Link
JP (1) JP2011091177A (en)
TW (1) TW201128320A (en)
WO (1) WO2011048877A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014139835A1 (en) * 2013-03-13 2014-09-18 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation
US9881733B2 (en) 2012-09-07 2018-01-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754281B2 (en) * 2011-07-21 2015-07-29 岩崎電気株式会社 Irradiation device
KR101712299B1 (en) * 2012-10-27 2017-03-13 칼 짜이스 에스엠티 게엠베하 Illumination system of a microlithographic projection exposure apparatus
JP6135904B2 (en) * 2012-12-19 2017-05-31 カシオ計算機株式会社 Light source device and projector
JP6593678B2 (en) * 2015-03-30 2019-10-23 株式会社ニコン Illumination optical system, illumination method, exposure apparatus, exposure method, and device manufacturing method
JP6761574B2 (en) * 2016-01-04 2020-09-30 株式会社ニコン Illumination optics, exposure equipment, and device manufacturing methods
JP2019046910A (en) * 2017-08-31 2019-03-22 株式会社ブイ・テクノロジー Laser annealing apparatus and laser annealing method
JP7265743B2 (en) * 2018-09-18 2023-04-27 株式会社オプトピア Light source device and line beam homogenizer using it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180019A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Projection aligner
JPH0684759A (en) * 1992-09-04 1994-03-25 Nikon Corp Illuminator
JPH088168A (en) * 1994-06-22 1996-01-12 Canon Inc Scanning exposure system, and manufacture of device
JP2000223405A (en) * 1999-02-03 2000-08-11 Nikon Corp Illuminating optical device and projection aligner provided therewith
JP2002100561A (en) * 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2005258306A (en) * 2004-03-15 2005-09-22 Canon Inc Mask
JP2005317672A (en) * 2004-04-27 2005-11-10 Nikon Corp Optical device, aligner provided therewith and method for manufacturing device using the aligner
JP2006064380A (en) * 2004-08-24 2006-03-09 Nikon Corp Illumination optical apparatus
WO2006070580A1 (en) * 2004-12-27 2006-07-06 Nikon Corporation Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
JP2009182191A (en) * 2008-01-31 2009-08-13 V Technology Co Ltd Exposure lighting device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180019A (en) * 1989-12-08 1991-08-06 Mitsubishi Electric Corp Projection aligner
JPH0684759A (en) * 1992-09-04 1994-03-25 Nikon Corp Illuminator
JPH088168A (en) * 1994-06-22 1996-01-12 Canon Inc Scanning exposure system, and manufacture of device
JP2000223405A (en) * 1999-02-03 2000-08-11 Nikon Corp Illuminating optical device and projection aligner provided therewith
JP2002100561A (en) * 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2005258306A (en) * 2004-03-15 2005-09-22 Canon Inc Mask
JP2005317672A (en) * 2004-04-27 2005-11-10 Nikon Corp Optical device, aligner provided therewith and method for manufacturing device using the aligner
JP2006064380A (en) * 2004-08-24 2006-03-09 Nikon Corp Illumination optical apparatus
WO2006070580A1 (en) * 2004-12-27 2006-07-06 Nikon Corporation Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
JP2009182191A (en) * 2008-01-31 2009-08-13 V Technology Co Ltd Exposure lighting device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881733B2 (en) 2012-09-07 2018-01-30 Samsung Electronics Co., Ltd. Apparatus and method for transmitting and receiving wireless power
WO2014139835A1 (en) * 2013-03-13 2014-09-18 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation
US10025108B2 (en) 2013-03-13 2018-07-17 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation

Also Published As

Publication number Publication date
JP2011091177A (en) 2011-05-06
TW201128320A (en) 2011-08-16

Similar Documents

Publication Publication Date Title
WO2011048877A1 (en) Laser exposure device
EP1646073A1 (en) Illuminating method, exposing method, and device for therefor
JP5639745B2 (en) Laser exposure equipment
US8330938B2 (en) Solid-state array for lithography illumination
TWI430046B (en) Exposure charting device
USRE34634E (en) Light illumination device
JPH0151162B2 (en)
US6069937A (en) Illumination apparatus
JP2755349B2 (en) Illumination optical system of semiconductor exposure equipment
KR20110092215A (en) Light irradiating apparatus
KR20110093663A (en) Optical raster element, optical integrator and illumination system of a microlithographic projection exposure apparatus
US8023193B2 (en) Illumination system
JP2008242238A (en) Exposure apparatus
US20070058149A1 (en) Lighting system and exposure apparatus
JP2009182191A (en) Exposure lighting device
JP7068659B2 (en) Light source device for exposure
KR101753075B1 (en) A scan-type exposure apparatus
JPS60166951A (en) Illuminating optical device
TWI762141B (en) Laser despeckle device and operation method of the same
JP7450363B2 (en) Illumination optical system, exposure device, and article manufacturing method
JP2004354546A (en) Astronomical projection apparatus
JPH04196280A (en) Lighting device
JPH0721585B2 (en) Illumination optics
JPS62260118A (en) Projection exposure device
JPH05251309A (en) Lighting optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824729

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10824729

Country of ref document: EP

Kind code of ref document: A1