SE0002714D0 - An arrangement in a power mosfelt - Google Patents

An arrangement in a power mosfelt

Info

Publication number
SE0002714D0
SE0002714D0 SE0002714A SE0002714A SE0002714D0 SE 0002714 D0 SE0002714 D0 SE 0002714D0 SE 0002714 A SE0002714 A SE 0002714A SE 0002714 A SE0002714 A SE 0002714A SE 0002714 D0 SE0002714 D0 SE 0002714D0
Authority
SE
Sweden
Prior art keywords
arrangement
power moss
moss field
transistor
field
Prior art date
Application number
SE0002714A
Other languages
English (en)
Other versions
SE0002714L (sv
SE518797C2 (sv
Inventor
Thomas Moller
Nils Af Ekenstam
Jan Johansson
Timothy Ballard
Gary Lopez
Michael Peternel
Original Assignee
Ericsson Telefon Ab L M
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ericsson Telefon Ab L M filed Critical Ericsson Telefon Ab L M
Priority to SE0002714A priority Critical patent/SE518797C2/sv
Publication of SE0002714D0 publication Critical patent/SE0002714D0/sv
Priority to TW089122546A priority patent/TW486822B/zh
Priority to CNB018129250A priority patent/CN1291496C/zh
Priority to EP01950162A priority patent/EP1310000A1/en
Priority to AU2001271188A priority patent/AU2001271188A1/en
Priority to PCT/SE2001/001596 priority patent/WO2002007223A1/en
Priority to US09/906,697 priority patent/US6818951B2/en
Publication of SE0002714L publication Critical patent/SE0002714L/sv
Publication of SE518797C2 publication Critical patent/SE518797C2/sv

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • H01L29/4991Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/4175Source or drain electrodes for field effect devices for lateral devices where the connection to the source or drain region is done through at least one part of the semiconductor substrate thickness, e.g. with connecting sink or with via-hole
SE0002714A 2000-07-19 2000-07-19 Effekt-LDMOS-transistor innefattande ett flertal parallellkopplade transistorsegment med olika tröskelspänningar SE518797C2 (sv)

Priority Applications (7)

Application Number Priority Date Filing Date Title
SE0002714A SE518797C2 (sv) 2000-07-19 2000-07-19 Effekt-LDMOS-transistor innefattande ett flertal parallellkopplade transistorsegment med olika tröskelspänningar
TW089122546A TW486822B (en) 2000-07-19 2000-10-26 An arrangement in a power MOSFET
CNB018129250A CN1291496C (zh) 2000-07-19 2001-07-09 功率金属氧化物半导体场效晶体管中的配置
EP01950162A EP1310000A1 (en) 2000-07-19 2001-07-09 A power mos transistor comprising a plurality of transistor segments with different threshold voltages
AU2001271188A AU2001271188A1 (en) 2000-07-19 2001-07-09 A power mos transistor comprising a plurality of transistor segments with different threshold voltages
PCT/SE2001/001596 WO2002007223A1 (en) 2000-07-19 2001-07-09 A power mos transistor comprising a plurality of transistor segments with different threshold voltages
US09/906,697 US6818951B2 (en) 2000-07-19 2001-07-18 Arrangement in a power mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SE0002714A SE518797C2 (sv) 2000-07-19 2000-07-19 Effekt-LDMOS-transistor innefattande ett flertal parallellkopplade transistorsegment med olika tröskelspänningar

Publications (3)

Publication Number Publication Date
SE0002714D0 true SE0002714D0 (sv) 2000-07-19
SE0002714L SE0002714L (sv) 2002-01-20
SE518797C2 SE518797C2 (sv) 2002-11-19

Family

ID=20280545

Family Applications (1)

Application Number Title Priority Date Filing Date
SE0002714A SE518797C2 (sv) 2000-07-19 2000-07-19 Effekt-LDMOS-transistor innefattande ett flertal parallellkopplade transistorsegment med olika tröskelspänningar

Country Status (7)

Country Link
US (1) US6818951B2 (sv)
EP (1) EP1310000A1 (sv)
CN (1) CN1291496C (sv)
AU (1) AU2001271188A1 (sv)
SE (1) SE518797C2 (sv)
TW (1) TW486822B (sv)
WO (1) WO2002007223A1 (sv)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004511084A (ja) 2000-08-08 2004-04-08 アドバンスド パワー テクノロジー,インコーポレイテッド 非対称チャネル構造を有するパワーmosデバイス
US6404022B1 (en) * 2001-02-26 2002-06-11 Ericsson Inc. AM/PM non-linearities in FETs
US7825488B2 (en) 2006-05-31 2010-11-02 Advanced Analogic Technologies, Inc. Isolation structures for integrated circuits and modular methods of forming the same
US7667268B2 (en) * 2002-08-14 2010-02-23 Advanced Analogic Technologies, Inc. Isolated transistor
US6827695B2 (en) 2002-10-25 2004-12-07 Revivant Corporation Method of determining depth of compressions during cardio-pulmonary resuscitation
JP3713490B2 (ja) * 2003-02-18 2005-11-09 株式会社東芝 半導体装置
JP2006525667A (ja) 2003-05-02 2006-11-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 高周波数用途向けの電界効果トランジスタを備えた電子デバイス
US7220235B2 (en) * 2003-06-27 2007-05-22 Zoll Medical Corporation Method and apparatus for enhancement of chest compressions during CPR
US20050101889A1 (en) * 2003-11-06 2005-05-12 Freeman Gary A. Using chest velocity to process physiological signals to remove chest compression artifacts
WO2005112749A1 (en) * 2004-05-12 2005-12-01 Zoll Medical Corporation Ecg rhythm advisory method
US7565194B2 (en) * 2004-05-12 2009-07-21 Zoll Medical Corporation ECG rhythm advisory method
US7652519B2 (en) * 2006-06-08 2010-01-26 Telefonaktiebolaget Lm Ericsson (Publ) Apparatus and method for exploiting reverse short channel effects in transistor devices
WO2013071959A1 (en) * 2011-11-15 2013-05-23 X-Fab Semiconductor Foundries Ag A mos device assembly
US9653459B2 (en) * 2012-07-03 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. MOSFET having source region formed in a double wells region
US10596064B2 (en) 2014-03-18 2020-03-24 Zoll Medical Corporation CPR chest compression system with tonometric input and feedback
US9165918B1 (en) * 2014-05-07 2015-10-20 Freescale Semiconductor, Inc. Composite semiconductor device with multiple threshold voltages
US9640228B2 (en) * 2014-12-12 2017-05-02 Globalfoundries Inc. CMOS device with reading circuit
US9601614B2 (en) * 2015-03-26 2017-03-21 Nxp Usa, Inc. Composite semiconductor device with different channel widths
EP3673953B1 (en) 2015-03-27 2022-09-14 Zoll Medical Corporation Ecg and defibrillator electrode detection and tracking system
CN106298766A (zh) * 2015-05-27 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 一种功率器件及优化功率器件的方法
US10978583B2 (en) 2017-06-21 2021-04-13 Cree, Inc. Semiconductor devices having a plurality of unit cell transistors that have smoothed turn-on behavior and improved linearity
US10615273B2 (en) * 2017-06-21 2020-04-07 Cree, Inc. Semiconductor devices having a plurality of unit cell transistors that have smoothed turn-on behavior and improved linearity

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3374407A (en) * 1964-06-01 1968-03-19 Rca Corp Field-effect transistor with gate-insulator variations to achieve remote cutoff characteristic
BE666834A (sv) * 1964-07-13
US4395725A (en) * 1980-10-14 1983-07-26 Parekh Rajesh H Segmented channel field effect transistors
JPS5842269A (ja) * 1981-09-05 1983-03-11 Nippon Telegr & Teleph Corp <Ntt> Mis型可変抵抗器
JPS607179A (ja) * 1983-06-27 1985-01-14 Toshiba Corp Mos形電界効果トランジスタ
JPS6045053A (ja) * 1983-08-22 1985-03-11 Mitsubishi Electric Corp 半導体装置
US4843358A (en) * 1987-05-19 1989-06-27 General Electric Company Electrically positionable short-circuits
JP2672507B2 (ja) * 1987-05-21 1997-11-05 株式会社東芝 電荷転送素子
US4914051A (en) * 1988-12-09 1990-04-03 Sprague Electric Company Method for making a vertical power DMOS transistor with small signal bipolar transistors
JPH03218070A (ja) * 1990-01-23 1991-09-25 New Japan Radio Co Ltd Mosfet
JP2572658B2 (ja) * 1990-02-23 1997-01-16 日本モトローラ株式会社 インテリジェントパワー半導体装置の製造方法
US5798550A (en) * 1990-10-01 1998-08-25 Nippondenso Co. Ltd. Vertical type semiconductor device and gate structure
JPH05160407A (ja) * 1991-12-09 1993-06-25 Nippondenso Co Ltd 縦型絶縁ゲート型半導体装置およびその製造方法
IT1254799B (it) * 1992-02-18 1995-10-11 St Microelectronics Srl Transistore vdmos con migliorate caratteristiche di tenuta di tensione.
US5510747A (en) * 1993-11-30 1996-04-23 Siliconix Incorporated Gate drive technique for a bidirectional blocking lateral MOSFET
DE69431181D1 (de) * 1994-05-19 2002-09-19 Cons Ric Microelettronica Integrierte Leistungsschaltung ("PIC") und Verfahren zur Herstellung derselben
JP3470133B2 (ja) * 1994-06-03 2003-11-25 セイコーインスツルメンツ株式会社 半導体装置の製造方法
US5998837A (en) * 1995-06-02 1999-12-07 Siliconix Incorporated Trench-gated power MOSFET with protective diode having adjustable breakdown voltage
US5869371A (en) * 1995-06-07 1999-02-09 Stmicroelectronics, Inc. Structure and process for reducing the on-resistance of mos-gated power devices
KR100223198B1 (ko) * 1996-04-11 1999-10-15 다니구찌 이찌로오, 기타오카 다카시 높은 강복 전압을 갖는 반도체 장치 및 그 제조 방법
US5923065A (en) * 1996-06-12 1999-07-13 Megamos Corporation Power MOSFET device manufactured with simplified fabrication processes to achieve improved ruggedness and product cost savings
US6144070A (en) * 1997-08-29 2000-11-07 Texas Instruments Incorporated High breakdown-voltage transistor with electrostatic discharge protection
US5994175A (en) * 1997-09-05 1999-11-30 Advanced Micro Devices, Inc. High performance MOSFET with low resistance design
TW421962B (en) * 1997-09-29 2001-02-11 Canon Kk Image sensing device using mos type image sensing elements
JP3777768B2 (ja) * 1997-12-26 2006-05-24 株式会社日立製作所 半導体集積回路装置およびセルライブラリを記憶した記憶媒体および半導体集積回路の設計方法
US6091279A (en) * 1998-04-13 2000-07-18 Lucent Technologies, Inc. Temperature compensation of LDMOS devices
US6051458A (en) * 1998-05-04 2000-04-18 Taiwan Semiconductor Manufacturing Company Drain and source engineering for ESD-protection transistors
US6348382B1 (en) * 1999-09-09 2002-02-19 Taiwan Semiconductor Manufacturing Company Integration process to increase high voltage breakdown performance
KR100370155B1 (ko) * 2000-05-01 2003-01-29 주식회사 하이닉스반도체 반도체 소자 및 그의 제조 방법
JP3831894B2 (ja) * 2000-08-01 2006-10-11 株式会社ルネサステクノロジ 半導体集積回路
JP2004511084A (ja) * 2000-08-08 2004-04-08 アドバンスド パワー テクノロジー,インコーポレイテッド 非対称チャネル構造を有するパワーmosデバイス

Also Published As

Publication number Publication date
EP1310000A1 (en) 2003-05-14
CN1291496C (zh) 2006-12-20
WO2002007223A1 (en) 2002-01-24
US20020047140A1 (en) 2002-04-25
SE0002714L (sv) 2002-01-20
CN1443371A (zh) 2003-09-17
US6818951B2 (en) 2004-11-16
TW486822B (en) 2002-05-11
AU2001271188A1 (en) 2002-01-30
SE518797C2 (sv) 2002-11-19

Similar Documents

Publication Publication Date Title
SE0002714D0 (sv) An arrangement in a power mosfelt
DE69821069D1 (de) Leistungsteilungs-/-addierschaltung, Hochleistungsverstärker und Symmetrierschaltung
TWI347084B (en) N-way rf power amplifier circuit with increased back-off capability and power added efficiency using unequal input power division
MY135366A (en) Distributed amplifier having separately biased sections
EP1330021A3 (en) Switchable power amplifier
DE50213393D1 (de) Schalteinrichtung zum schalten bei einer hohen betriebsspannung
DE60119371D1 (de) Schaltnetzteil
GB0107787D0 (en) Power saving in computing applications
ATE439701T1 (de) System und verfahren zur hf-signalverstärkung
BR0113594B1 (pt) elástico composto em uma direção e extensìvel em uma outra direção.
ATE412241T1 (de) Modularer speicherbaustein
UY25712A1 (es) Benzamidas sustituidas y su aplicación en medicamentos
ATE234091T1 (de) Thrombin inhibitoren
DE60218475D1 (de) Elektrischer gegenstand mit dielektrischer epoxyschicht, die mit aminophenylfluorenen gehärtet ist
BR0313988A (pt) Escova de dentes e uso de uma escova de dentes
DE60138943D1 (de) Schottky-emissionskathode mit geringer eingangsleistung
DK0753239T3 (da) Impedanspuffer-MOS-kredsløb med dynamisk reduceret tærskelværdispænding, som til anvendelse i en udgangspuffer for en hørea
DE60002915D1 (de) Leistungsverstärker mit hohem wirkungsgrad
TR200400747T4 (tr) Programlanabilir geçici bellek devresi
TWI266390B (en) Semiconductor device
DE60128117D1 (de) Schaltleistungsverstärkung
TW326598B (en) Output circuit
ATE375026T1 (de) Stromversorgungseinrichtung
ATE220259T1 (de) Energieversorgungseinrichtung und schaltungsanordnung mit dieser energieversorgungseinrichtung
ATE460008T1 (de) Schnelle, kaskadierte ausgangsstufe der klasse ab mit fet-vorrichtungen

Legal Events

Date Code Title Description
NUG Patent has lapsed