RU2757442C1 - Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов - Google Patents

Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов Download PDF

Info

Publication number
RU2757442C1
RU2757442C1 RU2020142669A RU2020142669A RU2757442C1 RU 2757442 C1 RU2757442 C1 RU 2757442C1 RU 2020142669 A RU2020142669 A RU 2020142669A RU 2020142669 A RU2020142669 A RU 2020142669A RU 2757442 C1 RU2757442 C1 RU 2757442C1
Authority
RU
Russia
Prior art keywords
nanofibers
bis
micro
solution
polyamic acid
Prior art date
Application number
RU2020142669A
Other languages
English (en)
Inventor
Валентин Михайлович Светличный
Глеб Вячеславович Ваганов
Людмила Аркадьевна Мягкова
Ирина Петровна Добровольская
Елена Михайловна Иванькова
Александра Евгеньевна Чирятьева
Игорь Леонидович Радченко
Владимир Евгеньевич Юдин
Original Assignee
Ивс Ран
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ивс Ран filed Critical Ивс Ран
Priority to RU2020142669A priority Critical patent/RU2757442C1/ru
Application granted granted Critical
Publication of RU2757442C1 publication Critical patent/RU2757442C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/80Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H13/00Other common constructional features, details or accessories

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Настоящее изобретение относится к способу получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиимидов и может найти применение в получении материалов для фильтрации горячих жидких и газообразных агрессивных сред, разделительных мембран, для получения углеродных нановолокон, в качестве матриц для клеточных технологий. Указанный способ включает синтез полиамидокислоты поликонденсацией диангидрида 3,3′,4,4′-дифенилоксидтетракарбоновой кислоты или диангидрида 1,3-бис(3′,4-дикарбоксифенокси)бензола и 4,4′-бис(4′-аминофенокси)дифенилсульфона или 4,4′-бис(4′-аминофенокси)дифенила в апротонном растворителе, осаждение полиамидокислоты в воду, обработку водным раствором триэтиламина или аммиака с получением соли полиамидокислоты, приготовление водно-спиртового раствора соли полиамидокислоты с концентрацией 5-10 мас.% и подачу раствора через электрод-фильеру в электрическое поле с напряжением 10-20 кВ, затем осажденный на приемном электроде материал обрабатывают при температуре 200-250 °С в течение 30-60 мин. Полученный продукт представляет собой нетканый материал, состоящий из микро- и нановолокон ароматического термопластичного полиэфиримида диаметром 150 - 1000 нм с температурой разложения в инертной среде 510-530 °С и температурой стеклования 217-230°С. Указанный способ позволяет получать термопластичный нетканый материал на основе микро- и нановолокон из ароматического полиэфиримида методом электроформования менее энергозатратно и без экологической нагрузки. 4 ил., 4 пр.

Description

Изобретение относится к химии высокомолекулярных соединений, а именно к процессам получения нетканого материала на основе микро- и нановолокон, в частности волокон с диаметром d = 150 - 1000 нм из ароматических полиэфиримидов.
Изобретение может найти применение в получении композитных материалов для фильтрации горячих жидких и газообразных агрессивных сред, разделительных мембран, для получения углеродных нановолокон, а также в качестве матриц для клеточных технологий и в тканевой инженерии.
Метод электроформования позволяет получать полимерные микро- и нановолокна с диаметром от десятков до сотен нанометров. Раствор полимера, попадая через электрод-фильеру в поле высокого напряжения, распадается на микро-струи, которые осаждаются на приемном электроде в виде волокон.
Известно получение нановолокон из полимеров алифатического [EP 1957256B1; US 20030137069A1; US7618702B2; RU2447207], и ароматического [US20130005940A1; US20190022279A1; US20190015564A1; US20180372725A1] строения. В связи с развитием тканевой инженерии, в последнее время особое внимание уделяют получению нановолокон из природных полимеров, в частности, полисахаридов [WO2008128484A2; US 20160145770A1; RU2647609C1]. Известны способы получения нановолокон из водорастворимых полимеров [KR1020080117750A; JP2004019052A; CN104060355A]. Получаемые нетканые материалы на основе микро- и нановолокон характеризуются низкой плотностью, высокой пористостью, водо- и газопроницаемостью. Следует отметить, что нановолокна на основе водорастворимых полимеров, как правило, обладают низкой водостойкостью, высоким набуханием в водных средах. Нановолокна, при получении которых использовали спиртоводные смеси [RU 2447207], обладают низкой термостойкостью, температура их разложения не превышает 220°С.
Наиболее термостойкими полимерами являются ароматические полиимиды (ПИ), волокна и пленки из которых обладают высокой термической, радиационной и химической стойкостью, высокими диэлектрическими характеристиками. Материалы из ПИ используют в качестве конструкционных материалов, в электротехнике и электронике, в медицине для клеточных технологий, а также как прекурсоры для получения углеродных нановолокон.
Ароматические полиимиды получают термической или химической обработкой полиамидокислоты (ПАК), образующейся в процессе поликонденсации ароматических диаминов и ароматических диангидридов в апротонных растворителях (АР).
В патенте CN104928937A описан метод электроформования пористого волокнистого композиционного материала на основе полиамидокислоты, полученной поликонденсацией 4,4'-диаминодифенилового эфира и пиромеллитового диангидрида в N, N'-диметилформамиде. Микроволокна на основе полиамидокислоты, полученные методом электроформования, подвергают имидизации. Полиимидные волокна пропитывают полиимидным раствором, обрабатывают ультразвуком, после чего композиционный материал сушат. Полученный волокнистый материал может быть использован для поглощения органических загрязнителей из водных сред.
Способ электроформования полиимидных нановолокон, из раствора прекурсора на основе трифенилдиэфирдиангидрида и бисметилендифенила, содержащего в основной цепи гибкую группу, повышающую эластичность нановолоконной пряжи, описан в патенте CN105603561B.
Типичными недостатками указанных аналогов является использование продувки горячим газом в процессе электроформования нановолокон, что необходимо для удаления апротонного растворителя с высокой температурой кипения.
Наиболее близким по технической сущности к заявляемому способу является способ получения материала на основе нановолокон из ароматического полиимида, описанный в патенте RU № 2612280. Способ получения материала на основе нановолокон из полиимида включает электроформование раствора полиамидокислоты в растворителе, в котором из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %,затем раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, далее материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин. Целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси.
В описанном способе, с целью снижения температуры электроформования, используют смесь апротонного, бензоидного растворителей и тетрагидрофурана, что существенно усложняет процесс получения нановолокон, так как требует ректификации технологической газо- воздушной смеси.
Задачей заявляемого изобретения является получение нетканого термопластичного материала на основе микро- и нановолокон из ароматического полиэфиримида методом электроформования водных растворов амонийных солей полиамидокислот при комнатной температуре.
Для решения указанной задачи предлагается заявляемое изобретение - способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов.
Заявляемый способ включает полную совокупность существенных признаков, позволяющих достичь технический эффект за счет того, что полиамидокислоту получают поликонденсацией диангидрида 3,3′,4,4′-дифенилоксидтетракарбоновой кислоты (ДФО), или диангидрида 1,3-бис(3,4-дикарбоксифенокси)бензола и бис(аминофенокси) производных мостиковых бифенилов: 4,4-бис(4-аминофенокси)дифенилсульфон или 4,4-бис(4-аминофенокси)дифенил в среде апротонного растворителя, в качестве формовочного раствора для электроформования используют водные растворы соли полиамидокислоты, затем полиамидокислоту осаждают в воду, образующуюся твердую массу промывают дистиллированной водой, обрабатывают водным раствором триэтиламина или аммиака с целью образования водорастворимой аммонийной соли полиамидокислоты, которую после сушки получают в виде порошка, далее приготавливают водно-спиртовой раствор соли полиамидокислоты концентрацией 5-10 мас. % и подают через электрод-фильеру в электрическое поле с напряжением 10-20 кВ; нетканый материал, осажденный на приемном электроде, обрабатывают при температуре 200-250 °С в течение 30-60 мин; целевой продукт состоит из микро- и нановолокон ароматического термопластичного полиэфиримида диаметром 150 - 1000 нм и характеризуется температурой стеклования 217 - 230°С, температурой разложения в инертной среде 510- 530°С.
Следует отметить, что по заявляемому способу процесс электроформования не требует использования бензоидных и апротонных растворителей и осуществляется из водно-спиртового раствора аммонийной соли полиамидокислоты.
Ни в одном из аналогов не удалось из водных или водно-спиртовых растворов солей полиамидокислот при комнатной температуре методом электроформования получить материал на основе микро- и нановолокон, термическая обработка которого приводит к формированию термопластичных волокон из ароматического полиэфиримида, а также полиимидные волокна, полученные известными способами электроформования растворов солей полиамидокислот, не обладают такой важной характеристикой, как термопластичность. Это позволяет утверждать о соответствии заявляемого изобретения условию патентоспособности «изобретательский уровень».
Представлены следующие графические материалы:
Фиг.1 Микрофотографии материалов на основе микро- и нановолокон, полученных электроформованием раствора триэтиламмонийной соли ПАК (Р-СОД)Et3N, в водно-спиртовой смеси с соотношением компонентов 30:70, концентрация соли 8 мас.%; нановолокон из полиимида Р-СОД, (а, б).
Фиг. 2 ТГА -кривые для нетканых материалов на основе нановолокон из
ПИ Р-ОДФО и ПИ Р-СОД (кривые 1, 2).
Фиг. 3 ДСК-кривые нетканых материалов на основе нановолокон из ПИ Р-ОДФО и ПИ Р-СОД (кривые 1 и 2).
Фиг.4 Микрофотографии материалов на основе нановолокон из триэтиламмонийной соли ПАК (Р-СОД)Et3N, полученных электроформованием из растворов в водно-спиртовой смеси с соотношением компонентов 30:70; концентрации растворов 5, 15 мас.% (а, б).
Способ более полно раскрывается примерами его осуществления.
Пример 1.
Полиамидокислоту - ПАК(Р-СОД) получают поликонденсацией диангидрида 1,3-бис(3,4′-дикарбоксифенокси)бензола (Р) и 4,4-бис(4-аминофенокси) дифенилсульфона (СОД) в диметилацетамиде (ДМАА). Растворяют 0,05 моля СОД в 20-30 мл ДМАА при интенсивном перемешивании в стеклянном реакторе объемом 0.5 л в токе аргона, добавляют 0,05 моля диангидрида 1,3-бис(3,4′-дикарбоксифенокси)бензола при комнатной температуре, раствор перемешивают до полного растворения диангидрида, затем добавляют ДМАА в количестве, обеспечивающем концентрацию раствора 20 %. Раствор ПАК(Р-СОД) в ДМАА перемешивают при комнатной температуре в течение 4 час. Полиамидокислоту осаждают методом прикапывания раствора в течение 1,5 часа в дистиллированную воду при интенсивном перемешивании. Полученную волокнистую массу ПАК (Р-СОД) отфильтровывают, промывают дистиллированной водой при интенсивном перемешивании, после чего сушат на воздухе. К ПАК (Р-СОД) добавляют дистиллированную воду и триэтиламин, либо 25% водный раствор аммиака в количестве, обеспечивающем получение 20 % раствора соли ПАК(Р-СОД) Et3N. Процесс перемешивания волокнистой массы в водно-аммонийном растворе проводят при комнатной температуре в течение 5-6 час. Соль ПАК(Р-СОД) Et3N в виде порошка получают сушкой раствора на ротационном испарителе при Т= 60-65°C. Выход соли ПАК(Р-СОД) Et3N составлял 85-90%.
Соль ПАК(Р-СОД) Et3N растворяют в водно-спиртовой смеси с соотношением вода: этанол (30:70). Готовят растворы концентрацией 8 мас. %. Раствор подают через электрод-фильеру в электрическое поле с напряжением 20 кВ. Расстояние между электродами составляет 150 мм, скорость подачи раствора 0.8 мл/час. Получают нетканый материал на основе микро- и нановолокон из соли ПАК(Р-СОД) Et3N, диаметром от 300 до 700 нм, (Фиг. 1а). Материал снимают с приемного электрода, обрабатывают в инертной среде при температуре 250 °С в течение 30 мин. Целевой нетканый материал на основе полиимида Р- СОД характеризуется диаметром волокон 150 -1000 нм, (Фиг. 1б), температурой разложения по данным ТГА Т=511°С, (Фиг. 2), температурой стеклования по данным метода ДСК Тg = 230°С( Фиг. 3).
Пример 2. Электроформование раствора соли ПАК (РСОД)Et3N способом, описанным в примере 1, при концентрации раствора менее 5 мас.% происходит образование дефектов в виде капель (Фиг. 4а).
Пример 3. Электроформование раствора соли ПАК (Р-СОД)Et3N способом, описанным в примере 1, при концентрации раствора 15 мас. % не происходит разбиения струи и формирование нано- и микроволокон (Фиг. 4б).
Пример 4. Полиамидокислоту - ПАК(Р-ОДФО) получают поликонденсацией диангидрида 1,3-бис(3,4-дикарбоксифенокси)бензола и 4,4-бис(4-аминофенокси)дифенила в метилпирролидоне (МП). Растворяют 0,05 моля ОДФО в 20-30 мл МП при интенсивном перемешивании в стеклянном реакторе объемом 0.5 л в токе аргона, добавляют диангидрид Р, раствор перемешивают до полного растворения диангидрида, затем добавляют МП в количестве, обеспечивающем концентрацию раствора 20 %. Раствор ПАК(Р-ОДФО) в МП перемешивают при 20°С в течение 4 час. Далее аналогично примеру 1 получают триэтиламмонийную соль ПАК(Р-ОДФО)Et3N. Выход соли ПАК(Р-ОДФО)Et3N составляет 90-95%.
Соль ПАК(Р-ОДФО)Et3N растворяют в водно-спиртовой смеси с соотношением вода: этанол =30:70; концентрация раствора 8 мас. %. Раствор подают через электрод-фильеру в электрическое поле с напряжением 20 кВ. Расстояние между электродами составляет 150 мм, скорость подачи раствора 0.8 мл/час. Получают нетканый материал на основе микро- и нановолокон из соли ПАК(Р-ОДФО) Et3N, диаметром от 150 до 800 нм. Материал снимают с приемного электрода, обрабатывают в инертной среде при температуре 250 °С в течение 30 мин. Целевой нетканый материал на основе полиимида Р- ОДФО характеризуется диаметром волокон 300 -700 нм, температурой разложения по данным ТГА Т=530°С, (Фиг. 2), кривая 1, температурой стеклования по данным метода ДСК Тg = 230°С,( Фиг. 3), кривая 1.
Реализация заявляемого изобретения не исчерпывается приведенными примерами.
Данные, приведенные в примерах №1, 4 свидетельствуют°том, что в результате реализации заявляемого изобретения методом электроформования водных растворов амонийных солей полиамидокислот при комнатной температуре получены термопластичные материалы на основе волокон диаметром 600-1000 нм из ароматических полиэфиримидов. Эти материалы характеризуются температурой начала разложения инертной среде 510°С и температурами стеклования 217-230°С. Выход за рамки параметров, приведенных в заявляемом изобретении,( примеры № 2 и 4) приводит к получению материалов, которые не содержат нановолокон ароматического полиимида или характеризуются наличием большого количество дефектов в виде капель различного размера.
Технический результат заключается в том, что при менее энергозатратном способе, который не несет экологической нагрузки, можно получать термостойкие термопластичные, полиимидные нетканые материалы.

Claims (1)

  1. Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиимидов, относящихся к группе простых полиэфиримидов, заключающийся в том, что полиамидокислоту получают поликонденсацией диангидрида 3,3′,4,4′-дифенилоксидтетракарбоновой кислоты (ДФО) или диангидрида 1,3-бис(3,4-дикарбоксифенокси)бензола и бис(аминофенокси) производных мостиковых бифенилов: 4,4-бис(4-аминофенокси)дифенилсульфон или 4,4-бис(4-аминофенокси)дифенил в среде апротонного растворителя, отличающийся тем, что в качестве формовочного раствора для электроформования используют водные растворы соли полиамидокислоты, затем полиамидокислоту осаждают в воду, образующуюся твердую массу промывают дистиллированной водой, обрабатывают водным раствором триэтиламина или аммиака с целью образования водорастворимой аммонийной соли полиамидокислоты, которую после сушки получают в виде порошка, далее приготавливают водно-спиртовой раствор соли полиамидокислоты концентрацией 5-10 мас. % и подают через электрод-фильеру в электрическое поле с напряжением 10-20 кВ; нетканый материал, осажденный на приемном электроде, обрабатывают при температуре 200-250°С в течение 30-60 мин; целевой продукт состоит из микро- и нановолокон ароматического термопластичного полиэфиримида диаметром 150 - 1000 нм и характеризуется температурой стеклования 217 - 230°С, температурой разложения в инертной среде 510- 530°С.
RU2020142669A 2020-12-23 2020-12-23 Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов RU2757442C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2020142669A RU2757442C1 (ru) 2020-12-23 2020-12-23 Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2020142669A RU2757442C1 (ru) 2020-12-23 2020-12-23 Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов

Publications (1)

Publication Number Publication Date
RU2757442C1 true RU2757442C1 (ru) 2021-10-15

Family

ID=78286654

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020142669A RU2757442C1 (ru) 2020-12-23 2020-12-23 Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов

Country Status (1)

Country Link
RU (1) RU2757442C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145428A (zh) * 2022-12-05 2023-05-23 东华大学 一种水溶性聚酰胺酸盐上浆剂的制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612280C1 (ru) * 2015-12-02 2017-03-06 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Способ получения материала на основе нановолокон из ароматического полиимида

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2612280C1 (ru) * 2015-12-02 2017-03-06 Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук Способ получения материала на основе нановолокон из ароматического полиимида

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JIANG SHAOHUA, HOU HAOQING, AGARWAL SEEMA, GREINER ANDREAS "POLYIMIDE NANOFIBERS BY "GREEN" ELECTROSPINNING VIA AQUEOUS SOLUTION FOR FILTRATION APPLICATIONS", ACS SUSTAINABLE CHEMISTRY AND ENGINEERING, 2016, Т. 4, 9, С.4797-4804. *
WANG JIEMIN, LI QUANXIANG, LIU DAN, CHEN CHENG, CHEN ZHIQIANG, HAO JIAN, LI YINWEI, ZHANG JIN, NAEBE MINOO, LEI WEIWEI "HIGH TEMPERATURE THERMALLY CONDUCTIVE NANOCOMPOSITE TEXTILE BY "GREEN" ELECTROSPINNING", NANOSCALE, 2018, Т. 10, 35, С. 16868-16872. *
ГРУЗДЕВ Н.А., ФИЛАТОВ И.Ю., ФИЛАТОВ Ю.Н. "ИССЛЕДОВАНИЕ ПРОЦЕССА ЭЛЕКТРОФОРМОВАНИЯ СОПОЛИМЕРНОГО ПОЛИАМИДА-6/66 В СПИРТОВОЙ СМЕСИ", ВЕСТНИК МИТХТ, 2013, Т.8, 6, С. 95-98. *
ЧИРЯТЬЕВА А.Е., ВАГАНОВ Г.В., ЮДИН В.Е., СВЕТЛИЧНЫЙ В.М., МЯГКОВА Л.А., ИВАНЬКОВА Е.М., ПОПОВА Е.Н. "ИССЛЕДОВАНИЕ НАНОВОЛОКОН, ПОЛУЧЕННЫХ НА ОСНОВЕ ВОДОРАСТВОРИМЫХ СОЛЕЙ ПОЛИАМИДНОЙ КИСЛОТЫ МЕТОДОМ ЭЛЕКТРОФОРМОВАНИЯ", ПОЛИФУНКЦИОНАЛЬНЫЕ ХИМИЧЕСКИЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ, МАТЕРИАЛЫ МАЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ, МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ, ТОМСК 2019, С. 151-152. *
ЧИРЯТЬЕВА А.Е., ВАГАНОВ Г.В., ЮДИН В.Е., СВЕТЛИЧНЫЙ В.М., МЯГКОВА Л.А., ИВАНЬКОВА Е.М., ПОПОВА Е.Н. "ИССЛЕДОВАНИЕ НАНОВОЛОКОН, ПОЛУЧЕННЫХ НА ОСНОВЕ ВОДОРАСТВОРИМЫХ СОЛЕЙ ПОЛИАМИДНОЙ КИСЛОТЫ МЕТОДОМ ЭЛЕКТРОФОРМОВАНИЯ", ПОЛИФУНКЦИОНАЛЬНЫЕ ХИМИЧЕСКИЕ МАТЕРИАЛЫ И ТЕХНОЛОГИИ, МАТЕРИАЛЫ МАЖДУНАРОДНОЙ НАУЧНОЙ КОНФЕРЕНЦИИ, МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИЧЕСКИЙ ФАКУЛЬТЕТ, ТОМСК 2019, С. 151-152. JIANG SHAOHUA, HOU HAOQING, AGARWAL SEEMA, GREINER ANDREAS "POLYIMIDE NANOFIBERS BY "GREEN" ELECTROSPINNING VIA AQUEOUS SOLUTION FOR FILTRATION APPLICATIONS", ACS SUSTAINABLE CHEMISTRY AND ENGINEERING, 2016, Т. 4, 9, С.4797-4804. WANG JIEMIN, LI QUANXIANG, LIU DAN, CHEN CHENG, CHEN ZHIQIANG, HAO JIAN, LI YINWEI, ZHANG JIN, NAEBE MINOO, LEI WEIWEI "HIGH TEMPERATURE THERMALLY CONDUCTIVE NANOCOMPOSITE TEXTILE BY "GREEN" ELECTROSPINNING", NANOSCALE, 2018, Т. 10, 35, С. 16868-16872. ГРУЗДЕВ Н.А., ФИЛАТОВ И.Ю *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145428A (zh) * 2022-12-05 2023-05-23 东华大学 一种水溶性聚酰胺酸盐上浆剂的制备方法和应用

Similar Documents

Publication Publication Date Title
DE3225618C2 (de) Verbundmembran auf Polyimidbasis und Verfahren zu deren Herstellung
DE3213528C2 (ru)
DE4230323B4 (de) Asymmetrische Gastrennmembran
EP2456546B1 (de) Polyimidmembranen aus polymerisationslösungen
TWI593726B (zh) 用於使用多孔質粒子來製備聚醯亞胺之方法及具有低介電常數之聚醯亞胺膜
DE10117686A1 (de) Protonenleitende Membran und deren Verwendung
DE112009000188T5 (de) Polyimid-Gastrennungs-Membran und Gastrennungs-Verfahren
JP2004308031A (ja) ポリアミド酸不織布、それから得られるポリイミド不織布およびそれらの製造方法
JPS6242045B2 (ru)
RU2757442C1 (ru) Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов
CN106279685A (zh) 基于特勒格碱结构的聚酰亚胺材料、其制备方法及应用
DE3223844A1 (de) Verfahren zur modifizierung einer poroesen polymermembran
CN104817707B (zh) 一种高通量聚酰亚胺纳滤膜的制备方法
CN109937084B (zh) 改进的制备碳分子筛中空纤维膜的方法
CN109971174A (zh) 聚酰胺酰亚胺溶液、多孔聚酰胺酰亚胺膜及其制造方法
EP2267060A1 (de) Hochmolekulare Polyazole
TW201735991A (zh) 聚醯亞胺組成物以及分離膜的製備方法
CN109666979B (zh) 聚酰亚胺纳米纤维的制备方法
KR101096952B1 (ko) 나노 웹 및 그 제조방법
JP5429101B2 (ja) 高耐熱性ポリイミド微細繊維の製造方法、高耐熱性ポリイミド微細繊維及び該ポリイミド微細繊維からなる不織布
EP1287874B1 (en) Gas separation membrane and method of producing the same
RU2612280C1 (ru) Способ получения материала на основе нановолокон из ароматического полиимида
CN112226910A (zh) 聚酰亚胺纳米纤维膜及其制备方法和应用
JP2022152519A (ja) 非対称中空糸ガス分離膜
JPS621615B2 (ru)