RU2612280C1 - Способ получения материала на основе нановолокон из ароматического полиимида - Google Patents

Способ получения материала на основе нановолокон из ароматического полиимида Download PDF

Info

Publication number
RU2612280C1
RU2612280C1 RU2015151496A RU2015151496A RU2612280C1 RU 2612280 C1 RU2612280 C1 RU 2612280C1 RU 2015151496 A RU2015151496 A RU 2015151496A RU 2015151496 A RU2015151496 A RU 2015151496A RU 2612280 C1 RU2612280 C1 RU 2612280C1
Authority
RU
Russia
Prior art keywords
solvent
solution
nanofibers
temperature
mixture
Prior art date
Application number
RU2015151496A
Other languages
English (en)
Inventor
Ирина Петровна Добровольская
Павел Васильевич Попрядухин
Валентина Павловна Склизкова
Владимир Евгеньевич Юдин
Всеволод Вадимович Матреничев
Валентин Михайлович Светличный
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт высокомолекулярных соединений Российской академии наук
Priority to RU2015151496A priority Critical patent/RU2612280C1/ru
Application granted granted Critical
Publication of RU2612280C1 publication Critical patent/RU2612280C1/ru

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Abstract

Изобретение относится к химии высокомолекулярных соединений и может найти применение в качестве материалов для фильтрации горячих жидких и газообразных технологических сред, разделительных мембран, а также для получения углеродных нановолокон. Описан способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, в котором из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси. Технический результат: получение материала на основе нановолокон из ароматического полиимида методом электроформования полиамидокислоты при комнатной температуре. 6 ил., 5 пр.

Description

Изобретение относится к процессам получения нановолокон методом электроформования, в частности нановолокон с диаметром d=50-4500 нм из ароматических полиимидов.
Метод электроформования позволяет получать полимерные волокна с диаметром десятки-сотни нанометров. Раствор или расплав полимера, попадая через электрод-фильеру в поле высокого напряжения, распадается на микроструи, которые осаждаются на приемном электроде в виде нановолокон.
Известно получение нановолокон из поливинилового спирта, полиэтиленоксида, поливинилпирролидона, алифатических сополиамидов, производных целлюлозы и других полимеров. Материалы из таких волокон характеризуются низкой плотностью, высокой пористостью, влаго- и газопроницаемостью. Известны способы получения нановолокон из водорастворимых полимеров, такие волокна обладают низкой водостойкостью, высоким набуханием или растворимостью в водных средах. Нановолокна, при получении которых использовали спиртоводные смеси, обладают низкой термостойкостью, температура их терморазложения не превышает 220°С. [Schiffinan J.D., Schauer С.L. Review: Electrospinning of biopolymer Nanofibers and their Applications, Polymer Reviews, v. 48, p. 317-352, 2008].
Наиболее термостойкими полимерами являются ароматические полиимиды (ПИ), волокна и пленки из которых обладают высокой термической, радиационной и химической стойкостью, высокими диэлектрическими характеристиками. Материалы из ПИ используют в качестве конструкционных материалов, в электротехнике и электронике, а также как прекурсоры для получения углеродных нановолокон [Ch. Nah, S.H. Han, M-H Lee, J.S. Kim, Characteristics of polyimide ultrafine fibers. Polym Int., v. 52, p. 429-432, 2003].
Ароматические полиимиды получают поликонденсацией ароматических диаминов и ароматических диангидридов в апротонных растворителях (АР) или смесях АР с бензоидными растворителями, в результате чего образуется полиамидокислота (ПАК), с ее последующей термической или химическая обработкой.
Приводится описание процесса получения электродов на основе углеродных нановолокон, полученных карбонизацией ПИ нановолокон. Методом синтеза пиромеллитового диангидрида и оксидианилина в присутствии катализатора триэтиленамина в среде ДМФА получали ПАК, из раствора ПАК формовали нановолокна, термообработка которых приводила к образованию нановолокон ПИ [US 40581421 12/230,699. Sept 3, 2008].
Известен способ получения многослойного материала на основе нановолокон из полностью ароматического полиимида. Материал получали методом электроформования, в камеру подавался газ со скоростью 5 м/мин при температуре Т=69°С [US 44143305. 12/899, 801. Oct. 2010].
Для повышения барьерных свойств и эффективности разделительных мембран литий-ионных батарей использовали модификацию поверхности нановолоконных материалов на основе ароматических полиимидов. При получении нановолокон из раствора ПАК применялась продувка газом при Т=55°С [US 46199999 12/963, 927. Dec. 2010].
Типичными недостатками указанных аналогов является использование продувки горячим газом в процессе формования ПАК нановолокон, что необходимо для удаления апротонного растворителя с высокой температурой кипения.
Наиболее близким по технической сущности способом электроформования нановолокон из растворов полимеров ароматического строения в высококипящих растворителях является мультизонный дутьевой способ. Для формования волокон на основе полиимидов, полиарамидов, полибензимидазолов используют двузонную камеру. В первую зону через фильерное отверстие подают раствор полимера и формируют струю. Во второй зоне происходит испарение растворителя, температура в этой зоне определяется типом растворителя, его температурой кипения и составляет до 200°C [US 2014/0048982].
Существенным недостатком прототипа, описывающего способ получения материала на основе нановолокон из ароматического полиимида, является использование камеры с повышенной температурой и обдувом горячим газом. Это требует энергетических затрат, несет экологическую нагрузку, так как в процессе электроформования ароматических полиимидных, полиарамидных, полибензимидальных волокон выделяется большое количество горячих паров высококипящих растворителей.
Технической задачей и положительным результатом предлагаемого способа является возможность получения материала на основе нановолокон из полиимида при комнатной температуре осуществления операций процесса.
Это достигается за счет того, что способ получения материала на основе нановолокон из полиимида включает электроформование раствора полиамидокислоты в растворителе, при этом из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель: бензоидный растворитель, при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси.
Описываемый способ включает полную совокупность существенных признаков, позволяющих достичь указанный технический эффект за счет того, что ПАК получают поликонденсацией ароматического диангидрида и ароматического диамина в смеси апротонного и бензоидного растворителей, где в качестве диангидрида используют пиромиллитовый диангидрид или диангидрид 3,3', 4,4'-дифенил тетракарбоновой кислоты, в качестве диамина используют оксидианилин или о-толидин, в качестве апротонного растворителя используют диметилацетамид (ДМАА), диметилсульфоксид (ДМСО), диметилформамид (ДМФА), в качестве бензоидного растворителя используют бензол, толуол ксилол или их смесь. Содержание ПАК в растворе не более 12 мас. %, содержание бензоидного растворителя в растворителе не более 20 об. %. Пленку получают методом формования раствора ПАК через щелевую фильеру на подложку и сушки при температуре Т=60°С в течение 5 часов. Порошок получают осаждением ПАК путем добавления в раствор ПАК смеси апротонного растворителя с тетрагидрофураном в соотношении 1:1 до концентрации ПАК в растворе около 2 мас. %. Пленку или порошок растворяют в смеси апротонного и бензоидного растворителя при содержании бензоидного растворителя в смеси не менее 30 об. % и содержании ПАК в растворе не менее 12 мас. %. Раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением около 20 кВ. Материал, осажденный на приемном электроде, термообрабатывают при температуре около 400°С в течение 60 мин. На основе данных сканирующей электронной микроскопии целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм. Исследование термических свойств материала методом термогравимерии показало, что материал на основе нановолокон из ароматического полиимида характеризуется температурой разложения в инертной среде выше 500°С.
Способ более полно раскрывается примерами его осуществления.
Пример 1. Раствор ПАК получают методом поликонденсации диангидрид 3,3', 4,4'- дифенил тетракарбоновой кислоты и о-толидина в среде ДМАА, содержание ПАК составляет 10 мас. %. Пленку получают формованием ПАК через щелевую фильеру на подложку и сушкой при Т=60°С в течение 5 часов. Пленку снимают с подложки и в количестве, обеспечивающем содержание ПАК в растворе 15 мас. %, растворяют в смеси ДМАА: бензол с соотношением компонентов 50:50, раствор перемешивают в течение 6 часов, обезвоздушивают при давлении 0,1 атм. в течение 2 часов.
Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 15 мм и диаметром 0,6 мм, подают при комнатной температуре со скоростью 1,5 мл/ч, в электрическое поле с напряжением 25 кВ, осаждение волокон происходит на аноде, расстояние между катодом и анодом l=12 см. Исследование структуры материала проводили с помощью метода сканирующей электронной микроскопии. Как показали исследования, материал характеризуется средним диаметром волокон около 300 нм (фиг. 1). Для оценки термостойкости использовали метод термогравиметрического анализа, с помощью которого определяли температуру потери 5% массы образца в среде аргона, которая составляет Т=120°С (фиг. 2).
Полученный материала обрабатывают при Т=420°С в течение 60 мин. Материал на основе нановолокон из ароматического полиимида характеризуется средним диаметром волокон 300 нм (фиг. 3) и температурой начала разложения в среде аргона Т=537°С (фиг. 4).
Пример 2. Раствор ПАК, полученный способом, описанным в примере 1, помещают в шприцевой дозатор, при комнатной температуре подают со скоростью 2,0 мл/час в элетрическое поле с напряжением 35 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=10 см. Полученный материал содержит дефекты в виде капель размером 1-5 мкм (фиг. 5).
Пример 3. Раствор ПАК, полученный способом, описанным в примере 1, в среде ДМАА: бензол с соотношением компонентов 80:20 обезвоздушивают при давлении 0,1 атм в течение 2 часов, помещают в шприцевой дозатор и при комнатной температуре и подают со скоростью 0,1 мл/час в электрическое поле с напряжением 25 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=20 см. Полученный материал содержит дефекты в виде капель размером 1-5 мкм (фиг. 6).
Пример 4. Раствор ПАК получают способом, описанным в примере 1, при содержании ПАК в растворе 12 мас. %, формуют пленку, которую растворяют в смеси ДМАА: бензол с соотношением компонентов 40:60, содержание ПАК в растворе 20 мас. %. Раствор помещают в шприцевой дозатор, и при комнатной температуре со скоростью 1,5 мл/ч подается в поле с напряжением 15 кВ, осаждение материала происходит на аноде, расстояние между катодом и анодом l=30 см. Материал снимают с металлической подложки и обрабатывают в инертной среде при температуре 420°С в течение 60 мин. Волокна полиимида имеют средний диаметр 700 нм, материал характеризуется температурой начала терморазложения в инертной среде Т=530°С.
Пример 5. ПАК получают методом поликонденсации пиромиллитового диангидрида и оксидианилин в среде ДМФА, содержание ПАК составляет 8 мас. %. Пленку растворяют в смеси ДМФА: бензол с соотношением компонентов смеси 30:70, содержание ПАК в растворе 12 мас. %. Полученный раствор помещают в шприцевой дозатор, оснащенный металлической фильерой длиной 15 мм и диаметром 0,6 мм, и со скоростью 1,5 мл/ч при комнатной температуре подается в электрическое поле с напряжение 20 кВ. Осаждение материала происходит на аноде, расстояние между катодом и анодом l=30 см. Материал состоит из волокон, средний диаметр которых 50 нм. Материал снимают с металлической подложки и обрабатывают в инертной среде при температуре Т=370°С в течение 60 мин. Волокна имеют средний диаметр 150 нм, температура начала терморазложения в инертной среде Т=510°С.
Данные, приведенные в примерах №1, 4, 5, свидетельствуют о том, что в результате реализации заявляемого изобретения, методом электроформования при комнатной температуре получены материалы на основе волокон диаметром 50-700 нм из ароматических полиимидов. Эти материалы характеризуются температурой потери 5% массы в инертной среде выше 500°С. Выход за рамки параметров, приведенных в заявляемом изобретении, примеры №2 и 3, приводит к получению материалов, которые не содержат нановолокон ароматического полиимида или характеризуются наличием большого количество дефектов в виде капель различного размера. Заявляемый метод менее энергозатратен, не несет экологической нагрузки, что является положительным эффектом и существенным отличием от способов получения нановолокон из ароматических полиимидов, используемых в настоящее время.

Claims (1)

  1. Способ получения материала на основе нановолокон из полиимида, включающий электроформование раствора полиамидокислоты в растворителе, отличающийся тем, что из раствора, содержащего не более 12 мас. % полиамидокислоты в апротонном растворителе, получают пленку методом формования через щелевую фильеру на подложку, которую снимают с подложки и в количестве, обеспечивающем содержание полиамидокислоты в растворе 12-20 мас. %, растворяют в смеси апротонный растворитель : бензоидный растворитель при содержании бензоидного растворителя 20-70 об. %, раствор при комнатной температуре подают через электрод-фильеру в электрическое поле с напряжением 15-35 кВ, материал, осажденный на аноде, термообрабатывают при температуре 370-420°С в течение 60 мин, целевой продукт состоит из нановолокон ароматического полиимида диаметром 50-700 нм, имеющий температуру разложения в инертной среде выше 500°С в смеси.
RU2015151496A 2015-12-02 2015-12-02 Способ получения материала на основе нановолокон из ароматического полиимида RU2612280C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015151496A RU2612280C1 (ru) 2015-12-02 2015-12-02 Способ получения материала на основе нановолокон из ароматического полиимида

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015151496A RU2612280C1 (ru) 2015-12-02 2015-12-02 Способ получения материала на основе нановолокон из ароматического полиимида

Publications (1)

Publication Number Publication Date
RU2612280C1 true RU2612280C1 (ru) 2017-03-06

Family

ID=58459683

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015151496A RU2612280C1 (ru) 2015-12-02 2015-12-02 Способ получения материала на основе нановолокон из ароматического полиимида

Country Status (1)

Country Link
RU (1) RU2612280C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757442C1 (ru) * 2020-12-23 2021-10-15 Ивс Ран Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2400575C9 (ru) * 2005-12-29 2011-06-20 Басф Се Термоэлектрические наноматериалы
US20140048982A1 (en) * 2012-08-15 2014-02-20 E.I. Du Pont De Nemours And Company Multizone Electroblowing Process and Apparatus
RU2566787C2 (ru) * 2010-03-18 2015-10-27 Стора Энсо Ойй Способ снабжения подложки барьером и подложка, содержащая барьер

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2400575C9 (ru) * 2005-12-29 2011-06-20 Басф Се Термоэлектрические наноматериалы
RU2566787C2 (ru) * 2010-03-18 2015-10-27 Стора Энсо Ойй Способ снабжения подложки барьером и подложка, содержащая барьер
US20140048982A1 (en) * 2012-08-15 2014-02-20 E.I. Du Pont De Nemours And Company Multizone Electroblowing Process and Apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2757442C1 (ru) * 2020-12-23 2021-10-15 Ивс Ран Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов

Similar Documents

Publication Publication Date Title
Ding et al. Electrospun polyimide nanofibers and their applications
US7517832B2 (en) Fibrous active carbon and nonwoven fabric including the same
Yang et al. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly (amic acid) solution
Abbasi et al. Electrospinning of nylon-6, 6 solutions into nanofibers: Rheology and morphology relationships
JP5027554B2 (ja) 1軸または多軸配向ナノファイバー集積体の製造方法及び製造装置
Jirsak et al. Polyamic acid nanofibers produced by needleless electrospinning
Jia et al. Superhydrophobic (polyvinylidene fluoride-co-hexafluoropropylene)/(polystyrene) composite membrane via a novel hybrid electrospin-electrospray process
KR100663715B1 (ko) 장뇌를 이용한 다공성 탄소나노섬유 제조방법 및 이에 따라제조된 탄소나노섬유
Aijaz et al. Novel optimised highly aligned electrospun PEI-PAN nanofibre mats with excellent wettability
KR101402976B1 (ko) 폴리올레핀 기재 상 폴리이미드를 전기방사한 후 무기물을 코팅한 이차전지용 다공성 분리막 및 이의 제조방법
He et al. Solvent-free electrospinning of UV curable polymer microfibers
Kang et al. Electrospun poly (tetrafluoroethylene) nanofiber membranes from PTFE-PVA-BA-H 2 O gel-spinning solutions
CN106104887A (zh) 聚合物电解质膜、包括该膜的膜电极组件及燃料电池
CN111394892A (zh) 一种同轴包覆纳米二氧化锆无机层的聚酰亚胺纳米纤维膜及其制备方法
Goponenko et al. Avoiding fusion of electrospun 3, 3′, 4, 4′-biphenyltetracarboxylic dianhydride-4, 4′-oxydianiline copolymer nanofibers during conversion to polyimide
Du et al. Diameter control of electrospun polyacrylonitrile/iron acetylacetonate ultrafine nanofibers
KR101096952B1 (ko) 나노 웹 및 그 제조방법
RU2612280C1 (ru) Способ получения материала на основе нановолокон из ароматического полиимида
KR101491994B1 (ko) 다공성 지지체, 이의 제조방법 및 이를 포함하는 기체 또는 액체 필터용 멤브레인
Li et al. Cyclotriphosphazene-containing polymeric nanotubes: synthesis, properties, and formation mechanism
CN110468465B (zh) 一种碳纳米管/聚酰亚胺复合碳化纤维及其生产方法
RU2757442C1 (ru) Способ получения термопластичного нетканого материала на основе микро- и нановолокон из ароматических полиэфиримидов
US20090286074A1 (en) Method of manufacturing for a porous membrane and the porous membrance manufactured thereby
Rajgarhia et al. Comparison of Electrospinning and Gas Jet Fiber Processes for Fabrication of Bi‐Component Polymer Nanofibers from Single Solutions
Eleyas et al. The effect of flow rate, concentration, and voltage on diameter of pan precursor fiber by electrospinning technique