RU2755907C1 - Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа - Google Patents

Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа Download PDF

Info

Publication number
RU2755907C1
RU2755907C1 RU2020112795A RU2020112795A RU2755907C1 RU 2755907 C1 RU2755907 C1 RU 2755907C1 RU 2020112795 A RU2020112795 A RU 2020112795A RU 2020112795 A RU2020112795 A RU 2020112795A RU 2755907 C1 RU2755907 C1 RU 2755907C1
Authority
RU
Russia
Prior art keywords
zinc
strip
metal coating
zinc sulfate
layer
Prior art date
Application number
RU2020112795A
Other languages
English (en)
Inventor
Лидия РАШИЕЛЬ
Фрида ЖИЛЬБЕР
Кристоф КЛАМ
Акшай БАНСАЛ
Original Assignee
Арселормиттал
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арселормиттал filed Critical Арселормиттал
Application granted granted Critical
Publication of RU2755907C1 publication Critical patent/RU2755907C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Изобретение относится к получению полосы из стали с покрытием. Способ включает стадии, в соответствии с которыми обеспечивают полосу из стали с нанесенным на по меньшей мере одной из ее лицевых поверхностей металлическим покрытием на основе цинка или его сплавов, на металлическое покрытие наносят посредством простого контакта водный раствор для обработки поверхности, содержащий по меньшей мере 0,01 моль/л сульфата цинка, для получения влажной пленки, и далее упомянутый водный раствор высушивают в сушилке при температуре воздушного высушивания, составляющей более чем 170°С. Время между нанесением водного раствора на металлическое покрытие и выходом из сушилки составляет менее чем 4 секунды. Скорость полосы, толщину влажной пленки, начальную температуру полосы и расход воздуха адаптируют для получения на металлическом покрытии слоя на основе сульфата цинка, не содержащего молекул свободной воды и свободных гидроксильных групп, при этом поверхностная плотность серы в слое на основе сульфата цинка больше или равна 0,5 мг/м2. Обеспечивается получение на обработанной поверхности слоя на основе сульфата цинка, характеризующегося хорошей адгезией по отношению к эпоксидным клеям, при одновременном сохранении других свойств начального слоя на основе гидроксисульфата цинка. 4 з.п. ф-лы, 9 ил., 5 пр.

Description

Данное изобретение относится к листовому металлу, включающему стальную подложку, на которую по меньшей мере на одну из ее лицевых поверхностей наносят металлическое покрытие на основе цинка или его сплавов.
Изобретение, в частности, относится к предварительному смазыванию данной стальной подложки с нанесенным покрытием и ее обработке в водных растворах, содержащих сульфаты.
Листовой металл, относящийся к данному типу, предназначен, в частности, для использования при изготовлении деталей для автомобилей, хотя данными областями применения ограничений на него не накладывают.
Из публикации WO00/15878 уже известна обработка листового металла с нанесенным покрытием из цинка при использовании водного раствора, содержащего сульфат цинка, для получения на покрытии на основе цинка слоя гидроксисульфата цинка. Данный конверсионный слой из гидроксисульфата цинка придает предварительно смазанному листовому металлу с нанесенным покрытием из цинка более высокие эксплуатационные характеристики в сопоставлении с теми, которые получают в результате фосфатирования.
Тем не менее, согласно наблюдениям данный конверсионный слой на основе гидроксисульфата цинка мог придавать недостаточную адгезию по отношению к клеям, используемым в автомобильной отрасли промышленности, а именно, клеям на эпоксидной основе.
Поэтому задача настоящего изобретения заключается в устранении недостатков (производственного оборудования и технологических процессов) предшествующего уровня техники в результате предложения обработки поверхности, придающей достаточную адгезию по отношению к клеям, используемым в автомобильной отрасли промышленности, а именно, клеям на эпоксидной основе.
Для решения данной задачи предложено первое изобретение, относящееся к стальной подложке с нанесенным по меньшей мере на одной из ее лицевых поверхностей металлическим покрытием на основе цинка или его сплавов, где на само металлическое покрытие наносят покрытие в виде слоя на основе сульфата цинка, содержащее по меньшей мере одно из соединений, выбираемых из числа моногидрата сульфата цинка, тетрагидрата сульфата цинка и гептагидрата сульфата цинка, где слой на основе сульфата цинка не содержит ни гидроксисульфата цинка, ни молекул свободной воды, ни свободных гидроксильных групп, при этом поверхностная плотность серы в слое на основе сульфата цинка является большей или равной 0,5 мг/м2.
Стальная подложка, соответствующая изобретению, также может характеризоваться перечисленными ниже необязательными признаками, рассматриваемыми по отдельности или в комбинации:
- металлическое покрытие на основе цинка или его сплавов содержит от 0,2 % до 0,4 % (масс.) алюминия, при этом остаток представляет собой цинк и неизбежные примеси, представляющие собой результат проведения технологического процесса изготовления,
- металлическое покрытие на основе цинка или его сплавов содержит по меньшей мере 0,1 % (масс.) магния,
- металлическое покрытие на основе цинка или его сплавов содержит по меньшей мере один элемент из числа магния вплоть до уровня содержания 10 % (масс.), алюминия вплоть до уровня содержания 20 % (масс.), кремния вплоть до уровня содержания 0,3 % (масс.),
- поверхностная плотность серы в слое на основе сульфата цинка находится в диапазоне между 3,7 и 27 мг/м2.
Второй предмет изобретения заключается в автомобильной детали, изготовленной из стальной подложки, соответствующей изобретению.
Третий предмет изобретения заключается в способе обработки движущейся металлической полосы, включающем стадии, в соответствии с которыми:
- (i) получают полосу из стали с нанесенным по меньшей мере на одной из ее лицевых поверхностей металлическим покрытием на основе цинка или его сплавов,
- (ii) на металлическое покрытие наносят водный рабочий раствор для обработки поверхности, содержащий по меньшей мере 0,01 моль/л сульфата цинка, в результате простого введения в контакт таким образом, чтобы получить влажную пленку,
- (iii) впоследствии водный рабочий раствор для обработки поверхности высушивают в сушилке при температуре воздушного высушивания, составляющей более, чем 170°С, при этом время между нанесением водного рабочего раствора для обработки поверхности на металлическое покрытие и выходом из сушилки составляет менее, чем 4 секунды, где скорость полосы, толщину влажной пленки, начальную температуру полосы и расход воздуха адаптируют для получения на металлическом покрытии слоя на основе сульфата цинка, не содержащего ни молекул свободной воды, ни свободных гидроксильных групп, при этом поверхностная плотность серы в слое на основе сульфата цинка является большей или равной 0,5 мг/м2.
Способ обработки, соответствующий изобретению, также может характеризоваться перечисленными ниже необязательными признаками, рассматриваемыми по отдельности или в комбинации:
- металлическое покрытие получали при использовании технологического процесса нанесения покрытия в результате погружения в расплав в ванне с расплавленным цинком, в некоторых случаях содержащей по меньшей мере один элемент из числа магния вплоть до уровня содержания 10 % (масс.), алюминия вплоть до уровня содержания 20 % (масс.), кремния вплоть до уровня содержания 0,3 % (масс.),
- до нанесения водного рабочего раствора для обработки поверхности металлическое покрытие обезжиривают,
- водный рабочий раствор для обработки поверхности содержит от 20 до 160 г/л гептагидрата сульфата цинка,
- скорость полосы находится в диапазоне между 60 и 200 м/мин,
- толщина влажной пленки находится в диапазоне между 0,5 и 4 мкм,
- начальная температура полосы находится в диапазоне между 20 и 50°С,
- расход воздуха находится в диапазоне между 5000 и 50000 нм3/час,
- на слой на основе сульфата цинка наносят пленку масла при массе покрытия, составляющей менее, чем 2 г/м2.
Как это ни удивительно, но согласно наблюдениям изобретателей присутствие самого гидроксисульфата цинка в конверсионном слое приводило к получению слабой адгезии подвергнутого обработке листового металла по отношению к некоторым клеям, а именно, клеям на эпоксидной основе.
Как это понимают изобретатели без желания связывать себя с какой-либо научной теорией, гидроксильные группы структуры гидроксисульфата цинка вступают в реакцию с эпоксидной системой клея и приводят к возникновению проблем, связанных с адгезией. В частности, их присутствие ухудшает межфазные связи цинк/эпоксид, а также приводит к пластифицированию клея.
Исключение гидроксисульфата цинка из композиции слоя априори является невозможным, поскольку он образует выделения на металлическом покрытии сразу после нанесения на металлическое покрытие водного раствора, как только значение рН достигнет 7 вследствие окисления металлического покрытия.
Помимо этого, согласно наблюдениям изобретателей молекулы свободной воды и/или свободные гидроксильные группы могут присутствовать в конверсионном слое даже при его кажущейся сухости. Данные молекулы свободной воды и/или свободные гидроксильные группы также являются очень реакционно-способными по отношению к конкретным соединениям клея, таким как, например, соединения на эпоксидной основе, что приводит к возникновению проблем, связанных с адгезией.
Изобретатели провели интенсивные поиски, направленные на получение слоя, исключающего гидроксисульфат цинка и безупречно высушенного таким образом, чтобы получить слой, характеризующийся хорошей адгезией по отношению к эпоксидным клеям, при одновременном сохранении других свойств начального слоя на основе гидроксисульфата цинка.
С точки зрения продукта данные исследования выявили возможность хорошей адгезии по отношению к эпоксидным клеям только в случае несодержания конверсионным слоем ни гидроксисульфата цинка, ни молекул свободной воды, ни свободных гидроксильных групп и только в случае содержания конверсионным слоем по меньшей мере одного из соединений, выбираемых из числа моногидрата сульфата цинка, тетрагидрата сульфата цинка и гептагидрата сульфата цинка.
С точки зрения технологического процесса данные исследования выявили возможность получения такого конверсионного слоя только в случае тщательного контролируемого выдерживания температуры воздушного высушивания в сушилке таким образом, чтобы благоприятствовать образованию моногидрата сульфата цинка, тетрагидрата сульфата цинка или гептагидрата сульфата цинка вместо других гидратов сульфата цинка. Помимо этого, как это было установлено, скорость полосы, толщина влажной пленки, начальная температура полосы и расход воздуха должны быть адаптированы к температуре воздушного высушивания в целях безупречного высушивания конверсионного слоя и, таким образом, получения слоя на основе сульфата цинка, не содержащего ни молекул свободной воды, ни свободных гидроксильных групп. Помимо этого, как это было установлено, время контакта водного раствора на металлическом покрытии между нанесением раствора и концом сушилки должно составлять менее, чем 4 секунды во избежание образования гидроксисульфата цинка.
Другие характеристики и преимущества изобретения будут описываться более подробно в следующем далее описании изобретения.
Изобретение будет лучше понято в результате прочтения следующего далее описания изобретения, которое предлагается исключительно для целей разъяснения и никоим образом не предполагается накладывающим ограничений, при обращении к:
- фигуре 1, которая представляет собой схематическое изображение в разрезе, иллюстрирующее структуру стали, заявленной в изобретении,
- фигуре 2, которая представляет собой спектры ОАИКС (отражательно-адсорбционной инфракрасной спектроскопии при угле падения 80°) для слоя на основе сульфата цинка, соответствующего изобретению, и слоя на основе гидроксисульфата цинка предшествующего уровня техники,
- фигуре 3, которая представляет собой графики, иллюстрирующие то, в каких условиях металлическая полоса является полностью сухой на выходе из сушилки в зависимости от скорости полосы, толщины влажной пленки, начальной температуры полосы, расхода воздуха и температуры воздушного высушивания.
На фигуре 1 листовой металл 1 в форме металлической полосы имеет стальную подложку 3, предпочтительно горячекатаную, а после этого холоднокатаную, которая может быть смотана в рулон, например, для позднейшего использования в качестве, например, детали для автомобильного кузова.
В данном примере после этого листовой металл 1 разматывают из рулона, после этого разрезают и профилируют для получения детали.
У подложки 3 на одной лицевой поверхности 5 наносят покрытие 7. В определенных вариантах покрытие 7, относящееся к данному типу, может присутствовать на обеих лицевых поверхностях подложки 3.
Покрытие 7 включает по меньшей мере один слой на основе цинка 9. Под термином «на основе цинка» подразумевается то, что покрытие 7 может представлять собой цинк или его сплавы, то есть, цинк, содержащий один или несколько легирующих элементов, таких как, например, нижеследующие, но не ограничивающихся только этим: железо, алюминий, кремний, магний и никель.
Данный слой 9 в общем случае имеет толщину, меньшую или равную 20 мкм, и предназначается для цели предохранения подложки 3 от перфорирующего корродирования обычным образом. Как это необходимо отметить, относительные толщины подложки 3 и различных слоев, которые наносят на нее в виде покрытия, на фигуре 1 не вычерчиваются в масштабе для облегчения интерпретирования иллюстрации.
В одном варианте изобретения слой на основе цинка 9 содержит от 0,2 % до 0,4 % (масс.) алюминия, при этом остаток представляет собой цинк и неизбежные примеси, представляющие собой результат проведения технологического процесса изготовления.
В одном варианте изобретения слой на основе цинка 9 содержит по меньшей мере 0,1 % (масс.) магния для улучшения сопротивления корродированию. Предпочтительно слой 9 содержит по меньшей мере 0,5 %, а более предпочтительно по меньшей мере 2 %, (масс.) магния. В данном варианте на уровень содержания магния в слое 9 накладывают ограничение значением в 20 % (масс.), поскольку согласно наблюдениям более высокая доля привела бы в результате к избыточно быстрому расходованию покрытия 7 и, таким образом, парадоксальному ухудшению противокоррозионного действия.
В случае содержания слоем 9 цинка, магния и алюминия в особенности предпочтительным является содержание слоем 9 от 0,1 до 10 % (масс.) магния и от 0,1 до 20 % (масс.) алюминия. Опять-таки предпочтительно слой 9 содержит от 1 до 4 % (масс.) магния и от 1 до 6 % (масс.) алюминия.
В определенных вариантах покрытие 7 может включать дополнительный слой 11 между слоем 9 и лицевой поверхностью 5 подложки 3. Данный слой может представлять собой результат, например, проведения тепловой обработки покрытия 7, содержащего магний и осажденного в вакууме на цинке, прежде осажденном, например, в результате электроосаждения, на подложке 3. Тепловая обработка сплавляет магний и цинк и, тем самым, образует слой 9, который содержит цинк и магний, поверх слоя 11, который содержит цинк.
Слой 9 может быть получен при использовании технологического процесса нанесения покрытия в результате погружения в расплав в ванне с расплавленным цинком, в некоторых случаях содержащей по меньшей мере один элемент из числа магния вплоть до уровня содержания 10 % (масс.), алюминия вплоть до уровня содержания 20 % (масс.), кремния вплоть до уровня содержания 0,3 % (масс.). Ванна также может содержать вплоть до 0,3 % (масс.) необязательных дополнительных элементов, таких как Sb, Pb, Ti, Ca, Mn, Sn, La, Ce, Cr, Ni, Zr или Bi.
Данные различные элементы могут, помимо всего прочего, улучшать пластичность или сцепление слоя 9 с подложкой 3. Специалисты в соответствующей области техники, которые знакомы с их воздействиями на характеристики слоя 9, должны знать то, как их использовать в зависимости от искомого дополнительного назначения.
В заключение, ванна может содержать остаточные элементы, имеющие своим происхождением расплавленные слитки или представляющие собой результат прохождения подложки 3 через ванну, такие как железо при уровне содержания, доходящем вплоть до 0,5 % (масс.), а в общем случае находящемся в диапазоне между 0,1 и 0,4 % (масс.). Данные остаточные элементы частично включаются в слой 9, в случае чего они обозначаются термином «неизбежные примеси, представляющие собой результат проведения технологического процесса изготовления».
Слой 9 также может быть осажден при использовании технологического процесса осаждения в вакууме, такого как, например, магнетронное распыление или выпаривание в вакууме посредством действия эффекта Джоуля, в результате действия индукции или электронного пучка или при использовании струйного осаждения из паровой фазы.
Покрытие 7 покрывают слоем на основе сульфата цинка 13.
Слой 13 содержит по меньшей мере одно из соединений, выбираемых из числа моногидрата сульфата цинка, тетрагидрата сульфата цинка и гептагидрата сульфата цинка, и не содержит ни гидроксисульфата цинка, ни молекул свободной воды, ни свободных гидроксильных групп.
Гидроксисульфат цинка содержит гидроксильные группы, которые исходя из понимания изобретателей вступают в реакцию с эпоксидной системой клея и приводят к возникновению проблем, связанных с адгезией. Его отсутствие в значительной степени улучшает адгезию клеев на эпоксидной основе по отношению к листовым металлам. Под термином «гидроксисульфат цинка» подразумевается соединение, описывающееся общей формулой:
[Znx(SO4)y(OH)z,tH2O],
где 2х = 2у + z, при этом у и z являются отличными от нуля.
z предпочтительно является большим или равным 6, а более предпочтительно z = 6 и 3 ≤ t ≤ 5. В частности, на листовых металлах предшествующего уровня техники наблюдали соединение при х = 4, у = 1, z = 6 и t = 3.
Молекулы свободной воды и свободные гидроксильные группы также являются очень реакционно-способными по отношению к конкретным соединениям клея, таким как, например, соединения на эпоксидной основе, что приводит к возникновению проблем, связанных с адгезией. Их отсутствие в значительной степени улучшает адгезию клеев на эпоксидной основе по отношению к листовым металлам.
Моногидрат сульфата цинка, тетрагидрат сульфата цинка и гептагидрат сульфата цинка представляют собой стабильные соединения. Благодаря их присутствию избегается позднейшее формирование гидроксисульфата цинка в результате разложения нестабильных гидратов сульфата цинка.
Поверхностная плотность серы в слое на основе сульфата цинка 13 является большей или равной 0,5 мг/м2. Ниже данного значения металлическое покрытие 7 ухудшается по качеству во время получения листового металла, что в результате приводит к образованию порошка или частиц цинка или его сплавов на поверхности листового металла. Накопление и/или агломерирование данных частиц или данного порошка в формообразующей оснастке могут повредить полученные детали в результате образования заусенцев и/или стяжек.
Слой на основе сульфата цинка 13 может быть получен в результате нанесения на покрытие 7, возможно после обезжиривания, водного рабочего раствора для обработки поверхности, содержащего сульфат цинка ZnSO4 при концентрации, большей или равной 0,01 моль/л.
Невозможно получить такой слой 13 при концентрации сульфата цинка, составляющей менее, чем 0,01 моль/л, но, как это также было установлено, чрезмерно высокая концентрация не улучшает в значительной степени скорость осаждения и даже может слегка ее уменьшить.
Водный рабочий раствор для обработки поверхности может быть получен в результате растворения сульфата цинка в чистой воде. Например, может быть использован гептагидрат сульфата цинка (ZnSO4, 7H2O). После этого концентрация ионов Zn2 + равна концентрации анионов SO4 2 –.
Используемый водный рабочий раствор для обработки поверхности предпочтительно содержит от 20 до 160 г/л гептагидрата сульфата цинка, что соответствует концентрации ионов Zn2 + и концентрации ионов SO4 2 – в диапазоне между 0,07 и 0,55 моль/л. Как это было установлено, в данном диапазоне концентрации величина концентрации не оказывает воздействия на скорость осаждения в значительной степени.
Значение рН водного рабочего раствора для обработки поверхности предпочтительно соответствует естественному значению рН раствора без добавления либо основания, либо кислоты. Величина данного значения рН в общем случае находится в диапазоне между 4 и 7.
Температура водного рабочего раствора для обработки поверхности находится в диапазоне между 20 и 60°С.
Водный рабочий раствор для обработки поверхности наносят обычным образом, например, в результате погружения, нанесения покрытия валиком, распыления в некоторых случаях со следующим далее отжиманием.
Время контакта между водным рабочим раствором для обработки поверхности и покрытием 7 составляет менее, чем 4 секунды. Под термином «время контакта» подразумевается время между нанесением водного рабочего раствора для обработки поверхности на листовой металл (например, входом листового металла в ванну для обработки или наложением на листовой металл валика в аппаратуре для нанесения покрытия валиком) и выходом из сушилки. Выше данного предельного значения в 4 секунды значение рН имеет время для увеличения выше предельного значения для образования выделений гидроксисульфата цинка, что приводит к вредному осаждению данного соединения на листовом металле во время производства слоя на основе сульфата цинка.
С практической точки зрения отсутствие гидроксисульфата цинка можно контролируемо выдерживать при использовании инфракрасной спектроскопии в режиме ОАИКС (отражательно-адсорбционной инфракрасной спектроскопии при угле падения 80°). Как это проиллюстрировано в нижней части фигуры 2, в случае содержания слоем на основе сульфата цинка гидроксисульфата цинка спектр ОАИКС будет демонстрировать присутствие множества пиков поглощения, приписываемых υ3-колебаниям сульфата в области 1077 – 1136 – 1177 см– 1 и активным полосам воды в области валентных ОН-колебаний 3000 – 3400 см– 1. Данные результаты согласуются со структурой гидроксисульфата цинка, соответствующей указаниям в литературе, (υ1-колебание сульфата: 1000 см– 1, υ2-колебание сульфата: 450 см– 1, υ3-колебания сульфата: 1068 – 1085 – 1130 см– 1, υ4-колебания сульфата: 611 – 645 см– 1, колебание гидроксила: 3421 см– 1).
Температуру воздушного высушивания в сушилке адаптируют для благоприятствования образованию моногидрата сульфата цинка, тетрагидрата сульфата цинка или гептагидрата сульфата цинка вместо других гидратов сульфата цинка. Как это ни удивительно, но согласно наблюдениям температура воздушного высушивания, составляющая более, чем 170°С, благоприятствует формированию данных соединений.
Благодаря присутствию данных стабильных соединений избегается позднейшее формирование гидроксисульфата цинка в результате разложения нестабильных гидратов сульфата цинка.
С практической точки зрения присутствие данных стабильных гидратов сульфата цинка можно контролируемо выдерживать при использовании инфракрасной спектроскопии в режиме ОАИКС (отражательно-адсорбционной инфракрасной спектроскопии при угле падения 80°). Как это проиллюстрировано в верхней части фигуры 2, в случае содержания слоем на основе сульфата цинка стабильных гидратов сульфата цинка при отсутствии гидроксисульфата цинка спектр ОАИКС будет демонстрировать присутствие одного одиночного пика сульфата, расположенного в области в окрестности 1172 см– 1, вместо 3 пиков. Говоря более конкретно, присутствие каждого из данных стабильных гидратов сульфата цинка можно контролируемо выдерживать при использовании инфракрасной спектроскопии в режиме ОАИКС в сочленении с дифференциальной сканирующей калориметрией (ДСК) в результате отслеживания полос сульфата и полос свободной воды.
Скорость полосы, толщину влажной пленки, начальную температуру полосы и расход воздуха адаптируют для получения на металлическом покрытии слоя на основе сульфата цинка, не содержащего ни молекул свободной воды, ни свободных гидроксильных групп, при этом поверхностная плотность серы в слое на основе сульфата цинка является большей или равной 0,5 мг/м2. Предпочтительно поверхностная плотность серы в слое на основе сульфата цинка находится в диапазоне между 3,7 до 27 мг/м2.
Толщина влажной пленки может быть измерена при использовании инфракрасного датчика, расположенного до сушилки. Он образован из источника излучения, инфракрасного детектора и специальных фильтров. Принцип измерения имеет в своей основе поглощение инфракрасного излучения.
Термин «расход воздуха» определяется как количество воздуха, продуваемого за одну секунду во всей сушилке и ударяющегося о металлическую полосу. Следовательно, конфигурация сопел в сушилке может в существенной степени варьироваться применительно к количеству, размеру, конструктивному решению, расположению, ...
Предпочтительно сушилка включает от 6 до 12 сопел для лучшего распределения соударения воздушной струи на металлической полосе. Предпочтительно сушилка включает сопла, расположенные в промежутке между 4 и 12 см от металлической полосы, во избежание гидравлических потерь в струе и без удаления влажной пленки с металлической полосы. Предпочтительно сопла имеют отверстия, ширина которых заключена в диапазоне между 2 мм и 8 мм таким образом, чтобы оптимизировать скорость воздуха на выходе из сопел.
На выходе из сушилки отсутствие воды в слое на основе сульфата цинка можно контролируемо выдерживать в существенной степени при использовании гиперспектральной камеры. Данное последнее устройство образовано из инфракрасного матричного детектора в сочленении со спектрометром, который разделяет излучение на длины волн. Измерительная аппаратура может быть образована из ИК-лампы линейного профиля (длиной 800 мм) и гиперспектральной СВИК-камеры (ИК в средневолновой области спектра) в конфигурации двунаправленного отражения. Диапазон детектирования камеры заключен в пределах 3–5 мкм, что соответствует основным пикам поглощения жидкой воды. Принцип измерения заключается в измерении интенсивности изучения, отраженного от металлической полосы. В случае сохранения воды в слое на основе сульфата цинка она будет поглощать часть излучения, и отражаться будет меньшая интенсивность.
В одном варианте отсутствие воды в слое на основе сульфата цинка на выходе из сушилки контролируемо выдерживают в результате отслеживания температуры стальной полосы в сушилке. До тех пор, пока вода будет находиться в пленке, тепловая энергия горячего воздуха будет затрачиваться на выпаривание воды, и температура металлической полосы будет оставаться постоянной или даже уменьшаться вследствие выпаривания воды. Сразу после достижения пленкой сухости тепловая энергия горячего воздуха будет затрачиваться на нагревание металлической полосы. Таким образом, в результате отслеживания температуры стальной полосы в сушилке легко контролируемо выдерживать начало увеличения температуры металлической полосы до выхода из сушилки.
В одном варианте отсутствие воды в слое на основе сульфата цинка на выходе из сушилки контролируемо выдерживают при использовании инфракрасной спектроскопии в режиме ОАИКС (отражательно-адсорбционной инфракрасной спектроскопии при угле падения 80°). Как это проиллюстрировано в нижней части фигуры 2, в случае содержания слоем на основе сульфата цинка свободной воды спектр ОАИКС будет демонстрировать присутствие пиков, расположенных в областях в окрестности 1638 и 1650 см– 1.
Отсутствие свободных гидроксильных групп в слое на основе сульфата цинка на выходе из сушилки контролируемо выдерживают при использовании инфракрасной спектроскопии в режиме ОАИКС (отражательно-адсорбционной инфракрасной спектроскопии при угле падения 80°). Как это проиллюстрировано в нижней части фигуры 2, в случае содержания слоем на основе сульфата цинка свободных гидроксильных групп спектр ОАИКС будет демонстрировать присутствие пика, расположенного в области 3600 см– 1.
Технологический процесс высушивания с принципиальной точки зрения представляет собой операцию одновременного тепло- и массопереноса, при которой энергия для выпаривания жидкости из раствора подается в высушивающем воздухе. Таким образом, горячий воздух используют как для подвода тепла для выпаривания, так и для уноса выпаренной влаги из продукта. Внешние условия (скорость полосы, начальная толщина влажной пленки, начальная температура полосы, расход воздуха) представляют собой ключевые параметры для контролируемого выдерживания реализации данного явления.
Данные параметры являются взаимозависимыми. Это в основном обуславливается сложной природой данного явления, поскольку изменение одного параметра, например, варьирование температуры воздушного высушивания, индуцирует изменения в отношении других параметров, например, расхода воздуха. Таким образом, затруднительно идентифицировать все домены, для которых слой на основе сульфата цинка не содержит ни молекул свободной воды, ни свободных гидроксильных групп. Тем не менее, специалисты в соответствующей области техники должны знать то, как корректировать данные параметры исходя из примеров, описанных ниже.
Пример 1:
Как это проиллюстрировано на фигуре 3а), домен, для которого слой на основе сульфата цинка является сухим на выходе из сушилки, дается в зависимости от скорости полосы (А в м/мин) и расхода воздуха (В в нм3/час). Линии уровня соответствуют толщине водной пленки на выходе из сушилки. Таким образом, слой на основе сульфата цинка является сухим для условий выше линии уровня в 0,1 мкм (белая область).
Данные результаты получали в следующих далее условиях:
- Температура высушивающего воздуха: 175°С
- Начальная температура полосы: 30°С
- Начальная толщина пленки: 2 мкм
- Время контакта: < 4 секунды
Пример 2:
Как это проиллюстрировано на фигуре 3b), домен, для которого слой на основе сульфата цинка является сухим на выходе из сушилки, дается в зависимости от скорости полосы (А в м/мин) и начальной температуры полосы (В в °С).
Данные результаты получали в следующих далее условиях:
- Температура высушивающего воздуха: 175°С
- Расход воздуха: 8280 нм3/час
- Начальная толщина пленки: 2 мкм
- Время контакта: < 4 секунды
Пример 3:
Как это проиллюстрировано на фигуре 3с), домен, для которого слой на основе сульфата цинка является сухим на выходе из сушилки, дается в зависимости от расхода воздуха (А в нм3/час) и температуры полосы (В в °С).
Данные результаты получали в следующих далее условиях:
- Температура высушивающего воздуха: 175°С
- Скорость полосы: 120 м/мин
- Начальная толщина пленки: 2 мкм
- Время контакта: < 4 секунды
Пример 4:
Как это проиллюстрировано на фигуре 3d), домен, для которого слой на основе сульфата цинка является сухим на выходе из сушилки, дается в зависимости от расхода воздуха (А в нм3/час) и начальной толщины пленки (В в мкм).
Данные результаты получали в следующих далее условиях:
- Температура высушивающего воздуха: 175°С
- Скорость полосы: 120 м/мин
- Начальная температура полосы: 30°С
- Время контакта: < 4 секунды
Пример 5:
Как это проиллюстрировано на фигуре 3е), домен, для которого слой на основе сульфата цинка является сухим на выходе из сушилки, дается в зависимости от расхода воздуха (А в нм3/час) и температуры высушивающего воздуха (В в °С).
Данные результаты получали в следующих далее условиях:
- Начальная температура полосы: 30°С
- Скорость полосы: 120 м/мин
- Начальная толщина пленки: 2 мкм
- Время контакта: < 4 секунды
Предпочтительно скорость полосы находится в диапазоне между 60 и 200 м/мин. Предпочтительно толщина влажной пленки находится в диапазоне между 0,5 и 4 мкм. Предпочтительно начальная температура полосы находится в диапазоне между 20 и 50°С. Предпочтительно расход воздуха находится в диапазоне между 5000 и 50000 нм3/час.
После получения слоя 13 на поверхности слой 13 необязательно может быть смазан.
Данное смазывание может быть проведено в результате нанесения на слое 13 пленки масла (не показано) при массе покрытия, составляющей менее, чем 2 г/м2.
Как это можно видеть в следующих далее неограничивающих примерах, которые представлены исключительно в порядке иллюстрирования, изобретатели продемонстрировали то, что присутствие слоя 13 делает возможным улучшение адгезии по отношению к клеям, используемым в автомобильной отрасли промышленности, а именно, к клеям на эпоксидной основе, без ухудшения других эксплуатационных характеристик, таких как сопротивление корродированию и способность к вытяжке.
Воздействие различных параметров на отсутствие гидроксисульфата цинка оценивали в результате нанесения на гальванизированную сталь водного рабочего раствора для обработки поверхности, содержащего от 50 до 130 г/л гептагидрата сульфата цинка, и высушивания влажной пленки на протяжении 4 секунд при использовании следующих далее условий:
- Образец А:
○ Температура высушивающего воздуха: 110°С
○ Скорость полосы: 100 м/мин
○ Начальная температура полосы: 30°С
○ Начальная толщина пленки: 3 мкм
○ Расход воздуха: 45000 нм3/час
- Образец В:
○ Температура высушивающего воздуха: 140°С
○ Скорость полосы: 110 м/мин
○ Начальная температура полосы: 30°С
○ Начальная толщина пленки: 2 мкм
○ Расход воздуха: 12000 нм3/час
- Образец С:
○ Температура высушивающего воздуха: 150°С
○ Скорость полосы: 120 м/мин
○ Начальная температура полосы: 22°С
○ Начальная толщина пленки: 3 мкм
○ Расход воздуха: 8300 нм3/час
- Образец D:
○ Температура высушивающего воздуха: 175°С
○ Скорость полосы: 120 м/мин
○ Начальная температура полосы: 40°С
○ Начальная толщина пленки: 2 мкм
○ Расход воздуха: 33000 нм3/час
Композицию слоя на основе сульфата цинка оценивали при использовании инфракрасной спектроскопии ОАИКС. Как это проиллюстрировано на фигуре 4, только образец D демонстрирует присутствие одиночного пика сульфата в области в окрестности 1172 см– 1, приписываемого стабильным гидратам сульфата цинка. Образцы А, В и С демонстрируют присутствие множества пиков поглощения, приписываемых υ3-колебаниям сульфата у структуры гидроксисульфата цинка.
Адгезия клеев на эпоксидной основе по отношению к слою на основе сульфата цинка, полученному на образцах от А до D, оценивали при использовании испытания на сдвиг для одностороннего соединения внахлестку. Сначала образцы для испытаний, имеющие 100 мм в длину и 25 мм в ширину, повторно смазывали при использовании продукта Anticorit Fuchs 3802-39S (1 г/м2) без обезжиривания. После этого два образца для испытаний, один из которых подвергали обработке при использовании водного рабочего раствора для обработки поверхности, а другой – не подвергали, компоновали для получения сборной конструкции при использовании клея на эпоксидной основе Teroson® 8028GB от компании Henkel® в результате их перекрывания на длине в 12,5 мм при использовании тефлоновых прокладок в целях выдерживания между двумя образцами гомогенной толщины в 0,2 мм. Совокупную сборную конструкцию отверждали в печи на протяжении 20 минут при 190°С. После этого образцы кондиционировали на протяжении 24 часов до испытания на адгезию и испытания на старение. Для каждого условия проведения испытания испытаниям подвергали 5 сборных конструкций.
Адгезию оценивали в соответствии со стандартом DIN EN 1465. В данном испытании каждую склеенную сборную конструкцию фиксируют в зажимных губках (при захвате 50 мм каждого образца для испытаний в каждом зажиме и оставлении свободными 50 мм каждого образца для испытаний) разрывной машины при использовании усилия динамометрического датчика в 50 кН. Образцы вытягивают при скорости 10 мм/мин при комнатной температуре. Максимальные значения сдвигового напряжения регистрируют в МПа, а характер разрушения визуально классифицируют как:
- когезионное разрушение при прохождении раздирания в объеме клея,
- поверхностное когезионное разрушение при прохождении раздирания в объеме клея поблизости от поверхности раздела полоса/клей,
- адгезионное разрушение при прохождении раздирания на поверхности раздела полоса/клей.
Испытание не проходит успешно при наблюдении адгезионного разрушения.
Старение адгезии оценивали при использовании катаплазменного испытания. В данном испытании каждую склеенную сборную конструкцию (5 образцов каждый раз) оборачивают в хлопчатобумажной ткани (масса 45 г +/– 5) совместно с деионизированной водой (в 10-кратном количестве в сопоставлении с массой хлопчатобумажной ткани), располагают в полиэтиленовом мешке, который после этого запечатывают. Запечатанный мешок выдерживают в печи при 70°С и 100 % ОВ на протяжении 7 дней. Сразу после проведения катаплазменного испытания адгезию оценивают повторно в соответствии со стандартом DIN EN 1465.
Полученные результаты иллюстрируются на фигуре 5, где каждый столбец представляет собой процентную долю когезионного разрушения (черный цвет) на начальной ступени (Н0) и по истечении 7 дней в катаплазменном испытании (Н7).
Как это проиллюстрировано, только образец D демонстрирует хорошую адгезию на начальной ступени и маленькое ухудшение эксплуатационных характеристик по истечении 7 дней в катаплазменном испытании.
Временное предохранение образцов для испытаний оценивали при использовании испытания, проводимого в камере для испытания на корродирование при контролируемо выдерживаемых влажности и температуре в соответствии с указанием в документе DIN EN ISO 6270-2 после нанесения на слои 13 предохраняющего масла Fuchs (зарегистрированная торговая марка) 3802-39S при массе покрытия, составляющей приблизительно 1 г/м2.
В испытании, проведенном в камере для испытания на корродирование при контролируемо выдерживаемых влажности и температуре в соответствии с документом DIN EN ISO 6270-2, образцы для испытаний подвергают воздействию двух циклов старения в 24 часа в камере для испытания на корродирование при контролируемо выдерживаемых влажности и температуре, то есть, замкнутом пространстве при контролируемо выдерживаемых атмосфере и температуре. Данные циклы моделируют условия корродирования для рулона полосы или полосы, разрезанной на листы, во время хранения. Каждый цикл включает:
- первую фазу в 8 часов при 40°С ± 3°С и при приблизительно 98 %-ной относительной влажности со следующей далее
- второй фазой в 16 часов при 21°С ± 3°С и при менее, чем 98 %-ной относительной влажности.
По завершении 4 циклов не должно быть видимым какое-либо ухудшение.
По завершении 10 циклов должно быть визуально измененным менее, чем 10 % поверхности образцов для испытаний.
Испытания, проведенные в отношении образцов для испытаний, подтвердили хорошие характеристики обработки поверхности, соответствующей изобретению, применительно к временному предохранению.

Claims (9)

1. Способ получения полосы из стали с покрытием, включающий стадии, в соответствии с которыми:
(i) обеспечивают наличие полосы из стали с нанесенным на по меньшей мере одной из ее лицевых поверхностей металлическим покрытием на основе цинка или его сплавов,
(ii) на металлическое покрытие наносят посредством простого контакта водный рабочий раствор для обработки поверхности, содержащий по меньшей мере 0,01 моль/л сульфата цинка, для получения влажной пленки,
(iii) далее водный рабочий раствор для обработки поверхности высушивают в сушилке при температуре воздушного высушивания, составляющей более чем 170°С, при этом время между нанесением водного рабочего раствора для обработки поверхности на металлическое покрытие и выходом из сушилки составляет менее чем 4 секунды, при этом скорость полосы, толщину влажной пленки, начальную температуру полосы и расход воздуха адаптируют для получения на металлическом покрытии слоя на основе сульфата цинка, не содержащего молекул свободной воды и свободных гидроксильных групп, при этом поверхностная плотность серы в слое на основе сульфата цинка больше или равна 0,5 мг/м2,
при этом скорость полосы находится в диапазоне между 60 и 200 м/мин, толщина влажной пленки находится в диапазоне между 0,5 и 4 мкм, начальная температура полосы находится в диапазоне между 20 и 50°С, расход воздуха находится в диапазоне между 5000 и 50000 н.м3/час.
2. Способ по п. 1, в котором металлическое покрытие получают посредством погружения в ванну с расплавом цинка, в результате содержащее по меньшей мере один элемент из числа магния вплоть до уровня содержания 10 мас. %, алюминия вплоть до уровня содержания 20 мас. %, кремния вплоть до уровня содержания 0,3 мас. %.
3. Способ по п. 1 или 2, в котором до нанесения водного рабочего раствора для обработки поверхности металлическое покрытие обезжиривают.
4. Способ по любому из пп. 1-3, в котором водный рабочий раствор для обработки поверхности содержит от 20 до 160 г/л гептагидрата сульфата цинка.
5. Способ по любому из пп. 1-4, в котором на слой на основе сульфата цинка наносят пленку масла при массе покрытия, составляющей менее чем 2 г/м2.
RU2020112795A 2017-10-12 2018-09-14 Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа RU2755907C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/IB2017/001244 WO2019073273A1 (en) 2017-10-12 2017-10-12 PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED WITH THIS METHOD
IBPCT/IB2017/001244 2017-10-12
PCT/IB2018/057046 WO2019073319A1 (en) 2017-10-12 2018-09-14 PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED WITH THIS METHOD

Publications (1)

Publication Number Publication Date
RU2755907C1 true RU2755907C1 (ru) 2021-09-22

Family

ID=60293984

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2020112795A RU2755907C1 (ru) 2017-10-12 2018-09-14 Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа

Country Status (15)

Country Link
US (1) US11319631B2 (ru)
EP (1) EP3695021B1 (ru)
JP (1) JP6979125B2 (ru)
KR (1) KR102407063B1 (ru)
CN (1) CN111094614B (ru)
BR (1) BR112020004038B1 (ru)
CA (1) CA3073252C (ru)
FI (1) FI3695021T3 (ru)
MA (1) MA50349B1 (ru)
MX (1) MX2020003633A (ru)
PL (1) PL3695021T3 (ru)
RU (1) RU2755907C1 (ru)
UA (1) UA125239C2 (ru)
WO (2) WO2019073273A1 (ru)
ZA (1) ZA202000837B (ru)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019073274A1 (en) 2017-10-12 2019-04-18 Arcelormittal PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED USING THE SAME
WO2019073273A1 (en) 2017-10-12 2019-04-18 Arcelormittal PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED WITH THIS METHOD
WO2021074672A1 (en) 2019-10-16 2021-04-22 Arcelormittal Metal sheet treatment method and metal sheet treated with this method
EP4273958A1 (de) * 2022-05-06 2023-11-08 Siemens Aktiengesellschaft Bestimmung des feuchtegehalts bei der elektrodenfertigung für batteriezellen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015878A1 (fr) * 1998-09-15 2000-03-23 Sollac Toles d'acier zingue revetues d'une couche prelubrifiante d'hydroxysulfate et procedes d'obtention de cette tole
RU2371516C2 (ru) * 2003-12-24 2009-10-27 АРСЕЛОР Франс Гидроксисульфатная обработка поверхности
EP2186925A1 (en) * 2007-09-04 2010-05-19 JFE Steel Corporation Galvanized steel sheet
EP2366812A1 (en) * 2008-12-16 2011-09-21 JFE Steel Corporation Galvanized steel sheet and method for manufacturing the same
RU2581943C2 (ru) * 2012-01-10 2016-04-20 Арселормитталь Инвестигасьон И Десарролло Сл Применение раствора, содержащего сульфат-ионы, для уменьшения почернения или потускнения металлического листа при его хранении и металлический лист, обработанный таким раствором

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3383734B2 (ja) * 1995-11-15 2003-03-04 日新製鋼株式会社 クロメート処理亜鉛めっき鋼板の製造装置
JP3449283B2 (ja) * 1999-03-11 2003-09-22 住友金属工業株式会社 プレス成形性に優れた亜鉛系めっき鋼板とその製造方法
JP2003089881A (ja) * 2001-09-17 2003-03-28 Sumitomo Metal Ind Ltd 無機潤滑皮膜を有する亜鉛系めっき鋼板とその製造方法
JP3807341B2 (ja) * 2002-04-18 2006-08-09 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP4159028B2 (ja) * 2002-09-03 2008-10-01 新日本製鐵株式会社 連続焼鈍炉のバーナー異常検出方法
CN1715446A (zh) 2004-06-30 2006-01-04 上海万森水处理有限公司 一种金属表面用预膜剂
JP2006083464A (ja) * 2004-08-16 2006-03-30 Togo Seisakusho Corp 防錆金属部品及びその製造方法
JP2006083434A (ja) * 2004-09-16 2006-03-30 Kureha Engineering Co Ltd 電気防食方法および電気防食装置
CN100567573C (zh) * 2007-12-03 2009-12-09 武汉双博新技术有限公司 一种环保型多功能钢铁表面处理剂
JP5354165B2 (ja) 2008-01-30 2013-11-27 Jfeスチール株式会社 亜鉛系めっき鋼板の製造方法
RU2584105C2 (ru) 2012-02-14 2016-05-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Плакированная толстолистовая сталь для горячего прессования и способ горячего прессования плакированной толстолистовой стали
CN102839365A (zh) * 2012-04-11 2012-12-26 王晓翌 环保型多功能钢铁表面处理液
WO2015001368A1 (fr) 2013-07-04 2015-01-08 Arcelormittal Investigaciòn Y Desarrollo Sl Procédé de traitement d'une tôle pour réduire son noircissement ou son ternissement lors de son stockage et tôle traitée par un tel procédé
CN106574353B (zh) * 2014-06-27 2020-03-10 汉高股份有限及两合公司 用于镀锌钢的干式润滑剂
CN104178757B (zh) 2014-08-08 2017-01-18 东北大学 一种热镀锌钢板无铬复合钝化剂及其制备和使用方法
EP2995674B1 (de) 2014-09-11 2020-07-15 thyssenkrupp AG Verwendung eines Sulfats sowie Verfahren zum Herstellen eines Stahlbauteils durch Umformen in einer Umformmaschine
WO2018212819A1 (en) * 2017-05-18 2018-11-22 Gary Paulsen Lighting devices and methods for use
WO2019073274A1 (en) 2017-10-12 2019-04-18 Arcelormittal PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED USING THE SAME
WO2019073273A1 (en) 2017-10-12 2019-04-18 Arcelormittal PROCESS FOR PROCESSING METAL SHEET AND METAL SHEET TREATED WITH THIS METHOD

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015878A1 (fr) * 1998-09-15 2000-03-23 Sollac Toles d'acier zingue revetues d'une couche prelubrifiante d'hydroxysulfate et procedes d'obtention de cette tole
RU2371516C2 (ru) * 2003-12-24 2009-10-27 АРСЕЛОР Франс Гидроксисульфатная обработка поверхности
EP2186925A1 (en) * 2007-09-04 2010-05-19 JFE Steel Corporation Galvanized steel sheet
EP2366812A1 (en) * 2008-12-16 2011-09-21 JFE Steel Corporation Galvanized steel sheet and method for manufacturing the same
RU2581943C2 (ru) * 2012-01-10 2016-04-20 Арселормитталь Инвестигасьон И Десарролло Сл Применение раствора, содержащего сульфат-ионы, для уменьшения почернения или потускнения металлического листа при его хранении и металлический лист, обработанный таким раствором

Also Published As

Publication number Publication date
CN111094614A (zh) 2020-05-01
US20200216964A1 (en) 2020-07-09
MA50349B1 (fr) 2024-02-29
MA50349A (fr) 2020-08-19
WO2019073273A1 (en) 2019-04-18
ZA202000837B (en) 2020-12-23
US11319631B2 (en) 2022-05-03
PL3695021T3 (pl) 2024-04-15
CN111094614B (zh) 2021-12-03
CA3073252A1 (en) 2019-04-18
MX2020003633A (es) 2020-07-29
UA125239C2 (uk) 2022-02-02
JP2020537044A (ja) 2020-12-17
EP3695021B1 (en) 2024-01-17
EP3695021A1 (en) 2020-08-19
JP6979125B2 (ja) 2021-12-08
BR112020004038B1 (pt) 2023-11-28
BR112020004038A2 (pt) 2020-09-01
KR102407063B1 (ko) 2022-06-08
WO2019073319A1 (en) 2019-04-18
CA3073252C (en) 2021-11-09
FI3695021T3 (fi) 2024-03-14
KR20200045532A (ko) 2020-05-04

Similar Documents

Publication Publication Date Title
RU2755907C1 (ru) Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа
RU2755906C1 (ru) Способ обработки листового металла и листовой металл, подвергнутый обработке при использовании данного способа
JPH03208514A (ja) 塗装鋼板の切断方法
EP3055439B1 (fr) Tôle d&#39;acier munie d&#39;un revêtement de zinc
KR20160128440A (ko) 금속판의 저장 동안에 금속판의 흑화 또는 변색을 감소시키기 위한 황산 이온을 함유하는 용액의 용도 및 그러한 용액으로 처리된 금속판
US20240093375A1 (en) Metal sheet treatment method and metal sheet treated with this method
RU2783513C1 (ru) Способ обработки металлического листа и металлический лист, обработанный этим способом
BR112020004054B1 (pt) Tira de aço, peça automotiva e método de tratamento para uma tira de metal