RU2733094C2 - Способ включения элемента линзы и линза, имеющая такой элемент - Google Patents

Способ включения элемента линзы и линза, имеющая такой элемент Download PDF

Info

Publication number
RU2733094C2
RU2733094C2 RU2018122951A RU2018122951A RU2733094C2 RU 2733094 C2 RU2733094 C2 RU 2733094C2 RU 2018122951 A RU2018122951 A RU 2018122951A RU 2018122951 A RU2018122951 A RU 2018122951A RU 2733094 C2 RU2733094 C2 RU 2733094C2
Authority
RU
Russia
Prior art keywords
lens
reaction mixture
contact lens
lens element
polymerized
Prior art date
Application number
RU2018122951A
Other languages
English (en)
Other versions
RU2018122951A3 (ru
RU2018122951A (ru
Inventor
Кристофер УАЙЛДСМИТ
Питер В. САЙТС
Мукул КАНАУДЖИА
Джо М. ВУД
Original Assignee
Джонсон Энд Джонсон Вижн Кэа, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Джонсон Энд Джонсон Вижн Кэа, Инк. filed Critical Джонсон Энд Джонсон Вижн Кэа, Инк.
Publication of RU2018122951A publication Critical patent/RU2018122951A/ru
Publication of RU2018122951A3 publication Critical patent/RU2018122951A3/ru
Application granted granted Critical
Publication of RU2733094C2 publication Critical patent/RU2733094C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00048Production of contact lenses composed of parts with dissimilar composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • B29D11/00144Curing of the contact lens material wherein the lens material is not fully polymerized, e.g. by leaving an unpolymerized volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00038Production of contact lenses
    • B29D11/00125Auxiliary operations, e.g. removing oxygen from the mould, conveying moulds from a storage to the production line in an inert atmosphere
    • B29D11/00134Curing of the contact lens material
    • B29D11/00153Differential curing, e.g. by differential radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00951Measuring, controlling or regulating
    • B29D11/00961Measuring, controlling or regulating using microprocessors or computers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/021Lenses; Lens systems ; Methods of designing lenses with pattern for identification or with cosmetic or therapeutic effects
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2083/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0032Pigments, colouring agents or opacifiyng agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0018Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
    • B29K2995/0035Fluorescent
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Eyeglasses (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

Способ включает следующие этапы: получают отличающиеся реакционные смеси элемента линзы и линзы, погружают выпуклую поверхность оптического качества формирующего оптического элемента в резервуар, содержащий реакционную смесь элемента линзы, подают актиничное излучение и контролируют его для повоксельной полимеризации или частичной полимеризации части реакционной смеси элемента линзы. Извлекают формирующий оптический элемент и нанесенную реакционную смесь элемента линзы из резервуара и погружают во второй резервуар с реакционной смесью линзы; подают актиничное излучение и контролируют его для повоксельной полимеризации или частичной полимеризации части реакционной смеси линзы, которая окружает полимеризованную или частично полимеризованную реакционную смесь элемента линзы, извлекают формирующий оптический элемент из реакционной смеси линзы и подают фиксирующее излучение для формирования контактной линзы. Технический результат - улучшение способа включения элементов линзы в контактную линзу за счет формирования однородной структуры линзы. 2 н. и 31 з.п. ф-лы, 9 ил.

Description

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение по существу относится к области контактных линз и, более конкретно, к новым и усовершенствованным способам включения в контактную линзу различных функциональных и косметических элементов линзы, а также к линзам, включающим такие элементы.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Применение контактных линз для коррекции зрения широко распространено в современном мире. В настоящее время имеется несколько стандартных способов крупносерийного малозатратного изготовления контактных линз. Эти способы включают, без ограничений, литье в форме, центробежное литье, токарную обработку, применение технологии, известной в отрасли как Lightstream Technology, и любую их комбинацию.
Совсем недавно была описана новая система и способ производства контактных линз, в которых бесконечное число действительно индивидуальных линз можно легко изготовить эффективным с точки зрения затрат способом. В патенте США № 8,317,505, который полностью включен в настоящий документ путем ссылки, описан способ выращивания формы заготовки линзы на одиночной выпуклой оптической оправке по повоксельному принципу посредством селективного воздействия актиничного излучения через оптическую оправку и на бак или ванну с реакционной смесью. Оптическую оправку и форму заготовки линзы затем удаляют из бака и переворачивают таким образом, что выпуклая поверхность оптической оправки находится вертикально. После периода выдержки, в течение которого неполимеризованная остаточная жидкость из ванны, которая остается на форме заготовки линзы, переливается под действием силы тяжести или другого воздействия через форму заготовки линзы, такая жидкость далее отверждается под действием фиксирующего излучения с образованием готовой линзы. Как описано в настоящем документе, действительно индивидуальная линза может быть произведена для любого конкретного глаза.
Также были описаны различные элементы в контактных линзах, которые являются несущественными или не имеют никакого отношения к коррекции зрения. Например, известно, что линзы включают в себя реперные метки, помогающие врачу-офтальмологу в оценке посадки линзы на глазу пациента, но они не связаны с корректирующей оптической силой линзы. Такие известные реперные метки отдельно наносят или инкапсулируют внутри линзы, для чего, как правило, требуется дополнительная стадия производства. В случае инкапсуляции элемент помещают между раздельно отвержденными слоями линзы, что отрицательно влияет на структурную целостность слоев линзы. Другие способы размещения такого рода меток на линзе включают фрезеровку, нанесение надписей, штамповку, струйную печать, тампопечать или т. п. или включение элементов в компоненты формы для литья. Другим способом является последующее добавление или удаление материала из линзы, например, как описано в патенте США № 8,636,357. Стоимость и сложность или такие дополнительные стадии производства увеличивают стоимость линзы. Кроме того, известные способы независимого нанесения разметки на поверхности линзы отрицательно влияют на оптическое качество поверхности, часто также негативно влияя на комфорт пациента.
Соответственно, желательно предложить усовершенствованную систему и способ включения в контактную линзу реперных меток или других косметических или функциональных признаков, таких как изображения, логотипы, идентификационные метки или числа (которые в совокупности в настоящем документе называются «элементами линзы»), а также линзы, включающие такие элементы линзы.
ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
В настоящем описании предложена контактная линза произвольной формы с задней поверхностью оптического качества, имеющей вогнутую форму, противоположной передней поверхностью, имеющей выпуклую форму, причем передняя и задняя поверхности соединены по краю линзы, который формирует внешнюю периферию контактной линзы, и с по меньшей мере первым элементом линзы, имеющим заранее заданную форму и выполненным из первой полимеризованной реакционной смеси. Остальная часть контактной линзы изготовлена из второй полимеризованной реакционной смеси, которая отличается от первой полимеризованной реакционной смеси, и первая полимеризованная реакционная смесь и вторая полимеризованная реакционная смесь ковалентно связаны друг с другом.
В одном варианте осуществления по меньшей мере первый элемент линзы проходит от задней оптической поверхности до заранее заданной глубины внутри контактной линзы и по меньшей мере первый элемент линзы полностью окружен второй полимеризованной реакционной смесью, за исключением области вдоль задней поверхности. В альтернативном варианте осуществления по меньшей мере первый элемент линзы полностью окружен второй полимеризованной реакционной смесью или по меньшей мере первый элемент линзы проходит от передней поверхности до заранее заданной глубины внутри контактной линзы и по меньшей мере первый элемент линзы полностью окружен второй полимеризованной реакционной смесью, за исключением области вдоль передней поверхности.
В различных вариантах осуществления первая или вторая реакционная смесь может включать флуоресцирующий материал, в качестве которого необязательно может использоваться флуоресцеин, или может содержать органический краситель. В дополнительных вариантах осуществления первая или вторая реакционная смесь может представлять собой этафилкон или смесь на основе силикона.
В других различных вариантах осуществления по меньшей мере первый элемент линзы может представлять собой реперную метку или может представлять собой геометрический рисунок, который также может быть изображением, логотипом, числовой меткой, штрихкодом, буквенно-цифровым рисунком или любой их комбинацией.
В еще одном варианте осуществления по меньшей мере один элемент линзы расположен за пределами оптической зоны линзы.
Также предлагается способ формирования офтальмологической линзы с по меньшей мере одним элементом линзы, включающий в себя этапы, на которых получают реакционную смесь элемента линзы и реакционную смесь линзы, которая отличается от указанной реакционной смеси элемента линзы, погружают по меньшей мере выпуклую поверхность оптического качества формирующего оптического элемента в содержащий ее резервуар, причем выпуклая поверхность оптического качества образует заднюю поверхность контактной линзы, подают актиничное излучение через формирующий оптический элемент и в резервуар с реакционной смесью элемента линзы, избирательно контролируют поданное актиничное излучение для повоксельной избирательной полимеризации или частичной полимеризации участка реакционной смеси элемента линзы вдоль по меньшей мере первого заранее заданного участка формирующего оптического элемента, извлекают формирующий оптический элемент из резервуара с реакционной смесью элемента линзы, погружают по меньшей мере выпуклую поверхность оптического качества формирующего оптического элемента и нанесенную реакционную смесь элемента линзы в резервуар с реакционной смесью линзы, подают актиничное излучение через формирующий оптический элемент и в резервуар с реакционной смесью линзы, избирательно контролируют поданное актиничное излучение для повоксельной селективной полимеризации или частичной полимеризации части реакционной смеси линзы, причем избирательно полимеризованная или частично полимеризованная реакционная смесь линзы полностью окружает полимеризованную или частично полимеризованную реакционную смесь элемента линзы, за исключением области, смежной с заранее заданным участком формирующего оптического элемента, извлекают формирующий оптический элемент из реакционной смеси линзы и подают фиксирующее излучение для формирования контактной линзы.
В одном варианте осуществления реакционная смесь элемента линзы ковалентно связывается с реакционной смесью линзы.
В различных альтернативных вариантах осуществления реакционная смесь элемента линзы может включать в себя флуоресцирующий материал, который может быть флуоресцеином или может включать в себя органический краситель. В дополнительных вариантах осуществления реакционная смесь линзы может представлять собой этафилкон или может быть основана на силиконе.
В одном варианте осуществления избирательно полимеризованная реакционная смесь элемента линзы принимает заранее заданную форму, которая в альтернативном варианте осуществления может представлять собой реперную метку или может представлять собой геометрический рисунок, который также может быть изображением, логотипом, числовой меткой, штрихкодом, буквенно-цифровым рисунком или любой их комбинацией.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
На Фиг. 1 представлен пример аппарата предшествующего уровня техники, используемого для формирования контактной линзы в соответствии с настоящим описанием.
На Фиг. 2 представлена блок-схема, иллюстрирующая один из способов формирования контактной линзы в соответствии с настоящим описанием.
На Фиг. 3 приводится вид в увеличенном масштабе формирующего оптического элемента, приведенного на Фиг. 1.
На Фиг. 4a-4d приводятся изображения контактных линз, имеющие различными примеры элементов линзы, которые могут быть сформированы в соответствии с настоящим изобретением.
На Фиг. 5а и 5b приводятся виды сверху и сбоку в поперечном сечении, соответственно, для контактной линзы с примерами элементов линзы в соответствии с настоящим описанием.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
СПИСОК ТЕРМИНОВ
В данном описании и формуле настоящего изобретения используются различные термины, для которых приняты следующие определения.
Используемый в настоящем документе термин «актиничное излучение» означает излучение, способное инициировать химическую реакцию.
При использовании в настоящем документе термин «DMD» (цифровое микрозеркальное устройство) относится к бистабильному пространственному модулятору света, состоящему из набора подвижных микрозеркал, функционально установленных на платформу КМОП-СОЗУ, обеспечивающую включение/отключение каждого зеркала по отдельности. Каждым зеркалом управляют независимо путем загрузки данных в ячейку памяти под этим зеркалом для наведения отраженного света, пространственно нанося пиксель видеоданных на пиксель отображения. Загружаемые данные электростатически управляют углом наклона зеркала, которое может находиться в двух состояниях: под углом +X градусов (вкл.) и под углом -X градусов (выкл.). Для доступных в настоящий момент устройств номинальная величина X может составлять 10 или 12 градусов. Свет, отраженный от зеркал, находящихся во включенном состоянии, затем проходит через проектирующую линзу и направляется на экран. Находящиеся в выключенном состоянии зеркала отражают свет так, чтобы создавать темное поле, тем самым формируя фоновый уровень черного для изображения. Проецируемые изображения создаются посредством модуляции по шкале оттенков серого в интервалы времени включения и выключения зеркала с достаточно высокой скоростью для создания различных интенсивностей на поверхности формирования и, таким образом, для создания топологических изменений толщины. DMD иногда называют «проекционными системами DLP».
Термин «этафилкон» в контексте настоящего документа относится к приведенному в качестве примера материалу, который может быть применен в качестве реакционной смеси и может включать в себя приблизительно: 95% HEMA (2-гидроксиэтилметакрилата), и 1,97% MMA (метакриловой кислоты), и 0,78% EGDMA (этиленгликольдиметакрилата), и 0,10% кросс-линкера TMPTMA (тиметилолпропантриметакрилата), и 1% фотоинициатора CGI 1700, и разбавитель BAGE (сложный эфир борной кислоты и глицерина) (патент США № 4,495,313) в соотношении реакционного компонента к разбавителю 52: 48.
Используемый в настоящем документе термин «фиксирующее излучение» означает актиничное излучение, достаточное для достижения одной или более из следующих целей: практически полной полимеризации и поперечной сшивки реакционной смеси, составляющей линзу или заготовку линзы.
Термин «текучая линзообразующая реакционная среда» в контексте настоящего документа означает реакционную смесь, выполненную с возможностью протекания в первоначальной форме, прореагировавшей форме или частично прореагировавшей форме, которая при дополнительной обработке образует часть офтальмологической линзы.
Используемые в настоящей заявке термины «произвольной формы» и «в произвольной форме» обозначают поверхность, которая была образована поперечной сшивкой реакционной смеси и в формировании которой не была задействована поверхность формы для литья.
Используемый в настоящем документе термин «точка гелеобразования» означает точку, при которой впервые наблюдается появление геля или нерастворимой фракции. Точка гелеобразования представляет собой степень превращения, при которой жидкая полимеризационная смесь становится твердой. Точка гелеобразования может быть определена в эксперименте Сокслета: реакцию полимеризации останавливают в разные моменты времени и полимерную смесь анализируют для определения массовой доли нерастворимого полимера. Полученные данные могут быть экстраполированы до точки, в которой гель еще не образовался. Эта точка, в которой гель еще не образовался, является точкой гелеобразования. Точку гелеобразования также можно определять путем анализа вязкости реакционной смеси в процессе реакции. Вязкость можно измерять с использованием реометра с плоскопараллельным зазором, между пластинами которого помещают реакционную смесь. По меньшей мере одна пластина должна быть прозрачной для излучения с длиной волны, используемой для полимеризации. Точка, в которой вязкость стремится к бесконечности, является точкой гелеобразования. Для каждой заданной полимерной системы и условий проведения реакции точка гелеобразования всегда находится при одной и той же степени превращения.
При использовании в настоящем документе термин «линза» относится к любому офтальмологическому устройству, располагаемому в глазу или на нем. Эти устройства могут обеспечивать оптическую коррекцию или могут быть косметическими. Например, термин «линза» может относиться к контактной линзе, интраокулярной линзе, накладной линзе, глазной вставке, оптической вставке или иному подобному устройству, предназначенному для коррекции или модификации зрения или косметического улучшения физиологии глаза (например, цвета радужной оболочки) без ухудшения зрения. В некоторых вариантах осуществления предпочтительные линзы по изобретению представляют собой мягкие контактные линзы, изготовленные из силиконовых эластомеров или гидрогелей, которые включают в себя, без ограничений, силикон-гидрогели и фтор-гидрогели.
Используемый в настоящем документе термин «заготовка линзы» означает составной объект, состоящий из формы заготовки линзы и текучей линзообразующей реакционной смеси, находящейся в контакте с формой заготовки линзы. Например, в некоторых вариантах осуществления текучая линзообразующая реакционная среда формируется в процессе изготовления формы заготовки линзы в объеме реакционной смеси. Отделение формы заготовки линзы и находящейся в непосредственном контакте с ней текучей линзообразующей реакционной среды от остального объема реакционной смеси, использовавшейся для изготовления формы заготовки линзы, позволяет получать заготовку линзы. Кроме того, форма заготовки линзы может быть преобразована в другое изделие либо, путем удаления значительного количества текучей линзообразующей реакционной среды, в нетекучий материал тела линзы.
Используемый в настоящем документе термин «реакционная мономерная смесь», или «RMM», относится к мономерному или преполимерному материалу, который может быть полимеризован и сшит или сшит с образованием офтальмологической линзы. Различные модификации изобретения могут включать смеси для формовки линз с одой или несколькими добавками, такими как УФ-блокаторы, красители, фотоинициаторы или катализаторы, а также другие добавки, которые могут использоваться в составе офтальмологических линз, таких как контактные или интраокулярные линзы.
Используемый в настоящей заявке термин «воксел» означает элемент объема, представляющий некоторую величину на регулярной сетке в трехмерном пространстве. Воксел может рассматриваться как трехмерный пиксель, однако если пиксель представляет элемент двумерного изображения, воксел включает в себя и третье измерение. Кроме того, хотя вокселы часто используются для визуализации и анализа медицинских и научных данных, в настоящем изобретении воксел применяется для задания границ дозы актиничного излучения, попадающего в некоторый объем реакционной смеси. В качестве примера в настоящем изобретении вокселы считаются существующими в одном слое, соответствующем двухмерной поверхности формы для литья, причем актиничное излучение может быть направлено перпендикулярно данной двухмерной поверхности и вдоль общей для каждого воксела оси. В качестве примера определенный объем реакционной смеси может быть поперечно сшит или полимеризован в соответствии с разбиением на 768×768 вокселов.
При использовании в настоящем документе термин «воксельный предшественник линзы» означает предшественник линзы, для которого форма предшественника линзы была создана с использованием повоксельной методики формирования.
Как подробно описано в патенте США № 8,317,505, действительно индивидуальная линза может быть сформирована с использованием повоксельных способов и методик. Как описано в настоящем документе, устройство получает излучение с высокой однородностью интенсивности и регулирует его воздействие на поверхность формирующего оптического элемента 180 (см. Фиг. 1) в многочисленных дискретных точках на поверхности формирующего оптического элемента. Формирующий оптический элемент 180 расположен внутри объема реакционной смеси, и за счет регулирования воздействия облучения на поверхность формирующего оптического элемента обеспечивается контроль глубины отверждения смолы в каждой дискретной точке, по существу приводя к «росту» желательной формы на выпуклой поверхности оптического качества формирующего оптического элемента.
Более конкретно, как показано на Фиг. 1, формирующий аппарат 100 функционально начинается с источника актиничного излучения, например источника света 120, где излучаемый свет возникает в виде света в заданном диапазоне длин волн, но с некоторыми пространственными вариациями по интенсивности и направлению. Элемент 130, регулятор пространственного распределения интенсивности, или коллиматор, конденсирует, рассеивает и в некоторых вариантах осуществления коллимирует излучение для создания потока излучения 140 с высокой пространственной однородностью интенсивности. Дополнительно в некоторых вариантах осуществления полученный поток излучения 140 направляется на DMD 110, которое разделяет поток излучения на элементы-пикселы, интенсивность каждого из которых может принимать дискретное значение «вкл.» или «выкл.». На самом деле зеркало в каждом из пикселей просто отражает свет вдоль одного из двух направлений. Направление «ВКЛ.», элемент 150, служит направлением, вдоль которого направленные фотоны достигают реакционной химической среды. С другой стороны, в некоторых вариантах осуществления состояние «ВЫКЛ.» включает отражение света по другому направлению, которое расположено между указанными на рисунке элементами 116 и 117. Направленные по направлению «ВЫКЛ.» фотоны попадают в ловушку пучка 115, которая изготовлена так, чтобы поглощать и не выпускать направленные к ней фотоны. Излучение, направленное вдоль направления «ВКЛ.», фактически потенциально содержит множество лучей от различных пикселов, которые были установлены в состояние «ВКЛ.» и которые направлены в пространстве вдоль соответствующих путей, ведущих к соответствующим пикселам. Средняя по времени интенсивность излучения от каждого из элементов-пикселов по соответствующим путям может быть представлена в виде пространственного профиля интенсивности 160 на пространственной решетке, задаваемой зеркалом DMD 110. В альтернативном варианте при постоянной интенсивности падающего на каждое зеркало излучения элемент 160 может быть представлен в виде пространственно-временного профиля экспозиции.
Затем каждый находящийся в состоянии «ВКЛ.» элемент-пиксел будет направлять фотоны по соответствующему пути 150. В некоторых вариантах осуществления пучок может быть сфокусирован с помощью фокусирующего элемента. Приведенная в качестве примера на Фиг. 1 повоксельная система 100 представляет собой вариант осуществления, в котором траектории 150 света проецируются таким образом, что они попадают по существу вертикальным образом на поверхность формирующего оптического элемента 180. Световое изображение после этого проходит через формирующий оптический элемент и попадает в объем пространства, который содержит реакционную смесь в резервуаре 190 и вокруг формирующего оптического элемента 180. Попадающие в этот объем фотоны могут быть поглощены и могут инициировать актиничную реакцию в поглотившей их молекуле, что приведет к изменению полимеризационного состояния мономера вокруг места поглощения. За счет избирательного контролирования времени и/или интенсивности облучения на каждом пикселе можно контролировать глубину отверждения реакционной смеси линзы (см. Фиг. 3, элемент 302) в резервуаре 190, по существу обеспечивая полный повоксельный контроль формы, которая образуется у выпуклой поверхности формирующего оптического элемента, с образованием формы предшественника линзы.
Так в общих чертах можно дать представление о функциональных характеристиках повоксельного формирования в одном из конкретных вариантов осуществления. Разнообразные дополнительные особенности различных компонентов настоящего варианта осуществления и их альтернативные варианты подробно описаны в предшествующем уровне техники, например в патенте США № 8,317,505. Дополнительно, несмотря на то что в настоящем документе подробно описано устройство DMD, может использоваться любой подходящий источник избирательно контролируемого актиничного излучения.
В настоящем изобретении предложены новые и применимые средства, с помощью которых можно использовать повоксельные методики формирования, описанные выше, чтобы предложить новый и улучшенный способ включения элементов линзы в контактную линзу.
Показанный на Фиг. 2 и представленный в настоящем документе способ будет подробно описан ниже, причем особое внимание будет уделяться избирательной интеграции флуоресцеиновых элементов линзы внутри или на поверхности контактной линзы для любой из множества возможных целей, включая цели создания реперных меток или любых других косметических структур, идентификационной маркировки линзы или иное. Использование методик и способов создания произвольной формы в одном из предпочтительных вариантов осуществления в качестве первой стадии 202 позволяет получить или создать первую реакционную смесь, включающую материал, который желательно было бы внести внутрь или на поверхность контактной линзы, чтобы сформировать желательный элемент линзы («реакционная смесь элемента линзы»). В одном варианте осуществления реакционная смесь элемента линзы включает флуоресцирующий агент, например флуоресцеин.
Затем реакционную смесь элемента линзы помещают в резервуар 302 подходящей формы (стадия 202), и формирующий оптический элемент 180 впоследствии погружают (204) в реакционную смесь 302 элемента линзы, как более подробно показано на Фиг. 3. После надлежащего погружения реакционную смесь элемента линзы можно повоксельно избирательно отверждать в произвольной форме, чтобы способствовать селективной полимеризации реакционной смеси элемента линзы у выпуклой поверхности оптического качества формирующего элемента 180, таким образом определяя форму и конфигурацию желательных элементов линзы (стадия 206).
Избирательная полимеризация, контролируемая повоксельно, позволяет формировать любой желательный элемент линзы. Например, можно создавать простые реперные метки 402, 404, подобные приведенным на Фиг. 4а. На Фиг. 4b приведен пример логотипа 406, который может включаться внутри или на поверхности контактной линзы в любом месте в пределах оптической зоны или вне ее. Можно создавать любой такой логотип, например инновационные линзы (то есть линзы необязательно со свойствами коррекции зрения) с любого рода логотипом спортивной команды или колледжа. Дополнительно, как показано на Фиг. 4с, любая косметическая структура 408 может также включаться внутрь или на поверхность корректирующих линз или не предназначенных для коррекции линз. На Фиг. 4d приводится линза с примерами идентификационной маркировки 410. Несмотря на приведенную числовую маркировку, другая не содержащая чисел маркировка, например штрихкоды, матрицы данных и т. п., или любая комбинация таких маркировок относится к элементам линзы, которые могут также включаться в линзу с помощью способов, описанных в настоящем документе. Специалистам в данной области будет очевидно, что с помощью повоксельных методик произвольной формы можно создавать элементы линзы любой формы или конфигурации. Дополнительно, несмотря на то что на фигурах в качестве примеров вариантов осуществления приводятся некруглые линзы, могут использоваться любые подходящие формы линз, круглые или иные.
В предпочтительном варианте осуществления селективная полимеризация реакционной смеси элемента линзы, в частности, выполнена с возможностью обеспечения достижения толщины полимеризации в желаемых местах до любой желательной толщины, которая достаточно заметна в конечном продукте. Дополнительно для достижения различных визуальных эффектов можно избирательно реализовать различную толщину реакционной смеси элемента линзы в пределах элемента или элементов линзы.
Предпочтительно, чтобы после полного удаления формирующего оптического элемента и по меньшей мере частичной полимеризации реакционной смеси элемента линзы не выделялось дополнительное время для стабилизации. Вместо этого формирующий оптический элемент сразу же должен быть погружен во второй резервуар (отдельно не показан, но по конструкции аналогичен резервуару 302, приведенному на Фиг. 3), который содержит вторую реакционную смесь, которая в данном случае представляет собой материал, из которого будет сформирована оставшаяся линза 210 («реакционная смесь линзы»). В одном варианте осуществления реакционная смесь линзы представляет собой этафилкон.
После надлежащего погружения реакционная смесь линзы повоксельно избирательно полимеризуется в произвольной форме (212), как описано выше для реакционной смеси элемента линзы. В данном способе полимеризованная реакционная смесь линзы растет по поверхности, включая пределы и окружность ранее полимеризованной и частично полимеризованной реакционной смеси элемента линзы. После второй стадии селективной полимеризации (212) формирующий оптический элемент извлекают из резервуара (214), переворачивают (216) и дают возможность стабилизации (218), предпочтительно в течение четырех минут. После стабилизации любую оставшуюся текучую реакционную линзообразующую смесь подвергают воздействию фиксирующего излучения (220) для формирования готовой завершенной контактной линзы.
На Фиг. 5a и 5b представлены виды сверху и сбоку в разрезе примера линзы, сформированной в соответствии с описанным выше способом. Линза 500 включает в себя вогнутую заднюю поверхность оптического качества 502, которая представляет собой поверхность, находящуюся в контакте с глазом пациента при ношении, и поверхность, находящуюся в контакте с выпуклой поверхностью оптического качества формирующего оптического элемента в процессе изготовления, и противоположную переднюю выпуклую поверхность 504. Передняя и задняя поверхности соединяются вместе вдоль края 512 линзы, который определяет внешнюю периферию линзы. Приведенный вариант осуществления включает элементы линзы, которые являются первыми и вторыми указателями, или метками 506, 508, которые в этом случае содержат смесь флуоресцеина (или любых других совместимых чернил, пигмента или красителя), как описано выше, и предназначены для целей оценки ориентации линзы на глазу. Как показано на Фиг. 5b и описано выше, первый и второй указатели 506, 508 формируются на первой стадии селективной полимеризации из реакционной смеси элемента линзы и проходят от задней поверхности 502 внутрь линзы на заранее заданную глубину, которая регулируется в течение стадии селективной полимеризации, как было описано выше. Остальная часть линзы 510 формируется из полимеризованной реакционной смеси линзы. При избирательной полимеризации, которая описана выше, реакционная смесь линзы и реакционная смесь элемента линзы образуют взаимопроникающую сеть, ковалентно связанную, чтобы сформировать однородную структуру линзы. Такая методика формирования предотвращает отслаивание или вымывание маркирующего агента во время увлажнения и других процедур.
Описанный в настоящем документе процесс и готовый продукт содержат включенные элементы линзы в продукте с поверхностями оптического качества с обеих сторон. Многие ранее известные способы нанесения указателей или маркировки на поверхность линзы отрицательно влияют на целостность (а значит, и на посадку и комфорт) поверхности оптического качества. Например, нанесение надписей и т. п. или выполнение такой маркировки посредством отдельного процесса, например струйной печати, приводит к поверхности неоптимального качества с выемками, выступами на поверхности или т. п.
Другие известные способы включения маркировок внутри линзы предусматривают внесение их между слоями линзы, что неблагоприятно сказывается на целостности линзы, поскольку слои более склонны к разделению. Напротив, в линзах, образованных с помощью способов, описанных в настоящем документе, элементы линзы отличаются высокой степенью интеграции и ковалентно связаны с остальным материалом линзы, поскольку после начальной стадии селективной полимеризации реакционная смесь элемента линзы не полностью отверждена, а скорее слабо связана и при этом взаимодействует с реакционной смесью линзы в ходе второй стадии селективной полимеризации, чтобы сформировать химические сшивки посредством ковалентного связывания. Дополнительно для проведения селективной полимеризации в соответствии с настоящим способом не требуется применять маскирование или любую другую аналогичную методику со всей сопутствующей им сложностью.
Несмотря на то что в описанном выше варианте осуществления элемент линзы помещают на заднюю вогнутую оптическую поверхность линзы, описанный в настоящем документе способ может быть легко адаптирован для размещения элемента линзы непосредственно внутри линзы или на передней выпуклой поверхности линзы. Например, в последнем случае процесс просто выполняют в обратной последовательности, причем селективная полимеризация реакционной смеси линзы происходит в первую очередь, а селективная полимеризация реакционной смеси элемента линзы следует после нее. Аналогичным образом можно ввести третью стадию для встраивания элемента линзы полностью внутрь линзы, причем селективная полимеризация реакционной смеси линзы происходит на первой стадии с последующей селективной полимеризацией в объеме реакционной смеси элемента линзы, после чего вновь следует третья стадия селективной полимеризации в объеме реакционной смеси линзы.
Несмотря на то что конкретные материалы подробно описаны в настоящем документе, специалистам в данной области будет очевидно, что в соответствии с настоящим изобретением может использоваться любая подходящая реакционная смесь линзы и/или реакционная смесь элемента линзы. Например, для реакционной смеси линзы можно использовать производное силикона, а для реакционной смеси элемента линзы можно использовать любой подходящий органический краситель и т. п. Аналогичным образом, несмотря на то что примеры вариантов способов изготовления описанных линз и примеры устройств для реализации таких способов описаны в настоящем документе со ссылкой на прилагаемые фигуры, следует понимать, что изобретение не ограничено только этими конкретными вариантами осуществления и что специалист в данной области может вносить различные другие изменения и модификации в рамках настоящего описания без выхода за рамки объема или сущности настоящего изобретения, которое ограничивается только приведенными в настоящем документе пунктами формулы изобретения.

Claims (47)

1. Способ формирования контактной линзы, имеющей по меньшей мере один элемент линзы, включающий в себя этапы, на которых:
получают реакционную смесь элемента линзы и реакционную смесь линзы, которая отличается от указанной реакционной смеси элемента линзы;
погружают по меньшей мере выпуклую поверхность оптического качества формирующего оптического элемента в резервуар, содержащий указанную реакционную смесь элемента линзы, причем указанная выпуклая поверхность оптического качества образует заднюю поверхность указанной контактной линзы;
подают актиничное излучение через указанный формирующий оптический элемент и в указанный резервуар с реакционной смесью элемента линзы;
избирательно контролируют указанное поданное актиничное излучение для повоксельной избирательной полимеризации или частичной полимеризации части указанной реакционной смеси элемента линзы вдоль по меньшей мере первого, заранее заданного участка указанного формирующего оптического элемента;
извлекают формирующий оптический элемент из резервуара с реакционной смесью элемента линзы;
погружают по меньшей мере указанную выпуклую поверхность оптического качества формирующего оптического элемента и нанесенную реакционную смесь элемента линзы во второй резервуар с указанной реакционной смесью линзы;
подают актиничное излучение через указанный формирующий оптический элемент и в указанный резервуар с реакционной смесью линзы;
избирательно контролируют указанное поданное актиничное излучение для повоксельной избирательной полимеризации или частичной полимеризации части реакционной смеси линзы, причем селективно полимеризованная или частично полимеризованная реакционная смесь линзы полностью окружает указанную полимеризованную или частично полимеризованную реакционную смесь элемента линзы, за исключением области, смежной с указанным заранее заданным участком формирующего оптического элемента;
извлекают указанный формирующий оптический элемент из указанной реакционной смеси линзы;
подают фиксирующее излучение для формирования указанной контактной линзы.
2. Способ по п. 1, в котором указанная реакционная смесь элемента линзы ковалентно связывается с реакционной смесью линзы.
3. Способ по п. 2, в котором реакционная смесь элемента линзы включает в себя флуоресцирующий материал.
4. Способ по п. 3, в котором флуоресцирующий материал содержит флуоресцеиновый компонент.
5. Способ по п. 2, в котором реакционная смесь элемента линзы включает в себя органический краситель.
6. Способ по п. 2, в котором реакционная смесь линзы представляет собой этафилкон.
7. Способ по п. 2, в котором реакционная смесь линзы основана на силиконе.
8. Способ по п. 2, в котором избирательно полимеризованная реакционная смесь элемента линзы принимает заранее заданную форму.
9. Способ по п. 8, в котором заранее заданная форма представляет собой реперную метку.
10. Способ по п. 8, в котором заранее заданная форма представляет собой геометрический рисунок.
11. Способ по п. 10, в котором геометрический рисунок представляет собой изображение.
12. Способ по п. 10, в котором геометрический рисунок представляет собой логотип.
13. Способ по п. 10, в котором геометрический рисунок представляет собой числовую маркировку.
14. Способ по п. 10, в котором геометрический рисунок представляет собой штрих-код.
15. Способ по п. 10, в котором геометрический рисунок представляет собой буквенно-цифровой рисунок.
16. Способ по п. 1, в котором формирующий оптический элемент, извлеченный из резервуара с реакционной смесью элемента линзы, погружают во второй резервуар с реакционной смесью линзы сразу же.
17. Контактная линза произвольной формы, сформированная с помощью способа по п. 1, содержащая:
заднюю поверхность оптического качества, имеющую вогнутую форму;
противоположную переднюю поверхность, имеющую выпуклую форму, причем указанные передняя и задняя поверхности соединены по краю линзы, который формирует внешнюю периферию указанной контактной линзы; и
по меньшей мере первый элемент линзы, имеющий заранее заданную форму и выполненный из первой полимеризованной реакционной смеси,
причем остальная часть указанной контактной линзы выполнена из второй полимеризованной реакционной смеси, которая отличается от первой полимеризованной реакционной смеси, и при этом первая полимеризованная реакционная смесь и вторая полимеризованная реакционная смесь ковалентно связаны друг с другом.
18. Контактная линза по п. 17, в которой по меньшей мере первый элемент линзы проходит от задней оптической поверхности до заранее заданной глубины внутри указанной контактной линзы, и при том по меньшей мере первый элемент линзы полностью окружен указанной второй полимеризованной реакционной смесью, за исключением области вдоль указанной задней поверхности.
19. Контактная линза по п. 17, в которой по меньшей мере первый элемент линзы полностью окружен указанной второй полимеризованной реакционной смесью.
20. Контактная линза по п. 17, в которой по меньшей мере первый элемент линзы проходит от передней поверхности до заранее заданной глубины внутрь указанной контактной линзы, и при том по меньшей мере первый элемент линзы полностью окружен указанной второй полимеризованной реакционной смесью, за исключением области вдоль указанной передней поверхности.
21. Контактная линза по п. 17, в которой первая или вторая реакционная смесь включает в себя флуоресцирующий материал.
22. Контактная линза по п. 21, в которой флуоресцирующий материал содержит флуоресцеиновый компонент.
23. Контактная линза по п. 17, в которой первая или вторая реакционная смесь включает в себя органический краситель.
24. Контактная линза по п. 17, в которой первая или вторая реакционная смесь представляет собой этафилкон.
25. Контактная линза по п. 17, в которой первая или вторая реакционная смесь основана на силиконе.
26. Контактная линза по п. 17, в которой по меньшей мере первый элемент линзы представляет собой реперную метку.
27. Контактная линза по п. 17, в которой по меньшей мере первый элемент линзы представляет собой геометрический рисунок.
28. Контактная линза по п. 27, в которой геометрический рисунок представляет собой изображение.
29. Контактная линза по п. 27, в которой геометрический рисунок представляет собой логотип.
30. Контактная линза по п. 27, в которой геометрический рисунок представляет собой числовую маркировку.
31. Контактная линза по п. 27, в которой геометрический рисунок представляет собой штрих-код.
32. Контактная линза по п. 27, в которой геометрический рисунок представляет собой буквенно-цифровой рисунок.
33. Контактная линза по п. 17, в которой по меньшей мере один элемент линзы расположен за пределами оптической зоны указанной линзы.
RU2018122951A 2015-12-18 2016-12-14 Способ включения элемента линзы и линза, имеющая такой элемент RU2733094C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/975,472 2015-12-18
US14/975,472 US10359643B2 (en) 2015-12-18 2015-12-18 Methods for incorporating lens features and lenses having such features
PCT/US2016/066626 WO2017106322A1 (en) 2015-12-18 2016-12-14 Methods for incorporating lens features and lenses having such features

Publications (3)

Publication Number Publication Date
RU2018122951A RU2018122951A (ru) 2020-01-20
RU2018122951A3 RU2018122951A3 (ru) 2020-01-23
RU2733094C2 true RU2733094C2 (ru) 2020-09-29

Family

ID=57750630

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018122951A RU2733094C2 (ru) 2015-12-18 2016-12-14 Способ включения элемента линзы и линза, имеющая такой элемент

Country Status (9)

Country Link
US (2) US10359643B2 (ru)
EP (1) EP3391130A1 (ru)
JP (1) JP6843865B2 (ru)
KR (1) KR20180095850A (ru)
CN (1) CN108431675B (ru)
CA (1) CA3008806A1 (ru)
RU (1) RU2733094C2 (ru)
SG (1) SG11201803885WA (ru)
WO (1) WO2017106322A1 (ru)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8317505B2 (en) * 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor and lens
US20170216628A1 (en) * 2016-02-03 2017-08-03 University Hospital Ostrava Methods and devices for stereotactic radiosurgery
US11021558B2 (en) 2016-08-05 2021-06-01 Johnson & Johnson Vision Care, Inc. Polymer compositions containing grafted polymeric networks and processes for their preparation and use
EP3451270A1 (en) * 2017-08-31 2019-03-06 Essilor International A method of ordering a new optical article, a method for launching production of a new optical article and an apparatus for ordering a new optical article
US11034789B2 (en) * 2018-01-30 2021-06-15 Johnson & Johnson Vision Care, Inc. Ophthalmic devices containing localized grafted networks and processes for their preparation and use
US10961341B2 (en) 2018-01-30 2021-03-30 Johnson & Johnson Vision Care, Inc. Ophthalmic devices derived from grafted polymeric networks and processes for their preparation and use
US11029534B2 (en) * 2018-10-08 2021-06-08 Johnson & Johnson Vision Care, Inc. Multiple-wavelength lens forming system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701288A (en) * 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
US20080062381A1 (en) * 2006-09-13 2008-03-13 Praful Doshi Tinted lenses and methods of manufacture
US20090174863A1 (en) * 2007-08-21 2009-07-09 Widman Michael F Free form ophthalmic lens
US20090244479A1 (en) * 2008-03-31 2009-10-01 Diana Zanini Tinted silicone ophthalmic devices, processes and polymers used in the preparation of same
WO2011045376A1 (en) * 2009-10-16 2011-04-21 Novartis Ag Method for the simultaneous manufacture of ophthalmic lenses with different parameters on the same production line
US20140055744A1 (en) * 2012-06-29 2014-02-27 Johnson & Johnson Vision Care, Inc. Lens precursor with features for the fabrication of an ophthalmic lens

Family Cites Families (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3658528A (en) 1969-09-22 1972-04-25 Itek Corp Photochemical figuring of optical elements
US3916033A (en) 1971-06-09 1975-10-28 High Voltage Engineering Corp Contact lens
CA993401A (en) 1972-12-04 1976-07-20 Edward W. Merrill Contact lens and method of preparation
US4208362A (en) * 1975-04-21 1980-06-17 Bausch & Lomb Incorporated Shaped body of at least two polymerized materials and method to make same
US4238524A (en) 1978-03-06 1980-12-09 American Optical Corporation Process for identification marking clear plastic articles
US4303701A (en) 1979-12-31 1981-12-01 Buckbee-Mears Company Method of marking plastic lenses
US4495313A (en) 1981-04-30 1985-01-22 Mia Lens Production A/S Preparation of hydrogel for soft contact lens with water displaceable boric acid ester
US4702574A (en) 1985-10-15 1987-10-27 Bausch & Lomb Incorporated Contact lenses having fluorescent colorants and apparatus for making such lenses
US5219497A (en) 1987-10-30 1993-06-15 Innotech, Inc. Method for manufacturing lenses using thin coatings
JPH01163027A (ja) 1987-12-21 1989-06-27 Matsushita Electric Ind Co Ltd 光学素子の成形方法およびその装置
JP2574360B2 (ja) 1988-02-03 1997-01-22 松下電器産業株式会社 プラスチックレンズ成形方法およびその装置
US5182056A (en) 1988-04-18 1993-01-26 3D Systems, Inc. Stereolithography method and apparatus employing various penetration depths
DE4002029A1 (de) 1990-01-24 1991-07-25 Peter Hoefer Verfahren zur herstellung von kontaktlinsen und kontaktlinsenfertigungssystem
AU629725B2 (en) 1990-01-24 1992-10-08 Novartis Ag Contact lens and process for the manufacture thereof
ATE97853T1 (de) 1990-04-24 1993-12-15 Ciba Geigy Ag Verfahren zur herstellung von kontaklinsen.
GB9115011D0 (en) 1991-07-11 1991-08-28 Agricultural Genetics Co Biological control of slugs
US5359173A (en) 1992-09-29 1994-10-25 Bausch & Lomb Incorporated Scanning technique for laser ablation
US5452031A (en) 1993-05-05 1995-09-19 Boston Eye Technology, Inc. Contact lens and a method for manufacturing contact lens
US6800225B1 (en) 1994-07-14 2004-10-05 Novartis Ag Process and device for the manufacture of mouldings and mouldings manufactured in accordance with that process
DK0637491T3 (da) 1993-07-29 1998-07-27 Novartis Ag Fremgangsmåde og apparat til fremstilling af formlegemer.
IT1262175B (it) 1993-08-05 1996-06-19 Danieli Off Mecc Dispositivo di recupero ed evacuazione delle barre corte
US5502518A (en) 1993-09-09 1996-03-26 Scient Optics Inc Asymmetric aspheric contact lens
US5462700A (en) 1993-11-08 1995-10-31 Alliedsignal Inc. Process for making an array of tapered photopolymerized waveguides
US5517260A (en) 1994-03-28 1996-05-14 Vari-Site, Inc. Ophthalmic lens having a progressive multifocal zone and method of manufacturing same
US5730911A (en) 1995-03-03 1998-03-24 Essilor International-Compagnie General D'optique Process for the manufacture of a substrate made of transparent organic glass and substrate thus obtained
US5685420A (en) 1995-03-31 1997-11-11 Johnson & Johnson Vision Products, Inc. Composite packaging arrangement for contact lenses
US5650837A (en) 1995-05-04 1997-07-22 Johnson & Johnson Vision Products, Inc. Rotationally stable contact lens designs
BR9600543A (pt) 1996-02-06 1997-12-30 Samir Jacob Bechara Sistema computadorizado para escolha e adaptação de óculos
CA2248832A1 (en) 1996-03-11 1997-09-18 Innotech, Inc. Optical lens preforms
US6241355B1 (en) 1996-03-29 2001-06-05 Brian A. Barsky Computer aided contact lens design and fabrication using spline surfaces
US5662706A (en) 1996-06-14 1997-09-02 Pbh, Inc. Variable transmissivity annular mask lens for the treatment of optical aberrations
KR20010005696A (ko) 1997-03-25 2001-01-15 한스 루돌프 하우스, 헨리테 브룬너, 베아트리체 귄터 성형방법
IT1291809B1 (it) 1997-03-26 1999-01-21 Eikon Di Chiavacci Daniela E C Procedimento di costruzione di lenti a contatto su calco elettronico della cornea
US5983201A (en) 1997-03-28 1999-11-09 Fay; Pierre N. System and method enabling shopping from home for fitted eyeglass frames
US6302876B1 (en) 1997-05-27 2001-10-16 Visx Corporation Systems and methods for imaging corneal profiles
AR013512A1 (es) 1997-09-24 2000-12-27 Novartis Ag Metodo para fabricar una lente de contacto astigmatica
WO1999040526A1 (fr) 1998-02-03 1999-08-12 Tsuyoshi Saigo Systeme de simulation de port de lunettes
US6217171B1 (en) 1998-05-26 2001-04-17 Novartis Ag Composite ophthamic lens
WO2000008516A1 (en) 1998-08-06 2000-02-17 Lett John B W Multifocal aspheric lens
US6598975B2 (en) 1998-08-19 2003-07-29 Alcon, Inc. Apparatus and method for measuring vision defects of a human eye
US6340229B1 (en) 1998-09-08 2002-01-22 Scientific Optics, Inc. Soft contact lens
DE69909136T2 (de) 1998-10-12 2004-05-06 Dicon A/S Rapid-prototyping-vorrichtung und rapid-prototyping-methode
US20030128336A1 (en) 2001-12-28 2003-07-10 Jethmalani Jagdish M. Customized lenses
US6419873B1 (en) 1999-03-19 2002-07-16 Q2100, Inc. Plastic lens systems, compositions, and methods
US6997428B1 (en) 1999-03-31 2006-02-14 Novartis Ag Contact lens mold
WO2001002881A1 (en) 1999-07-01 2001-01-11 Bausch & Lomb Incorporated Process for removing extractables from polymeric contact lenses
US6305802B1 (en) 1999-08-11 2001-10-23 Johnson & Johnson Vision Products, Inc. System and method of integrating corneal topographic data and ocular wavefront data with primary ametropia measurements to create a soft contact lens design
CN100473371C (zh) 1999-08-11 2009-04-01 阿斯科莱平医疗技术股份公司 用于对折射性视力缺陷进行矫正的装置及其矫正元件的制作方法
US6200646B1 (en) 1999-08-25 2001-03-13 Spectra Group Limited, Inc. Method for forming polymeric patterns, relief images and colored polymeric bodies using digital light processing technology
US20020024631A1 (en) 1999-08-31 2002-02-28 Roffman Jeffrey H. Rotationally stabilized contact lenses
US6086204A (en) 1999-09-20 2000-07-11 Magnante; Peter C. Methods and devices to design and fabricate surfaces on contact lenses and on corneal tissue that correct the eye's optical aberrations
MXPA02004157A (es) 1999-11-01 2005-02-17 Doshi Praful Lentes matizados y su metodo de manufactura.
DE10006896A1 (de) 2000-02-16 2001-08-30 Wavelight Laser Technologie Ag Verfahren zum Herstellen einer künstlichen okularen Linse
US6394999B1 (en) 2000-03-13 2002-05-28 Memphis Eye & Cataract Associates Ambulatory Surgery Center Laser eye surgery system using wavefront sensor analysis to control digital micromirror device (DMD) mirror patterns
US6233102B1 (en) 2000-03-21 2001-05-15 Veigh E. Hogan, Jr. Point-of-purchase display
AU2001252985A1 (en) 2000-03-31 2001-10-15 Bausch And Lomb Incorporated Methods and devices to control polymerization
JP2001290978A (ja) 2000-04-04 2001-10-19 Seiko Epson Corp 眼鏡レンズの発注システム
JP2002078681A (ja) 2000-06-23 2002-03-19 Vision Megane:Kk 無人レンズ情報発信方法およびその装置
US6827325B2 (en) 2000-08-28 2004-12-07 Johnson & Johnson Vision Care, Inc. Shape memory polymer or alloy ophthalmic lens mold and methods of forming ophthalmic products
US6925593B1 (en) 2000-09-08 2005-08-02 Corel Corporation Method and apparatus for transferring data during automated data processing
CA2421731C (en) 2000-09-11 2011-11-01 Research Triangle Institute Process for desulfurizing hydrocarbon fuels and fuel components
US6499843B1 (en) 2000-09-13 2002-12-31 Bausch & Lomb Incorporated Customized vision correction method and business
US6626534B1 (en) 2000-09-29 2003-09-30 Dimartino Robert B. Contact lens stabilization design system
JP2004510525A (ja) 2000-10-10 2004-04-08 ユニバーシティー オブ ロチェスター 波面収差データに基づく眼球屈折度の測定方法
US7809601B2 (en) 2000-10-18 2010-10-05 Johnson & Johnson Consumer Companies Intelligent performance-based product recommendation system
US6746120B2 (en) 2000-10-30 2004-06-08 Novartis Ag Method and system for ordering customized cosmetic contact lenses
US6595639B1 (en) 2000-11-10 2003-07-22 Ocular Sciences, Inc. Junctionless ophthalmic lenses and methods for making same
CN1476574A (zh) 2000-11-24 2004-02-18 株式会社威炯眼镜 通过网络的眼镜购销售系统及其方法
US7293871B2 (en) 2000-11-27 2007-11-13 Ophthonix, Inc. Apparatus and method of correcting higher-order aberrations of the human eye
US6491392B2 (en) 2000-12-08 2002-12-10 Johnson & Johnson Vison Care, Inc. Dynamically stabilized contact lenses
US6547391B2 (en) 2000-12-08 2003-04-15 Johnson & Johnson Vision Care, Inc. Ocular aberration correction taking into account fluctuations due to biophysical rhythms
US7232220B2 (en) 2001-03-01 2007-06-19 Richard Franz System for vision examination utilizing telemedicine
CN100353907C (zh) 2001-04-18 2007-12-12 博士伦公司 获得客观式显然验光的装置
US7111938B2 (en) 2001-04-27 2006-09-26 Novartis Ag Automatic lens design and manufacturing system
JP2002357796A (ja) 2001-06-01 2002-12-13 San Contact Lens:Kk コンタクトレンズ受注製造システム
US7217375B2 (en) 2001-06-04 2007-05-15 Ophthonix, Inc. Apparatus and method of fabricating a compensating element for wavefront correction using spatially localized curing of resin mixtures
US6609794B2 (en) 2001-06-05 2003-08-26 Adaptive Optics Associates, Inc. Method of treating the human eye with a wavefront sensor-based ophthalmic instrument
WO2003005170A2 (en) 2001-07-06 2003-01-16 Digital Vision, Inc. Electronic ordering system, such as for use by eye care professionals
AUPR649601A0 (en) 2001-07-20 2001-08-09 Redfern Polymer Optics Pty Ltd Casting preforms for optical fibres
WO2003013832A1 (en) 2001-08-09 2003-02-20 Johnson & Johnson Vision Care, Inc. Apparatus and method for handling lens carriers
US7008570B2 (en) 2001-08-09 2006-03-07 Stephen Pegram Method and apparatus for contact lens mold assembly
US6709108B2 (en) 2001-08-31 2004-03-23 Adaptive Optics Associates, Inc. Ophthalmic instrument with adaptive optic subsystem that measures aberrations (including higher order aberrations) of a human eye and that provides a view of compensation of such aberrations to the human eye
US20030083890A1 (en) 2001-11-01 2003-05-01 Duncan Gregory Scott Automated pack out
US7368072B2 (en) 2001-12-10 2008-05-06 Ppg Industries Ohio, Inc. Photochromic contact lenses and methods of manufacturing
AUPR949101A0 (en) 2001-12-14 2002-01-24 Sola International Holdings Ltd Method for prescribing and/or dispensing ophthalmic lenses
US6851804B2 (en) 2001-12-28 2005-02-08 Jagdish M. Jethmalani Readjustable optical elements
AU2003202466A1 (en) 2002-01-04 2003-07-24 Vision Optic Co., Ltd. Spectacle and contact lens selecting system and method thereof
JP3731003B2 (ja) 2002-02-01 2006-01-05 株式会社メニコン コンタクトレンズの提供および診察システム
US6935743B2 (en) 2002-02-06 2005-08-30 John H. Shadduck Adaptive optic lens and method of making
JP2005517802A (ja) 2002-02-15 2005-06-16 ゼットエムエス エルエルシー 生物医学用途のための重合方法および材料
US20060100408A1 (en) 2002-03-11 2006-05-11 Powell P M Method for forming contact lenses comprising therapeutic agents
US6846892B2 (en) 2002-03-11 2005-01-25 Johnson & Johnson Vision Care, Inc. Low polydispersity poly-HEMA compositions
US7130835B2 (en) 2002-03-28 2006-10-31 Bausch & Lomb Incorporated System and method for predictive ophthalmic correction
JP2003295134A (ja) 2002-04-08 2003-10-15 Hoya Corp レンズ加工方法、レンズ加工装置、及び情報記録媒体
JP3944838B2 (ja) 2002-05-08 2007-07-18 富士通株式会社 半導体装置及びその製造方法
US7291294B2 (en) 2002-07-11 2007-11-06 Carole Lewis Stolpe Iris assembly for a prosthetic eye device
ATE409885T1 (de) 2002-07-24 2008-10-15 Novartis Ag Verfahren zur herstellung einer kontaktlinse
AU2003260369A1 (en) 2002-08-06 2004-02-25 Novartis Ag Contact lenses
US6966649B2 (en) 2002-08-12 2005-11-22 John H Shadduck Adaptive optic lens system and method of use
US6863848B2 (en) 2002-08-30 2005-03-08 Signet Armorlite, Inc. Methods for preparing composite photochromic ophthalmic lenses
AU2003263085A1 (en) 2002-09-06 2004-03-29 Quarter Lambda Technologies, Inc. Hybrid contact lens system and method
US7163292B2 (en) 2002-09-06 2007-01-16 Synergeyes, Inc. Hybrid contact lens system and method
US7235195B2 (en) 2002-09-06 2007-06-26 Novartis Ag Method for making opthalmic devices
US7195354B2 (en) 2002-10-04 2007-03-27 The Regents Of The University Of California Adaptive ophthalmologic system
AU2003282671B8 (en) 2002-10-28 2010-05-27 Johnson & Johnson Vision Care, Inc. Lithographic method for forming mold inserts and molds
JP4662538B2 (ja) 2002-11-20 2011-03-30 パワービジョン,インコーポレイテッド 力の調節のためのレンズシステムおよび方法
JP4861009B2 (ja) 2002-12-06 2012-01-25 ヴィズイクス・インコーポレーテッド 患者のデータを使用した老眼矯正
US20040114101A1 (en) 2002-12-13 2004-06-17 Ocular Sciences, Inc. Contact lenses with color shifting properties
US20040119174A1 (en) 2002-12-19 2004-06-24 Hofmann Gregory J. Method for forming ophthalmic lenses using reusable molds
US6842223B2 (en) 2003-04-11 2005-01-11 Nikon Precision Inc. Enhanced illuminator for use in photolithographic systems
US7063422B2 (en) 2003-04-16 2006-06-20 Novartis Ag Multifocal ophthalmic lens
US7052133B2 (en) 2003-05-21 2006-05-30 Novartis Ag Contact lenses
BRPI0411193A (pt) 2003-05-30 2006-07-25 Scient Optics Inc método para fabricar uma lente óptica para melhorar o ajuste no olho humano e lente de contato com periferia conformada
US20040263779A1 (en) 2003-06-12 2004-12-30 Visx, Inc. Hartmann-Shack wavefront measurement
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
DE10329165A1 (de) 2003-06-27 2005-01-13 Carl Zeiss Meditec Ag Vorrichtung zur Bestimmung der Fehlsichtigkeit eines optischen Systems
US20070103639A1 (en) 2003-07-11 2007-05-10 Koninklijke Philips Electronics N.V. Method of manufacturing a mould for producing an optical surface, a method of producing a contact lens and a device for use with these methods
WO2005007386A2 (en) 2003-07-17 2005-01-27 Koninklijke Philips Electronics N.V. Method, device and preform for three-dimensionally shaping a plate like object
DE10333794A1 (de) 2003-07-24 2005-03-03 Technovision Gmbh Verfahren und Vorrichtung zur Online-Kontaktlinsenbewertung
EP1657041B1 (en) 2003-08-19 2008-05-14 Menicon Co., Ltd. Process for producing contact lens with marking and contact lens with marking obtained thereby
US20050041203A1 (en) 2003-08-20 2005-02-24 Lindacher Joseph Michael Ophthalmic lens with optimal power profile
US20050056954A1 (en) 2003-09-12 2005-03-17 Devlin Brian Gerrard Method for making contact lenses
US20050074616A1 (en) 2003-10-02 2005-04-07 John Harchanko Lithographic method for forming mold inserts and molds
WO2005047938A2 (en) 2003-11-10 2005-05-26 Visx, Incorporated Calibration of a mearement device
US7080906B2 (en) 2003-11-12 2006-07-25 Novartis Ag Translating bifocal wear modality
US20050104240A1 (en) 2003-11-14 2005-05-19 Jethmalani Jagdish M. Method of manufacturing an optical lens
US7018039B2 (en) 2003-11-14 2006-03-28 Synergeyes,Inc. Contact lens
US20050105044A1 (en) 2003-11-14 2005-05-19 Laurence Warden Lensometers and wavefront sensors and methods of measuring aberration
US7234810B2 (en) 2003-11-14 2007-06-26 Ophthonix, Inc. System for manufacturing an optical lens
JP4464726B2 (ja) 2004-03-30 2010-05-19 株式会社トプコン 眼科装置
US8147728B2 (en) 2004-04-01 2012-04-03 Novartis Ag Pad transfer printing of silicone hydrogel lenses using colored ink
US20050264756A1 (en) 2004-05-14 2005-12-01 Powervision, Inc. Custom contact lens molding system and methods
CN1972643A (zh) 2004-05-20 2007-05-30 库柏维景公司 用于提高视力的角膜覆盖物和波前像差矫正
ES2253078B1 (es) 2004-06-11 2007-07-16 Consejo Superior De Investigaciones Cientificas. Procedimiento para evitar la induccion de aberraciones en sistemas de cirugia refractiva laser.
US9248614B2 (en) 2004-06-30 2016-02-02 Novartis Ag Method for lathing silicone hydrogel lenses
SG155169A1 (en) 2004-07-30 2009-09-30 Novartis Ag Method of creating ophthalmic lenses using modulated energy
EP1784681A2 (en) 2004-08-04 2007-05-16 Novartis AG Soft contact lenses with stiffening rib features therein
US20060055071A1 (en) 2004-08-18 2006-03-16 Stephen Kendig Using higher order mathematical functions to create asymmetric molding back pieces
US7255438B2 (en) 2004-09-30 2007-08-14 Novartis Ag Pad transfer printing method for making colored contact lenses
BRPI0517017A (pt) 2004-10-25 2008-09-30 Advanced Medical Optics Inc lente oftálmica com múltiplas placas de fase
US20080143960A1 (en) 2004-11-22 2008-06-19 Macrae Scott M Apparatus And Method For Simulating Vision Correction
US8597282B2 (en) 2005-01-13 2013-12-03 Amo Manufacturing Usa, Llc Database system for centralized clinical and research applications with data from wavefront aberrometers
US20060192310A1 (en) 2005-02-23 2006-08-31 Lindacher Joseph M Method of manufacturing ophthalmic lenses using modulated energy
US7401922B2 (en) 2005-04-13 2008-07-22 Synergeyes, Inc. Method and apparatus for reducing or eliminating the progression of myopia
EP1719612A1 (en) 2005-05-03 2006-11-08 Vision Dynamics Holding B.V. Method of and apparatus for moulding optical components
US7224539B2 (en) 2005-05-13 2007-05-29 Schaack David F Providing optical systems having improved properties to users of catalog (stock) lenses
US20060264917A1 (en) 2005-05-20 2006-11-23 Visx, Incorporated Scleral lenses for custom optic evaluation and visual performance improvement
GB2426812B (en) 2005-06-03 2009-11-25 Contact Lens Prec Lab Ltd Improvements in or relating to contact lenses
US7216978B2 (en) 2005-06-08 2007-05-15 Johnson & Johnson Vision Care, Inc. Method for evaluating eyelid movement and contact lens position
US7384146B2 (en) 2005-06-28 2008-06-10 Carestream Health, Inc. Health care kiosk having automated diagnostic eye examination and a fulfillment remedy based thereon
ATE480181T1 (de) 2005-08-18 2010-09-15 Imagine Eyes Verfahren und system zur korrektur von abweichungen des auges für ein ophthalmisches instrument
US7296890B2 (en) 2005-10-25 2007-11-20 Truform Optics Contact lens with controlled shape
JP5122470B2 (ja) 2005-10-28 2013-01-16 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 高次収差矯正を組み込む老眼の矯正に有用な眼用レンズ
TWI262325B (en) 2005-11-16 2006-09-21 Ind Tech Res Inst Eye aberration measurement and calibrating equipment and its method
US7172285B1 (en) 2005-12-09 2007-02-06 Bausch & Lomb Incorporated Contact lens with high-order compensation for non-axisymmetric structure
ES2332461T3 (es) 2005-12-13 2010-02-05 Sauflon Cl Limited Produccion de lentillas.
WO2007068453A2 (en) 2005-12-14 2007-06-21 Novartis Ag Method for preparing silicone hydrogels
AR059360A1 (es) 2006-02-08 2008-03-26 Johnson & Johnson Vision Care Auxiliares de liberacion para liberar lentes oftalmicas de hidrogel de silicona
US8702816B2 (en) 2006-03-03 2014-04-22 Michael D. Conte Compositions and methods for reversibly dyeing soft contact lenses
US7520608B2 (en) 2006-03-20 2009-04-21 High Performance Optics, Inc. Color balanced ophthalmic system with selective light inhibition
US7431454B2 (en) 2006-03-27 2008-10-07 Johnson & Johnson Vision Care, Inc. Methods for designing tinted contact lenses
US7623295B2 (en) 2006-04-18 2009-11-24 Anton Sabeta Optical device characterization
DE102006019964C5 (de) 2006-04-28 2021-08-26 Envisiontec Gmbh Vorrichtung und Verfahren zur Herstellung eines dreidimensionalen Objekts mittels Maskenbelichtung
US20070284770A1 (en) 2006-06-07 2007-12-13 Ansell Scott F Decreased lens delamination during ophthalmic lens manufacture
US8691100B2 (en) 2006-06-09 2014-04-08 Taiwan Semiconductor Manufacturing Co. Ltd. Concave and convex micromirrors and methods of making the same
AR062067A1 (es) 2006-07-17 2008-10-15 Novartis Ag Lentes de contacto toricas con perfil de potencia optica controlado
TWI309881B (en) 2006-07-21 2009-05-11 Siliconware Precision Industries Co Ltd Semiconductor package with heat-dissipating structure
US8003024B2 (en) 2006-09-18 2011-08-23 Coopervision International Holding Company, Lp Polyolefin contact lens molds and uses thereof
US7875217B2 (en) 2006-09-29 2011-01-25 Johnson & Johnson Vision Care, Inc. Excess polymer ring removal during ophthalmic lens manufacture
US7862169B2 (en) 2006-09-29 2011-01-04 Johnson & Johnson Vision Care, Inc. Contact lenses and methods for their design
US7620147B2 (en) 2006-12-13 2009-11-17 Oraya Therapeutics, Inc. Orthovoltage radiotherapy
WO2008057990A2 (en) 2006-11-03 2008-05-15 The Lagado Corporation Optical devices with reduced chromatic aberration
JP5669396B2 (ja) 2006-12-13 2015-02-12 ノバルティス アーゲー 化学線硬化性シリコーンヒドロゲルコポリマーおよびその使用
JP5534817B2 (ja) 2006-12-19 2014-07-02 ノバルティス アーゲー プレミアム視力眼科用レンズ
US7562982B2 (en) 2006-12-31 2009-07-21 Novartis Ag Generalized presbyopic correction methodology
US20080179770A1 (en) 2007-01-31 2008-07-31 Rooney Thomas R Free form ophthalmic lens mold
US20080288369A1 (en) 2007-02-26 2008-11-20 Hunter Reginald W Next Generation Eyewear Retailing
EP2146621B1 (en) 2007-05-24 2019-03-20 AMO Development, LLC Accommodation compensation systems and methods
US8403919B2 (en) 2007-06-05 2013-03-26 Alcon Refractivehorizons, Inc. Nomogram computation and application system and method for refractive laser surgery
US7777872B2 (en) 2007-07-31 2010-08-17 Alcon Research, Ltd. Method of measuring diffractive lenses
US8318055B2 (en) * 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Methods for formation of an ophthalmic lens precursor and lens
US8317505B2 (en) 2007-08-21 2012-11-27 Johnson & Johnson Vision Care, Inc. Apparatus for formation of an ophthalmic lens precursor and lens
US8313828B2 (en) 2008-08-20 2012-11-20 Johnson & Johnson Vision Care, Inc. Ophthalmic lens precursor and lens
US8636357B2 (en) 2009-07-31 2014-01-28 Johnson & Johnson Vision Care, Inc. Custom contact lenses with fiducial markings
GB2485015B (en) * 2009-09-22 2012-12-05 Coopervision Int Holding Co Lp Wettable hydrogel materials for use in ophthalmic applications and methods
US8807076B2 (en) 2010-03-12 2014-08-19 Johnson & Johnson Vision Care, Inc. Apparatus for vapor phase processing ophthalmic devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4701288A (en) * 1985-06-05 1987-10-20 Bausch & Lomb Incorporated Method of making articles of dissimilar polymer compositions
US20080062381A1 (en) * 2006-09-13 2008-03-13 Praful Doshi Tinted lenses and methods of manufacture
US20090174863A1 (en) * 2007-08-21 2009-07-09 Widman Michael F Free form ophthalmic lens
US20090244479A1 (en) * 2008-03-31 2009-10-01 Diana Zanini Tinted silicone ophthalmic devices, processes and polymers used in the preparation of same
WO2011045376A1 (en) * 2009-10-16 2011-04-21 Novartis Ag Method for the simultaneous manufacture of ophthalmic lenses with different parameters on the same production line
US20140055744A1 (en) * 2012-06-29 2014-02-27 Johnson & Johnson Vision Care, Inc. Lens precursor with features for the fabrication of an ophthalmic lens

Also Published As

Publication number Publication date
CA3008806A1 (en) 2017-06-22
CN108431675A (zh) 2018-08-21
US10359643B2 (en) 2019-07-23
JP6843865B2 (ja) 2021-03-17
US10401647B2 (en) 2019-09-03
SG11201803885WA (en) 2018-07-30
KR20180095850A (ko) 2018-08-28
RU2018122951A3 (ru) 2020-01-23
US20170219845A1 (en) 2017-08-03
US20170176771A1 (en) 2017-06-22
RU2018122951A (ru) 2020-01-20
JP2019500653A (ja) 2019-01-10
EP3391130A1 (en) 2018-10-24
WO2017106322A1 (en) 2017-06-22
CN108431675B (zh) 2020-09-08

Similar Documents

Publication Publication Date Title
RU2733094C2 (ru) Способ включения элемента линзы и линза, имеющая такой элемент
US20230382064A1 (en) Contact lenses for reducing myopia and methods for making the same
CA2871234C (en) Methods for formation of an ophthalmic lens with an insert utilizing voxel-based lithography techniques
JP5567116B2 (ja) 屈折率変化を有する自由形成レンズ
CN110121421A (zh) 光学器件的三维打印
JP6377376B2 (ja) レンズ部品をレンズ前駆体上に空間的に位置決めするための方法及び装置
KR20210069067A (ko) 다중 파장 렌즈 형성 시스템 및 방법
US11789181B1 (en) Polymeric additive manufacturing and ophthalmic lenses formed thereby
EP4349579A1 (en) Method for manufacturing an optical device comprising a microstructure, manufacturing system to carry out such a method, and optical device thus obtained