RU2732395C2 - Труба и способ изготовления трубы - Google Patents
Труба и способ изготовления трубы Download PDFInfo
- Publication number
- RU2732395C2 RU2732395C2 RU2018140820A RU2018140820A RU2732395C2 RU 2732395 C2 RU2732395 C2 RU 2732395C2 RU 2018140820 A RU2018140820 A RU 2018140820A RU 2018140820 A RU2018140820 A RU 2018140820A RU 2732395 C2 RU2732395 C2 RU 2732395C2
- Authority
- RU
- Russia
- Prior art keywords
- pipe
- chromium
- aluminum alloy
- iron
- temperature iron
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 56
- 239000000956 alloy Substances 0.000 claims abstract description 56
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000003466 welding Methods 0.000 claims abstract description 46
- -1 iron-chromium-aluminum Chemical compound 0.000 claims abstract description 45
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 41
- 238000010438 heat treatment Methods 0.000 claims abstract description 22
- 239000012535 impurity Substances 0.000 claims abstract description 13
- 238000005275 alloying Methods 0.000 claims abstract description 9
- 238000000137 annealing Methods 0.000 claims abstract description 9
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 238000007493 shaping process Methods 0.000 claims abstract description 6
- 238000004804 winding Methods 0.000 claims abstract description 3
- 239000011261 inert gas Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 9
- 238000005304 joining Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000005485 electric heating Methods 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 230000003647 oxidation Effects 0.000 abstract description 10
- 238000007254 oxidation reaction Methods 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 7
- 238000005272 metallurgy Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 241001016380 Reseda luteola Species 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 16
- 229910052799 carbon Inorganic materials 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 229910052782 aluminium Inorganic materials 0.000 description 11
- 239000011651 chromium Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 239000011572 manganese Substances 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 229910000953 kanthal Inorganic materials 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 239000010955 niobium Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 229910052727 yttrium Inorganic materials 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052735 hafnium Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052726 zirconium Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 238000004881 precipitation hardening Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005255 carburizing Methods 0.000 description 2
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- 229910052746 lanthanum Inorganic materials 0.000 description 2
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/12—Making tubes or metal hoses with helically arranged seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/12—Making tubes or metal hoses with helically arranged seams
- B21C37/122—Making tubes or metal hoses with helically arranged seams with welded or soldered seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
- B23K26/30—Seam welding of three-dimensional seams
- B23K26/302—Seam welding of three-dimensional seams of helicoidal seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/032—Seam welding; Backing means; Inserts for three-dimensional seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/02—Seam welding; Backing means; Inserts
- B23K9/032—Seam welding; Backing means; Inserts for three-dimensional seams
- B23K9/0325—Seam welding; Backing means; Inserts for three-dimensional seams helicoidal seams
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Articles (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
- Arc Welding In General (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Изобретение относится к области металлургии, в частности к трубе из высокотемпературного сплава железо-хром-алюминий, и может быть использовано в нагревательных устройствах. Труба (1) из высокотемпературного сплава железо-хром-алюминий, продолжающаяся вдоль продольной оси (C), сформирована из непрерывной полосы (3) из сплава железо-хром-алюминий, при этом труба (1) содержит спиральный сварной шов (2), причем труба имеет почти постоянный внутренний диаметр (d) или постоянный внутренний диаметр (d) вдоль продольной оси (C). Высокотемпературный сплав железо-хром-алюминий содержит, мас.%: Cr от 5 до 2, Al от 2,5 до 8, Mo от 0 до 5, остальное – Fe и обычно встречающиеся примеси и, при необходимости, другие преднамеренно добавленные легирующие элементы. Способ изготовления трубы (1) включает этапы: подачи непрерывной полосы (3) из высокотемпературного сплава железо-хром-алюминий к месту (4) фасонирования трубы, спиральной намотки полосы (3) в месте (4) фасонирования трубы таким образом, чтобы длинные края (6, 7) полосы (3) примыкали друг к другу и формировалась вращающаяся труба (1), продвигающаяся в направлении, параллельном к ее продольной оси (C), непрерывного соединения упомянутых примыкающих длинных краев (6, 7) с помощью процесса сварки непосредственно при формировании трубы (1) из высокотемпературного сплава железо-хром-алюминий, посредством чего получают сваренную трубу (1), содержащую спиральный сварной шов (2), и отжига трубы (1). Изготовленная труба имеет большой диаметр и/или малую толщину стенки, а также характеризуется высокой стойкостью к окислению. 3 н. и 14 з.п. ф-лы, 5 ил., 1 табл., 1 пр.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к трубе из высокотемпературного сплава железо-хром-алюминий в соответствии с преамбулой п. 1 формулы изобретения и к способу изготовления такой трубы в соответствии с преамбулой независимого пункта способа в формуле изобретения. В частности, но не исключительно, настоящее изобретение относится к упомянутой трубе для использования в нагревательных приложениях и/или нагревательных устройствах, таких как радиационная труба, муфельная труба, труба для защиты термопары, ретортная труба, печная труба и т.д.
ПРЕДПОСЫЛКИ К СОЗДАНИЮ ИЗОБРЕТЕНИЯ И УРОВЕНЬ ТЕХНИКИ
В нагревательных приложениях, таких как нагреваемые газом или электричеством печи и в нагревательные устройства, обычно используются трубы из материала, имеющего стойкость к высокой температуре, высокую коррозионную стойкость и хорошие свойства термического удара. Такие трубы включают в себя, например, керамические трубы, трубы из карбида кремния и трубы на основе сплава никель-хром (NiCr). В окисляющей среде при рабочих температурах выше 1100°C трубы, сделанные из сплавов железо-хром-алюминий (FeCrAl), предлагают несколько преимуществ по сравнению с другими материалами для труб, включая срок службы в окисляющей среде и максимальную рабочую температуру, которые намного превышают аналогичные значения для большинства других материалов, таких как сплавы, образующие оксид хрома. Это происходит главным образом благодаря способности к формированию плотной и прочно прилипающей пленки глинозема, которая защищает материал из FeCrAl от коррозии и действия атмосферы. Примерами таких сплавов FeCrAl являются коммерчески доступные сплавы, продаваемые под торговыми марками Kanthal® APM, Kanthal® APMT и Kanthal® AF.
Трубы из сплава FeCrAl могут производиться как бесшовные трубы посредством экструдирования и по сути обеспечивать превосходную эффективность и срок службы по сравнению с большинством других альтернативных металлических высокотемпературных труб, в частности при науглероживающих условиях. Однако процесс изготовления таких бесшовных труб является относительно дорогим и сложным, и получаемые бесшовные трубы поэтому являются дорогими по сравнению с другими трубами, используемыми в данной области техники. Кроме того, имеются ограничения в производственных процессах на максимальный диаметр производимой трубы, а также на минимальную толщину ее стенки.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
С учетом вышеупомянутых проблем желательно предложить трубу из высокотемпературного сплава FeCrAl, которая была бы менее дорогостоящей и более легкой в производстве, и которая также могла бы иметь большой диаметр и/или малую толщину стенки, но которая все еще имела бы превосходные свойства с точки зрения стойкости к окислению и коррозионной стойкости, и за счет этого длительный срок службы.
Это достигается посредством определенной в начале трубы из высокотемпературного сплава FeCrAl, которая характеризуется тем, что она сформирована из непрерывной полосы из сплава железо-хром-алюминий, а также тем, что она содержит спиральный сварной шов. Получаемая труба из высокотемпературного сплава железо-хром-алюминий таким образом будет иметь стойкости к окислению и коррозии, практически аналогичные свойствам соответствующей бесшовной трубы, произведенной из аналогичного материала. Кроме того, поскольку предлагаемая труба может производиться с помощью спиральной сварки из непрерывной полосы высокотемпературного материала FeCrAl вместо экструдирования, эта труба является менее дорогостоящей и более легкой в производстве, и может также иметь больший диаметр и/или более тонкую стенку. Посредством предложенной трубы могут быть достигнуты превосходная стойкость к окислению и коррозии по конкурентоспособной цене. В соответствии с настоящим изобретением термин «высокая температура» означает температуру выше 300°C, например выше 400°C, такую как выше 500°C.
Предложенная сварная труба из высокотемпературного сплава FeCrAl является подходящей для использования в нагревательных приложениях, например для использования в качестве радиационной трубы в электрическом нагревательном устройстве, имеющем нагревательный элемент в форме нагревательной проволоки, таком как муфельная труба, защитной трубы для термопары, ретортной трубы, печной трубы и т.д.
В соответствии с одним вариантом осуществления труба из высокотемпературного сплава FeCrAl имеет постоянный внутренний диаметр или почти постоянный внутренний диаметр (d) вдоль продольной оси. Термин «почти постоянный диаметр» означает, что внутренний диаметр трубы из высокотемпературного сплава FeCrAl отличается меньше чем на 10% от одного конца до другого конца этой трубы.
В соответствии с одним вариантом осуществления эта труба имеет толщину стенки, составляющую 0,5-7,5% от внутреннего диаметра трубы из высокотемпературного сплава FeCrAl. Таким образом, толщина стенки может быть меньше или равна толщине стенки соответствующей экструдированной трубы из высокотемпературного сплава FeCrAl, которая обычно составляет приблизительно 5% от внутреннего диаметра трубы. Труба из высокотемпературного сплава FeCrAl может тем самым использоваться для замены экструдированной бесшовной трубы и достижения аналогичных результатов.
В соответствии с одним вариантом осуществления труба из высокотемпературного сплава FeCrAl имеет толщину стенки, составляющую 0,5-4,5% от ее внутреннего диаметра. Эта толщина является более тонкой, чем толщина стенки экструдированной трубы. Относительно тонкие стенки трубы поглощают меньше тепловой энергии по сравнению с более толстыми стенками, и тем самым обеспечивают более быстрое нагревание трубы и более низкие тепловые потери. Следовательно, такая малая толщина стенки является выгодной для нагревательных приложений. Для трубы, имеющей внутренний диаметр приблизительно 100 мм, который является обычным размером для радиационных труб, используемых в нагревательных приложениях, например в сменных электрических нагревательных элементах, может быть достигнута толщина стенки например 2 мм. В одном варианте осуществления труба имеет толщину стенки 0,5-3,5% от внутреннего диаметра трубы.
В соответствии с одним вариантом осуществления спиральный сварной шов проходит под углом подъема винтовой линии 1-89° к продольной оси трубы. Обычно увеличение угла подъема винтовой линии означает, что больший диаметр трубы из высокотемпературного сплава FeCrAl может быть достигнут при той же самой ширине полосы, используемой для изготовления трубы.
В соответствии с одним вариантом осуществления спиральный сварной шов проходит под углом подъема винтовой линии 25-75° относительно продольной оси трубы из высокотемпературного сплава FeCrAl.
В соответствии с одним вариантом осуществления спиральный сварной шов проходит под углом подъема винтовой линии 40-70° к продольной оси трубы. Это типичный интервал угла подъема винтовой линии для труб, имеющих диаметр 70-500 мм, производимых из полосы, имеющей ширину 160-540 мм. Для труб, производимых из полосы с шириной 200 мм, могут быть например произведены трубы, у которых спиральный сварной шов проходит под углом подъема винтовой линии 47-54°, с наружными диаметрами в диапазоне 93-108 мм.
В соответствии с одним вариантом осуществления высокотемпературный сплав железо-хром-алюминий содержит:
от 5 мас.% до 25 мас.% Cr,
от 2,5 мас.% до 8 мас.% Al,
от 0 мас.% до 5 мас.% Mo,
с остатком из Fe и обычно встречающимися примесями, а также, при необходимости, другими преднамеренно добавленными легирующими элементами.
В соответствии с одним вариантом осуществления высокотемпературный сплав железо-хром-алюминий содержит:
от 9 мас.% до 25 мас.% Cr,
от 2,5 мас.% до 8 мас.% Al,
от 0 мас.% до 5 мас.% Mo,
с остатком из Fe и обычно встречающимися примесями, а также, при необходимости, другими преднамеренно добавленными легирующими элементами. Этот сплав имеет превосходную стойкость к окислению и коррозии.
Другие преднамеренно добавляемые легирующие элементы могут выбираться из Y, Zr, Hf, Ta, Th, Ti, Si, Mn, B, Sc, Ce, La, W, Nb, V, C, N, O, P и S, причем некоторые из этих элементов могут также присутствовать в форме обычно встречающихся примесей. Примерами подходящих сплавов являются сплав железо-хром-алюминий, продаваемый под торговыми марками Kanthal® APM, Kanthal® APMT и Kanthal® AF.
Далее будут более подробно описаны составные части высокотемпературного сплава FeCrAl.
Хром (Cr)
Хром способствует формированию слоя Al2O3 на трубе из высокотемпературного сплава FeCrAl посредством так называемого эффекта третьего элемента, то есть за счет формирования оксида хрома на переходной стадии окисления. Хром должен присутствовать в сплаве в количестве по меньшей мере 9 мас.%. Однако слишком большое количество Cr способствует формированию интерметаллических фаз в трубе, поэтому максимальное количество Cr составляет 25 мас.%. В соответствии с одним вариантом осуществления, количество Cr составляет 9-25 мас.%. В соответствии с дополнительными вариантами осуществления, в зависимости от применения, содержание Cr составляет 11-17 мас.% или 5-15 мас.%, или 20,5-25 мас.%, или 20,5-24 мас.%.
Алюминий (Al)
Алюминий является важным элементом в высокотемпературном сплаве, поскольку алюминий под воздействием кислорода при высокой температуре будет образовывать плотный и тонкий оксид Al2O3, который будет защищать нижележащую поверхность сплава от дальнейшего окисления. Количество алюминия должно составлять по меньшей мере 2,5 мас.% для того, чтобы гарантировать образование слоя Al2O3, а также достаточное количество алюминия для того, чтобы восстанавливать слой Al2O3 при его повреждении. Однако алюминий оказывает негативное воздействие на формуемость сплава, и количество алюминия не должно превышать 8 мас.% в определенном выше или ниже сплаве. Таким образом, содержание алюминия составляет 2,5-8 мас.%, например 3-7 мас.%, или 3-5 мас.%, или 4-6 мас.%, или 5-7 мас.%.
Железо (Fe) и неизбежные примеси составляют остаток. Термин «неизбежные примеси» означает элементы, которые не добавляются целенаправленно, и которые не оказывают никакого влияния на свойства сплава.
Высокотемпературный сплав FeCrAl может также содержать следующие элементы:
Молибден (Mo)
Молибден оказывает положительное влияние на прочность в горячем состоянии высокотемпературного сплава FeCrAl в количестве вплоть до 4,0 мас.%, например 1,0-4,0 мас.%.
Кремний (Si)
Кремний может присутствовать в качестве примеси или он может быть целенаправленно добавлен к высокотемпературному сплаву FeCrAl. Если он является примесью, его количество может составлять не более чем 0,7 мас.%. Если он добавляется целенаправленно, его количество может составлять 0,1-3 мас.%, или 0,5-3 мас.%, или 0-0,70 мас.%, или 0,10-0,70 мас.%.
Марганец (Mn)
Марганец может присутствовать в высокотемпературном сплаве FeCrAl в количестве 0-0,5 мас.%, например 0-0,4 мас.%, или 0,05-0,50 мас.%.
Скандий (Sc), церий (Ce) и лантан (La)
Скандий, церий и лантан являются взаимозаменяемыми элементами и могут добавляться по отдельности или в комбинации в общей сумме до 0,2 мас.% для того, чтобы улучшить окислительные свойства, самозаживление слоя Al2O3 или адгезию между сплавом и слоем Al2O3.
Кислород (O)
Кислород может присутствовать в высокотемпературном сплаве FeCrAl в качестве примеси в количестве вплоть до 0,02 мас.%. Кислород может также сознательно добавляться для того, чтобы достичь эффекта дисперсионного твердения. В этом случае высокотемпературный сплав FeCrAl содержит кислород в количестве вплоть до 0,1 мас.%.
Углерод (C)
Углерод может включаться в высокотемпературный сплав FeCrAl для того, чтобы увеличить прочность с помощью дисперсионного твердения. Углерод может также присутствовать как неизбежная примесь, проистекающая из производственного процесса. Для того, чтобы достичь достаточной прочности сплава, углерод должен присутствовать в количестве по меньшей мере 0,01 мас.%. При слишком высоких уровнях содержания углерод может привести к трудностям при формировании материала и к отрицательному влиянию на коррозионную стойкость, поэтому максимальное количество углерода составляет 0,1 мас.%, например 0,01-0,8 мас.%, или 0,01-0,08 мас.%.
Азот (N)
Азот может включаться в высокотемпературный сплав FeCrAl для того, чтобы увеличить прочность с помощью дисперсионного твердения. Азот может также присутствовать как неизбежная примесь, проистекающая из производственного процесса. При слишком высоких уровнях азот может привести к трудностям с формированием материала и может оказывать негативное влияние на коррозионную стойкость. Следовательно, максимальное количество азота в определенном выше или ниже сплаве FeCrAl составляет 0,1 мас.%. Для того, чтобы достичь достаточного дисперсионного твердения в металлургии расплава, азот должен содержаться в количестве по меньшей мере 0,001 мас.%, и примерами подходящих диапазонов содержания азота являются 0,001-0,1 мас.%, например 0,01-0,6 мас.%.
Реактивные элементы (RE)
По определению реактивные элементы являются активно реагирующими с углеродом, азотом и кислородом. Титан (Ti), цирконий (Zr), ниобий (Nb), ванадий (V), гафний (Hf), тантал (Ta), иттрий (Y) и торий (Th) являются реактивными элементами в том смысле, что они имеют высокое сродство к углероду, будучи таким образом сильными карбидообразующими элементами. Эти элементы могут быть добавлены для того, чтобы улучшить свойства окисления высокотемпературного сплава FeCrAl за счет балансировки диффузии ионов металла и кислорода, которая будет управлять кинетикой процесса роста оксидов. Максимальное количество соответствующего реактивного элемента будет зависеть главным образом от тенденции этого элемента к формированию неблагоприятных интерметаллических фаз. Следовательно, максимальное количество титана составляет 1,7 мас.% в определенном выше или ниже сплаве, например 0,02-1,7 мас.% или 0-0,10 мас.%.
Максимальное количество циркония и ниобия составляет 0,8 мас.%. Примером количества циркония является 0-0,4 мас.%, например 0,1-0,3 мас.%. Примерное количество Nb может находиться в пределах от 0 до 0,4 мас.%, например от 0,1 до 0,3 мас.%.
Иттрий может быть добавлен в количестве вплоть до 2,2 мас.%, например 0,01-0,60 мас.%, или 0,05-0,60 мас.%, для того, чтобы улучшить адгезию слоя Al2O3. Однако добавление иттрия должно быть сбалансировано с количеством других карбидообразующих элементов, присутствующих в высокотемпературном сплаве FeCrAl.
Максимальное количество ванадия составляет 0,1 мас.%;
Гафний, тантал и торий являются взаимозаменяемыми элементами и могут быть добавлены в количестве вплоть до 1 мас.%.
В соответствии с одним вариантом осуществления высокотемпературный сплав железо-хром-алюминий дополнительно содержит один или более элементов, выбираемых из:
от 0,1 мас.% до 0,08 мас.% C;
от 0 мас.% до 0,7 мас.% Si;
от 0 мас.% до 0,4 мас.% Mn.
В соответствии с еще одним вариантом осуществления высокотемпературный сплав железо-хром-алюминий дополнительно содержит один или более элементов, выбираемых из:
от 0,05 мас.% до 0,60 мас.% Y;
от 0,01 мас.% до 0,40 мас.% Zr;
от 0,05 мас.% до 0,50 мас.% Hf;
от 0,05 мас.% до 0,50 мас.% Ta;
от 0 мас.% до 0,10 мас.% Ti;
от 0,01 мас.% до 0,05 мас.% C;
от 0,01 мас.% до 0,06 мас.% N;
от 0,02 мас.% до 0,10 мас.% O;
от 0,05 мас.% до 0,50 мас.% Mn;
от 0 мас.% до 0,8 мас.% P;
от 0 мас.% до 0,005 мас.% S.
В соответствии с другим вариантом осуществления высокотемпературный сплав железо-хром-алюминий дополнительно содержит один или более элементов, выбираемых из:
от 0,01 мас.% до 0,1 мас.% C;
от 0,001 мас.% до 0,1 мас.% N;
от 0,02 мас.% до 0,10 мас.% O;
от 0 мас.% до 0,01 мас.% B;
от 0 мас.% до 0,5 мас.% Mn;
от 0 мас.% до 2,2 мас.% Y;
от 0 мас.% до 0,2 мас.% Sc+Ce+La;
от 0 мас.% до 1,7 мас.% Ti;
от 0 мас.% до 0,40 мас.% Zr;
от 0 мас.% до 0,4 мас.% Nb;
от 0 мас.% до 0,1 мас.% V;
от 0 мас.% до 0,3 мас.% Hf+Ta+Th.
Примеры высокотемпературных сплавов FeCrAl, упомянутые в настоящем документе, раскрыты, например, в патентном документе WO2001/049441. Трубы в соответствии с этим вариантом осуществления будут иметь хорошую стабильность формы при высокой температуре, а сплавы будут образовывать не образующий окалину поверхностный оксид, обеспечивающий хорошую защиту в большинстве высокотемпературных сред, включая окисляющую, сернистую и науглероживающую среды. Этот поверхностный оксид будет также обеспечивать превосходную защиту против осаждения углерода, шлака и т.д. Трубы в соответствии с этим вариантом осуществления также будут иметь превосходную стойкость, например к термическому удару, провисанию и искривлению благодаря превосходной прочности в нагретом состоянии и сопротивлению разрушению при ползучести по сравнению с другими известными сплавами FeCrAl. В частности, это справедливо для сплавов FeCrAl в соответствии с этим вариантом осуществления, произведенным с помощью порошковой металлургии.
Однако следует отметить, что некоторые из высокотемпературных сплавов FeCrAl, упомянутые в настоящем документе, могут быть произведены традиционно, то есть без использования порошковой металлургии.
В частности, но не исключительно, настоящее изобретение относится к упомянутой трубе из высокотемпературного сплава FeCrAl для использования в нагревательных приложениях и/или нагревательных устройствах, таких как радиационная труба, муфельная труба, труба для защиты термопары, ретортная труба, печная труба и т.д. В частности, но не исключительно, настоящее изобретение относится к прямой трубе, которая устанавливается вертикально.
В соответствии с другим аспектом настоящее изобретение относится к способу изготовления первоначально определенной трубы из высокотемпературного сплава железо-хром-алюминий, отличающемуся тем, что он содержит стадии:
подачи непрерывной полосы из сплава железо-хром-алюминий к месту фасонирования трубы,
спиральной намотки полосы в месте фасонирования трубы таким образом, чтобы длинные края полосы примыкали друг к другу, и формировалась вращающаяся труба, продвигающаяся в направлении, параллельном к ее продольной оси,
непрерывного соединения упомянутых примыкающих длинных краев с помощью процесса сварки, посредством чего получается сваренная труба, содержащая спиральный сварной шов.
Неожиданно было найдено, что трубы из высокотемпературного сплава FeCrAl, произведенные в соответствии с настоящим способом, сохраняют свою форму и длину после сварки. Дополнительно к этому, после изготовления труб из высокотемпературного сплава FeCrAl никаких трещин не было замечено во время охлаждения.
В соответствии с одним вариантом осуществления настоящего способа внутренний диаметр (d) трубы из высокотемпературного сплава железо-хром-алюминий является постоянным или почти постоянным вдоль продольной оси.
Сварной шов встык формируется так, чтобы он проходил под углом подъема винтовой линии вокруг трубы из высокотемпературного сплава железо-хром-алюминий и вдоль ее полной длины. После формирования и сварки трубы из высокотемпературного сплава железо-хром-алюминий, при необходимости, выполняется отжиг для снятия напряжения, и труба после этого режется на окончательную длину. Этот способ изготовления является экономически эффективным и производит трубу из высокотемпературного сплава железо-хром-алюминий с такими свойствами, которые являются по меньшей мере в некоторых аспектах сопоставимыми с аналогичными свойствами соответствующей экструдированной бесшовной трубы, в частности в плане стойкости к коррозии и окислению, а также в плане выдерживания нагрузки для тех приложений, в которых труба устанавливается вертикально, то есть когда ее продольная ось проходит в вертикальном направлении. Использование непрерывной полосы в качестве исходного материала для изготовления трубы из высокотемпературного сплава FeCrAl позволяет производить широкий спектр окончательных размеров.
Труба из высокотемпературного сплава железо-хром-алюминий в соответствии с любым из вышеописанных вариантов осуществления может быть произведена с использованием предложенного способа изготовления. Этот способ позволяет формировать трубы с более тонкими стенками по сравнению с экструдированными трубами аналогичного диаметра. Кроме того, предложенный способ также позволяет производить трубу из высокотемпературного сплава железо-хром-алюминий с большим диаметром по сравнению с экструдированными трубами.
В соответствии с одним вариантом осуществления процесс сварки выбирается из процесса сварки плавлением или процесса соединения в твердом состоянии. Как процессы сварки плавлением, так и процессы соединения в твердом состоянии являются подходящими для создания прочного и надежного сварного шва.
Процесс сварки может выполняться с использованием сварочного электрода, установленного радиально снаружи формируемой трубы. Сварка может также выполняться изнутри формируемой трубы, или одновременно и снаружи, и изнутри. Выполнение сварки снаружи формируемой трубы является легким и эффективным способом получить сварное соединение достаточной глубины для тонкостенных полос, то есть для толщин стенок меньше чем приблизительно 5 мм. Для больших толщин стенок для того, чтобы получить в достаточной степени прочное сварное соединение, может быть необходима сварка одновременно и снаружи, и изнутри трубы.
В соответствии с одним вариантом осуществления процесс сварки выбирается из процесса сварки вольфрамовым электродом в среде инертного газа, процесса сварки металлическим электродом в среде инертного газа, процесса лазерной сварки и процесса плазменно-дуговой сварки. В частности, сварка вольфрамовым электродом в среде инертного газа (TIG или GTAW) позволяет формировать прочный и высококачественный сварной шов.
В соответствии с одним вариантом осуществления во время процесса сварки используется защитный газ, который является инертным газом. Инертный газ предохраняет материал от образования нитридов алюминия, а также оксидов вдоль сварного шва. Нитриды и оксиды, формирующиеся во время сварки, могут ослаблять стойкость трубы к окислению, и тем самым также ее желательные свойства для высокотемпературных приложений.
В соответствии с одним вариантом осуществления, защитный газ состоит из аргона, гелия или их смеси.
В соответствии с одним вариантом осуществления никакой материал заполнителя в процессе сварки не используется.
В соответствии с одним вариантом осуществления в процессе сварки используется материал заполнителя, содержащий сплав железо-хром-алюминий.
В соответствии с одним вариантом осуществления способ может дополнительно содержать стадию предварительного нагрева непрерывной полосы перед формированием трубы. Предварительный нагрев, например до 100°C или меньше, облегчает деформирование полосы в трубу и является особенно подходящим для малых размеров, например для труб с внутренними диаметрами меньше чем 100 мм. Предварительный нагрев может быть достигнут путем использования, например, печи, средств индукционного нагрева, тепловой пушки и т.д.
В соответствии с одним вариантом осуществления этот способ дополнительно содержит стадию отжига трубы из высокотемпературного сплава железо-хром-алюминий после процесса сварки. Отжиг может уменьшать напряжения в сварной трубе и тем самым способствовать предотвращению растрескивания. В одном варианте осуществления отжиг представляет собой отжиг для снятия напряжений, встроенный в устройство формирования трубы, в котором труба также скручивается и сваривается. Труба нагревается до температуры 850-875°C и после этого остывает, прежде чем она будет нарезана в окончательную длину.
Другие выгодные особенности а также преимущества предложенной трубы и способа изготовления станут понятными из следующего описания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Варианты осуществления предложенной трубы из высокотемпературного сплава FeCrAl и способа изготовления будут в дальнейшем описаны со ссылками на приложенные чертежи, в которых
Фиг.1 схематично показывает вид в перспективе трубы в соответствии с одним вариантом осуществления,
Фиг.2 показывает вид сбоку трубы, изображенной на Фиг.1,
Фиг.3 показывает вид с торца трубы, изображенной на Фиг.1,
Фиг.4 схематично показывает способ изготовления трубы, изображенной на Фиг.1, и
Фиг.5 представляет собой блок-схему, иллюстрирующую стадии способа изготовления трубы в соответствии с одним вариантом осуществления.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Труба 1 из высокотемпературного сплава FeCrAl в соответствии с одним вариантом осуществления настоящего изобретения схематично показана на Фиг.1-3. Труба 1 имеет форму круглого цилиндра, продолжающегося вдоль продольной оси C. Труба 1из высокотемпературного сплава железо-хром-алюминий формируется с помощью спирального сварного шва 2, проходящего вокруг и вдоль трубы с углом α подъема винтовой линии. В показанном варианте осуществления угол α подъема винтовой линии составляет 54°. Показанная труба 1 имеет наружный диаметр D 108 мм, длину L и толщину стенки t 2 мм, и таким образом имеет внутренний диаметр d 104 мм. Внутренний диаметр d является постоянным вдоль продольной оси C.
Труба 1 сформирована из непрерывной полосы 3 из высокотемпературного сплава FeCrAl с использованием спиральной сварки, как схематично проиллюстрировано на Фиг.4 и на блок-схеме Фиг.5. На первой стадии S1 непрерывная полоса 3 из высокотемпературного сплава FeCrAl, имеющая ширину w, подается в направлении X подачи к месту 4 фасонирования трубы, которое в данном случае имеет форму трех формующих валков 5. Формующие валки 5 расположены так, что их оси вращения располагаются под некоторым углом к направлению X подачи полосы 3.
Когда полоса 3 входит между формующими валками 5, она на второй стадии S2 спирально скручивается в трубу 1 так, чтобы длинные края 6, 7 полосы 3 примыкали друг к другу. Вращающаяся труба формируется при ее продвижении в направлении, параллельном к ее продольной оси C.
На третьей стадии S3 примыкающие длинные края 6, 7 непрерывно соединяются в ходе процесса сварки непосредственно при формировании трубы, посредством чего получается сваренная труба 1, содержащая спиральный сварной шов 2. Процесс сварки в показанном варианте осуществления выполняется с использованием сварочного электрода 8, расположенного радиально снаружи формируемой трубы 1. Таким образом, сварной шов 2 создается со сварным корнем, находящимся на внутренней части формируемой трубы 1. Сварка может выполняться с использованием, например, сварки вольфрамовым электродом в среде инертного газа (TIG), сварки металлическим электродом в среде инертного газа, лазерной сварки или плазменно-дуговой сварки. В качестве защитного газа во время процесса сварки используется инертный газ, такой как Ar и/или Не. Также корневой газ, состоящий из Ar и/или Не, может использоваться для защиты корня во время сварки.
На четвертой стадии S4 труба 1 режется в ее окончательную длину L.
Полоса 3 может быть подогрета до температуры 100°C или меньше перед ее скручиванием в трубу 1. Сформированная труба 1 может быть дополнительно отожжена после сварки, до или после резки трубы 1 в ее окончательную длину L. Во время процесса отжига труба 1 нагревается до температуры 850-875°C, а затем охлаждается естественным образом.
Настоящее раскрытие дополнительно иллюстрируется следующим неограничивающим примером.
Пример
Для изготовления тестовых образцов труба 1, описанная выше со ссылкой на Фиг.1-3, была произведена из полосы, имеющей ширину w 200 мм и толщину t 2 мм. Химический состав полосы показан в таблице 1.
Таблица 1
C | Si | Mn | Cr | Al | Fe | |
Номинальный состав | 5,3 | Остаток | ||||
Мин. | - | - | - | 20,5 | ||
Макс. | 0,08 | 0,7 | 0,4 | 23,5 |
Процесс сварки представлял собой процесс TIG без материала заполнителя и с газовой смесью из 70% Ar и 30% Не, которая использовалась как в качестве корневого газа, так и в качестве защитного газа. Сварка выполнялась снаружи формируемой трубы 1. Никакой поддержки не использовалось внутри трубы 1 во время сварки. Сваренная труба 1 из высокотемпературного сплава FeCrAl была нарезана в окончательную длину L, равную 3 м, с использованием углошлифовальной машины без отжига перед резкой. После резки на образцы (трубы) окончательной длины и охлаждения сварного шва 2 один из образцов 1 был отожжен в течение 1 час при 875°C.
Сварной шов 2 имел хороший внешний вид сразу после сварки, как на внутренней части трубы 1, так и с внешней стороны. Сварной шов 2 был вогнутым на внешней стороне и выпуклым внутри. Поперечные сечения через сварной шов 2 были визуально исследованы с использованием оптического микроскопа после травления и полировки. Во время осмотра не были найдено никаких дефектов.
Твердость HV10 была исследована поперек сварного шва 2, и было найдено, что она составляет 220-265 HV поперек сварного шва, с самым высоким значением в основном материале рядом со сварным швом.
Два других образца были предварительно окислены при 1050°C в течение 8 час, после чего были протестированы в печи, установленной вертикально со сменными нагревательными элементами 80 мм диаметром (26 кВт при напряжении 200 В), установленными в этих трубах.
Эти образцы были подвергнуты непрерывному циклическому тесту в течение одной недели согласно следующей схеме:
- Нагревание от комнатной температуры до 950°C;
- 20 мин выдержки при 950°C;
- Охлаждение до 600°C;
- Нагрев до 950°C;
- 20 мин выдержки; и т.д.
После одной недели образцы при визуальном осмотре выглядели очень хорошо, и тестирование было продолжено в течение еще 18 дней с более жестким циклом тестирования. Этот цикл тестирования выполнялся в соответствии со следующей схемой:
- Нагревание от комнатной температуры до 950°C;
- 20 мин выдержки при 950°C;
- Охлаждение до 100°C;
- Нагрев до 950°C; и т.д.
Визуальный осмотр показал, что образцы для испытания выглядели очень хорошо.
В дополнение к этому, другой образец был помещен у основания печи для того, чтобы выяснить, не приведет ли вес образца к какой-либо деформации во время работы, то есть был выполнен упрощенный тест на провисание. Этот образец не показал тенденции к искривлению в течение этих 18 дней.
Claims (52)
1. Труба (1) из высокотемпературного сплава железо-хром-алюминий, продолжающаяся вдоль продольной оси (C), отличающаяся тем, что труба (1) сформирована из непрерывной полосы (3) из сплава железо-хром-алюминий, при этом труба (1) содержит спиральный сварной шов (2), причем труба имеет почти постоянный внутренний диаметр (d) или постоянный внутренний диаметр (d) вдоль продольной оси (C), а высокотемпературный сплав железо-хром-алюминий содержит, мас.%:
Cr от 5 до 25;
Al от 2,5 до 8;
Mo от 0 до 5;
остальное – Fe и обычно встречающиеся примеси и, при необходимости, другие преднамеренно добавленные легирующие элементы.
2. Труба по п. 1, отличающаяся тем, что она имеет толщину (t) стенки, составляющую 0,5-7,5% от внутреннего диаметра (d) трубы (1).
3. Труба по п. 2, отличающаяся тем, что она имеет толщину (t) стенки, составляющую 0,5-4,5% от внутреннего диаметра (d) трубы (1).
4. Труба по любому из пп.1-3, отличающаяся тем, что спиральный сварной шов (2) проходит под углом (α) подъема винтовой линии 1-89° к продольной оси (C) трубы (1).
5. Труба п. 4, отличающаяся тем, что спиральный сварной шов (2) проходит под углом (α) подъема винтовой линии 40-70° к продольной оси (C) трубы (1).
6. Труба по любому из пп.1-5, отличающаяся тем, что высокотемпературный сплав железо-хром-алюминий содержит, мас.%:
Cr от 9 до 25;
Al от 2,5 до 8;
Mo от 0 до 5;
остальное – Fe и обычно встречающиеся примеси и, при необходимости, другие преднамеренно добавленные легирующие элементы.
7. Труба по любому из пп.1-6, отличающаяся тем, что содержание Cr в высокотемпературном сплаве железо-хром-алюминий составляет 11-17 мас.%, или 5-15 мас.%, или 20,5-25 мас.%.
8. Труба по любому из пп.1-7, отличающаяся тем, что содержание Al в высокотемпературном сплаве железо-хром-алюминий составляет 3-7 мас.%, или 4-6 мас.%, или 5-7 мас.%.
9. Труба по любому из пп.1-8, отличающаяся тем, что содержание Mo в высокотемпературном сплаве железо-хром-алюминий составляет 1-4 мас.%.
10. Труба по любому из пп.1-9, отличающаяся тем, что содержание Si в качестве добавленного легирующего элемента в высокотемпературном сплаве железо-хром-алюминий составляет 0,1-3 мас.%, в частности 0,5-3 мас.% или 0,10-0,70 мас.%.
11. Труба по любому из пп.1-10, отличающаяся тем, что высокотемпературный сплав железо-хром-алюминий содержит в качестве добавленного легирующего элемента один или более элементов, выбранных из, мас.%:
Y от 0,05 до 0,60;
Zr от 0,01 до 0,40;
Hf от 0,05 до 0,50;
Ta от 0,05 до 0,50;
Ti от 0 до 0,10;
C от 0,01 до 0,05;
N от 0,01 до 0,06;
O от 0,02 до 0,10;
Mn от 0,05 до 0,50;
P от 0 до 0,08;
S от 0 до 0,005.
12. Труба по любому из пп. 1-9, отличающаяся тем, что сплав железо-хром-алюминий в качестве добавленного легирующего элемента содержит один или более элементов, выбранных из, мас.%:
C от 0,01 до 0,1;
N от 0,001 до 0,1;
O от 0,02 до 0,10;
B от 0 до 0,01;
Mn от 0 до 0,5;
Y от 0 до 2,2;
Sc+Ce+La от 0 до 0,2;
Ti от 0 до 1,7;
Zr от 0 до 0,4;
Nb от 0 до 0,4;
V от 0 до 0,1;
Hf+Ta+Th от 0 до 0,3.
13. Способ изготовления трубы (1) из высокотемпературного сплава железо-хром-алюминий по любому из пп.1-12, отличающийся тем, что он включает этапы:
подачи непрерывной полосы (3) из высокотемпературного сплава железо-хром-алюминий к месту (4) фасонирования трубы,
спиральной намотки полосы (3) в месте (4) фасонирования трубы таким образом, чтобы длинные края (6, 7) полосы (3) примыкали друг к другу и формировалась вращающаяся труба (1), продвигающаяся в направлении, параллельном к ее продольной оси (C),
непрерывного соединения упомянутых примыкающих длинных краев (6, 7) с помощью процесса сварки непосредственно при формировании трубы (1) из высокотемпературного сплава железо-хром-алюминий, посредством чего получают сваренную трубу (1) из высокотемпературного сплава железо-хром-алюминий, содержащую спиральный сварной шов (2), и
отжига трубы (1) из высокотемпературного сплава железо-хром-алюминий после процесса сварки.
14. Способ по п. 13, отличающийся тем, что процесс сварки выбирают из процесса сварки плавлением, процесса соединения в твердом состоянии, процесса сварки вольфрамовым электродом в среде инертного газа, процесса сварки металлическим электродом в среде инертного газа, процесса лазерной сварки и процесса плазменно-дуговой сварки.
15. Способ по п. 13 или 14, отличающийся тем, что во время процесса сварки используют защитный газ, который является инертным газом.
16. Способ по любому из пп. 13-15, отличающийся тем, что дополнительно проводят этап предварительного нагрева полосы (3) перед формированием трубы (1) из высокотемпературного сплава железо-хром-алюминий.
17. Применение трубы из высокотемпературного сплава железо-хром-алюминий по любому из пп. 1-12 в качестве радиационной трубы в электрическом нагревательном устройстве, имеющем нагревательный элемент в форме нагревательной проволоки, в качестве муфельной трубы, трубы для защиты термопары, ретортной трубы или печной трубы.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16166659 | 2016-04-22 | ||
EP16166659.9 | 2016-04-22 | ||
PCT/EP2016/077544 WO2017182111A1 (en) | 2016-04-22 | 2016-11-14 | A tube and a method of manufacturing a tube |
Publications (3)
Publication Number | Publication Date |
---|---|
RU2018140820A RU2018140820A (ru) | 2020-05-22 |
RU2018140820A3 RU2018140820A3 (ru) | 2020-05-22 |
RU2732395C2 true RU2732395C2 (ru) | 2020-09-16 |
Family
ID=55967028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018140820A RU2732395C2 (ru) | 2016-04-22 | 2016-11-14 | Труба и способ изготовления трубы |
Country Status (11)
Country | Link |
---|---|
US (3) | US11446722B2 (ru) |
EP (1) | EP3445883B1 (ru) |
JP (1) | JP6909806B2 (ru) |
KR (2) | KR20240011234A (ru) |
CN (1) | CN109072369A (ru) |
AU (3) | AU2016403428A1 (ru) |
BR (1) | BR112018071651B1 (ru) |
CA (1) | CA3020413A1 (ru) |
RU (1) | RU2732395C2 (ru) |
SG (1) | SG11201808855UA (ru) |
WO (1) | WO2017182111A1 (ru) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018129256A1 (en) * | 2017-01-06 | 2018-07-12 | Keystone Tower Systems, Inc. | Tube stiffening |
CN109737735B (zh) * | 2018-12-26 | 2021-01-01 | 合肥恒力装备有限公司 | 一种粉体材料高温锻烧回转炉炉管的制作方法 |
DE102019211936A1 (de) * | 2019-02-01 | 2020-08-06 | Sms Group Gmbh | Schraubennahtrohr sowie Verfahren zur Herstellung eines Schraubennahtrohrs |
CN109719156B (zh) * | 2019-03-06 | 2020-09-25 | 马鞍山欧格萨斯机械科技有限公司 | 一种高效钢带管生产方法 |
CN110026448B (zh) * | 2019-04-30 | 2021-08-03 | 西安理工大学 | 一体成型的螺旋加劲肋钢管及成型方法 |
EP3980374A4 (en) * | 2019-06-05 | 2024-07-31 | Birla Carbon U S A Inc | HIGH TEMPERATURE CARBON SOOT PREHEATER |
CN111440993B (zh) * | 2019-12-12 | 2021-06-18 | 广东省钢铁研究所 | 一种铁铬铝合金棒材及其制备方法 |
CN111250561B (zh) * | 2020-01-27 | 2021-09-24 | 浙江联丰冷却塔有限公司 | 一种冷却塔布水管自动化加工设备 |
KR102483274B1 (ko) * | 2020-06-05 | 2023-01-02 | 엄지은 | 다층관 압출용 빌렛 및 이를 이용한 다층관의 제조 방법 |
CN112275832B (zh) * | 2020-09-22 | 2022-08-05 | 盐城仕博机械制造有限公司 | 一种螺旋风管机 |
CN113784469A (zh) * | 2021-03-05 | 2021-12-10 | 泰州市泰然装备有限公司 | 一种用于高温电热辐射螺旋外管材料及制备方法 |
CN113714321B (zh) * | 2021-07-28 | 2022-10-25 | 西安交通大学 | 一种难熔和稀贵金属管材及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU780923A1 (ru) * | 1978-07-17 | 1980-11-23 | Предприятие П/Я А-1147 | Способ изготовлени высокопрочных тонкостенных спиральношовных труб |
CN102330034A (zh) * | 2011-09-30 | 2012-01-25 | 中国石油集团渤海石油装备制造有限公司 | 一种酸性腐蚀环境用x65ms钢级螺旋焊管及其制造方法 |
JP2012115890A (ja) * | 2010-12-03 | 2012-06-21 | Nippon Steel Corp | 長手方向異径断面スパイラル鋼管、その製造方法及びその製造装置 |
WO2014204388A1 (en) * | 2013-06-18 | 2014-12-24 | Sandvik Intellectual Property Ab | Filler for the welding of materials for high-temperature applications |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1452226A1 (de) * | 1965-11-03 | 1969-01-23 | Benteler Werke Ag | Stahlrohr-Herstellung |
JPS5278612A (en) | 1975-10-29 | 1977-07-02 | Nippon Steel Corp | Austenite-based heat-resistant steel capable of forming film of a#o# a t high temperatures in oxidizing atmosphere |
US4204862A (en) | 1975-10-29 | 1980-05-27 | Nippon Steel Corporation | Austenitic heat-resistant steel which forms Al2 O3 film in high-temperature oxidizing atmosphere |
JPS5914532B2 (ja) | 1976-08-27 | 1984-04-05 | 松下電器産業株式会社 | 合金磁石 |
CN1093758A (zh) | 1993-04-16 | 1994-10-19 | 山东工业大学 | 铸造1300—1350℃铁基耐热钢及熔铸工艺 |
JP3397092B2 (ja) | 1996-09-11 | 2003-04-14 | 住友金属工業株式会社 | 熱間加工性に優れるAl含有オーステナイト系ステンレス鋼 |
SE508595C2 (sv) | 1997-08-12 | 1998-10-19 | Sandvik Ab | Användning av en ferritisk Fe-Cr-Al-legering vid framställning av kompoundrör, samt kompoundrör och användning av röret |
SE0000002L (sv) * | 2000-01-01 | 2000-12-11 | Sandvik Ab | Förfarande för tillverkning av ett FeCrAl-material och ett sådant marerial |
JP2002363704A (ja) | 2001-06-12 | 2002-12-18 | Nippon Steel Corp | 母材および溶接熱影響部の靭性に優れた耐食鋼 |
JP2008100261A (ja) | 2006-10-19 | 2008-05-01 | Jfe Steel Kk | リブ付きスパイラル鋼管の製造方法 |
EP2031080B1 (de) | 2007-08-30 | 2012-06-27 | Alstom Technology Ltd | Hochtemperaturlegierung |
CN100547103C (zh) * | 2007-12-10 | 2009-10-07 | 华油钢管有限公司 | 一种高强度x80钢螺旋焊管制造方法 |
FR2930463B1 (fr) * | 2008-04-25 | 2010-09-03 | Faurecia Sys Echappement | Dispositif de fabrication d'un tube helicoidal et procede associe |
DE102009031576A1 (de) | 2008-07-23 | 2010-03-25 | V&M Deutschland Gmbh | Stahllegierung für einen ferritischen Stahl mit ausgezeichneter Zeitstandfestigkeit und Oxidationsbeständigkeit bei erhöhten Einsatztemperaturen |
JP5321493B2 (ja) | 2010-02-12 | 2013-10-23 | 新日鐵住金株式会社 | スパイラル鋼管の製造方法およびスパイラル鋼管 |
CN102162064A (zh) * | 2011-05-08 | 2011-08-24 | 山西太钢不锈钢股份有限公司 | 一种铁铬铝合金及其钢卷 |
CN103192234B (zh) * | 2013-04-01 | 2015-07-15 | 宝鸡石油钢管有限责任公司 | 一种螺旋成型抗大变形埋弧焊管及其制造方法 |
CN103484788B (zh) * | 2013-08-31 | 2016-05-04 | 宝鸡石油钢管有限责任公司 | 一种耐硫化氢腐蚀的高强度x80ms螺旋埋弧焊管及其制造方法 |
-
2016
- 2016-11-14 SG SG11201808855UA patent/SG11201808855UA/en unknown
- 2016-11-14 BR BR112018071651-0A patent/BR112018071651B1/pt active IP Right Grant
- 2016-11-14 KR KR1020247000746A patent/KR20240011234A/ko active Application Filing
- 2016-11-14 CN CN201680084721.2A patent/CN109072369A/zh active Pending
- 2016-11-14 WO PCT/EP2016/077544 patent/WO2017182111A1/en active Application Filing
- 2016-11-14 CA CA3020413A patent/CA3020413A1/en active Pending
- 2016-11-14 AU AU2016403428A patent/AU2016403428A1/en not_active Abandoned
- 2016-11-14 JP JP2018555151A patent/JP6909806B2/ja active Active
- 2016-11-14 RU RU2018140820A patent/RU2732395C2/ru active
- 2016-11-14 US US16/093,679 patent/US11446722B2/en active Active
- 2016-11-14 KR KR1020187033452A patent/KR20180133506A/ko not_active Application Discontinuation
- 2016-11-14 EP EP16795054.2A patent/EP3445883B1/en active Active
-
2022
- 2022-07-08 US US17/860,859 patent/US11602780B2/en active Active
- 2022-10-21 AU AU2022100194A patent/AU2022100194A4/en active Active
- 2022-10-21 AU AU2022256223A patent/AU2022256223A1/en active Pending
-
2023
- 2023-02-08 US US18/107,055 patent/US12053811B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU780923A1 (ru) * | 1978-07-17 | 1980-11-23 | Предприятие П/Я А-1147 | Способ изготовлени высокопрочных тонкостенных спиральношовных труб |
JP2012115890A (ja) * | 2010-12-03 | 2012-06-21 | Nippon Steel Corp | 長手方向異径断面スパイラル鋼管、その製造方法及びその製造装置 |
CN102330034A (zh) * | 2011-09-30 | 2012-01-25 | 中国石油集团渤海石油装备制造有限公司 | 一种酸性腐蚀环境用x65ms钢级螺旋焊管及其制造方法 |
WO2014204388A1 (en) * | 2013-06-18 | 2014-12-24 | Sandvik Intellectual Property Ab | Filler for the welding of materials for high-temperature applications |
Non-Patent Citations (3)
Title |
---|
Karl-Heinz Brensing et al, "Steel Tube and Pipe Manufacturing Process", 1994, с.55-58. * |
Куркин С.А. и др. Технология, механизация и автоматизация производства сварных конструкций. Атлас. М., Машиностроение, 1989, с.191-193, 238. * |
Куркин С.А. и др. Технология, механизация и автоматизация производства сварных конструкций. Атлас. М., Машиностроение, 1989, с.191-193, 238. Karl-Heinz Brensing et al, "Steel Tube and Pipe Manufacturing Process", 1994, с.55-58. * |
Also Published As
Publication number | Publication date |
---|---|
BR112018071651A2 (pt) | 2019-02-19 |
AU2022256223A1 (en) | 2022-11-24 |
EP3445883B1 (en) | 2024-10-02 |
US20230182187A1 (en) | 2023-06-15 |
JP6909806B2 (ja) | 2021-07-28 |
US12053811B2 (en) | 2024-08-06 |
WO2017182111A1 (en) | 2017-10-26 |
AU2022256223A2 (en) | 2023-12-21 |
SG11201808855UA (en) | 2018-11-29 |
BR112018071651B1 (pt) | 2024-04-30 |
KR20180133506A (ko) | 2018-12-14 |
CA3020413A1 (en) | 2017-10-26 |
EP3445883A1 (en) | 2019-02-27 |
US20190070650A1 (en) | 2019-03-07 |
JP2019518608A (ja) | 2019-07-04 |
US11602780B2 (en) | 2023-03-14 |
KR20240011234A (ko) | 2024-01-25 |
AU2022100194A4 (en) | 2024-07-11 |
RU2018140820A (ru) | 2020-05-22 |
US20220339688A1 (en) | 2022-10-27 |
AU2016403428A1 (en) | 2018-11-01 |
RU2018140820A3 (ru) | 2020-05-22 |
US11446722B2 (en) | 2022-09-20 |
CN109072369A (zh) | 2018-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2732395C2 (ru) | Труба и способ изготовления трубы | |
JP6571937B2 (ja) | 耐熱管の溶接構造 | |
KR101809360B1 (ko) | Ni기 내열합금 용접 조인트의 제조 방법 및 그것을 이용하여 얻어지는 용접 조인트 | |
JP2006225718A (ja) | 低温靭性および耐SR割れ性に優れた高強度Cr−Mo鋼用溶着金属 | |
US11054065B2 (en) | Method for manufacturing a composite tube | |
JP6801712B2 (ja) | フェライト系耐熱鋼及びフェライト系伝熱部材 | |
JP6309576B2 (ja) | アルミナバリア層を有するエチレン製造用反応管 | |
US11059134B2 (en) | Alloy for overlay welding and reaction tube | |
JP2020105572A (ja) | オーステナイト系耐熱鋼 | |
JP2004276035A (ja) | 金属複合管の耐コーキング性に優れた溶接継手 | |
JP5355919B2 (ja) | オーステナイト系高Ni鋼材同士の溶接接合部構造及び溶接接合方法 | |
JP2005048284A (ja) | 耐浸炭性と耐コーキング性を有するステンレス鋼およびステンレス鋼管 | |
US11612967B2 (en) | Alloy for overlay welding and reaction tube | |
JP4314903B2 (ja) | 溶接施工性に優れたステンレス鋼を用いた溶接継手 | |
JP2013198917A (ja) | アルミナバリア層を有する鋳造製品及びその製造方法 | |
JP7469635B2 (ja) | Fe基合金管および溶接継手 | |
EP3559578B1 (en) | A lance tube | |
JP4860722B2 (ja) | 耐横割れ性に優れた高強度uo鋼管のシーム溶接方法 | |
JPH058043A (ja) | 時効後の延性にすぐれる耐熱鋳鋼製品の溶接方法 | |
CN117733400A (zh) | 一种奥氏体不锈钢焊丝及其应用 | |
JP2005350709A (ja) | モリブデン製シームレスパイプ及びその製造方法 | |
JP2021178995A (ja) | ステンレス鋼管および溶接継手 | |
CN116615293A (zh) | 用于制造管线管道的镍基合金 | |
JPH07228941A (ja) | 耐熱鋳造合金 | |
JP2001049372A (ja) | 低熱膨張耐熱合金 |