RU2666431C2 - Смешаннооксидные материалы - Google Patents

Смешаннооксидные материалы Download PDF

Info

Publication number
RU2666431C2
RU2666431C2 RU2015145461A RU2015145461A RU2666431C2 RU 2666431 C2 RU2666431 C2 RU 2666431C2 RU 2015145461 A RU2015145461 A RU 2015145461A RU 2015145461 A RU2015145461 A RU 2015145461A RU 2666431 C2 RU2666431 C2 RU 2666431C2
Authority
RU
Russia
Prior art keywords
scintillator
mixed oxide
detector
ionizing radiation
scintillation
Prior art date
Application number
RU2015145461A
Other languages
English (en)
Other versions
RU2015145461A3 (ru
RU2015145461A (ru
Inventor
Корнелис Рейндер РОНДА
Якобус Герардус БУРЕКАМП
Даниэла БЮТТНЕР
Анн-Мари Андрее ВАН ДОНГЕН
Херфрид Карл ВЕЧОРЕК
Сандра Йоханна Мария Паула СПОР
Силван ДЬОХАН
Вильхельмус Корнелис КЕУР
Original Assignee
Конинклейке Филипс Н.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Конинклейке Филипс Н.В. filed Critical Конинклейке Филипс Н.В.
Publication of RU2015145461A publication Critical patent/RU2015145461A/ru
Publication of RU2015145461A3 publication Critical patent/RU2015145461A3/ru
Application granted granted Critical
Publication of RU2666431C2 publication Critical patent/RU2666431C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/69Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing vanadium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2012Measuring radiation intensity with scintillation detectors using stimulable phosphors, e.g. stimulable phosphor sheets
    • G01T1/2016Erasing of stimulable sheets, e.g. with light, heat or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Изобретение может быть использовано в детекторах ионизирующего излучения и КТ-сканерах. Сначала смешивают YO, CeO, TbO, AlOи GaO, пропитывают один из них или несколько источником V. Затем диспергируют с получением суспензии, которую высушивают с получением смешанного порошка. Полученный порошок спекают при температуре не менее 1400 °С в течение не менее 1 ч. Сцинтиллятор содержит монокристаллический или поликристаллический смешаннооксидный материал с формулой (YTb)AlGaO:Ce, где 0,01 ≤ w ≤ 0,99, 0,01 ≤ x ≤ 0,99, 0 ≤ y ≤ 3,5 и 0,001 ≤ z ≤ 0,10; w + x + 3×z = 1, причем смешаннооксидный материал легирован по меньшей мере 10 млнV. Полученный материал характеризуется повышенным световым выходом и прозрачностью для видимого света, а также сниженным послесвечением. 4 н. и 8 з.п. ф-лы, 4 ил., 4 табл., 4 пр.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к смешаннооксидным материалам, способам их получения, детекторам ионизирующего излучения и КТ-сканерам (для компьютерной томографии).
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Детекторы ионизирующего излучения и, в частности, твердотельные детекторы ионизирующего излучения, широко применяются, например, в КТ-сканерах. Такие твердотельные детекторы ионизирующего излучения содержат, в общих чертах, две основные сборочные единицы. Первая сборочная единица содержит флуоресцентный компонент, который обычно называют сцинтиллятором или люминофором, который поглощает излучение и в ответ излучает фотоны в УФ-, видимой или ИК-области спектра. Вторая сборочная единица содержит фотодетектор, который может регистрировать фотоны, излученные сцинтиллятором или люминофором, и выдает соответствующие электрические сигналы.
В отношении вышеуказанных выражений «сцинтиллятор» и «люминофор» необходимо отметить, что оба представляют собой взаимозаменяемые понятия, и должны пониматься в пределах области изобретения как обозначающие твердотельные люминесцентные материалы, которые, в ответ на возбуждение ионизирующим излучением, таким как рентгеновские лучи, β- или γ-излучение, излучают фотоны со значительно более низкой энергией.
Выражение «ионизирующее излучение» в пределах области изобретения относится к электромагнитному излучению, имеющему более высокую энергию, чем ультрафиолетовое излучение.
Детекторы ионизирующего излучения находят широкое применение в системах регистрации и формирования изображений на основе рентгеновского излучения. Одним из главных вариантов применения таких детекторов и сцинтилляторов в медицине являются КТ-сканеры.
В частности, для их применения в КТ-сканерах предпочтительно, если эти сцинтилляторы демонстрируют высокий световой выход, так что КТ-сканер может быть запущен при как можно меньшей дозе облучения для пациента. Кроме того, сцинтилляторы, используемые в современных КТ-сканерах, должны обладать как можно более низким послесвечением, поскольку в противном случае процесс сканирования нужно замедлять (например, снижением частоты вращения), чтобы снизить влияние послесвечения на последующее формирование изображения, что неблагоприятно действует на скорость исследования.
Наконец, также желательно, чтобы сцинтилляторы были как можно более прозрачными для видимого света, поскольку в противном случае происходит рассеяние фотонов, полученных при взаимодействии между ионизирующим излучением и сцинтиллятором, которое приводит к значительному фоновому шуму во время процесса формирования изображения вследствие оптического поглощения сцинтилляционного света в сцинтилляторе.
Два материала, которые в настоящее время обычно используют в качестве сцинтилляторов для КТ-сканеров, представляют собой сцинтилляционные материалы на основе Gd2O2S, легированного празеодимом (Pr) (GOS, оксисульфид гадолиния) и (Y,Gd)2O3, легированного европием (Eu). В то время как эти два материала уже дают приемлемые результаты, было показано, что GOS вследствие того обстоятельства, что он непрозрачен для видимого света, а лишь полупрозрачен, показывает довольно высокое рассеяние, приводящее к нежелательному существенному шуму, тогда как системы на основе (Y,Gd)2O3:Eu демонстрируют значительное послесвечение, что могло бы быть усовершенствовано в следующем поколении КТ-сканеров при замене этого сцинтиллятора.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Одна цель настоящего изобретения состоит в обеспечении смешаннооксидного материала, способа его получения, сцинтиллятора, детектора ионизирующего излучения и КТ-сканера, причем сцинтиллятор демонстрирует высокий световой выход, очень низкое послесвечение и высокую прозрачность.
В первом аспекте настоящего изобретения представлен смешаннооксидный материал, имеющий формулу (YwTbx)3Al5-yGayO12:Cez, в которой 0,01 ≤ w ≤ 0,99, 0,01 ≤ x ≤ 0,99, 0 ≤ y ≤ 3,5 и 0,001 ≤ z ≤ 0,10 и в которой w + x + 3×z = 1, причем смешаннооксидный материал легирован по меньшей мере 10 млн-1 ванадия (V), предпочтительно по меньшей мере 25 млн-1 V.
В дополнительном аспекте настоящего изобретения представлен способ получения оксидного материала, который описан выше, содержащий следующие этапы: а) обеспечение Y2O3, CeO2, Tb4O7, Al2O3 и Ga2O3 в пропорциях, пригодных для получения требуемого смешанного оксида, b) пропитывание одного или нескольких из твердых веществ по этапу а) источником ванадия (V) в требуемом количестве, с) объединение и измельчение твердых веществ по этапу а) и этапу b) в присутствии подходящего диспергатора с получением суспензии, d) высушивание суспензии по этапу с) с получением смешанного порошка и е) спекание смешанного порошка по этапу d) при температуре по меньшей мере 1400°С в течение по меньшей мере 1 ч.
В дополнительном аспекте настоящего изобретения представлен сцинтиллятор, который содержит вышеупомянутый смешаннооксидный материал.
В дополнительном аспекте настоящего изобретения представлен детектор ионизирующего излучения, который содержит вышеупомянутый смешаннооксидный материал или вышеуказанный сцинтиллятор в сочетании с по меньшей мере одним фотодетектором.
В дополнительном аспекте настоящего изобретения представлен КТ-сканер, который содержит по меньшей мере один детектор, как описанный выше.
Материалы на основе (YWTbx)3Al5-yGayO12:Cez с некоторых пор были известны как способные взаимодействовать с ионизирующим излучением и, в результате, испускать фотоны, т.е. иметь сцинтилляционные свойства. Однако известные до настоящего времени материалы демонстрируют послесвечение, которое является настолько сильным, что они считались непригодными для современных КТ-сканеров. Теперь же было обнаружено, что при легировании вышеуказанных смешаннооксидных материалов мельчайшими количествами ванадия послесвечение может быть значительно снижено без слишком существенного ущерба величинам светового выхода, и поэтому обеспечено создание сцинтилляционного материала, который пригоден для применения в современных КТ-сканерах.
В варианте осуществления смешаннооксидный материал легирован ванадием (V) от 10 до 250 млн-1, предпочтительно от 25 до 200 млн-1 V.
Было показано, что добавление ванадия к смешаннооксидному материалу в вышеуказанных диапазонах количества приводит к хорошему балансу между улучшениями характеристик послесвечения без значительных потерь светового выхода.
В другом варианте осуществления смешаннооксидного материала 0,1 ≤ w ≤ 0,9, предпочтительно 0,2 ≤ w ≤ 0,8, более предпочтительно 0,3 ≤ w ≤ 0,6 и еще более предпочтительно 0,35 ≤ w ≤ 0,5.
В другом варианте осуществления смешаннооксидного материала 0,1 ≤ x ≤ 0,9, предпочтительно 0,2 ≤ x ≤ 0,8, более предпочтительно 0,4 ≤ x ≤ 0,7 и еще более предпочтительно 0,5 ≤ x ≤ 0,65.
В другом варианте осуществления смешаннооксидного материала 1 ≤ y ≤ 3,5, предпочтительно 2 ≤ y ≤ 3,5 и более предпочтительно 2,5 ≤ y ≤ 3,5.
В еще одном дополнительном варианте осуществления смешаннооксидного материала 0,005 ≤ z ≤ 0,05, предпочтительно 0,005 ≤ z ≤ 0,02 и более предпочтительно z = 0,01.
В дополнительном варианте осуществления смешаннооксидный материал имеет формулу (Y0,395Tb0,595)3Al5O12:Ce0,01 и легирован по меньшей мере 10 млн-1 V, предпочтительно от 10 до 250 млн-1 V и, в частности, от 25 до 200 млн-1 V.
Было показано, что смешаннооксидные материалы в вышеуказанных диапазонах состава приводят к особенно эффективным сцинтилляционным материалам, имеющим высокий световой выход и низкое послесвечение.
В дополнительном варианте осуществления смешаннооксидный материал представляет собой монокристаллический или поликристаллический материал.
В варианте осуществления вышеуказанного способа на этапе с) добавляют флюс при объединении твердых веществ по этапу b) из этапа a).
При добавлении флюса на этапе с) может быть улучшена диффузия различных ионов во время спекания по этапу d), приводя к материалу более высокого качества при более низких температурах спекания.
В дополнительном варианте осуществления детектор дополнительно содержит второй смешаннооксидный материал или сцинтиллятор, причем второй смешаннооксидный материал или второй сцинтиллятор имеет более высокую плотность, чем вышеописанный смешаннооксидный материал или сцинтиллятор.
Благодаря комбинации двух различных сцинтилляционных материалов, имеющих различную плотность, может быть зарегистрировано рентгеновское излучение с различными уровнями энергии, причем материал с более низкой плотностью, как правило, регистрирует рентгеновское излучение с более низкой энергией, а материал с более высокой плотностью, как правило, регистрирует рентгеновское излучение с более высокой энергией. При создании детекторов, которые содержат два различных сцинтиллятора или сцинтилляционных материала, может быть создан детектор, который регистрирует рентгеновское излучение двух различных видов, что, например, в КТ-сканерах дает больше информации об обследуемом организме или части тела.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Эти и другие аспекты изобретения будут очевидны из и разъяснены со ссылкой на описанные здесь далее варианты осуществления и примеры. На нижеследующих чертежах:
Фиг.1 показывает схематическое изображение КТ-сканера согласно настоящему изобретению,
Фиг.2 показывает схематическое изображение первого варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению,
Фиг.3 показывает схематическое изображение второго варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению, и
Фиг.4 показывает схематическое изображение третьего варианта осуществления детектора ионизирующего излучения согласно настоящему изобретению.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
ПРИМЕРЫ
Примеры 1-4
Отвешивали стехиометрические количества Y2O3 (фирмы Rhodia), CeO2 (Neo Materials), Tb4O7 (Guangdong и Neo Materials), Al2O3 (Baikowski) в пропорциях для создания смешаннооксидных материалов, имеющих формулу (Y0,395Tb0,595)3Al5O12:Ce0,01. Чтобы легировать эти материалы ванадием (V) соответственно на уровне 25 млн-1, 50 млн-1, 100 млн-1 и 200 млн-1, растворяли в этаноле соответствующее количество NH4VO3, смешивали с Al2O3, осаждали и высушивали на роторном испарителе. Затем полученный этим путем модифицированный Al2O3 применяли в твердофазном синтезе требуемых смешанных оксидов. Твердые исходные материалы смешивали и измельчали в гептане в агатовых сосудах. После процесса смешивания образцы высушивали в трубчатой печи для удаления жидкости для смешивания, и образцы спекали в горизонтальной трубчатой печи (Entech серии 01820) при 1550°C в алюминиевом тигле в течение 4 часов в потоке H2/N2, чтобы восстановить Ce4+ до Ce3+, а Tb4+ до Tb3+.
Полученные образцы испытывали на фотолюминесценцию, при этом фотолюминесцентные эмиссионные спектры регистрировали при комнатной температуре с использованием ксеноновой лампы со спектрометром FLSP920 фирмы Edinburgh Instruments, оснащенным двойными монохроматорами для улучшения разрешения и снижения рассеянного света. Измерения послесвечения выполняли с использованием возбуждения рентгеновским излучением и фотодиода. Световой выход измеряли определением площади под кривой эмиссии и выражали в виде процентного выхода по сравнению со Сравнительным Примером 1 в каждой из таблиц.
Результаты измерений по сравнению с (Y0,395Tb0,595)3Al5O12:Ce0,01 без ванадия показаны ниже в Таблицах 1 и 2.
Таблица 1
Световые выходы для Примеров 1-4 по сравнению с (Y0,395Tb0,595)3Al5O12:Ce0,01 без добавления ванадия. Процентные значения приведены относительно Сравнительного Примера 1.
Полоса возбуждения 280 нм, Tb 3+ Полоса возбуждения 345 нм, Се 3+ Возбуждение, переход 7 F 6 - 5 D 3 378,5 нм, Tb 3+
Содержание V Площадь Световой выход, % Площадь Световой выход, % Площадь Световой выход, %
Сравнительный Пример 1 0 млн-1 2,26Е+08 100,0 8,33Е+07 100,0 7,28Е+07 100,0
Пример 1 25 млн-1 2,14Е+08 94,9 8,75Е+07 105,0 8,24Е+07 113,2
Пример 2 50 млн-1 1,97Е+08 87,1 7,95Е+07 95,4 7,37Е+07 101,2
Пример 3 100 млн-1 1,87Е+08 82,6 7,41Е+07 88,9 6,43Е+07 88,3
Пример 4 200 млн-1 1,59Е+08 70,5 7,02Е+07 84,3 5,99Е+07 82,3
Таблица 2
Послесвечение для Примеров 1-4 по сравнению с (Y 0,395 Tb 0,595 ) 3 Al 5 O 12 :Ce 0,01 без добавления ванадия. Процентные значения приведены относительно Сравнительного Примера 1. Значения в млн -1 указаны относительно начальной интенсивности соответствующего материала.
Послесвечение, %, после 5 мс (относительно Сравнительного Примера 1) μ σ μ σ μ σ
Сравнительный Пример 1 100,0 4628 15 122 1 43 1
Пример 1 5,7 263 9 <10 <10
Пример 2 8,2 380 65 31 1 <10
Фотодиод
5 мс
[млн -1 ]
Фотодиод 500 мс [млн -1 ] Фотодиод 2100 мс [млн -1 ]
Пример 3 10,3 476 42 10 2 12 3
Пример 4 2,3 108 7 <10 <10
Сравнительные Примеры 1-4
В качестве сравнительных примеров приготавливали составы (Y0,395Tb0,595)3Al5O12:Ce0,01, легированные Ti, Cr и Mn, а также (Y0,395Tb0,595)3Al5O12:Ce0,01 без добавления какой-либо легирующей примеси.
Синтез по Сравнительным Примерам проводили аналогично синтезу по Примерам 1-4, причем NH4VO3 не применяли или заменяли н-бутоксидом титана, Cr(NO3)3∙9H2O и Μn(ΝO3)2∙4Η2O соответственно. Для всех Сравнительных Примеров, содержащих легирующую примесь, использовали уровень легирующей примеси 50 млн-1.
Анализ материалов, полученных согласно Сравнительным Примерам 1-4, проводили в соответствии с условиями, описанными выше для Примеров 1-4, и результаты показаны ниже в Таблицах 3 и 4.
Таблица 3
Световые выходы для Сравнительных Примеров 1-4. Процентные значения приведены относительно Сравнительного Примера 1.
Полоса возбуждения 280 нм, Tb3+
Легирующая примесь Площадь Световой выход, %
Сравнительный Пример 1 нет 6429590 100,0
Пример 1 Ti 5734990 89,2
Пример 2 Cr 5907660 91,9
Пример 3 Mn 6055820 94,2
Таблица 4
Послесвечение для Сравнительных Примеров 1-4. Процентные значения приведены относительно Сравнительного Примера 1. Значения в млн -1 указаны относительно начальной интенсивности соответствующего материала.
Фотодиод 5 мс
[млн -1 ]
Фотодиод 500 мс [млн -1 ] Фотодиод 2100 мс [млн -1 ]
Послесвечение, %, после 5 мс (относительно Сравнительного Примера 1) μ σ μ σ μ σ
Сравнительный Пример 1 100,0 4628 15 122 1 43 1
Сравнительный Пример 2 49,4 2285 17 147 1 52 1
Сравнительный Пример 3 94,1 4355 40 115 1 39 1
Сравнительный Пример 4 268,1 12406 12 392 2 85 1
Данные из Примеров и Сравнительных Примеров ясно показывают, что добавление ванадия к смешаннооксидному материалу (Y0,395Tb0,595)3Al5O12:Ce0,01 значительно снижает послесвечение без чрезмерного влияния на световой выход. Кроме того, Сравнительные Примеры показывают, что это представляется очень специфичным эффектом для ванадия, так как родственные металлы d-группы, такие как титан, хром или марганец, такого эффекта не проявляют.
На Фиг.1 КТ-сканер в целом обозначен ссылочной позицией 10. КТ-сканер 10 содержит вращающуюся гентри 12, на которой на противоположных сторонах размещены источник 14 рентгеновского излучения и детекторная матрица 16. Детекторная матрица 16 состоит из ряда отдельных детекторов рентгеновского излучения, один из которых с целью примера обозначен здесь ссылочной позицией 18. Вращающуюся гентри 12 размещают таким образом, что источник 14 рентгеновского излучения и детекторная матрица 16 находятся на противоположных сторонах зоны 20 исследования, в которую помещен пациент 22. При использовании источник рентгеновского излучения излучает клиновидный, конусообразный или иным образом сформированный рентгеновский пучок, направленный в зону 20 исследования, в данном случае в направлении пациента 22. Пациент 22 может линейно перемещаться в направлении «z» (перпендикулярно плоскости чертежа), тогда как источник 14 рентгеновского излучения и, соответственно, детекторная матрица 16 вращаются вокруг оси «z». Как правило, вращающаяся гентри 12 поворачивается одновременно с линейным продвижением пациента 22, приводя в целом к спиральной траектории источника 14 рентгеновского излучения и, соответственно, детекторной матрицы 16 вокруг зоны 20 исследования. Однако также могут быть применены иные режимы формирования изображений, такие как режим одно- или многослойного формирования изображений, в котором гентри вращается, по мере того как опора для объекта остается неподвижной, с получением перемещения источника 14 рентгеновского излучения и, соответственно, детекторной матрицы 16 в целом по круговому направлению, вокруг которого улавливается аксиальное изображение.
Как можно видеть на рисунке, детекторная матрица 16 размещена на гентри 12 на противоположной источнику 14 рентгеновского излучения стороне, так что при использовании рентгеновские лучи, излучаемые источником 14 рентгеновского излучения, проходят, например, через пациента 22 и затем регистрируются детекторной матрицей 16. Как правило, детекторная матрица 16 содержит большое число детекторов 18, посредством чего детекторная матрица 16 может представлять собой выстроенные в одну линию детекторы 18 или же двумерную матрицу из детекторов 18. Более подробное разъяснение функционирования детекторов 18 внутри детекторных матриц 16 приведено ниже в отношении разнообразных вариантов осуществления детекторов, показанных на Фигурах 2-4.
На Фиг.2 детектор ионизирующего излучения согласно первому варианту осуществления в целом обозначен ссылочной позицией 30. Детектор 30 содержит две сборочные единицы, а именно, сцинтиллятор 32 и фотодетектор 34. Фотодетектор 34 содержит фотодиод 36, который размещен так, что активная область фотодиода 36 обращена к сцинтиллятору 32.
При использовании детектор размещают таким образом, что сцинтиллятор 32 ориентирован в сторону источника потенциального источника регистрируемого излучения. При этом сцинтиллятор 32 состоит, например, из материала, описанного выше в Примере 1. Если теперь на сцинтиллятор 32 падает ионизирующее излучение, например, рентгеновские лучи, сцинтиллятор 32 взаимодействует с этими рентгеновскими лучами и в ответ испускает один или многочисленные фотоны, которые излучаются из сцинтиллятора 32 и могут быть зарегистрированы фотодиодом 34, генерирующим электрический сигнал, указывающий на наличие рентгеновского излучения. Чтобы повысить выход фотонов, регистрируемых диодом 34, сцинтиллятор 32 может быть покрыт с одной или нескольких не обращенных к фотодетектору сторон материалом, отражающим излучаемые фотоны.
На Фиг.3 детектор ионизирующего излучения согласно второму варианту осуществления в целом обозначен ссылочной позицией 40. И в этом случае этот детектор 40 содержит два конструкционных элемента, а именно, сцинтиллятор 42 и фотодетектор 44. В отличие от варианта осуществления по Фиг.1, в этом случае сцинтиллятор 42 состоит из двух различных сцинтилляционных материалов, первого сцинтилляционного материала 46 и второго сцинтилляционного материала 48. Первый сцинтилляционный материал 46 в данном случае представляет собой материал из вышеупомянутого Примера 2, а второй сцинтилляционный материал 48 представляет собой при этом сцинтилляционный материал, имеющий более высокую плотность, чем первый сцинтилляционный материал 46. В данном случае второй сцинтилляционный материал 48 представляет собой Gd2O2S, легированный празеодимом (Pr).
Соответственно первому сцинтилляционному материалу 46 и второму сцинтилляционному материалу 48, фотодетектор 42 содержит два фотодиода, первый фотодиод 50 и второй фотодиод 52. При использовании рентгеновские лучи с различными энергиями падают на детектор 40 сверху, то есть в направлении первого сцинтилляционного материала 46. Вследствие своей более низкой плотности первый сцинтилляционный материал 46 поглощает рентгеновское излучение более низкой энергии и в ответ на него излучает фотоны с первой частотой. После прохождения через первый сцинтилляционный материал 46 рентгеновские лучи попадают на второй сцинтилляционный материал 48, в результате чего при взаимодействии со вторым сцинтилляционным материалом 48 излучаются фотоны со второй длиной волны.
Первый фотодиод 50 теперь снабжен первым фильтром 54, который отфильтровывает фотоны со второй длиной волны, обеспечивая то, что только фотоны с первой длиной волны, то есть фотоны, сгенерированные первым сцинтилляционным материалом 46, регистрируются первым фотодиодом 50.
Соответственно, второй фотодиод 52 снабжен вторым фильтром 56, который задерживает фотоны с первой длиной волны, обеспечивая то, что только фотоны со второй длиной волны, то есть фотоны, сгенерированные вторым сцинтилляционным материалом 48, достигают второго фотодиода 52 и регистрируются им.
В результате вышеуказанной схемы можно с помощью детектора 40 регистрировать и дифференцировать рентгеновское излучение с двумя различными уровнями энергии и формировать соответствующие сигналы, увеличивая количество информации, доступной при КТ-сканировании.
На Фиг.4 детектор ионизирующего излучения согласно третьему варианту осуществления в целом обозначен ссылочной позицией 60. Детектор 60 ионизирующего излучения по функционированию подобен детектору 40 по Фиг.3, но имеет иную конструкцию.
И в этом случае детектор 60 состоит из сцинтиллятора 62 и фотодетектора 64. В этом случае сцинтиллятор 62 опять состоит из первого сцинтилляционного материала 66 и второго сцинтилляционного материала 68. При этом первый сцинтилляционный материал 66 представляет собой, например, материал по Примеру 3, тогда как второй сцинтилляционный материал 68 опять представляет собой Gd2O2S, легированный празеодимом (Pr), то есть материал более высокой плотности, чем первый сцинтилляционный материал 66. В отличие от варианта осуществления по Фиг.3, на Фиг.4 фотодетектор 64 размещен не под сцинтиллятором 62, а сбоку от него, тем самым первый фотодиод 70 расположен на стороне первого сцинтилляционного материала 66, а второй фотодиод 72 размещен на стороне второго сцинтилляционного материала 68, если смотреть в направлении поступления регистрируемого ионизирующего излучения, как указано стрелкой 74.
На тех сторонах, которые не обращены к первому фотодиоду 70 и второму фотодиоду 72 соответственно оба сцинтилляционных материала 66 и 68 обеспечены покрытием, которое является отражающим для фотонов в диапазоне длин волн, излучаемых первым и вторым сцинтилляционным материалом 66 и 68 соответственно, будучи тем не менее прозрачным для ионизирующего излучения.
При использовании, ионизирующее излучение проходит в направлении, обозначенном стрелкой 74, в сторону первого сцинтилляционного материала 66, причем вследствие его более низкой плотности часть ионизирующего излучения с более низкой энергией взаимодействует с первым сцинтилляционным материалом 66 и возбуждает излучение одного или нескольких фотонов. Благодаря отражающему покрытию с наружной стороны первого сцинтилляционного материала 66, фотоны могут выходить из первого сцинтилляционного материала 66 только в сторону первого фотодиода 70 и регистрируются им. После прохождения через первый сцинтилляционный материал 66 ионизирующее излучение поступает во второй сцинтилляционный материал 68, вследствие чего, благодаря тому обстоятельству, что плотность второго сцинтилляционного материала 68 выше, чем первого сцинтилляционного материала 66, поглощается излучение с более высокой энергией, и в результате этого генерируется второй набор фотонов. И в этом случае, благодаря тому обстоятельству, что второй сцинтилляционный материал 68 покрыт отражающим материалом на тех сторонах, которые не обращены ко второму фотодиоду, фотоны могут выходить из второго сцинтилляционного материала 68 только в сторону второго фотодиода 72 и регистрируются им.
Опять, ввиду того обстоятельства, что каждый сцинтилляционный материал взаимодействует с излучением конкретного уровня энергии и в ответ излучает фотоны, которые направлены к конкретным фотодиодам и регистрируются ими, детектором ионизирующего излучения могут быть зарегистрированы различные рентгеновские лучи, создавая больше информации, например, об обследуемом теле в КТ-сканере.
Хотя изобретение было проиллюстрировано и подробно описано на чертежах и вышеизложенном описании, такие иллюстрация и описание должны рассматриваться как иллюстративные или примерные, но не ограничивающие; изобретение не ограничивается раскрытыми вариантами осуществления. Другие вариации раскрытых вариантов осуществления могут быть поняты и реализованы специалистами в этой области техники при практической реализации заявленного изобретения, из изучения чертежей, раскрытия и приложенной формулы изобретения.
В формуле изобретения слово «содержащий» не исключает других элементов или этапов, а единственное число не исключает множества. Единственный элемент или другой блок могут выполнять функции нескольких элементов, перечисленных в формуле изобретения. Тот факт, что определенные меры перечислены во взаимно различных зависимых пунктах формулы изобретения, не означает, что комбинация этих мер не может быть использована с выгодой.
Любые ссылочные обозначения в формуле изобретения не должны истолковываться как ограничивающие объем.

Claims (18)

1. Сцинтиллятор, содержащий смешаннооксидный материал с формулой (YwTbx)3Al5-yGayO12:Cez, в которой 0,01 ≤ w ≤ 0,99, 0,01 ≤ x ≤ 0,99, 0 ≤ y ≤ 3,5 и 0,001 ≤ z ≤ 0,10 и в которой w + x + 3×z = 1, причем смешаннооксидный материал легирован по меньшей мере 10 млн-1 V.
2. Сцинтиллятор по п.1, причем материал легирован от 10 до 250 млн-1 V.
3. Сцинтиллятор по п.1, причем 0,1 ≤ w ≤ 0,9.
4. Сцинтиллятор по п.1, причем 0,1 ≤ x ≤ 0,9.
5. Сцинтиллятор по п.1, причем 1 ≤ y ≤ 3,5.
6. Сцинтиллятор по п.1, причем 0,005 ≤ z ≤ 0,05.
7. Сцинтиллятор по п.1, причем материал представляет собой монокристаллический или поликристаллический материал.
8. Способ получения сцинтиллятора со смешаннооксидным материалом по п.1, содержащий следующие этапы:
а) обеспечение Y2O3, CeO2, Tb4O7, Al2O3 и Ga2O3 в пропорциях, пригодных для получения требуемого смешанного оксида,
b) пропитывание одного или нескольких из твердых веществ по этапу а) источником V в требуемом количестве,
с) объединение и измельчение твердых веществ по этапу а), которые не пропитаны на этапе b), и этапу b) в присутствии подходящего диспергатора с получением суспензии,
d) высушивание суспензии по этапу с) с получением смешанного порошка,
е) спекание смешанного порошка по этапу d) при температуре по меньшей мере 1400°С в течение по меньшей мере 1 ч и
f) построение сцинтиллятора с использованием спеченного смешанного порошка по этапу е).
9. Способ по п.8, причем на этапе с) при объединении твердых веществ по этапу а) и этапу b) добавляют флюс.
10. Детектор ионизирующего излучения, содержащий сцинтиллятор (32; 42; 62) по п.1 в комбинации с по меньшей мере одним фотодетектором (34; 44; 64).
11. Детектор по п.10, дополнительно содержащий второй сцинтиллятор, имеющий более высокую плотность, чем сцинтиллятор по п.1.
12. КТ-сканер, содержащий по меньшей мере один детектор (18; 30; 40; 60) по п.10.
RU2015145461A 2013-03-26 2014-03-21 Смешаннооксидные материалы RU2666431C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361805261P 2013-03-26 2013-03-26
US61/805,261 2013-03-26
PCT/IB2014/060019 WO2014155256A1 (en) 2013-03-26 2014-03-21 Mixed oxide materials

Publications (3)

Publication Number Publication Date
RU2015145461A RU2015145461A (ru) 2017-05-16
RU2015145461A3 RU2015145461A3 (ru) 2018-03-22
RU2666431C2 true RU2666431C2 (ru) 2018-09-07

Family

ID=50439449

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145461A RU2666431C2 (ru) 2013-03-26 2014-03-21 Смешаннооксидные материалы

Country Status (6)

Country Link
US (1) US9315726B2 (ru)
EP (1) EP2898043B1 (ru)
JP (1) JP5937287B1 (ru)
CN (1) CN105073949B (ru)
RU (1) RU2666431C2 (ru)
WO (1) WO2014155256A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624126B2 (en) 2020-06-16 2023-04-11 Ohio State Innovation Foundation Deposition of single phase beta-(AlxGa1-x)2O3 thin films with 0.28< =x<=0.7 on beta Ga2O3(100) or (−201) substrates by chemical vapor deposition

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6671839B2 (ja) * 2014-10-07 2020-03-25 キヤノン株式会社 放射線撮像装置及び撮像システム
CZ2015711A3 (cs) * 2015-10-09 2016-10-19 Crytur Spol S R O Způsob zkrácení scintilační odezvy zářivých center scintilátoru a materiál scintilátoru se zkrácenou scintilační odezvou
US11000701B2 (en) * 2017-08-01 2021-05-11 Varex Imaging Corporation Dual-layer detector for soft tissue motion tracking
CN108535770B (zh) * 2018-05-09 2024-01-02 同方威视技术股份有限公司 余辉检测装置和余辉检测方法
CN114296124A (zh) * 2021-12-30 2022-04-08 上海联影医疗科技股份有限公司 闪烁体余辉测试系统、方法、装置和电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1043383A1 (en) * 1997-12-24 2000-10-11 Hitachi Medical Corporation Phosphors, and radiation detectors and x-ray ct unit made by using the same
US6168731B1 (en) * 1997-02-24 2001-01-02 Superior Micropowders Llc Cathodoluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
US20040084655A1 (en) * 2001-10-11 2004-05-06 Vartuli James Scott Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
CN102241982A (zh) * 2011-05-20 2011-11-16 电子科技大学 一种led荧光粉及其制备方法
WO2012066425A2 (en) * 2010-11-16 2012-05-24 Saint-Gobain Cristaux Et Detecteurs Scintillation compound including a rare earth element and a process of forming the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834851B2 (ja) * 1990-06-05 1998-12-14 化成オプトニクス株式会社 タングステン酸カルシウム蛍光体及び該蛍光体を用いた放射線増感紙
US5938974A (en) 1998-09-10 1999-08-17 Osram Sylvania Inc. Yttrium tantalate x-ray phosphors with reduced persistence
JP4683719B2 (ja) * 2000-12-21 2011-05-18 株式会社日立メディコ 酸化物蛍光体及びそれを用いた放射線検出器、並びにx線ct装置
US6630077B2 (en) 2001-10-11 2003-10-07 General Electric Company Terbium- or lutetium - containing garnet phosphors and scintillators for detection of high-energy radiation
JP4269880B2 (ja) * 2003-10-17 2009-05-27 日亜化学工業株式会社 蛍光ランプ及び蛍光ランプ用蛍光体
US7449128B2 (en) * 2004-06-21 2008-11-11 General Electric Company Scintillator nanoparticles and method of making
US7252789B2 (en) 2005-03-31 2007-08-07 General Electric Company High-density scintillators for imaging system and method of making same
JP2008537001A (ja) 2005-04-19 2008-09-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CTのための非常に短い残光を有するGd2O2S:Prを得る方法。
RU2009106671A (ru) 2006-07-26 2010-09-10 Конинклейке Филипс Электроникс Н.В. (Nl) Керамический гранатовый материал на основе аиг, содержащий по меньшей мере один многоузельный элемент
US7569109B2 (en) * 2006-08-23 2009-08-04 General Electric Company Single crystal scintillator materials and methods for making the same
JP5548629B2 (ja) 2011-01-31 2014-07-16 古河機械金属株式会社 シンチレータ用ガーネット型結晶およびこれを用いる放射線検出器
JP5311241B2 (ja) 2011-02-16 2013-10-09 日立金属株式会社 多結晶シンチレータ及びその製造方法並びに放射線検出器
JP6066608B2 (ja) * 2011-07-27 2017-01-25 キヤノン株式会社 相分離構造を有するシンチレータおよびそれを用いた放射線検出器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6168731B1 (en) * 1997-02-24 2001-01-02 Superior Micropowders Llc Cathodoluminescent phosphor powders, methods for making phosphor powders and devices incorporating same
EP1043383A1 (en) * 1997-12-24 2000-10-11 Hitachi Medical Corporation Phosphors, and radiation detectors and x-ray ct unit made by using the same
US20040084655A1 (en) * 2001-10-11 2004-05-06 Vartuli James Scott Terbium or lutetium containing scintillator compositions having increased resistance to radiation damage
WO2012066425A2 (en) * 2010-11-16 2012-05-24 Saint-Gobain Cristaux Et Detecteurs Scintillation compound including a rare earth element and a process of forming the same
CN102241982A (zh) * 2011-05-20 2011-11-16 电子科技大学 一种led荧光粉及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СОКУЛЬСКАЯ Н.Н. Синтез и исследование гранатов редкоземельных элементов и алюминия для светоизлучающих диодов. Диссертация на соискание учёной степени кандидата наук. Ставрополь, Ставропольский государственный университет, 2004, с.57-67. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624126B2 (en) 2020-06-16 2023-04-11 Ohio State Innovation Foundation Deposition of single phase beta-(AlxGa1-x)2O3 thin films with 0.28< =x<=0.7 on beta Ga2O3(100) or (−201) substrates by chemical vapor deposition

Also Published As

Publication number Publication date
WO2014155256A1 (en) 2014-10-02
RU2015145461A3 (ru) 2018-03-22
JP2016519183A (ja) 2016-06-30
US20160024380A1 (en) 2016-01-28
US9315726B2 (en) 2016-04-19
EP2898043B1 (en) 2016-06-01
EP2898043A1 (en) 2015-07-29
JP5937287B1 (ja) 2016-06-22
RU2015145461A (ru) 2017-05-16
CN105073949B (zh) 2018-05-22
CN105073949A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
RU2666431C2 (ru) Смешаннооксидные материалы
US9145517B2 (en) Rare earth garnet scintillator and method of making same
JP5521412B2 (ja) 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
JP5281742B2 (ja) シンチレータ物質及びシンチレータ物質を含む放射線検出器
JP5759374B2 (ja) 発光物質及びそれを用いた放射線検出方法
JP5035660B2 (ja) 蛍光材料およびそれを用いた放射線検出器
JP3777486B2 (ja) 蛍光体及びそれを用いた放射線検出器及びx線ct装置
JP2011153200A (ja) 蛍光材料およびそれを用いたシンチレータ並びに放射線検出器
US9638807B2 (en) Scintillating material and related spectral filter
JP2001303048A (ja) 蛍光体及びそれを用いた放射線検出器及びx線ct装置
US8907292B2 (en) Tungstate-based scintillating materials for detecting radiation
JP4678924B2 (ja) 放射線検出器およびこれを用いたx線診断装置
JP6776671B2 (ja) 蛍光材料、セラミックシンチレータおよび放射線検出器、並びに蛍光材料の製造方法
JP6343785B2 (ja) 中性子シンチレータ
WO2015008241A1 (en) Ce3+ activated luminescent compositions for application in imaging systems
JP6957422B2 (ja) 蛍光板及びx線検査装置
KR101406299B1 (ko) 방사선 영상용 형광체 및 이의 제조 및 응용 방법
JP2009046610A (ja) シンチレータ
JP7459593B2 (ja) セラミック蛍光材料、シンチレータアレイ、放射線検出器および放射線コンピュータ断層撮影装置
JP7302706B2 (ja) セラミックシンチレータおよび放射線検出器
JPH05279663A (ja) シンチレータ材料
EP4080522A1 (en) Fluor plate, x-ray detector, and x-ray inspection device
JPH11166177A (ja) シンチレータ