RU2654024C2 - Помещаемое в воду формованное полимерное изделие - Google Patents
Помещаемое в воду формованное полимерное изделие Download PDFInfo
- Publication number
- RU2654024C2 RU2654024C2 RU2016139592A RU2016139592A RU2654024C2 RU 2654024 C2 RU2654024 C2 RU 2654024C2 RU 2016139592 A RU2016139592 A RU 2016139592A RU 2016139592 A RU2016139592 A RU 2016139592A RU 2654024 C2 RU2654024 C2 RU 2654024C2
- Authority
- RU
- Russia
- Prior art keywords
- water
- polymer
- molded
- hydrolyzable
- dispersed
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 132
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 claims abstract description 23
- 239000012530 fluid Substances 0.000 claims abstract description 19
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 238000005553 drilling Methods 0.000 claims abstract description 13
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 238000000465 moulding Methods 0.000 claims description 16
- 239000002202 Polyethylene glycol Substances 0.000 claims description 11
- 238000002844 melting Methods 0.000 claims description 11
- 230000008018 melting Effects 0.000 claims description 11
- 229920001223 polyethylene glycol Polymers 0.000 claims description 11
- 229920000954 Polyglycolide Polymers 0.000 claims description 10
- 229920000229 biodegradable polyester Polymers 0.000 claims description 10
- 239000004622 biodegradable polyester Substances 0.000 claims description 10
- 238000000748 compression moulding Methods 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 10
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 10
- 239000004633 polyglycolic acid Substances 0.000 claims description 10
- 239000004626 polylactic acid Substances 0.000 claims description 10
- -1 polyoxalate Polymers 0.000 claims description 9
- 238000001125 extrusion Methods 0.000 claims description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 claims description 3
- 229920002961 polybutylene succinate Polymers 0.000 claims description 3
- 239000004631 polybutylene succinate Substances 0.000 claims description 3
- 229920009537 polybutylene succinate adipate Polymers 0.000 claims description 3
- 239000004630 polybutylene succinate adipate Substances 0.000 claims description 3
- 229920001610 polycaprolactone Polymers 0.000 claims description 3
- 239000004632 polycaprolactone Substances 0.000 claims description 3
- 229920000903 polyhydroxyalkanoate Polymers 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 16
- 239000000126 substance Substances 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000002156 mixing Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 230000000593 degrading effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 27
- 239000003826 tablet Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 16
- 230000007062 hydrolysis Effects 0.000 description 11
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 239000000843 powder Substances 0.000 description 10
- 238000005755 formation reaction Methods 0.000 description 8
- 239000000428 dust Substances 0.000 description 6
- 238000005065 mining Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 230000007613 environmental effect Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000003708 ampul Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000011246 composite particle Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 241000206672 Gelidium Species 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- LOMVENUNSWAXEN-UHFFFAOYSA-N Methyl oxalate Chemical compound COC(=O)C(=O)OC LOMVENUNSWAXEN-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- XUGISPSHIFXEHZ-GPJXBBLFSA-N [(3r,8s,9s,10r,13r,14s,17r)-10,13-dimethyl-17-[(2r)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1h-cyclopenta[a]phenanthren-3-yl] acetate Chemical compound C1C=C2C[C@H](OC(C)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 XUGISPSHIFXEHZ-GPJXBBLFSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Inorganic materials O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000012065 filter cake Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 150000007519 polyprotic acids Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 1
- UYCAUPASBSROMS-AWQJXPNKSA-M sodium;2,2,2-trifluoroacetate Chemical compound [Na+].[O-][13C](=O)[13C](F)(F)F UYCAUPASBSROMS-AWQJXPNKSA-M 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 239000003017 thermal stabilizer Substances 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/06—Clay-free compositions
- C09K8/12—Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
- C08L101/14—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/62—Compositions for forming crevices or fractures
- C09K8/66—Compositions based on water or polar solvents
- C09K8/68—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2208/00—Aspects relating to compositions of drilling or well treatment fluids
- C09K2208/08—Fiber-containing well treatment fluids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Изобретение относится к помещаемому в воду формованному полимерному изделию для получения текучей среды для гидравлического разрыва пласта при бурении и способу изготовления его. Помещаемое в воду формованное полимерное изделие имеет структуру дисперсии, в которой гидролизующийся полимер диспергируется в матрице водорастворимого полимера. Гидролизующийся полимер диспергирован в матрице в гранулированной или волокнистой форме. Матрица водорастворимого полимера содержится в количестве, составляющем от 10 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера. Формованное полимерное изделие может упрощать операцию смешивания с водой без ухудшения свойств гидролизующегося полимера. 2 н. и 6 з.п. ф-лы, 1 ил., 1 табл., 1 пр.
Description
Область техники, к которой относится изобретение
[0001]
Настоящее изобретение относится к помещаемому в воду формованному полимерному изделию, которое используется в состоянии водной дисперсии посредством его помещения в воду.
Уровень техники
[0002]
Способы бурения рудоспусков, такие как способ гидравлического разрыва пласта, способ роторного бурения и способ бескондукторного бурения, в настоящее время широко используются для добычи полезных ископаемых.
Способ роторного бурения состоит в формировании рудоспуска посредством бурения и одновременном обратном стоке бурового раствора и образовании фильтрационной корки, так называемой глинистой корки, на поверхностях стенок рудоспуска с использованием текучей среды для заключительной обработки, смешанной с предотвращающим потерю воды веществом. Эта корка поддерживает устойчивость стенок рудоспуска, предотвращает разрушение стенок рудоспуска и уменьшает трение при движении текучей среды через рудоспуск.
Способ гидравлического разрыва пласта состоит в нагнетании текучей среды, которая заполняет рудоспуск, и образовании трещин (разрывов) в окрестностях рудоспуска, в результате чего улучшается проницаемость в окрестностях рудоспуска (что упрощает движение текучей среды), в целях увеличения эффективной площади поперечного сечения, через которое полезные ископаемые, такие как нефть и газ, перемещаются в рудоспуск, и следовательно, в целях повышения пропускной способности рудоспуска.
[0003]
Здесь в качестве предотвращающего потерю воды вещества, которое добавляется в текучую среду для заключительной обработки, используются, главным образом, карбонат кальция или соли разнообразных видов в гранулированной форме. Однако использование предотвращающего потерю воды вещества вызывает такие проблемы, что становится необходимым осуществление обработки кислотой для удаления предотвращающего потерю воды вещества; в противном случае его остатки закупоривают пласт, из которого добываются полезные ископаемые, и препятствуют их добыче.
Кроме того, в способе гидравлического разрыва пласта используется текучая среда, которая также называется текучей средой для гидравлического разрыва пласта. До настоящего времени использовалась вязкая текучая среда, такая как желатинизированный бензин. Однако принимая во внимание, что в настоящее время сланцевый газ или аналогичный газ добывается из сланцевых пластов, которые залегают на относительно небольшой глубине, а также учитывая воздействие на окружающую среду, становится распространенной практика использования водного дисперсного раствора, получаемого посредством растворения или диспергирования полимера в воде. В качестве таких полимеров являются известными полимолочная кислота и гидролизующиеся полимеры, пример которых представляет собой полигликолевая кислота (см. патентные документы 1 и 2).
Заявитель настоящего изобретения также предлагает использование полимолочной кислоты, полиоксалата и полигликолевой кислоты в водном дисперсном растворе для бурения, как раскрыто в японской патентной заявке № 2012-271084 и японской патентной заявке № 2012-254682.
[0004]
Таким образом, гидролизующийся полимер, такой как полимолочная кислота, проявляет способность к гидролизу и способность к биоразложению, и даже если он остается под землей, он разлагается грунтовыми водами, ферментами или микроорганизмами и не производит неблагоприятного воздействия на окружающую среду. Кроме того, вода, которая используется в качестве диспергирующего вещества, также может считаться производящей значительно меньшее воздействие на окружающую среду по сравнению с бензином или аналогичным веществом.
Рудоспуск заполняют водным раствором, в котором диспергируется гидролизующийся полимер, а затем раствор нагнетают таким образом, что гидролизующийся полимер проникает в окрестности рудоспуска. Здесь полимер подвергается гидролизу и теряет форму полимера. Таким образом, в тех областях, в которые проникает полимер, образуются пустоты (или трещины) что обуславливает увеличение пространства рудоспуска, в которое могут протекать полезные ископаемые.
Кроме того, гидролизующийся полимер функционирует в качестве предотвращающего потерю воды вещества и подавляет проникновение в грунт чрезмерно большого количества воды, используемой в качестве дисперсионной среды. Таким образом, гидролизующийся полимер обеспечивает преимущество сокращения до минимума изменения окружающей среды. Кроме того, никакая обработка кислотой не требуется, поскольку данный полимер сам разлагается в грунте.
Кроме того, в процессе гидролиза гидролизующегося полимера высвобождается кислота. Эта высвобождающаяся кислота вызывает коррозию сланцевого слоя, и в результате этого ускоряется процесс образования пор в сланцевом слое.
[0005]
Здесь дисперсный раствор для добычи полезных ископаемых используется таким образом, что он заполняет рудоспуск; т.е. дисперсный раствор используется единовременно в очень больших количествах. Кроме того, место, в котором добываются полезные ископаемые, как правило, находится на большом расстоянии от места, в котором производятся полимеры и другие необходимые вещества. Таким образом, если водный раствор, в котором диспергируется гидролизующийся полимер, используется для добычи полезных ископаемых, то этот дисперсный раствор во многих случаях изготавливается на месте добычи. А именно, порошкообразный гидролизующийся полимер и вода смешиваются друг с другом на месте добычи.
[0006]
Таким образом, требуется повысить уровень простоты и безопасности операции смешивания гидролизующегося полимера и воды друг с другом. Поэтому на месте добычи, в отличие от обычного производственного предприятия, операция смешивания в большинстве случаев осуществляется вне помещения силами местных работников. Кроме того, гидролизующийся полимер поступает в форме порошка, и это вызывает проблему образования летучей пыли.
[0007]
С точки зрения использования для добычи полезных ископаемых, таким образом, требуется, чтобы гидролизующийся полимер имел способность легкого смешивания с водой, не создавая проблемы образования летучей пыли и при этом сохраняя свойства гидролизующегося полимера. Кроме того, когда гидролизующийся полимер доставляется на место использования, он находится в виде формованного изделия. Однако при введении в рудоспуск формованное изделие разрушается, и гидролизующийся полимер диспергируется в растворе. Однако до настоящего времени не проводились исследования в отношении свойств гидролизующихся полимеров.
[0008]
Например, патентный документ 3 описывает технологию перемешивания в расплаве гидролизующегося полимера, такого как полимолочная кислота и полиакриловая кислота или полиэтиленгликоль, в целях получения композитных частиц, в которых содержится гидролизующийся полимер. Однако здесь композитные частицы получаются просто в качестве промежуточного вещества во время изготовления частиц гидролизующегося полимера, имеющих высокую прочность, но они не изготавливаются в целях улучшения технологичности на месте добычи. По существу, согласно исследованию авторов настоящего изобретения, композитные частицы не обеспечивают технологичность на месте добычи. Даже если они могли бы смешиваться с водой, не создавая проблемы образования летучей пыли, возникает проблема ухудшения свойств, поскольку гидролизующийся полимер подвергается разложению перед его смешиванием.
[0009]
Патентный документ 4 предлагает композицию на основе полигликолевой кислоты, которая содержит 100 массовых частей полигликолевой кислоты (PGA) и от 1 до 25 массовых частей водорастворимого высокомолекулярного материала. Однако эта технология была разработана для достижения такой цели, чтобы разложение PGA осуществлялось в течение коротких периодов времени посредством погружения в водный щелочной раствор. Таким образом, у композиции на основе полигликолевой кислоты также отсутствуют свойства, требуемые на месте добычи.
Документы предшествующего уровня техники
Патентные документы
[0010]
Патентный документ 1: патент США № USP 7833950
Патентный документ 2: международная патентная заявка № WO 2012/050187
Патентный документ 3: японская патентная заявка № JP-A-2002-363291
Патентный документ 4: японская патентная заявка № JP-A-2012-149205
Сущность изобретения
Проблемы, решаемые изобретением
[0011]
Таким образом, задача настоящего изобретения заключается в том, чтобы предложить помещаемое в воду формованное полимерное изделие, которое может упрощать операцию смешивания с водой без ухудшения свойства гидролизующегося полимера.
Средства решения проблем
[0012]
Согласно настоящему изобретению, предлагается помещаемое в воду формованное полимерное изделие, имеющее структуру дисперсии, в которой гидролизующийся полимер диспергирован в матрице водорастворимого полимера.
[0013]
Для помещаемого в воду формованного полимерного изделия согласно настоящему изобретению оказываются желательными следующие условия:
(1) водорастворимый полимер представляет собой полиэтиленгликоль и/или поливиниловый спирт;
(2) гидролизующийся полимер представляет собой биоразлагающийся сложный полиэфир;
(3) биоразлагающийся сложный полиэфир представляет собой, по меньшей мере, одно соединение, выбранное из группы, включающей полимолочную кислоту, полигидроксиалканоат, полиоксалат, полигликолевую кислоту, полибутиленсукцинат, полибутиленсукцинат-адипат и поликапролактон;
(4) гидролизующийся полимер диспергируется в гранулированной или волокнистой форме в матрице;
(5) биоразлагающийся сложный полиэфир диспергируется в гранулированной форме, имеющей размер зерен, составляющий от 10 до 1000 мкм;
(6) биоразлагающийся сложный полиэфир диспергируется в волокнистой форме, имеющей линейную плотность, составляющую от 0,1 до 20 денье, и длину волокон, составляющую от 2 до 25 мм; и
(7) матрица водорастворимого полимера содержится в количестве, составляющем от 10 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера.
[0014]
Согласно настоящему изобретению, помещаемое в воду формованное полимерное изделие изготавливают посредством формования смеси, содержащей гранулированный гидролизующийся полимер и водорастворимый полимер, при температуре, которая не выше, чем температура плавления водорастворимого полимера, но ниже, чем температура плавления гранулированного гидролизующегося полимера.
Согласно вышеупомянутому способу изготовления, формование может осуществляться посредством компрессионного формования или экструзионного формования.
Эффекты изобретения
[0015]
Помещаемое в воду формованное полимерное изделие согласно настоящему изобретению изготавливают подходящим способом. Соответствующий порошок может подвергаться формованию и превращаться в крупную форму, такую как таблетка или стержень. После помещения в воду формованное изделие может легко диспергироваться в воде. Кроме того, в качестве матрицы в формованном изделии используется водорастворимый полимер . Если формованное изделие помещают в воду, в результате этого водорастворимый полимер, окружающий гидролизующийся полимер, растворяется в воде и удаляется. Таким образом, не ухудшается способность гидролиза гидролизующегося полимера.
[0016]
Кроме того, согласно настоящему изобретению, водорастворимый полимер, который используют в качестве матрицы, функционирует в качестве защитного слоя. А именно, даже если формованное полимерное изделие содержится вне помещения, предотвращается вступление гидролизующегося полимера в контакт с открытым воздухом. Таким образом, эффективно предотвращается разложение гидролизующегося полимера в процессе окисления или гидролиза, и он устойчиво сохраняет свои свойства.
[0017]
Как описывается выше, помещаемое в воду формованное полимерное изделие согласно настоящему изобретению не создает проблему образования летучей пыли, когда оно смешивается с водой, и оно является удобным для работы. Кроме того, гидролизующийся полимер эффективно защищается от разложения, и его способность гидролиза не ухудшается, когда он помещается в воду.
Соответственно, помещаемое в воду формованное полимерное изделие согласно настоящему изобретению очень хорошо приспособлено для изготовления дисперсного раствора для бурения на месте добычи.
Краткое описание чертежей
[0018]
[Фиг. 1] представляет изображение, иллюстрирующее помещаемое в воду формованное полимерное изделие согласно настоящему изобретению.
Варианты осуществления изобретения
[0019]
<Помещаемое в воду формованное полимерное изделие>
Формованное полимерное изделие согласно настоящему изобретению помещают в воду для изготовления водного дисперсного раствора гидролизующегося полимера. Таким образом, формованное полимерное изделие присутствует в форме, с которой можно легко обращаться для ее помещения в воду.
Формованное полимерное изделие имеет размер порядка нескольких миллиметров, и, таким образом, это позволяет эффективно предотвращать возникновение летучей пыли, причем по этой причине упрощается обращение с ним. Хотя здесь отсутствуют ограничения, формованное полимерное изделие, как правило, присутствует в формах, которые проиллюстрированы на фиг. 1.
[0020]
Формованное полимерное изделие, проиллюстрированное на фиг. 1(a), присутствует в форме таблетки, имеющей, в общем, большой диаметр D1, составляющий от приблизительно 3 до приблизительно 10 мм, и малый диаметр h1, составляющий от приблизительно 1 до приблизительно 5 мм. Формованное полимерное изделие, имеющее такую форму таблетки, как правило, изготавливается посредством компрессионного формования.
Формованное полимерное изделие, проиллюстрированное на фиг. 1(b), присутствует в форме стержня, имеющего, в общем, малый диаметр D2, составляющий от приблизительно 1 до приблизительно 5 мм, и большой диаметр h2, составляющий от приблизительно 3 до приблизительно 10 мм. Формованное полимерное изделие, имеющее такую форму стержня, как правило, изготавливается посредством экструзионного формования.
Формованное полимерное изделие любого типа обладает пониженной прочностью гранул, если исчезает баланс между их малым диаметром и их большим диаметром. Когда осуществляется хранение или транспортировка упакованных в мешки гранул, их структура разрушается, и они превращаются в порошок, работа с которым оказывается затруднительной. Таким образом, оказывается желательным, чтобы соотношение (D1/h1 или h2/D2) большого диаметра и малого диаметра находилось в интервале от 3 до 10.
[0021]
<Структура помещаемого в воду формованного полимерного изделия>
Вышеупомянутое помещаемое в воду формованное полимерное изделие согласно настоящему изобретению имеет структура дисперсии, в которой гидролизующийся полимер диспергируется в матрице водорастворимого полимера. Формованное полимерное изделие, имеющее структуру дисперсии, изготавливается посредством формования смеси, содержащей гранулированный гидролизующийся полимер и водорастворимый полимер, при температуре, составляющей менее чем температура плавления гранулированного гидролизующегося полимера, но не менее чем температура плавления водорастворимого полимера.
В качестве способа формования могут использоваться разнообразные способы формования, при том условии, что может быть получена вышеупомянутая структура дисперсии. Однако, как правило, используется компрессионное формование или экструзионное формование.
[0022]
В процессе компрессионного формования гранулированный гидролизующийся полимер и водорастворимый полимер в заданных количествах смешиваются в сухом состоянии. Изготовленная смесь затем подвергается компрессионному формованию с использованием заданной формы в вышеупомянутых температурных условиях, и получаются формованные полимерные изделия, имеющие форму таблетки, которые проиллюстрированы на фиг. 1(a).
В процессе экструзионного формования гранулированный гидролизующийся полимер и водорастворимый полимер смешиваются в устройстве для экструзионного формования в вышеупомянутых температурных условиях. Изготовленная смесь затем подвергается экструзии, проходя через формовочную пластину, в которой изготовлены перфорационные отверстия заданного размера, экструдированный продукт разрезается на стержнеобразные формованные полимерные изделия, имеющие подходящую длину, которые проиллюстрированы на фиг. 1(b).
[0023]
В каждом способе формования это формование осуществляется в температурных условиях, в которых не плавится гидролизующийся полимер, но плавится водорастворимый полимер. Таким образом, водорастворимый полимер в результате этого превращается в матрицу, и образуется структура островного типа, в которой гранулированный гидролизующийся полимер оказывается диспергированным в матрице.
[0024]
Гидролизующийся полимер, который используется для изготовления помещаемого в воду формованного полимерного изделия, представляет собой нерастворимый в воде сложный полиэфир. Посредством использования порошка, получаемого в результате измельчения замораживанием вышеупомянутого сложного полиэфира, водный раствор изготавливается путем диспергирования порошка в концентрации, составляющей 10 мг/мл. Водный дисперсный раствор выдерживается в печи, нагретой до температуры 120°C в течение одного месяца, таким образом, что относительное уменьшение массы составляет не менее чем 50%. В случае дисперсного раствора для бурения, в частности, оказывается желательным использование биоразлагающегося сложного полиэфира, такого как полимолочная кислота, полигидроксиалканоат, полиоксалат, полигликолевая кислота, полибутиленсукцинат, полибутиленсукцинат-адипат или поликапролактон. Может использоваться биоразлагающиеся сложные полиэфиры одного вида или сочетания двух или более видов. Кроме того, допускается их использование в форме сополимера, который образуют в процессе сополимеризации разнообразные алифатические многоатомные спирты, алифатические многоосновные кислоты, оксикарбоновые кислоты или лактоны, в таких количествах, в которых они не ухудшают способность гидролиза.
Согласно настоящему изобретению, оказывается наиболее желательным использование полиоксалата с точки зрения того, что он проявляет в подходящей степени способность гидролиза в условиях низкой температуры, составляющей, в частности, от 40 до 80°C. Таким образом, сланцевый газ добывается из сланцевого слоя, который присутствует под землей на относительно небольшой глубине. Дисперсный раствор для добычи во многих случаях помещается в рудоспуск в вышеупомянутых температурных условиях, и, таким образом, гидролизующийся полимер должен иметь способность гидролиза подходящей степени в данных температурных условиях.
Кроме того, полиоксалат в процессе гидролиза высвобождает щавелевую кислоту. Когда он используется в смеси, содержащей компонент, имеющий относительно низкую способность гидролиза, такой как полимолочная кислота, в результате этого полиоксалат своим действием способствует гидролизу полимолочной кислоты. Таким образом, оказывается желательным использование полиоксалата в смеси с полимолочной кислотой.
[0025]
Дисперсный раствор для добычи, который используется в качестве текучей среды для гидравлического разрыва пласта, должен функционировать в качестве наполнителя, который прекращает поток в рудоспуске и должен проникать в грунт. Таким образом, оказывается желательным, чтобы гидролизующийся полимер диспергировался в водорастворимом полимере, который будет описан далее, в форме гранулированного вещества, имеющего подходящий размер зерен, который составляет, например, от приблизительно 10 до приблизительно 1000 мкм.
С точки зрения функционирования в качестве наполнителя, оказывается желательным, что гидролизующийся полимер диспергировался в водорастворимом полимере в волокнистой форме, имеющей, например, линейную плотность волокон, составляющую от 0,1 до 20 денье, и длину волокон, составляющую от приблизительно 2 до приблизительно 25 мм.
[0026]
Кроме того, по мере необходимости, гидролизующийся полимер может смешиваться с известными добавками, такими как пластификатор, термостабилизатор, фотостабилизатор, антиоксидант, поглотитель ультрафиолетового излучения, огнезащитное вещество, красящее вещество, пигмент, наполнитель, разделительное вещество, антистатик, ароматизатор, смазочное вещество, пенообразующее вещество, противобактериальное вещество, противогрибковое вещество и структурообразующее вещество.
[0027]
Водорастворимый полимер, используемый в качестве матрицы для диспергирования гидролизующегося полимера, представляет собой полимер, который имеет растворимость в воде при 20°C, составляющее не менее чем 25 г/100 г. Соответствующие представительные примеры включают полиалкиленоксиды, такие как полиэтиленгликоль; акриловые полимеры, такие как полиакрилат натрия и полиакриламид; виниловые полимеры, такие как поливиниловый спирт и поливинилпирролидон; полимеры целлюлозного типа, такие как карбоксиметилцеллюлоза и гидроксиэтилцеллюлоза; а также природные полимеры, такие как крахмал, желатин, альгиновая кислота и агар-агар. Однако с точки зрения стоимости, пригодности для формования и растворимости в воде, наиболее желательными для использования оказываются полиэтиленгликоль и поливиниловый спирт.
[0028]
В помещаемом в воду формованном полимерном изделии согласно настоящему изобретению количественное соотношение гидролизующегося полимера и водорастворимого полимера устанавливается таким образом, что используется количество водорастворимого полимера, которое является минимально возможным, при том условии, что образуется структура дисперсии, в которой гранулированный гидролизующийся полимер диспергируется в матрице водорастворимого полимера. Это объясняется тем, что когда формованное полимерное изделие помещается в воду в целях изготовления дисперсного раствора для добычи, гидролизующийся полимер функционирует в качестве эффективного компонента, но водорастворимый полимер представляет собой необязательный компонент.
Таким образом, что касается количественного соотношения гидролизующегося полимера и водорастворимого полимера, количество водорастворимого полимера, как правило, устанавливается в интервале от 10 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера. Однако предпочтительный интервал изменяется в некоторой степени в зависимости от способа формования, используемого для формованного полимерного изделия. Например, когда формованное полимерное изделие изготавливается посредством компрессионного формования, водорастворимый полимер используется в количестве, составляющем от 10 до 100 массовых частей, в частности, от 10 до 30 массовых частей, более конкретно, от 10 до 20 массовых частей и, еще более конкретно, от 10 до 15 массовых частей в расчете на 100 массовых частей гидролизующегося полимера. Когда формованное полимерное изделие изготавливается посредством экструзионного формования, водорастворимый полимер используется в количестве, составляющем, желательно, приблизительно от 100 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера. В результате использования водорастворимого полимера в необязательно больших количествах происходит уменьшение количества эффективного компонента в дисперсном растворе для добычи. Если водорастворимый полимер используется в небольших количествах, то становится затруднительным формование гранулированного гидролизующегося полимера при температурах, составляющих менее чем его температура плавления, и, таким образом, становится затруднительным образование структуры дисперсии с использованием водорастворимого полимера в качестве матрицы.
[0029]
<Применение>
Помещаемое в воду формованное полимерное изделие согласно настоящему изобретению имеет структуру дисперсии, в которой гранулированный гидролизующийся полимер покрывается водорастворимым полимером, и существует возможность эффективного предотвращения такого неудобства, как летучая пыль, а также обеспечивается простота обращения и, кроме того, эффективно предотвращается разложение гидролизующегося полимера. Когда формованное изделие помещается на грунт, оно сохраняет свою форму. Однако когда формованное изделие вводится в рудоспуск, оно разрушается, и гидролизующийся полимер диспергируется в растворе. Это оказывается желательным в целях изготовления дисперсного раствора для добычи, такого как текучая среда для гидравлического разрыва пласта, которая используется на месте добычи полезных ископаемых. А именно, формованное полимерное изделие является легким в обращении на месте добычи, и человек может его легко помещать в воду и изготавливать дисперсный раствор для добычи даже вне помещения, не производя неблагоприятного воздействия на окружающую среду.
В процессе изготовления дисперсного раствора для добычи формованное полимерное изделие помещается в воду, как правило, в таком количестве, что гидролизующийся полимер присутствует в дисперсном растворе в количестве, составляющем от 0,01 до 20 мас.% и, в частности, от 0,01 до 10 мас.%. Посредством использования вышеупомянутого дисперсного раствора становится возможным бесперебойное осуществление бурения рудоспусков или гидравлического разрыва пласта.
Примеры
[0030]
Далее настоящее изобретение будет описано посредством следующих экспериментов.
Ниже в настоящем документе описываются гидролизующийся полимер, водорастворимый полимер и методы измерения, которые используются в данных экспериментах.
[0031]
Гидролизующийся полимер;
В качестве гидролизующегося полимера для использования в эксперименте полиоксалат (PEOx) изготавливали, как описывается ниже.
В однолитровую разбираемую колбу, снабженную колбонагревателем, жидкостным термометром, мешалкой, трубкой для впуска азота и дистилляционной колонкой, помещали:
диметилоксалат, 472 г (4 моль),
этиленгликоль, 297 г (4,8 моль), и
оксид сурьмы(III), 0,17 г,
и температуру в колбе повышали в потоке азота до 120°C для осуществления полимеризации при атмосферном давлении.
После удаления метанола путем дистилляции температуру жидкости постепенно повышали до 200, а затем продолжали полимеризацию при атмосферном давлении и, в конечном счете, получали 260 мл дистиллята.
После этого полимеризацию осуществляли при пониженном давлении, поддерживая температуру жидкости в колбе на уровне 200°C при пониженном давлении, составляющем от 0,1 до 0,8 кПа. Получаемый полимер извлекали, гранулировали с использованием измельчителя, а затем подвергали термической обработке при 120°C в течение 2 часов в вакууме, таким образом, чтобы осуществлялась кристаллизация.
В результате этого получался PEOx, который использовался в качестве гидролизующегося полимера.
PEOx имел температуру плавления 180°C и средневзвешенную молекулярную массу 70000.
[0032]
Измерение температуры плавления
Устройство: дифференциальный сканирующий калориметр DSC 6220, производитель Seiko Instruments Co.
Масса образцов: от 5 до 10 мг
Условия измерения: атмосфера азота, повышение температуры со скоростью 10°C/мин в интервале от 0°C до 250°C. Температура плавления определялась по пикам на кривой ДСК.
[0033]
<Измерение молекулярной массы>
Устройство: гельпроникающий хроматограф (ГПХ)
Детектор: дифференциальный детектор показателя преломления (ПП)
Колонка (Showa Denko Co.): Shodex HFIP-LG (один блок), HFIP-806M (2 блока)
Растворитель: гексафторизопропанол (добавка 5 мМ трифторацетата натрия)
Скорость потока: 0,5 мл/мин
Температура колонки: 40°C
Приготовление образцов: добавляли 5 мл растворителя к приблизительно 1,5 мг образца и полученную смесь перемешивали с умеренной скоростью при комнатной температуре (концентрация образца составляла приблизительно 0,03%). После наблюдения растворения образца невооруженным глазом растворитель отфильтровывали, используя фильтр с размером отверстий 0,45 мкм. Все образцы измеряли приблизительно через один час после начала растворения. В качестве стандарта использовался полиметилметакрилат.
[0034]
Водорастворимый полимер: полиэтиленгликоль (PEG)
Средневзвешенная молекулярная масса (Mw): 8000
Растворимость в воде при 20°C: 30 г/100 г или более
Температура плавления: 60°C
[0035]
Оценка пригодности для формования таблетки (формованного полимерного изделия)
Пригодность для формования таблетки оценивали визуально на основании следующих критериев:
ο: отсутствие разрушения
×: частичное разрушение немедленно после формования
[0036]
Оценка склонности таблетки (формованного полимерного изделия) к разрушению в воде
В ампулу помещали кусочек таблетки, изготовленной посредством компрессионного формования, и 10 мл дистиллированной воды, после этого содержимое ампулы перемешивали при температуре 45°C со скоростью 100 об/мин в течение 10 минут, чтобы визуально оценить разрушение таблетки. Оценку осуществляли на основании следующих критериев:
ο: частицы диспергируются в воде
×: таблетка осаждается, сохраняя свою форму
[0037]
Оценка дезинтеграции таблетки (формованного полимерного изделия)
После оценки склонности таблетки к разрушению ампулу выдерживали в состоянии покоя в печи, в которой температура поддерживалась на уровне 70°C в течение 4 суток, и дезинтеграцию порошка в воде оценивали визуально. Оценку осуществляли на основании следующих критериев:
ο: частицы сохраняются в очень малом количестве
×: количество сохраняющихся частиц является таким же, как первоначальное количество
[0038]
<Пример 1>
Навеску 1,5 г PEOx, синтезированного, как описано выше, помещали в пульверизатор (IMF-800DG, производитель Iwatani Sangyo Co.), и измельчение осуществляли в течение 3 минут. Получаемый порошок пропускали через сито с размером отверстий 500 мкм. Проходящий через сито порошок PEOx использовали в качестве гидролизующегося полимерного порошка.
Заблаговременно в ступке смешивали друг с другом 100 массовых частей вышеупомянутого порошка гидролизующегося полимерного порошка и 11,1 массовых частей водорастворимого полимера (PEG).
Смешанный порошок помещали в алюминиевую кювету для измерения с помощью дифференциального сканирующего калориметра и нагревали в условиях сжатия при 100°C в течение 5 минут, и результате этого получалась таблетка (компрессионно формованное изделие), у которого высота (h1) составляла 1 мм, и диаметр (D1) составлял 5 мм.
Получаемую таблетку оценивали в отношении ее пригодности для формования, склонности к разрушению и дезинтеграции в воде способами, описанными выше. Были получены результаты, которые проиллюстрированы в таблице 1.
[0039]
<Пример 2>
Таблетка, имеющая такие же размеры, была изготовлена посредством компрессионного формования таким же способом, как в примере 1, но изменялось количество водорастворимого полимера (PEG), составляющее здесь 43 массовые части, и оценка осуществлялась аналогичным образом. Были получены результаты, которые проиллюстрированы в таблице 1.
[0040]
<Пример 3>
Таблетка, имеющая такие же размеры, была изготовлена посредством компрессионного формования таким же способом, как в примере 1, но изменялось количество водорастворимого полимера (PEG), составляющее здесь 100 массовых частей, и оценка осуществлялась аналогичным образом. Были получены результаты, которые проиллюстрированы в таблице 1.
Таблетка не разрушалась, несмотря на то, что она падала с высоты 80 см.
[0041]
<Пример 4>
Таблетка, имеющая такие же размеры, была изготовлена посредством компрессионного формования таким же способом, как в примере 1, но изменялось количество водорастворимого полимера (PEG), составляющее здесь 5,3 массовых частей, и оценка осуществлялась аналогичным образом. Были получены результаты, которые проиллюстрированы в таблице 1.
Хотя изготовление таблетки оказалось возможным, она разрушалась насколько легко, и не могла сохранять форму таблетки, что невозможно было оценить ее склонность к разрушению и свойства дезинтеграции.
[0042]
Таблица 1
*1 | *2 | *3 | *4 | |
Пример 1 | 11,1 | ο | ο | ο |
Пример 2 | 43 | ο | ο | ο |
Пример 3 | 100 | ο | ο | ο |
Пример 4 | 5,3 | Δ | - | - |
*1: Количество водорастворимого полимера (массовых частей)
*2: Пригодность для формования таблетки
*3: Склонность к разрушению таблетки
*4: Дезинтеграция таблетки
Количество водорастворимого полимера приводится в расчете на 100 массовых частей гидролизующегося полимера.
Claims (8)
1. Помещаемое в воду формованное полимерное изделие для получения текучей среды для гидравлического разрыва пласта при бурении, имеющее структуру дисперсии, в которой гидролизующийся полимер диспергирован в матрице водорастворимого полимера, где данный гидролизующийся полимер диспергирован в матрице в гранулированной или волокнистой форме, и где упомянутая матрица водорастворимого полимера содержится в количестве, составляющем от 10 до 150 массовых частей в расчете на 100 массовых частей гидролизующегося полимера.
2. Помещаемое в воду формованное полимерное изделие по п. 1, в котором водорастворимый полимер представляет собой полиэтиленгликоль и/или поливиниловый спирт.
3. Помещаемое в воду формованное полимерное изделие по п. 2, в котором гидролизующийся полимер представляет собой биоразлагающийся сложный полиэфир.
4. Помещаемое в воду формованное полимерное изделие по п. 3, в котором биоразлагающийся сложный полиэфир представляет собой по меньшей мере одно соединение, выбранное из группы, состоящей из полимолочной кислоты, полигидроксиалканоата, полиоксалата, полигликолевой кислоты, полибутиленсукцината, полибутиленсукцинат-адипата и поликапролактона.
5. Помещаемое в воду формованное полимерное изделие по п. 4, в котором биоразлагающийся сложный полиэфир диспергирован в гранулированной форме, в которой размер зерен составляет от 10 до 1000 мкм.
6. Помещаемое в воду формованное полимерное изделие по п. 4, в котором биоразлагающийся сложный полиэфир диспергирован в волокнистой форме, у которой линейная плотность составляет от 0,1 до 20 денье и длина волокон составляет от 2 до 25 мм.
7. Способ изготовления помещаемого в воду формованного полимерного изделия по п. 1, предназначенного для получения текучей среды для гидравлического разрыва пласта при бурении, в котором смесь гранулированного гидролизующегося полимера и водорастворимого полимера подвергается формованию при температуре, имеющей значение не ниже чем температура плавления водорастворимого полимера, но ниже чем температура плавления гранулированного гидролизующегося полимера.
8. Способ изготовления по п. 7, в котором формование осуществляется посредством компрессионного формования или экструзионного формования.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-047570 | 2014-03-11 | ||
JP2014047570A JP6451061B2 (ja) | 2014-03-11 | 2014-03-11 | 水中投下用樹脂成型体 |
PCT/JP2015/054292 WO2015137057A1 (ja) | 2014-03-11 | 2015-02-17 | 水中投下用樹脂成型体 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016139592A RU2016139592A (ru) | 2018-04-13 |
RU2654024C2 true RU2654024C2 (ru) | 2018-05-15 |
Family
ID=54071508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016139592A RU2654024C2 (ru) | 2014-03-11 | 2015-02-17 | Помещаемое в воду формованное полимерное изделие |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170015888A1 (ru) |
EP (1) | EP3118264B1 (ru) |
JP (1) | JP6451061B2 (ru) |
CN (1) | CN106103596B (ru) |
AU (1) | AU2015228119A1 (ru) |
CA (1) | CA2941996C (ru) |
RU (1) | RU2654024C2 (ru) |
WO (1) | WO2015137057A1 (ru) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6710959B2 (ja) * | 2015-12-18 | 2020-06-17 | 株式会社リコー | 水崩壊性複合材料、及び、立体造形物の製造方法 |
JP6658086B2 (ja) * | 2016-02-26 | 2020-03-04 | 東洋製罐グループホールディングス株式会社 | ポリオキサレート共重合体及びその製造方法 |
JP7415333B2 (ja) * | 2019-05-16 | 2024-01-17 | 東洋製罐グループホールディングス株式会社 | 加水分解性樹脂の有機溶媒分散体 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1467076A1 (ru) * | 1987-05-25 | 1989-03-23 | Ростовский государственный университет им.М.А.Суслова | Полимерный буровой раствор |
JPH09165457A (ja) * | 1995-12-13 | 1997-06-24 | Nippon Synthetic Chem Ind Co Ltd:The | 樹脂微粒子の製造法 |
JPH1084827A (ja) * | 1996-09-17 | 1998-04-07 | Kuraray Co Ltd | 釣り餌容器 |
JP2002371201A (ja) * | 2001-04-13 | 2002-12-26 | Mitsui Chemicals Inc | 生分解性樹脂組成物 |
US20080236823A1 (en) * | 2005-06-20 | 2008-10-02 | Willberg Dean M | Degradable Fiber Systems for Stimulation |
JP2012149205A (ja) * | 2011-01-21 | 2012-08-09 | Kureha Corp | ポリグリコール酸組成物、ポリグリコール酸を含む樹脂成形品及び成形体、並びに、ポリグリコール酸の分解方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4830352B1 (ru) * | 1969-03-07 | 1973-09-19 | ||
JPS5121736B2 (ru) * | 1971-08-20 | 1976-07-05 | ||
JPH09137069A (ja) * | 1995-11-15 | 1997-05-27 | Nippon Shokuhin Kako Co Ltd | 生分解性組成物 |
JPH09286870A (ja) * | 1996-04-19 | 1997-11-04 | Toshiba Chem Corp | 生分解性樹脂発泡体の製造方法 |
JP5133478B2 (ja) * | 2001-06-12 | 2013-01-30 | ユニチカ株式会社 | 生分解性ポリエステル樹脂微粒子の製造方法 |
WO2002100357A1 (fr) * | 2001-06-12 | 2002-12-19 | Trial Corporation | Produit cosmetique |
JP2004204038A (ja) * | 2002-12-25 | 2004-07-22 | Mitsui Chemicals Inc | 生分解性水分散体 |
AU2003903116A0 (en) * | 2003-06-20 | 2003-07-03 | Plantic Technologies Ltd | Easy open package |
JP2005194295A (ja) * | 2003-12-26 | 2005-07-21 | Nippon Synthetic Chem Ind Co Ltd:The | 水溶性フィルム及びその製造方法 |
WO2008038648A1 (fr) * | 2006-09-26 | 2008-04-03 | Toyo Seikan Kaisha, Ltd. | Composition de résine rapidement dégradable et récipient biodégradable utilisant cette composition |
WO2010055903A1 (ja) * | 2008-11-13 | 2010-05-20 | 東洋製罐株式会社 | 生分解性樹脂組成物 |
US20160257872A9 (en) * | 2010-09-17 | 2016-09-08 | Schlumberger Technology Corporation | Solid state dispersion |
WO2012050187A1 (ja) * | 2010-10-14 | 2012-04-19 | 株式会社クレハ | 石油掘削補助用分散液 |
WO2012121294A1 (ja) * | 2011-03-08 | 2012-09-13 | 株式会社クレハ | 坑井掘削用ポリグリコール酸樹脂粒状体組成物及びその製造方法 |
JP6133847B2 (ja) * | 2012-04-27 | 2017-05-24 | 株式会社クレハ | ポリエステル樹脂組成物およびその成形体 |
WO2013161754A1 (ja) * | 2012-04-27 | 2013-10-31 | 株式会社クレハ | 坑井処理流体用ポリグリコール酸樹脂短繊維 |
CA2868977C (en) * | 2012-04-27 | 2016-10-11 | Kureha Corporation | Polyglycolic acid resin short fibers and well treatment fluid |
US20130303410A1 (en) * | 2012-05-09 | 2013-11-14 | Halliburton Energy Services, Inc. | Invert Emulsion Drilling Fluids for Flat Rheology Drilling |
AU2013358061B2 (en) * | 2012-12-12 | 2016-03-31 | Toyo Seikan Group Holdings, Ltd. | Dispersion Solution for Drilling and Method of Extracting Underground Resources Using the Dispersion Solution |
JP6183039B2 (ja) * | 2012-12-12 | 2017-08-23 | 東洋製罐株式会社 | 掘削用分散液及びこれを用いた採掘方法 |
JP6249965B2 (ja) * | 2013-01-18 | 2017-12-20 | 株式会社クレハ | 坑井処理流体材料およびそれを含有する坑井処理流体 |
-
2014
- 2014-03-11 JP JP2014047570A patent/JP6451061B2/ja active Active
-
2015
- 2015-02-17 CA CA2941996A patent/CA2941996C/en active Active
- 2015-02-17 AU AU2015228119A patent/AU2015228119A1/en not_active Abandoned
- 2015-02-17 CN CN201580013526.6A patent/CN106103596B/zh active Active
- 2015-02-17 US US15/124,716 patent/US20170015888A1/en not_active Abandoned
- 2015-02-17 RU RU2016139592A patent/RU2654024C2/ru active
- 2015-02-17 WO PCT/JP2015/054292 patent/WO2015137057A1/ja active Application Filing
- 2015-02-17 EP EP15761193.0A patent/EP3118264B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1467076A1 (ru) * | 1987-05-25 | 1989-03-23 | Ростовский государственный университет им.М.А.Суслова | Полимерный буровой раствор |
JPH09165457A (ja) * | 1995-12-13 | 1997-06-24 | Nippon Synthetic Chem Ind Co Ltd:The | 樹脂微粒子の製造法 |
JPH1084827A (ja) * | 1996-09-17 | 1998-04-07 | Kuraray Co Ltd | 釣り餌容器 |
JP2002371201A (ja) * | 2001-04-13 | 2002-12-26 | Mitsui Chemicals Inc | 生分解性樹脂組成物 |
US20080236823A1 (en) * | 2005-06-20 | 2008-10-02 | Willberg Dean M | Degradable Fiber Systems for Stimulation |
JP2012149205A (ja) * | 2011-01-21 | 2012-08-09 | Kureha Corp | ポリグリコール酸組成物、ポリグリコール酸を含む樹脂成形品及び成形体、並びに、ポリグリコール酸の分解方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2015137057A1 (ja) | 2015-09-17 |
CA2941996C (en) | 2019-01-22 |
AU2015228119A1 (en) | 2016-10-20 |
US20170015888A1 (en) | 2017-01-19 |
CA2941996A1 (en) | 2015-09-17 |
CN106103596A (zh) | 2016-11-09 |
RU2016139592A (ru) | 2018-04-13 |
JP6451061B2 (ja) | 2019-01-16 |
EP3118264A1 (en) | 2017-01-18 |
CN106103596B (zh) | 2020-04-17 |
EP3118264A4 (en) | 2017-10-11 |
JP2015172107A (ja) | 2015-10-01 |
EP3118264B1 (en) | 2022-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2607564C1 (ru) | Дисперсионная жидкость для бурения и способ добычи полезных ископаемых с помощью дисперсионной жидкости | |
RU2681170C1 (ru) | Способ добычи полезных ископаемых с использованием гидролизующихся частиц | |
RU2654024C2 (ru) | Помещаемое в воду формованное полимерное изделие | |
JPWO2013161754A1 (ja) | 坑井処理流体用ポリグリコール酸樹脂短繊維 | |
JPWO2013161755A1 (ja) | ポリグリコール酸樹脂短繊維及び坑井処理流体 | |
RU2627060C2 (ru) | Дисперсионная жидкость для бурения и способ добычи полезных ископаемых с помощью дисперсионной жидкости | |
JP6221475B2 (ja) | 掘削用分散液、及び、それを用いた掘削方法 | |
JPWO2012050187A1 (ja) | 石油掘削補助用分散液 | |
JP6451250B2 (ja) | 水圧破砕法を利用しての地下資源の採掘方法及び水圧破砕に用いる流体に添加される加水分解性ブロッキング剤 | |
CN104619773B (zh) | 水性分散液及压裂操作用添加剂 | |
JP2016186055A (ja) | ポリグリコール酸組成物および一時目止め材 |