RU2638993C2 - Микроволновое уплотнение неорганических подложек с использованием низкоплавких стекольных систем - Google Patents

Микроволновое уплотнение неорганических подложек с использованием низкоплавких стекольных систем Download PDF

Info

Publication number
RU2638993C2
RU2638993C2 RU2014110540A RU2014110540A RU2638993C2 RU 2638993 C2 RU2638993 C2 RU 2638993C2 RU 2014110540 A RU2014110540 A RU 2014110540A RU 2014110540 A RU2014110540 A RU 2014110540A RU 2638993 C2 RU2638993 C2 RU 2638993C2
Authority
RU
Russia
Prior art keywords
mol
glass
group
combinations
microwave
Prior art date
Application number
RU2014110540A
Other languages
English (en)
Other versions
RU2014110540A (ru
Inventor
Сринивасан СРИДХАРАН
Джон Дж. МЭЛОНИ
Чандрашекхар С. КХАДИЛКАР
Роберт П. БЛОНСКИ
Грегори Р. ПРИНЗБАХ
Джордж Е. САКОСКИ
Original Assignee
Ферро Корпорэйшн (Сша)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ферро Корпорэйшн (Сша) filed Critical Ферро Корпорэйшн (Сша)
Publication of RU2014110540A publication Critical patent/RU2014110540A/ru
Application granted granted Critical
Publication of RU2638993C2 publication Critical patent/RU2638993C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0065Other surface treatment of glass not in the form of fibres or filaments by irradiation by microwave radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/122Silica-free oxide glass compositions containing oxides of As, Sb, Bi, Mo, W, V, Te as glass formers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/06Frit compositions, i.e. in a powdered or comminuted form containing halogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • C03C8/12Frit compositions, i.e. in a powdered or comminuted form containing lead containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Structural Engineering (AREA)
  • Glass Compositions (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Sealing Material Composition (AREA)
  • Ceramic Products (AREA)

Abstract

Изобретение относится к герметизации стеклянных пластин друг с другом или герметизации стекла и керамики. Паста для получения герметичного соединения содержит фритту и микроволновую соединительную добавку. Добавка выбрана из ферримагнитных металлов, переходных металлов, железа, кобальта, никеля, гадолиния, диспрозия, сплава MnBi, сплава MnSb, сплава MnAs, CuO*FeO, FeO, FeO, FeOMgO*FeO, MnO*FeO, NiO*FeO, YFeO, стекла, содержащего оксид железа, стекла FeO, SiC, CrO, щелочно-земельных титанатов, титанатов рения, рений-висмут титанатов, редкоземельных титанатов и их комбинаций. Повышает надежность герметичного уплотнения. 6 н. и 19 з.п. ф-лы, 1 ил., 6 табл.

Description

[0001] Настоящее изобретение относится к системе герметичного уплотнения на основе фритты для герметизации стеклянных пластин друг к другу или герметизации стекла и керамики, герметичным материалам, способам применения данных герметичных материалов и конструкции уплотнения для выборочного и регулируемого поглощения микроволновой энергии для нагрева и герметизации системы. Данные герметичные уплотнения используются в различных областях применения, таких как (а) инкапсуляция солнечных батарей на основе кремния, органических систем и тонкой пленки, (b) инкапсуляция других электронных устройств, таких как органические светодиоды, (с) производство оконных стекол с вакуумной изоляцией и (е) архитектурные окна и автомобильные стекла.
2. Область техники
[0002] Во множестве практических применений герметизации стекла к стеклу, таких как инкапсуляция солнечных батарей (как на основе кристаллического кремния, так и на основе тонкой пленки на основе теллурида кадмия и диселенида галлия-индия-меди, полимерных, гибких), ОСИД упаковка, дисплеи, сенсорные экраны, уплотнение оконных стекол с вакуумной изоляцией, уплотнение архитектурных и автомобильных окон, во многих случаях присутствует необходимость использования закаленного стекла. Закаленное стекло теряет свою твердость при нагревании свыше около 300°C в конвекционной печи при растапливании материалов уплотнения стекла. Таким образом, существует необходимость выборочного нагрева только материала уплотнения и эффективного сцепления базовых стекол/подложек без значительного нагрева базовых стекол/подложек.
[0003] Соответственно, требуются улучшения в технологии методов выборочного уплотнения, таких как микроволновое уплотнение.
[0004] Из множества различных техник выборочного уплотнения, таких как ИК нагрев, индукционный нагрев, микроволновой нагрев, лазерная пайка и пайка дуговой лампой с плазмой высокой плотности, микроволновой нагрев предполагает нагревание в рамках до 1000°C/сек (в сравнении с медленным нагреванием стекла 6-10°C/сек в конвекционных печах), вместе с превосходной глубиной проникновения на низких частотах, таких как 0.915 ГГц, или обычно 0.9-2.5 ГГц при работе промышленных/коммерческих микроволновых печей. Таким образом, микроволновой нагрев и уплотнение может предложить особенные преимущества, включая выборочный нагрев тонкого слоя материалов уплотнения. В то время как многие из этих применений уплотнения - особенно уплотнение окна с вакуумной изоляцией и солнечные батареи или применения ОСИД уплотнения - требуют более тонкий материал (свыше 20 микрон), объемные методы нагрева, такие как микроволновой нагрев, становятся предпочтительными способами нагрева.
[0005] Изобретение относится к использованию микроволнового уплотнения подложек друг к другу, включая уплотнение стекол друг к другу, где оба стекла закаленные, а также закалены подложки стекол.
[0006] Рассматриваемый вариант изобретения - это способ уплотнения двух неорганических подложек вместе, используя источник микроволновой энергии, включающий в себя: (а) предоставление первой и второй неорганических подложек; (b) нанесение на как минимум одну первую или вторую подложку пасты, состав которой включает: (i) стеклообразную фритту и (ii) микроволновую связующую добавку, и (с) помещение подложек и пасты под микроволновое излучение, чтобы, таким образом, сформировалось герметичное уплотнение между двумя неорганическими подложками.
[0007] Рассматриваемый вариант изобретения осуществляется с помощью состава для уплотнения стекол без свинца и без кадмия, содержащего, перед сжиганием, (a) 25-65 мол.% Bi2O3, (b) 3-60 мол.% ZnO, (с) 4-65 мол.% B2O3, (d) 0.1-15 мол.% как минимум одного из группы оксидов, содержащей CuO, Fe2O3, Cо2O3, Cr2O3 и их комбинации, (e) никаких преднамеренно добавленных оксидов кремния и (f) никаких преднамеренно добавленных оксидов алюминия.
[0008] Рассматриваемый вариант изобретения - это способ уплотнения модуля солнечной батареи, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) установка нескольких солнечных батарей в электрическом контакте друг с другом и с двумя данными стеклянными пластинами, (с) нанесение любого состава стеклообразной фритты, описанного здесь же, на как минимум одну из стеклянных пластин, (d) приведение как минимум второй стеклянной пластины в физический контакт со стеклообразной фриттой, и (e) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для формирования герметичного уплотнения.
[0009] Рассматриваемый вариант изобретения - это способ уплотнения модуля солнечной батареи, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум одну из стеклянных пластин, (с) приведение как минимум второй стеклянной пластины в контакт с нанесенным составом стеклообразной фритты и (d) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для формирования герметичного уплотнения.
[0010] Рассматриваемый вариант изобретения это способ уплотнения как минимум одного электронного устройства, такого как светодиодный дисплей или органический светодиодный дисплей, или блоки электронной платы, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум одну из стеклянных пластин, (с) помещение как минимум одного электронного устройства в полость, (d) приведение как минимум второй стеклянной пластины в контакт с нанесенным составом стеклообразной фритты и (е) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для формирования герметичного уплотнения.
[0011] Рассматриваемый вариант изобретения - это способ уплотнения блока, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум одну из стеклянных пластин, (с) помещение блока в полость, образованную как минимум одной из стеклянных пластин и составом стеклообразной фритты, (d) приведение как минимум второй стеклянной пластины в контакт с составом стеклообразной фритты и (е) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для формирования герметичного уплотнения.
[0012] Рассматриваемый вариант изобретения - это способ уплотнения блока, используемого в автомобилестроении, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум одну из стеклянных пластин, (с) приведение как минимум второй стеклянной пластины в физический контакт с составом стеклообразной фритты и (е) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для последующего формирования герметичного уплотнения.
[0013] Рассматриваемый вариант изобретения - это способ уплотнения блока в строительстве, например, интеллектуальных окон, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум одну из стеклянных пластин, (с) приведение как минимум второй стеклянной пластины в физический контакт с составом стеклообразной фритты и (d) подвержение состава стеклообразной фритты микроволновому нагреву для спекания и распределения стеклообразного состава для последующего формирования герметичного уплотнения.
[0014] Рассматриваемый вариант изобретения - это способ прикрепления первой и второй стеклянных панелей друг к другу таким образом, чтобы герметизировать и изолировать полость, образованную между ними, способ включает (а) предоставление первого однородного уплотняющего состава порошкового стекла, содержащего: (i) 25-65 мол.% Bi2O3, (ii) 3-60 мол.% ZnO, (iii) 4-65 мол.% В2O3, (iv) без преднамеренно добавленных оксидов кремния, и (v) без преднамеренно добавленных оксидов алюминия, (b) предоставление второго однородного уплотняющего состава порошкового стекла, содержащего: (i) 37-45 моль 1% Fe2O3, (ii) 30-40 мол.% ZnO, (iii) 18-35 мол.% B2O3, (iv) 0.1-15 мол.% как минимум одного из группы оксидов, включающей в себя CuO, Fe2O3, СO2O3, Cr2O3, (v) без преднамеренно добавленных оксидов кремния, и (v) без преднамеренно добавленных оксидов алюминия, (c) смешение первого и второго порошков для образования однородной смеси, (е) нанесение однородной смеси на как минимум одну из первой и второй стеклянных пластин, (е) установка первой и второй стеклянных пластин таким образом, чтобы первый и второй порошки соприкасались с обеими стеклянными пластинами, (f) подвержение стеклянных пластин и порошков микроволновому нагреву в поле электромагнитного напряжения на частоте от 0.9 до 2.5 ГГц для спекания и распределения первого и второго порошков для последующего формирования герметичного уплотнения, определяющего полость между первой и второй пластинами.
[0015] Рассматриваемый вариант изобретения осуществляется с помощью состава для уплотнения стекол без свинца и без кадмия, содержащего, перед сжиганием, (а) 5-65 мол.% ZnO, (b) 10-65 мол.% SiO2, (с) 5-55 мол.% B2O3 + Al2O3, (d) 0.1-45 мол.% как минимум одного оксида, выбранного из группы, включающей в себя Li2O, Na2O, K2O, Cs2O и их комбинации, и/или (е) 0.1-20 мол.% как минимум одного оксида, выбранного из группы, включающей в себя MgO, CaO, BaO, SrO и их комбинации, и/или (f) 0.1-40 мол.% как минимум одного оксида, выбранного из группы, включающей в себя TeO 2; Tl2O, V2Os, Ta2Os, GeO2 и их комбинации.
[0016] Рассматриваемый вариант изобретения осуществляется с помощью состава для уплотнения стекол без свинца и без кадмия, содержащего, перед сжиганием, (а) 5-55 мол.% Li2O+Na2O+K2O, (b) 2-26 мол.% TiO2, (с) 5-75 мол.% B2O3 + SiO2, (d) 0.1-30 мол.% как минимум одного оксида, выбранного из группы, включающей в себя V2O 5, Sb2O 5, P2O5 и их комбинации, и/или (е) 0.1-20 мол.% как минимум одного оксида, выбранного из группы, включающей в себя MgO, CaO, BaO, SrO и их комбинации, и/или (f) 0.1-40 мол.% как минимум одного оксида, выбранного из группы, включающей в себя TeO2; Tl2O, Ta2Os, GeO2 и их комбинации, и (g) 0.1-20 мол.% F.
[0017] Также рассматриваемый вариант изобретения - это способ уплотнения блока, включающий в себя: (а) предоставление как минимум двух стеклянных пластин, где как минимум одна стеклянная пластина является интеллектуальным стеклом, (b) нанесение любого состава стеклообразной фритты, описанного здесь же на как минимум первую из стеклянных пластин, (с) приведение как минимум второй стеклянной пластины в контакт с составом стеклообразной фритты и (d) подвержение герметика микроволновому нагреву для спекания и распределения стеклообразного состава для последующего формирования герметичного уплотнения.
[0018] Подходящие микроволновые соединительные добавки включают в себя ферримагнитные металлы, переходные металлы, железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2O3, NiO*Fe2O3, Y3Fe2O12 оксид железа, содержащий кристаллы, такие как Fe2O3-кристаллы, SiC, CrO2, щелочноземельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты, микроволновые диэлектрики, такие как ULF800 (фритта на основе титаната рения с плотностью 4.37 г/см3, которая спекается при 900°C); COG62OH (титанат рения с плотностью 5.65 г/см3, который спекается при 1260°C); COG82OMW (рений-висмут титанат с плотностью 5.68 г/см3, который спекается при 1330°C) из Полимерной Индустрии, и их комбинации.
[0019] С другой стороны эмали могут быть предварительно обожжены и сверху, и снизу каждой из стеклянных пластин, а затем часть микроволнового соединителя, содержащего эмаль, наносится на как минимум одну из них с предварительно обожженной эмалью. Затем верх и низ стеклянных пластин соединяются вместе с помощью подвержения герметика микроволновому нагреву. Предварительный обжиг исключает необходимость переработки большого количества уплотняющего материала с помощью производственного оборудования солнечных батарей и предотвращает избыточный нагрев фотоэлектрического устройства. При окончательном обжиге герметика, загрязнение от сгорания соединителя устраняется, поскольку не используется никакой органический соединитель. В целом, способ герметизации, производимый в порядке, описанном здесь, быстрее, чем привычные способы, большей частью потому, что предварительный обжиг снижает количество фритты, которая должна быть обожжена в момент формирования герметика.
[0020] Хотя предварительный обжиг эмалевых поверхностей перед микроволновым уплотнением предпочтительнее для контроля за пузырьками, также предполагается, и, фактически, предпочтительнее, чтобы была возможна прямая герметизация без предварительного обжига. Более того, эмалевые покрытия могут быть нанесены только на одну из пары подложек, которые должны быть соединены. Также предполагается, что герметичные материалы (эмалевые покрытия) могут быть все нанесены на одну и ту же пластину (верх или низ) и выборочно соединены с другой пластиной с или без предварительного обожжения эмали. Для более быстрого производства предпочтительно разместить эмали внизу пластины и не наносить эмаль на верх пластины для достижения максимальной облучающей микроволновой энергии на эмали внизу пластины, где она располагается.
[0021] Рассматриваемый вариант изобретения представляет собой решетку, состоящую из множества солнечных батарей, включающую в себя множество индивидуальных герметично запечатанных солнечных батарей. Во множестве практических применений герметизации стекла к стеклу, таких как инкапсуляция солнечных батарей (как на основе кристаллического кремния, так и на основе тонкой пленки на основе теллурида кадмия и диселенида галлия-индия-меди, полимерных, гибких), ОСИД упаковка, дисплеи, сенсорные экраны, уплотнение оконных стекол с вакуумной изоляцией, уплотнение архитектурных и автомобильных окон, во многих случаях присутствует необходимость использования закаленного стекла. Закаленное стекло теряет свою твердость при нагревании свыше около 300°C в конвекционной печи при растапливании материалов уплотнения стекла. Таким образом, существует необходимость выборочного нагрева только материала уплотнения и эффективного сцепления базовых стекол/подложек без значительного нагрева базовых стекол/подложек.
[0022] Вариант, предусмотренный здесь - это использование продуктов, изготовленных путем микроволнового нагрева и такими лидерами в промышленных системах плавления, как Gyrotron Technology (Гиротронная технология), Inc. 3412 Progress Drive, Bensalem, РА 19020 (www.gyrotrontech.com), который производит оригинальную технологию микроволнового нагрева, использующую концентрированный микроволновой электрод высокой частоты для плавления стекол. Гиротронный Луч - это концентрированный источник энергии. Его высокая частота и высокая концентрация энергии вместе с микроволновой природой данного нового источника обуславливают уникальные свойства, отличающиеся от любых других свойств известных источников энергии. Луч может выполнять следующие функции: быстрое объемное нагревание неметаллических материалов от 10 микрон до 30 см (0.0004'' до 12''), что обозначает такое нагревание, которое быстрее, чем тепловая проводимость и способы окисления; быстрое выборочное нагревание, где целевой участок внутри материала, подвергающегося воздействию, может быть нагрет отдельно от окружающих его участков. Гиротронный Луч - это эффективный источник тепла для производства любого вида материалов на основе полимера, органики, керамики, полупроводников, стекла, дерева и других неметаллических материалов.
[0023] Гиротронный Луч - это первый микроволновой источник в виде луча. Он имеет тепловой поток до 15 кВт/см2, например 1-15 кВт/см2. Он производит быстрое нагревание при нормальном и низком давлении: до 10,000°C/сек, например, 0.1 до 10,000°С/сек; обеспечивает выборочный и/или исключительный нагрев целевого участка или слоя внутри или на поверхностях без существенного нагрева других слоев. Луч может принимать любую форму, например форму окружности с диаметром 3 мм (0.12'') или более; форму линии длиной до 2 м (6 футов), форму квадрата и эллипса до 60 кв.фут. Луч также может быть разделен для обеспечения двух производственных линий или нагрева двух сторон продукта, обрабатывающихся одновременно.
[0024] Фигура 1 отображает простой сплавленный герметик между двумя стеклянными пластинами, нагретый с помощью микроволновой энергии.
[0025] В общих чертах, в способах выборочного уплотнения локализованное тепло возникает как из-за преференциального поглощения электромагнитных волн, представляющих интерес в связи с наличием подходящих абсорбентов, так и из-за соединительных элементов в герметичных материалах. Это приводит к выборочному нагреву уплотнителей. Контроль различных аспектов данного способа выборочного уплотнения заключает в себе: количество и расположение образования поглощения и тепла; наблюдение за рассеянием тепла для снижения возникновения температурных перепадов или температурного шока - среди материалов и герметичных конструкций, особенно в способе выборочного уплотнения - Микроволнового Уплотнения - и это другие аспекты изобретения.
[0026] Изобретение включает в себя контроль над количеством выделения микроволновой энергии, местом выделения этой энергии и значением выделения этой энергии, так что формируется уплотнение высокого качества, исключающее разломы из-за несоответствия термального шока и коэффициентов теплового расширения, что могло бы поставить под угрозу герметичность уплотнения, и разломы будут предотвращены или минимизированы.
[0027] Способ для формирования герметичных уплотнений в соответствии с данным изобретением, прост по своему характеру, но крайне сложен для успешного выполнения в практическом плане. Следует отметить, что формирование герметического уплотнения требует совершенства в исполнении, с тех пор как даже отдельный зазор или неплотное место в большом солнечном модуле или на панели генератора видеоизображений, который мог быть 0.8 м × 1.2 м до 2 м × 3 м на стеклянных подложках, дискредитирует уплотнение и срок жизни солнечного модуля или потерю изоляционной мощности блока генератора видеоизображений. Стекло для герметизации или эмаль могут быть как заранее глазурованными (или заранее обожженными) на стеклянных пластинах перед микроволновым уплотнением стеклянных пластин вместе, так и напрямую подвергаться уплотнению без предварительного глазурования. Следует иметь в виду, что пузырьки, присутствующие в эмали или образованные во время операции уплотнения, будут увеличиваться в размерах во время нагрева, формируя большие пустоты, что может поставить под угрозу целостность уплотнения. Таким образом, в зависимости от геометрической формы уплотнения и размеров стеклянных пластин эмалевый слой может быть как заранее глазурован, так и нет.
[0028] В сущности, данное изобретение подразумевает сокращение любых изменений размеров, выделение больше энергии на тот участок поверхности, который должен быть герметизирован, наблюдение и снижение пузырьков средних размеров, и затем сокращение любых несоответствий термальных перепадов и коэффициентов теплового расширения для сокращения вероятности разлома от несоответствий термального шока или коэффициентов теплового расширения.
[0029] Изменения в размерах исключаются в первую очередь за счет использования обожженных (заранее глазурованных) эмалей, которые были уплотнены/спечены из сухих отложений, имеющих объемную массу около 60% или меньше их теоретической массы, для образования обожженных эмалей с как минимум 90% теоретической массы. Однако, также необходимо отметить, что соединение подложки с заранее глазурованной эмалью с подложкой, имеющей тонкий слой сухой эмалевой пасты, даст только незначительные изменения размеров и будет работать также хорошо, и это также является частью данного изобретения. Другая цель использования заранее глазурованной обожженной эмали на подложках заключается в том, чтобы создать высококачественные эмалевые поверхности подложек.
[0030] Еще один рассматриваемый вариант изобретения предполагает наблюдение за расположением выделения энергии. В микроволновом уплотнении электромагнитные поля высокого напряжения формируются благодаря микроволновым генераторам, таким какие используются в Гиротронной Технологии, Gyrotron Technology, Inc. Фактически, Гиротронный луч является первым микроволновым источником, имеющим форму луча. Этот луч может обеспечить быстрое объемное нагревание различных материалов подложки - полимеров, органики, керамики, полупроводников, стекла, дерева и других неметаллических материалов. Он имеет тепловой поток до 15 КВт на кв.см. Интенсивность нагрева как минимум части подложки и пасты может быть 0.1 до 10,000°C в секунду. Луч может принимать любую из следующих форм: форму окружности, квадрата, эллиптическую форму или форму прямой.
[0031] Стекло само собой может быть нагрето с помощью микроволн. Однако добавления микроволновых соединительных добавок увеличат микроволновое поглощение герметичных материалов. Подходящие микроволновые соединительные добавки включают в себя ферримагнитные металлы, переходные металлы, железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2O3, NiO*Fe2O3, Y3Fe2O12 оксид железа, содержащий кристаллы, такие как Fe2O3-кристаллы, SiC, CrO2, щелочноземельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты, микроволновые диэлектрики, такие как ULF800; C0G620H; C0G820MW из Полимерной Индустрии, и их комбинации.
[0032] Еще один рассматриваемый вариант изобретения относится к форме и размерам данных соединительных компонентов. Для эффективности объемного нагрева материала для уплотнения стекла предусматривается добавление соединительных материалов, которые являются частицами, имеющими форму, выбранную из группы, включающей в себя формы высокой сферичности, низкой сферичности, нерегулярные, равновеликие, эллипсоидальные, табличные, цилиндрические, чешуйчатый, нитевидных и проводные, для прохождения тепла через уплотнение. Размер частицы D50 может в диапазоне от 5 нм до 100,000 нм, предпочтительно от 10 нм до 50,000 нм, более предпочтительно от 50 нм до 10,000 нм.
[0033] Еще один рассматриваемый вариант изобретения относится к предотвращению напряжений, которые могли бы снизить эффективность уплотнения, и предотвращению разломов, которые могли бы нарушить герметичность уплотнения. Этого можно добиться путем контроля над составом эмали и параметрами способа герметизации. Хотя это не является обязательным условием в использовании данного изобретения, использование заранее глазурованных эмалей крайне полезно для производства высококачественных герметичных уплотнителей. Использование сухих эмалей на этапе уплотнения приводит к значительным изменениям в размере, когда покрытие имеет значительную толщину, усложняющую формирование уплотнения. Кроме того, сухие эмали склонны образовывать большие пустоты в уплотнении, а также, как правило, выбрасывают некоторые загрязнения на внутреннюю часть модуля батареи или панели видеоизображений во время процесса уплотнения.
[0034] Другой рассматриваемый вариант данного изобретения является дополнением к вышеупомянутым соединительным материалам для снижения температуры материалов для уплотнения стекла, описанным в одновременно находящейся на рассмотрении заявке того же заявителя PCT/US2011/032689 (U.S. Ser. No. 13/641,046), приведенным в качестве ссылки. Вышеупомянутые соединительные материалы могут быть добавлены к промышленно имеющимся материалам, таким как EG2824, EG2824B и EG2824G из Полимерной Индустрии, Кливленд, ОН. Материалы для уплотнения стекла, заявленные здесь, не ограничиваются только стеклами с высоким содержанием висмута. Мы предполагаем включение некоторых этих соединительных материалов в различные системы уплотнения стекла, а именно материалов для уплотнения стекла с высоким содержанием свинца, на основе низкоплавких флинтгласов, таких как EG2760; системы цинковых стекол, такие как CF7574, LF256; висмут-борат цинковые стекла, такие как EG2871; стекла с высоким содержанием бария; стекла с высоким содержанием кальция; щелочно-силикатные стекла, содержащие титан и/или цинк, такие как EG3600, EG3608. Вышеназванные стекла производственно доступны в Полимерной Индустрии, Кливленд, Огайо, и подробно изложены в следующих таблицах.
Figure 00000001
Figure 00000002
Figure 00000003
[0037] Альтернативные диапазоны для отдельных дополнительных оксидов в Таблице 2 включают, для CuO, Fe2O3, Co2O3, и MnO, в мол.%: 1.5, -9, 2-8 и 4-7. Альтернативные диапазоны для La2O3 включают 0.5-8, 2-6 и 1-6 мол.%.
[0038] Оксиды в Таблице 2 или 4, включая альтернативы из предыдущего абзаца, могут быть использованы в любом количестве, описанном в любой колонке вместе с оксидами из Таблицы 1 или 3. Количества из разных колонок в Таблицах 2 или 4 могут быть использованы с количествами оксидов из любой колонки в Таблице 1 или 3.
[0039] Необходимо отметить, что часть этих стекольных оксидов, таких как Bi2O3, ZnO, CuO, Fe2O3, Co2O3, MnO, могут быть включены в качестве добавок керамических оксидов в материалы уплотнения для получения окончательного комплексного состава стекла, предусмотренного здесь.
[0040] Как было отмечено ранее, комплексные стекла, особенно стекольные смеси из двух или трех фритт, могут использоваться для контроля за общими свойствами уплотнения. Если используется второй состав стекла, пропорции составов стекла могут быть изменены для контроля за степенью взаимодействия пасты с подложками, такими как кремний, характеристиками текучести и кристаллизации уплотнения и, следовательно, полученными свойствами уплотнения. Например, будучи компонентами стекла, первый и второй составы стекла могут присутствовать в массовом соотношении от приблизительно 1:20 до приблизительно 20:1, а предпочтительно от приблизительно 1:5 до приблизительно 5:1. Предпочтительно, чтобы компонент стекла не содержал свинец или оксиды свинца, кадмий или оксиды кадмия. Однако, в определенных вариантах, где свойства PbO не могут повторяться, в таких вариантах преимущественно содержится PbO. Более того, второе или третье стекло может являться другим висмутовым стеклом из Таблиц 1 и 2 или цинковым стеклом (Таблица 3), или стеклом на основе щелочного силиката титана (Таблица 4) или свинцовым стеклом (Таблица 5 или 6).
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
[0045] Составы стекла для уплотнения данного изобретения могут не содержать свинец и кадмий, в одном варианте, не содержащие свинец и кадмий составы стекла для уплотнения включают в себя, перед обжигом, (а) 25-65 мол.% Bi2О3, (b) 3-60 мол.% ZnO (с) 4-65 мол.% B2O3, (d) 0.1-15 мол.% как минимум одного выбранного из группы оксидов, содержащей CuO, Fe2O3, Co2O3, Cr2O3 и их комбинации, (е) без преднамеренно добавленных оксидов кремния, и (1) без преднамеренно добавленных оксидов алюминия.
[0046] В дополнение к другим вариантам можно сказать, что стекла, использующиеся в изобретении, могут быть выбраны из группы, включающей в себя висмутовое стекло, свинцовое стекло, цинковое стекло, бариевое стекло, кальциевое стекло, щелочно-силикатные стекла, ванадиевое стекло, теллуристое стекло, фосфатное стекло и их комбинации.
[0047] Еще одной особенностью данного изобретения является добавление этих соединительных материалов в эпоксидный состав, в том числе органо-неорганических гибридных материалов для улучшения нагрева, текучести и сцепления подложек стекла со стеклом, стекла с металлом и стекла с керамическим уплотнением.
[0048] Еще одна особенность данного изобретения заключается в том, что как минимум одна из стекольных пластин закаленная.
[0049] Еще одна особенность данного изобретения заключается в том, что как минимум одна из стекольных пластин является блоком из заранее сложенных стекол.
[0050] Еще одна особенность данного изобретения заключается в том, что как минимум одна из стекольных пластин покрыта электропроводящими покрытиями, такими как материал на основе оксида олова (прозрачный проводящий оксидный слой) или оксида индия и олова.
[0051] Еще одна особенность данного изобретения заключается в том, что другие эмали или пасты обжигаются вместе со стеклом для уплотнения или эмалевыми слоями, согласно данному изобретению.
[0052] Еще одна особенность данного изобретения заключается в том, что точная порция наносится на стеклянные пластины и либо уплотнены, либо вместе, либо отдельно от обожженной эмали для уплотнения.
[0053] В целом, процесс индукционного запаивания начинается с предварительного обжига индукционного соединителя, имеющего в составе эмаль, на верхней стеклянной пластине. Затем верхняя пластина помещается на нижнюю пластину. Затем источник микроволнового нагрева направляется на блок для того, чтобы расплавить верхнюю поверхность эмали, поглощающую/связывающую мощность, и скрепить части вместе.
[0054] Другой вариант подразумевает, что эмали, включающие в себя микроволновое соединение, заранее обожжены на каждой верхней и нижней стеклянных пластинах. Затем пластины размещаются рядом друг с другом и подвергаются воздействию тепла от микроволнового источника для завершения уплотнения.
[0055] Предварительный обжиг исключает необходимость производить большое количество уплотняющего материала в технологическом оборудовании солнечных батарей, и предупреждает избыточный нагрев фотоэлектрического устройства. При окончательном обжиге уплотнителя загрязнение от сгорания соединителя устраняется, поскольку органический соединитель не используется. В целом, способ уплотнения, выполняемый в порядке действий, изложенном здесь, быстрее, чем традиционные способы, большей частью потому, что предварительный обжиг снижает количество фритты, которая должна быть обожжена в момент формирования уплотнения.
[0056] Хотя предпочтительно, чтобы слои эмали были заранее обожжены перед микроволновым уплотнением, также предполагается, что прямое уплотнение без предварительного обжига возможно.
[0057] Подобным образом предполагается, что все уплотняющие материалы (слои эмали) могут быть нанесены на одну пластину (на верхнюю или нижнюю) и выборочно уплотнены с другой пластиной, с заранее обожженной эмалью, или без нее.
[0058] Различные варианты изобретения могут включать различные техники для применения слоев эмали с микроволновым соединителем. Техники для применения могут включать одну или более из таких техник, как трафаретная печать, экструзия пасты, струйная печать, цифровые техники применения, использующие струйную печать или распыление, дозирование автоматическим шприцом, например, с использованием роботизированных систем дозирования Нордсон (Nordson), нанесения покрытия методом центрифугирования, покрытие окунанием и другие.
[0059] Другой особенностью изобретения является система уплотняющего материала для использования в соединении двух или более неорганических подложек, которые используются для формирования фотоэлектрического устройства, упомянутая система уплотняющего материала включает в себя один или несколько стеклянных или керамических компонентов. Система уплотняющего материала может включать любое стекло и/или металл и/или оксид в любой комбинации, описанной здесь.
[0060] В любом изложенном варианте, безвоздушная или инертная атмосфера может быть уплотнена в пространстве, созданном как минимум двумя неорганическими подложками вместе с системой уплотняющего материала.
[0061] Особенность изобретения - это система уплотняющего материала для использования в соединении двух или более неорганических подложек, находящихся в фотоэлектрическом устройстве перед применением концентрированного источника энергии. Система уплотняющего материала может включать любое стекло и/или оксид в любой комбинации, описанной здесь.
[0062] Рассматриваемый вариант изобретения представляет собой решетку, состоящую из множества солнечных батарей, включающую в себя множество индивидуальных герметично запечатанных солнечных батарей. Во множестве практических применений герметизации стекла к стеклу, таких как инкапсуляция солнечных батарей (как на основе кристаллического кремния, так и на основе тонкой пленки на основе теллурида кадмия и диселенида галлия-индия-меди, полимерных, гибких), ОСИД упаковка, дисплеи, сенсорные экраны, уплотнение оконных стекол с вакуумной изоляцией, уплотнение архитектурных и автомобильных окон, во многих случаях присутствует необходимость использования закаленного стекла. Известково-натриевые стеклянные подложки теряют свою твердость при нагревании свыше около 300°C в конвекционной печи при растапливании материалов уплотнения стекла. Таким образом, существует необходимость выборочного нагрева только материала уплотнения и эффективного сцепления базовых стекол/подложек без значительного нагрева базовых стекол/подложек.
[0063] Вариант, предусмотренный здесь - это использование продуктов, изготовленных путем микроволнового нагрева и такими лидерами в промышленных системах плавления, как Gyrotron Technology (Гиротронная технология), Inc. 3412 Progress Drive, Bensalem, PA 19020 (www.gyrotrontech.com), который производит оригинальную технологию микроволнового нагрева, которая представлена на http://www.gyrotrontech.com
[0064] Настоящее изобретение предполагает три различных конструкции, как показано в Фигурах 1-3 для индукционного уплотнения стеклянных пластин. В Фигуре 1 представлено простое уплотнение между двумя стеклянными пластинами. В Фигуре 2 уплотнение имеет металлический промежуточный слой. В Фигуре 3 наружная металлическая часть индуктивно нагревается для создания уплотнения между стеклом и металлом.
[0065] В частности, Фигура 1 отображает вариант со стеклянными пластинами 110 и 120, соединенными зеленым индуктивным стеклом уплотнения 130 (стекло уплотнения и индукционная соединительная добавка) для формирования блока 100. Блок 100 помещен рядом с нагревательным источником, который переплавляет стекло в уплотнении 130 в твердое герметичное уплотнение. Полость 140 может содержать активный слой (не показан) или особенную атмосферу, такую как инертная атмосфера, например, N2, He, Ar или частичный вакуум, при давлении 500 торр, 400 торр, 300 торр, 200 торр, или даже 100 торр, до предела герметичности материала уплотнения, используемого для уплотнения стеклянных пластин 110 и 120 вместе.
[0066] Все диапазоны, представленные здесь, предполагают включение термина "приблизительно" относительно и верхних, и нижних пределов данных диапазонов. Такое содержание графы, как 1-10% TeO2+Ta2O5+Tl2O+GeO2, означает, что любой из перечисленных оксидов может присутствовать в общей массе состава от 1-10%.
[0067] Детали особенностей изобретения можно найти в одной или нескольких следующих Патентных Заявках США, все из них в общей собственности и все из них приведены здесь в качестве ссылки: 10/864,304; 10/988,208; 11/131,919; 11/145,538; 11/384,838; 11/774,632; 11/846,552; 12/097,823; 12/298,956; 12/573,209; 61/324,356; 61/328,258; 61/366,568; и 61/366,578.

Claims (114)

1. Способ уплотнения двух неорганических подложек вместе с использованием источника микроволновой энергии, включающий в себя:
a. предоставление первой и второй неорганических подложек;
b. нанесение на как минимум одну первую и вторую подложки состава пасты, включающего в себя:
i. стеклообразную фритту, и
ii. микроволновую соединительную добавку,
c. распределение подложек таким образом, чтобы состав пасты располагался между ними и взаимодействовал с обеими подложками, и
d. помещение подложек и пасты под микроволновое излучение, чтобы, таким образом, сформировалось герметичное уплотнение между двумя неорганическими подложками, где микроволновая соединительная добавка выбрана из группы, включающей в себя ферримагнитные металлы, переходные металлы,
железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2O3, NiO*Fe2O3, Y3Fe5O12, стекла, содержащие оксид железа, стекла Fe2O3, SiC, CrO2, щелочно-земельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты и их комбинации.
2. Способ по п. 1, отличающийся тем, что микроволновое излучение имеет частоту от приблизительно 0.9 ГГц до приблизительно 2.5 ГГц.
3. Способ по п. 1, отличающийся тем, что микроволновое излучение имеет частоту приблизительно 0.915 ГГц.
4. Способ по п. 1, отличающийся тем, что микроволновое излучение обеспечивает тепловой поток от 0.1 до 15 КВт на кв. см.
5. Способ по п. 1, отличающийся тем, что микроволновое излучение нагревает как минимум часть подложек и пасты со скоростью от 0.1 до 10,000°С в секунду.
6. Способ по п. 1, отличающийся тем, что микроволновое излучение приводится в виде кольцевого луча с диаметром от 3 мм до 10 см.
7. Способ по п. 1, отличающийся тем, что микроволновое излучение приводится в виде луча, имеющего в поперечном сечении форму, выбранную из группы, включающей в себя окружность, квадрат, эллипс или прямую.
8. Способ по п. 1, отличающийся тем, что одна из подложек стеклянная, а другая подложка керамическая.
9. Способ по п. 1, отличающийся тем, что паста также содержит TiO2.
10. Способ по п. 1, отличающийся тем, что добавка микроволнового соединителя выбрана из группы, включающей в себя титанат рения, рений-висмут титанаты и их комбинации.
11. Способ по п. 1, отличающийся тем, что паста также включает в себя элемент, содержащий марганец, выбранный из группы, включающей в себя пигменты висмут-марганца, перовскитовые марганиты, Bi2Mn4O10, Bi12MnO20 и пигмент висмут-марганца с мольным соотношением Bi2O3 к MnO2 от 5:1 до 1:5.
12. Способ по п. 1, отличающийся тем, что паста содержит добавку Mn(II).
13. Способ по п. 12, отличающийся тем, что добавка Mn(II) выбрана из группы, включающей в себя MnO, стекла, содержащие MnO, пигменты Mn(II), перовскитовые марганиты и их комбинации.
14. Способ по п. 1, отличающийся тем, что магнитные провода металлических стекол обсыпаны пастой.
15. Способ по п. 1, отличающийся тем, что паста содержит материал микроволнового токоприемника.
16. Способ по п. 15, отличающийся тем, что материал микроволнового токоприемника содержит SiC.
17. Способ по п. 1, отличающийся тем, что паста также содержит как минимум один элемент, выбранный из группы, включающей в себя эпоксидный и органико-неорганический гибридный материал, и отличающийся условием, что первая подложка - это стекло, вторая подложка выбрана из группы, включающей в себя стекло, металл и керамику.
18. Способ по п. 1, отличающийся тем, что стеклообразная фритта содержит перед обжигом:
a. 25-65 мол.% Bi2O3,
b. 3-60 мол.% ZnO,
c. 4-65 мол.% В2O3,
d. 0.1-15 мол.% как минимум одного соединения, выбранного из группы, включающей в себя CuO, Fe2O3, Со2О3, Cr2O3 и их комбинации,
e. без преднамеренно добавленных оксидов кремния, и
f. без преднамеренно добавленных оксидов алюминия.
19. Способ по п. 1, отличающийся тем, что состав стеклообразной фритты выбран из группы, включающей в себя стекло 1, стекло 2 и стекло 3, где стекло 1, стекло 2 и стекло 3 содержат, соответственно,
а. стекло 1:
i. 25-65 мол.% Bi203,
ii. 3-60 мол.% ZnO,
iii. 4-65 мол.% B2O3,
iv. 0.1-15 мол.% как минимум одного соединения, выбранного из группы, включающей в себя CuO, Fe2O3, Co2O3, Cr2O3 и их комбинации,
v. без преднамеренно добавленных оксидов кремния, и vi. без преднамеренно добавленных оксидов алюминия,
b. стекло 2:
i. 37-45 мол.% Bi203,
ii. 30-40 мол.% ZnO,
iii. 18-35 мол.% B2O3,
iv. 0.1-15 мол.% как минимум одного соединения, выбранного из группы, включающей в себя CuO, Fе2O3, Co2O3, Cr2O3,
v. без преднамеренно добавленных оксидов кремния и
vi. без преднамеренно добавленных оксидов алюминия, и
c. стекло 3:
i. 5-65 мол.% ZnO,
ii. 10-65 мол.% SiO2,
iii. 5-55 мол.% B2O3+Al2O3, и как минимум один оксид, выбранный из группы, включающей в себя:
a. 0.1-45 мол.% как минимум одного оксида, выбранного из группы, включающей в себя Li2O, Na2O, K2O, Cs2O и их комбинации,
b. 0.1-20 мол.% как минимум одного оксида, выбранного из группы, включающей в себя MgO, CaO, BaO, SrO и их комбинации, и
c. 0.1-40 мол.% как минимум одного оксида, выбранного из группы, включающей в себя TeO2, Tl2O, V2O5, Ta2O5, GeO2.
20. Состав для уплотнения без свинца и без кадмия, включающий в себя стеклообразную фритту и микроволновой соединительный материал, где стеклообразная фритта содержит, перед сжиганием,
(а) 25-65 мол.% Bi2O3, (b) 3-60 мол.% ZnO, (с) 4-65 мол.% B2O3, (d) 0.1-15 мол.% как минимум одного из группы оксидов, содержащей CuO, Fe2O3, Со2О3, Cr2O3 и их комбинации, (е) никаких преднамеренно добавленных оксидов кремния и (f) никаких преднамеренно добавленных оксидов алюминия, где микроволновая соединительная добавка выбрана из группы, включающей в себя ферримагнитные металлы, переходные металлы,
железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2O3, NiO*Fe2O3, Y3Fe5O12, стекла, содержащие оксид железа, стекла Fe2O3, SiC, CrO2, щелочно-земельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты и их комбинации.
21. Способ формирования полости герметичного уплотнения включает в себя:
a. предоставление как минимум двух стеклянных пластин,
b. нанесение стекольного состава, выбранного из группы, включающей в себя стекло 1, стекло 2 и стекло 3, на как минимум одну из стекольных пластин, где стекло 1, стекло 2 и стекло 3 содержат, соответственно,
i. стекло 1:
1. а. 25-65 мол.% Bi2O3,
2. 3-60 мол.% ZnO,
3. 4-65 мол.% Bi2O3,
4. 0.1-15 мол.% как минимум одного соединения, выбранного из группы, включающей в себя CuO, Fe2O3, Со2О3, Cr2O3 и их комбинации,
5. без преднамеренно добавленных оксидов кремния, и
6. без преднамеренно добавленных оксидов кремния,
ii. стекло 2:
1. 37-45 мол.% Bi2O3,
2. 30-40 мол.% ZnO,
3. 18-35 мол.% B2O3,
4. 0.1-15 мол.% как минимум одного оксида, выбранного из группы, включающей в себя CuO, Fe2O3, Co2O3, Cr2O3,
5. без преднамеренно добавленных оксидов кремния, и
6. без преднамеренно добавленных оксидов алюминия,
iii. стекло 3:
1. 5-65 мол.% ZnO,
2. 10-65 мол.% SiO2,
3. 5-55 мол.% B2O3+Al2O3,
а. и как минимум один оксид, выбранный из группы, включающей в себя:
i. 0.1-45 мол.% как минимум одного оксида, выбранного из группы, включающей в себя Li2O, Na2O, K2O, Cs2O и их комбинации,
ii. 0.1-20 мол.% как минимум одного оксида, выбранного из группы, включающей в себя MgO, CaO, BaO, SrO и их комбинации, и
iii. 0.1-40 мол.% как минимум одного оксида, выбранного из группы, включающей в себя TeO2, Tl2O, V2O5, Ta2O5, GeO2,
c. приведение как минимум второй стеклянной пластины в контакт с стекольным составом и в физический контакт друг с другом, и
d. помещение стекольного состава под микроволновой нагрев для спекания и распределения стекольного состава для последующего образования герметичного уплотнения.
22. Способ скрепления первой и второй стеклянных пластин друг с другом так, чтобы между ними образовалось герметичное уплотнение и полость, способ, включающий в себя,
a. предоставление первого состава однородного порошка для уплотнения стекла, содержащего:
i. 25-65 мол.% Bi203,
ii. 3-60 мол.%ZnO,
iii. 4-65 мол.% B2O3,
iv. без преднамеренно добавленных оксидов кремния, и v. без преднамеренно добавленных оксидов алюминия,
b. предоставление второго состава однородного порошка для уплотнения стекла, содержащего:
i. 37-45 мол.% Bi2O3, ii. 30-40 мол.% ZnO, iii. 18-35 мол.% B2O3, iv. 0.1-15 мол.% как минимум одного соединения, выбранного из группы, включающей в себя CuO, Fe2O3, Co2O3, Cr2O3, v. без преднамеренно добавленных оксидов кремния и vi. без преднамеренно добавленных оксидов алюминия,
c. смешивание первого и второго порошка до образования однородной смеси,
d. нанесение однородной смеси на как минимум одну из первой и второй стеклянных пластин,
e. расположение первой и второй стеклянных пластин таким образом, чтобы первый и второй порошки взаимодействовали с обеими стеклянными пластинами, и
f. помещение стеклянных пластин и порошков под микроволновой нагрев с электромагнитным полем, имеющим частоту от 0.9 до 2.5 ГГц, для спекания и распределения первого и второго порошков для дальнейшего формирования полости, означающей герметичное уплотнение между первой и второй пластинами.
23. Способ по п. 22, отличающийся тем, что как минимум одна стеклянная панель является интеллектуальной стеклянной панелью.
24. Состав для уплотнения без свинца и кадмия, включающий в себя стеклообразную фритту и микроволновой соединительный материал, где стеклообразная фритта содержит, перед обжигом,
a. 5-65 мол.%ZnO,
b. 10-65 мол.% SiO2,
c. 5-55 мол.% B2O3+Al2O3,
d. как минимум одно соединение, выбранное из группы, включающей в себя i, ii, iii:
i. 0.1-45 мол.% как минимум одного соединения, выбранного из группы, включающей в себя Li2O, Na2O,
K2O, Cs2O и их комбинации,
ii. 0.1-20 мол.% как минимум одного соединения, выбранного из группы, включающей в себя MgO, CaO,
BaO, SrO и их комбинации, и
iii. 0.1-40 мол.% как минимум одного соединения, выбранного из группы, включающей
в себя TeO2, Tl2O, V2O5, Ta2O5, GeO2 и их комбинации, где микроволновая соединительная добавка выбрана из группы, включающей в себя ферримагнитные металлы, переходные металлы,
железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2О3, NiO*Fe2O3, Y3Fe5O12, стекла, содержащие оксид железа, стекла Fe2O3, SiC, CrO2, щелочно-земельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты и их комбинации.
25. Состав для уплотнения без свинца и кадмия, включающий в себя стеклообразную фритту и микроволновой соединительный материал, где стеклообразная фритта содержит, перед обжигом,
a. 5-55 мол.% Li2O+Na2O+K2O,
b. 2-26 мол.%TiO2,
c. 5-75 мол.% B2O3+SiO2,
d. 0.1-30 мол.% как минимум одного соединения, выбранного из группы, включающей в себя V2O5, Sb2O5, P2O5 и их комбинации, 0.1-20 мол.% как минимум одного оксида, выбранного из группы, включающей в себя MgO, CaO, BaO, SrO и их комбинации, 0.1-40 мол.% как минимум одного оксида, выбранного из группы, включающей в себя TeO2, Tl2O, Ta2O5, GeO2 и их комбинации, и
g. 0.1-20 мол.% F, где микроволновая соединительная добавка выбрана из группы, включающей в себя ферримагнитные металлы, переходные металлы,
железо, кобальт, никель, гадолиний, диспрозий, сплав MnBi, сплав MnSb, сплав MnAs, CuO*Fe2O3, FeO, Fe2O3, Fe3O4 MgO*Fe2O3, MnO*Fe2O3, NiO*Fe2O3, Y3Fe5O12, стекла, содержащие оксид железа, стекла Fe2O3, SiC, CrO2, щелочно-земельные титанаты, титанаты рения, рений-висмут титанаты, редкоземельные титанаты и их комбинации.
RU2014110540A 2011-11-02 2012-11-01 Микроволновое уплотнение неорганических подложек с использованием низкоплавких стекольных систем RU2638993C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161554518P 2011-11-02 2011-11-02
US61/554,518 2011-11-02
PCT/US2012/062901 WO2013067081A1 (en) 2011-11-02 2012-11-01 Microwave sealing of inorganic substrates using low melting glass systems

Publications (2)

Publication Number Publication Date
RU2014110540A RU2014110540A (ru) 2015-12-10
RU2638993C2 true RU2638993C2 (ru) 2017-12-19

Family

ID=48192731

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014110540A RU2638993C2 (ru) 2011-11-02 2012-11-01 Микроволновое уплотнение неорганических подложек с использованием низкоплавких стекольных систем

Country Status (7)

Country Link
US (1) US20140261975A1 (ru)
EP (1) EP2773596B1 (ru)
JP (2) JP2015505792A (ru)
CN (2) CN108455880A (ru)
DK (1) DK2773596T3 (ru)
RU (1) RU2638993C2 (ru)
WO (1) WO2013067081A1 (ru)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596527B1 (en) 2010-07-22 2019-05-15 Ferro Corporation Method of hermetically sealing an active layer and corresponding photovoltaic device
WO2013039940A1 (en) 2011-09-13 2013-03-21 Ferro Corporation Induction sealing of inorganic substrates
US9499428B2 (en) 2012-07-20 2016-11-22 Ferro Corporation Formation of glass-based seals using focused infrared radiation
CN103539355B (zh) * 2013-10-25 2016-03-09 上海大学 气密密封的玻璃料组合物及制备方法、基于玻璃料组合物的密封方法
CN103833217B (zh) * 2014-01-21 2015-12-02 江苏奥蓝工程玻璃有限公司 一种透光耐热的玻璃材料及其制备方法
KR101755550B1 (ko) 2015-07-24 2017-07-07 (주)세라 강화유리 패널 봉지재 조성물
CN105110602B (zh) * 2015-08-24 2017-08-25 连云港华源石英制品有限公司 短吸收长释放微波的石英玻璃拉制原料及石英玻璃的制法
CN105355751B (zh) * 2015-10-16 2018-09-07 英利集团有限公司 Mwt太阳能电池及其制备方法
JP2019515857A (ja) * 2016-03-17 2019-06-13 コーニング インコーポレイテッド Uv吸収薄膜を含む封止された装置
JP6690607B2 (ja) 2016-08-03 2020-04-28 信越化学工業株式会社 合成石英ガラスリッド及び光学素子用パッケージ
CN107021635B (zh) * 2017-04-26 2020-02-04 南京广兆测控技术有限公司 玻璃焊料及其制备方法
JP6805081B2 (ja) * 2017-05-26 2020-12-23 新光電気工業株式会社 発光装置用蓋体
CN107162426A (zh) * 2017-06-21 2017-09-15 苏州卡睿知光电科技有限公司 一种玻璃密封料、密封料糊剂及其制备方法
CN108328912B (zh) * 2018-04-08 2020-01-31 武汉理工大学 一种用于真空玻璃封接的阳极键合方法及装置
GB201806411D0 (en) 2018-04-19 2018-06-06 Johnson Matthey Plc Kit, particle mixture, paste and methods
CN114989486B (zh) * 2022-06-21 2023-04-07 佛山市三水日邦化工有限公司 一种防辐射组合物及其制备方法及防辐射聚氨酯膜
CN115160924B (zh) * 2022-07-22 2023-04-07 东北大学 一种耐核辐照、防腐蚀、抗高温多功能集成有机硅涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021803A2 (en) * 1997-10-29 1999-05-06 The Westaim Corporation Dielectric glasses for low dielectric loss, low temperature cofired ceramics with medium dielectric constants
WO2000037362A1 (en) * 1998-12-18 2000-06-29 Dmc?2¿ Degussa Metals Catalysts Cerdec Ag Bismuth manganese oxide pigments
US6555025B1 (en) * 2000-01-31 2003-04-29 Candescent Technologies Corporation Tuned sealing material for sealing of a flat panel display
US20070014949A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
US20090101872A1 (en) * 2007-10-18 2009-04-23 E.I. Du Pont De Nemours And Company LEAD-FREE CONDUCTIVE COMPOSITIONS AND PROCESSES FOR USE IN THE MANUFACTURE OF SEMICONDUCTOR DEVICES: Mg-CONTAINING ADDITIVE
WO2009086228A1 (en) * 2007-12-21 2009-07-09 E. I. Du Pont De Nemours And Company Flat plate encapsulation assembly for electronic devices
US20090325349A1 (en) * 2008-06-25 2009-12-31 Nippon Electric Glass Co., Ltd. Semiconductor encapsulation material and method for encapsulating semiconductor using the same

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4606748A (en) * 1984-10-10 1986-08-19 The United States Of America As Represented By The Department Of Energy Method for producing ceramic-glass-ceramic seals by microwave heating
EP0638099A1 (de) * 1993-02-12 1995-02-15 Gurit-Essex AG Wärmeaktivierbares modulares bauteil, dessen verwendung, verfahren zur direktverglasung von fahrzeugen, sowie klebstoff
US6051483A (en) * 1996-11-12 2000-04-18 International Business Machines Corporation Formation of ultra-shallow semiconductor junction using microwave annealing
JPH09208270A (ja) * 1996-02-02 1997-08-12 Nippon Sheet Glass Co Ltd 複層ガラス及びその製造方法
JP4059968B2 (ja) * 1997-12-18 2008-03-12 Tdk株式会社 有機el素子の製造方法
US6558494B1 (en) * 1999-09-24 2003-05-06 Guardian Industries Corp. Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same
US6408649B1 (en) * 2000-04-28 2002-06-25 Gyrotron Technology, Inc. Method for the rapid thermal treatment of glass and glass-like materials using microwave radiation
US6701749B2 (en) * 2000-09-27 2004-03-09 Guardian Industries Corp. Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same
US6888169B2 (en) * 2000-09-29 2005-05-03 Optical Communication Products, Inc. High speed optical subassembly with ceramic carrier
JP2004182567A (ja) * 2002-12-05 2004-07-02 Nippon Sheet Glass Co Ltd 真空ガラスパネルの製造方法、及び該製造方法により製造された真空ガラスパネル
US20040206953A1 (en) * 2003-04-16 2004-10-21 Robert Morena Hermetically sealed glass package and method of fabrication
US7344901B2 (en) * 2003-04-16 2008-03-18 Corning Incorporated Hermetically sealed package and method of fabricating of a hermetically sealed package
US7063760B2 (en) * 2004-01-13 2006-06-20 Gyrotron Technology, Inc. Method for laminating glass sheets using microwave radiation
JP2005255480A (ja) * 2004-03-12 2005-09-22 Central Glass Co Ltd 合わせガラス及びその製造方法
JP2005281055A (ja) * 2004-03-30 2005-10-13 Alps Electric Co Ltd 無鉛ガラス及びそれを用いた磁気ヘッド
US7341964B2 (en) * 2004-07-30 2008-03-11 Shepherd Color Company Durable glass and glass enamel composition for glass coatings
JP2006160599A (ja) * 2004-11-11 2006-06-22 Sony Corp 無鉛ガラス組成物及び磁気ヘッド
US20080124558A1 (en) * 2006-08-18 2008-05-29 Heather Debra Boek Boro-silicate glass frits for hermetic sealing of light emitting device displays
JP5552743B2 (ja) * 2008-03-28 2014-07-16 旭硝子株式会社 フリット
KR100993010B1 (ko) * 2008-06-26 2010-11-09 한국과학기술연구원 저온소성용 저유전율 유전체 세라믹 조성물
WO2010128679A1 (ja) * 2009-05-08 2010-11-11 旭硝子株式会社 封着材料層付きガラス部材とそれを用いた電子デバイスおよびその製造方法
GB0916379D0 (en) * 2009-09-18 2009-10-28 Pilkington Group Ltd Laminated glazing
CN102939271B (zh) * 2010-04-15 2016-08-03 费罗公司 低温熔化的无铅铋密封玻璃
US9375367B2 (en) 2014-02-28 2016-06-28 Medline Industries, Inc. Fastener for an absorbent article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999021803A2 (en) * 1997-10-29 1999-05-06 The Westaim Corporation Dielectric glasses for low dielectric loss, low temperature cofired ceramics with medium dielectric constants
WO2000037362A1 (en) * 1998-12-18 2000-06-29 Dmc?2¿ Degussa Metals Catalysts Cerdec Ag Bismuth manganese oxide pigments
US6555025B1 (en) * 2000-01-31 2003-04-29 Candescent Technologies Corporation Tuned sealing material for sealing of a flat panel display
US20070014949A1 (en) * 2005-07-13 2007-01-18 Applied Materials, Inc. Localized surface annealing of components for substrate processing chambers
US20090101872A1 (en) * 2007-10-18 2009-04-23 E.I. Du Pont De Nemours And Company LEAD-FREE CONDUCTIVE COMPOSITIONS AND PROCESSES FOR USE IN THE MANUFACTURE OF SEMICONDUCTOR DEVICES: Mg-CONTAINING ADDITIVE
WO2009086228A1 (en) * 2007-12-21 2009-07-09 E. I. Du Pont De Nemours And Company Flat plate encapsulation assembly for electronic devices
US20090325349A1 (en) * 2008-06-25 2009-12-31 Nippon Electric Glass Co., Ltd. Semiconductor encapsulation material and method for encapsulating semiconductor using the same

Also Published As

Publication number Publication date
DK2773596T3 (da) 2020-09-14
RU2014110540A (ru) 2015-12-10
JP2015505792A (ja) 2015-02-26
WO2013067081A1 (en) 2013-05-10
CN103906718A (zh) 2014-07-02
EP2773596A4 (en) 2015-09-02
JP6527613B2 (ja) 2019-06-05
EP2773596B1 (en) 2020-07-15
EP2773596A1 (en) 2014-09-10
JP2018108929A (ja) 2018-07-12
US20140261975A1 (en) 2014-09-18
CN108455880A (zh) 2018-08-28

Similar Documents

Publication Publication Date Title
RU2638993C2 (ru) Микроволновое уплотнение неорганических подложек с использованием низкоплавких стекольных систем
RU2638070C2 (ru) Индукционная пайка неорганических подложек
CN102918927B (zh) 有机el封装用无铅玻璃材料和使用它的有机el显示器
TWI391361B (zh) 低軟化點之玻璃組成物,使用彼之黏合材料及電子零件
TWI482745B (zh) A glass member having a sealing material layer, and an electronic device using the same, and a method of manufacturing the same
WO2013005600A1 (ja) ガラス組成物、それを含むガラスフリット、それを含むガラスペースト、およびそれを利用した電気電子部品
CN108463440B (zh) 无铅玻璃组合物、玻璃复合材料、玻璃糊剂、密封结构体、电气电子部件和涂装部件
WO2011158805A1 (ja) 封着材料ペーストとそれを用いた電子デバイスの製造方法
CN103328402B (zh) 带封接材料层的玻璃构件和使用其的电子装置及其制造方法
EP2460780A1 (en) Sealing glass, sealing material and sealing material paste for semiconductor devices, and semiconductor device and process for production thereof
KR101242636B1 (ko) 바나듐-인산계 유리
CN110550867B (zh) 无铅玻璃组合物及包含其的玻璃复合材料、玻璃糊膏和密封结构体
JP6565700B2 (ja) 複層ガラス、及びその製造方法
JP2013239609A (ja) 気密部材とその製造方法
JP2018188341A (ja) 複層ガラス及びその製造方法
KR102312898B1 (ko) 섭씨 450도 이하의 온도에서의 진공 압축용 저온 텔루라이트 유리 혼합물
US20140342136A1 (en) Member with sealing material layer, electronic device, and method of manufacturing electronic device
JP6958600B2 (ja) 真空断熱複層ガラスパネル
JP7028226B2 (ja) 無鉛低融点ガラス組成物、低融点ガラス複合材料、ガラスペースト及び応用製品

Legal Events

Date Code Title Description
FA92 Acknowledgement of application withdrawn (lack of supplementary materials submitted)

Effective date: 20170220

FZ9A Application not withdrawn (correction of the notice of withdrawal)

Effective date: 20170607