RU2627644C2 - Древесная плита и способ ее производства - Google Patents

Древесная плита и способ ее производства Download PDF

Info

Publication number
RU2627644C2
RU2627644C2 RU2015109065A RU2015109065A RU2627644C2 RU 2627644 C2 RU2627644 C2 RU 2627644C2 RU 2015109065 A RU2015109065 A RU 2015109065A RU 2015109065 A RU2015109065 A RU 2015109065A RU 2627644 C2 RU2627644 C2 RU 2627644C2
Authority
RU
Russia
Prior art keywords
wood
carbohydrate
post
curing
wood board
Prior art date
Application number
RU2015109065A
Other languages
English (en)
Other versions
RU2015109065A (ru
Inventor
Ричард ХЭНД
Роджер ДЖЕКСОН
Original Assignee
Кнауф Инзулацьон Спрл
Кнауф Инзулацьон, Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47016964&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2627644(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Кнауф Инзулацьон Спрл, Кнауф Инзулацьон, Ллк filed Critical Кнауф Инзулацьон Спрл
Publication of RU2015109065A publication Critical patent/RU2015109065A/ru
Application granted granted Critical
Publication of RU2627644C2 publication Critical patent/RU2627644C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N7/00After-treatment, e.g. reducing swelling or shrinkage, surfacing; Protecting the edges of boards against access of humidity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N1/00Pretreatment of moulding material
    • B27N1/02Mixing the material with binding agent
    • B27N1/0209Methods, e.g. characterised by the composition of the agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/002Manufacture of substantially flat articles, e.g. boards, from particles or fibres characterised by the type of binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/02Manufacture of substantially flat articles, e.g. boards, from particles or fibres from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • B27N3/08Moulding or pressing
    • B27N3/18Auxiliary operations, e.g. preheating, humidifying, cutting-off
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31971Of carbohydrate
    • Y10T428/31975Of cellulosic next to another carbohydrate

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)

Abstract

Группа изобретений относится к деревообрабатывающей промышленности, в частности к изготовлению древесностружечных плит. Подготавливают куски дерева. Затем на куски дерева наносят углеводную связующую композицию. Выполняют формование полученных кусков дерева с образованием листа. Нагревают и прессуют полученный лист для получения отвержденной древесной плиты с последующим постотверждением древесной плиты. Уменьшается набухание древесной плиты. 3 н. и 16 з.п. ф-лы, 7 ил.

Description

Настоящее изобретение относится к древесным плитам, в частности постотвержденным древесным плитам, и конкретнее к древесно-стружечным плитам (ДСП) с хорошими характеристиками набухания. Изобретение также относится к способу производства таких плит.
ДСП является композитным материалом, который, как правило, изготовляют из различных видов древесных частиц, таких как древесная щепа, стружка или лесопильные опилки. Они могут использоваться, в частности, для изготовления различных видов мебели: шкафов, мебели для кухни и ванной и т.д. В целом, древесно-стружечные плиты (который иногда называют плитами из прессованных опилок) обычно производят путем смешивания частиц дерева со связующей композицией, например термоотверждаемой смолой, с последующей формовкой полученной смеси для получения плиты («листа») и прессованием полученной плиты при повышенных температурах. В качестве связующей системы ДСП обычно применяют карбамидоформальдегидную смолу (UF), меламинкарбамидоформальдегидную смолу (MUF) и фенолформальдегидную смолу. Кроме того, могут использоваться различные добавки, в т.ч. воски, красители и антиадгезивы, которые придают ДСП дополнительные заданные свойства. С целью улучшения внешнего вида и повышения прочности ДСП ее видимые поверхности могут покрываться шпоном.
ДСП имеет ряд преимуществ по сравнению с обычными изделиями из древесины и фанеры, так как она дешевле и, как правило, плотнее и однородней. Поэтому древесно-стружечные плиты заменили эти традиционные материалы во многих применениях, в первую очередь, по причине меньшей себестоимости.
Тем не менее, одним из основных недостатков ДСП в некоторых применениях является значительное набухание плит при длительном воздействии на них влаги. Это вызвано, в частности, тем, что, например, содержащие карбамидоформальдегидную смолу ДСП очень гигроскопичны. Воздействие влаги или непосредственный контакт с водой, как правило, приводит к набуханию материала. Как следствие, внешний вид и прочность ДСП значительно ухудшаются. Подобная чувствительность к воздействию влаги может ограничивать применения ДСП во влажной среде.
Устойчивость к воздействию влаги и набухание также являются важными характеристиками и других типов древесных плит, например, фанеры, хотя структура последней обычно делает его менее восприимчивой к воздействию влаги и набуханию, чем ДСП.
Древесные плиты должны, конечно же, удовлетворять ряду требований, включая удовлетворительную прочность внутренних связей, модуль упругости, прочность на изгиб и стабильность размеров. Также важным является и стойкость к распаду, например, в результате воздействия плесени и/или биодеградации.
Ранее предпринимались попытки изготовить карбамидоформальдегидные ДСП с уменьшенным набуханием при воздействии влаги, например, путем использования большего количества связующего. Однако использование значительно большего количества связующего отрицательно влияет на общие свойства ДСП, а также экономическую эффективность, и отвержденные UF-связующие по-прежнему остаются гигроскопичными.
Кроме того, для снижения набухания UF/MUF-древесно-стружечных плит было предложено подвергать готовый продукт воздействию тепла, в результате чего ДСП обычно становится менее гигроскопичной, и снижается напряжение вследствие горячего прессования. Тем не менее, даже если подобные методы могут в принципе привести к снижению набухания ДСП, активное воздействие тепла также приводит к деградации отвержденных UF/MUF-связующих, что отрицательно влияет на структурную целостность продукта.
Таким образом, одной из конкретных технических задач, решаемых данным изобретением, является преодоление указанных выше отрицательных влияний и обеспечение ДСП с уменьшенным набуханием в направлении толщины, а также предложение способа производства таких ДСП.
Указанная выше техническая задача решается настоящим изобретением путем предложения способа изготовления древесных плит, включающего следующие этапы:
(a) подготовка кусков дерева;
(b) нанесение углеводной связующей композиции на куски дерева, подготовленные на этапе (а);
(c) формование полученных на этапе (b) кусков дерева с образованием плиты;
(d) нагревание и прессование полученной на этапе (с) плиты для получения отвержденной древесной плиты; и
(e) постотверждение древесной плиты, полученной на этапе (d).
В одном варианте осуществления древесная плита является ДСП, и изобретение обеспечивает способ производства ДСП, включающий стадии:
(a) подготовка древесных частиц;
(b) смешивание древесных частиц, подготовленных на этапе (а), с углеводной связующей композицией;
(c) формование полученной на этапе (b) смеси с образованием плиты;
(d) нагревание и прессование полученной на этапе (с) плиты для получения отвержденной древесно-стружечной плиты; и
(e) постотверждение ДСП, полученной на этапе (d).
В данном описании термин «ДСП» включает в себя любой вид древесно-стружечных плит, содержащий древесные частицы и связующую композицию. Примеры таких ДСП включают древесноволокнистые плиты средней плотности (ДВП), древесноволокнистые плиты высокой плотности, обладающие различными значениями плотности и прочности, а также плиты (OSB) с ориентированными волокнами. ДСП может быть однородной или может иметь неоднородную структуру, содержащую, например, различные слои материала. Например, ДСП может иметь 3 слоя: внутренний слой и два поверхностных слоя, причем каждый слой может содержать различный древесный материал, сорт древесного материала и/или материал определенной плотности, и/или различные связующие композиции и/или разное их количество.
Толщина ДСП может быть в диапазоне от 5 мм до 100 мм. Предпочтительные значения толщины лежат в диапазоне от 10 мм до 45 мм или от 16 мм до 22 мм. Толщина древесной плиты может быть ≥5 мм, ≥8 мм, ≥10 мм или ≥15 мм и/или ≤100 мм, ≤80 мм, ≤60 мм, ≤50 мм, ≤45 мм или ≤25 мм.
Длина древесной плиты может быть ≥1,5 м, ≥2 м, ≥2,5 м или ≥3 м и/или ≤8 м, ≤6 м или ≤5 м. Ширина древесной плиты может быть ≥1 м, ≥1,2 м, ≥1,5 м или ≥1,8 м и/или ≤4 м, ≤3 м или ≤3,5 м.
Используемый здесь термин «древесные частицы» включает любой вид древесных частиц или волокон, например, щепу, древесные стружки, опилки и лесопильные отходы или их смеси. Древесные частицы первичного и/или повторно используемого древесного сырья могут использоваться для получения древесно-стружечных плит в соответствии с настоящим изобретением. Кроме того, в качестве источника указанных древесных частиц может служить любой вид древесины, например береза, бук, ольха, сосна, ель, тропические деревья и др. В соответствии с настоящим изобретением в производстве древесно-стружечных плит можно также использовать смеси различных видов древесины. Кроме того, древесные частицы, используемые в указанном выше процессе, могут быть предварительно высушены до содержания влаги менее 8%, менее 6% или менее 5%. Например, древесные частицы могут быть предварительно высушены до содержания влаги от 1 до 5%, например, от 2 до 4% или от 1,5 до 3,5%.
Используемый в настоящем изобретении термин «углеводная связующая композиция» включает в себя любой вид связующей композиции на основе углевода, которая может использоваться в производстве древесных или древесно-стружечных плит. В отличие от обычных UF/MUF-связующих, используемых в производстве древесно-стружечных плит, углеводное связующее, применяемое в способе согласно настоящему изобретению, в предпочтительном исполнении не содержит или практически не содержит формальдегида и, следовательно, позволяет избежать проблем, связанных с использованием и/или выбросами формальдегида. Такие углеводные связующие композиции можно отнести к безформальдегидным связующим.
Углеводная связующая композиция может представлять собой связующую композицию, содержащую по меньшей мере 40% от сухого веса углевода(ов); она может содержать по меньшей мере 50%, по меньшей мере 55% или по меньшей мере 60% от сухого веса углевода(ов).
Не углубляясь в теорию, авторы полагают, что одним из преимуществ, обеспечиваемых постотверждением согласно настоящему изобретению и связанных со связующими на углеводной основе, является возможный распад или преобразование гигроскопичных компонентов в связующем, например, гемицеллюлозы (если присутствует) и возможное включение таких компонентов в отвержденной форме; считается, что это снижает общее впитывание воды, ее удержание и/или набухание. Таким образом, такие продукты распада могут быть полезны как способствующие повышению эффективности связующего. Кроме того, возможно снижение напряжений в древесине и/или обеспечение повышенной устойчивости к воздействию бактерий; например, присутствующая гемицеллюлоза может способствовать росту микробов, и сокращение количества и/или исключение присутствия таких или аналогичных биологических видов может уменьшить восприимчивость готовой продукции к распаду, плесени или биодеградации.
Предпочтительно, чтобы после этапа (d) нагревания и прессования листа для получения отвержденной древесной плиты и перед этапом (е) постотверждения древесной плиты она имела:
a) прочность внутренних связей ≥0,1 Н/мм2 или ≥0,15 Н/мм2, предпочтительно ≥0,2 Н/мм2 и более предпочтительно ≥0,25 Н/мм2, измеряемую в соответствии с EN 310:1993; и/или
b) модуль упругости на изгиб ≥1000 Н/мм2, предпочтительно ≥1200 Н/мм2 и более предпочтительно ≥1300 Н/мм2, измеряемый в соответствии с EN310:1993; и/или
c) прочность на изгиб ≥5 Н/мм2, предпочтительно ≥7 Н/мм2 и более предпочтительно ≥10 Н/мм2, измеряемую в соответствии с EN310:1993.
В соответствии с одним из вариантов осуществления указанного выше способа углеводная связующая композиция содержит по меньшей мере один углеводный компонент; она может содержать по меньшей мере один углеводный компонент и по меньшей мере один аминный компонент.
В данном описании термин «углеводный компонент» включает любое углеводное соединение, которое способно вступать в реакцию (например, при нагревании) с аминным компонентом и необязательно дополнительными сшивающими агентами с целью получения подходящего отвержденного продукта. В соответствии с настоящим изобретением углеводный компонент может быть выбран из группы, состоящей из моносахаридов, дисахаридов, полисахаридов или продуктов их взаимодействия. Углеводный компонент может содержать по меньшей мере один восстанавливающий сахар.
Используемый здесь термин «восстанавливающий сахар» означает один или несколько сахаров, которые содержат альдегидные группы или могут подвергаться изомеризации, т.е. таутомеризации, для появления в составе альдегидных групп, причем эти группы могут быть окислены, например, Cu-ионами, с получением карбоновых кислот. В соответствии с настоящим изобретением любой такой углеводный компонент может быть необязательно замещен, например, гидрокси, галогеном, алкилом, алкокси и т.п. В любом таком углеводном компоненте может присутствовать один или несколько хиральных центров, и оба возможных оптических изомера в каждом хиральном центре включены в данное изобретение. Кроме того, также следует понимать, что различные смеси, включая рацемические смеси или другие диастереомерные смеси различных оптических изомеров любого указанного углеводного компонента, а также различные его геометрические изомеры могут использоваться в одном или нескольких вариантах осуществления, описанных в данной заявке.
Более того, хотя невосстанавливающие сахара, например сахароза, могут быть не предпочтительны, все же они могут быть полезны в рамках настоящего изобретения, например, при преобразовании in situ в восстанавливающий сахар. Кроме того, также следует понимать, что моносахарид, дисахарид или полисахарид может частично взаимодействовать с предшественником с образованием углеводного продукта реакции. В тех случаях, когда углеводный продукт реакции получен из моносахарида, дисахарида или полисахарида и обладает сходной способностью реагировать с аминовым компонентом с образованием продуктов реакции, аналогичных продуктам реакции моносахарида, дисахарида или полисахарида с аминным компонентом, углеводный продукт реакции охватывается термином «углеводный компонент».
Углеводная связующая композиция может содержать водорастворимую предварительно подвергнутую реакции связующую композицию, включающую продукт(ы) реакции (i) по меньшей мере одного углеводного компонента и (и) по меньшей мере одного азотсодержащего компонента. Массовое соотношение между углеводным компонентом и азотсодержащим компонентом может составлять от 0,5:1 до 30:1.
Связующее может быть в форме водного раствора или дисперсии, содержащей по меньшей мере 20 мас. %, например по меньшей мере 25 мас. %, 30 мас. %, 35 мас. %, 40 мас. %, 45 мас. %, 50 мас. %, 55 мас. %, 60 мас. %, 65 мас. %, 70 мас. %, 75 мас. % или 80 мас. % указанной предварительно подвергнутой реакции связующей композиции и/или не более 85 мас. %, например, не более 80 мас. %, 75 мас. % или 70 мас. % указанной предварительно подвергнутой реакции связующей композиции.
Используемый здесь термин «предварительно подвергнутая реакции связующая композиция» включает любую химическую композицию, которую можно получить и/или полученную путем реакции углеводного компонента и азотсодержащего компонента, которая может использоваться в качестве связующего, например, для связывания свободно собранного вещества в неизменном виде или при дальнейшей модификации.
Предварительно подвергнутая реакции связующая композиция согласно предпочтительным вариантам осуществления настоящего изобретения основана на связующей системе углеводного компонента/азотсодержащего компонента, т.е. углеводный(ые) компонент(ы) и азотсодержащий(ие) компонент(ы) не просто присутствуют в небольших количествах в исходном материале для приготовления предварительно подвергнутой реакции связующей композиции по настоящему изобретению, но являются основными компонентами исходного материала. Соответственно, общее количество по меньшей мере одного углеводного компонента и по меньшей мере одного азотсодержащего компонента в исходном материале для получения предварительно подвергнутой реакции связующей композиции может составлять по меньшей мере 20 мас. % в расчете на общую массу связующей композиции перед предварительной реакцией. Например, общее количество по меньшей мере одного углеводного компонента и по меньшей мере одного азотсодержащего компонента может составлять по меньшей мере 30 мас. %, 40 мас. %, 50 мас. %, 60 мас. %, 70 мас. %, 80 мас. %, 90 мас. %, 95 мас. % или 98 мас. % перед предварительной реакцией.
В соответствии с одним из вариантов осуществления настоящего изобретения общее количество продукта(ов) реакции (i) по меньшей мере одного углеводного компонента и (ii) по меньшей мере одного азотсодержащего компонента, непрореагировавшего(их) углеводного(ых) компонента(ов) и непрореагировавшего(их) азотсодержащего(их) компонента(ов) в предварительно подвергнутой реакции связующей композиции, т.е. (количество продукта(ов) реакции (i) и (ii)) + (количество непрореагировавшего(их) углеводного(ых) компонента(ов)) + (количество непрореагировавшего(их) азотсодержащего(их) компонента(ов)) составляет по меньшей мере 20 мас. % в расчете на общую массу предварительно подвергнутой реакции связующей композиции, например по меньшей мере 30 мас. %, 40 мас. %, 50 мас. %, 60 мас. %, 70 мас. %, 80 мас. %, 90 мас. %, 95 мас. % или 98 мас. %.
Связующее может быть:
- связующим, описанным в международной патентной заявке № РСТ/ЕР 2013/057151;
- связующим, описанным в патентной заявке США №13/696,439 (опубликованной как US 2013/0059075 А1); или
- связующим, описанным в патентной заявке США №13/696,452 (опубликованной как US 2013/0047888 А1);
каждая из которых включена в данное описание путем ссылки.
В предпочтительном исполнении, любой углеводный компонент должен быть достаточно нелетучим, чтобы максимизировать сохранение пригодности для реакции с аминным компонентом. Углеводный компонент может быть моносахаридом в альдозной или кетозной форме, в т.ч. триозой, тетрозой, пентозой, гексозой или гептозой; или полисахаридом; или их сочетаниями. Например, если триоза служит в качестве углеводного компонента или используется в сочетании с другими восстанавливающими сахарами и/или полисахаридом, может использоваться альдотриозный сахар или кетотриозный сахар (включая глицеральдегид и дигидроксиацетон, соответственно). Если тетроза служит в качестве углеводного компонента или используется в сочетании с другими восстанавливающими сахарами и/или полисахаридом, могут использоваться альдотетрозные сахара (в т.ч. эритроза и треоза) и кетотетрозные сахара (в т.ч. эритрулоза). Кроме того, если пентоза служит в качестве углеводного компонента или используется в сочетании с другими восстанавливающими сахарами и/или полисахаридом, могут использоваться альдопентозные сахара (в т.ч. рибоза, арабиноза, ксилоза и ликсоза) и кетопентозные сахара (в т.ч. рибулоза, арабулоза, ксилулоза и ликсулоза). Если гексоза служит в качестве углеводного компонента или используется в сочетании с другими восстанавливающими сахарами и/или полисахаридом, могут использоваться альдогексозные сахара (в т.ч. глюкоза (т.е. декстроза), манноза, галактоза, аллоза, альтроза, талоза, гулоза и идоза) и кетогексозные сахара (в т.ч. фруктоза, лейкоза, сорбоза и тагатоза). Если гептоза служит в качестве углеводного компонента или используется в сочетании с другими восстанавливающими сахарами и/или полисахаридом, может использоваться кетогептозный сахар (в т.ч. седогептулоза). Другие стереоизомеры таких углеводных компонентов, не известные в природе, также могут использоваться для получения описанных здесь связующих композиций. В одном варианте осуществления углеводный компонент представляет собой кукурузный сироп с высоким содержанием фруктозы (HFCS).
Как упоминалось выше, углеводный компонент может представлять собой полисахарид. Например, углеводный компонент может быть полисахаридом с низкой степенью полимеризации и включает, например, мелассу, крахмал, гидролизаты целлюлозы или их смеси. В конкретном примере углеводный компонент является гидролизатом крахмала, мальтодекстрином или их смесью. Хотя углеводы с более высокой степенью полимеризации могут быть не предпочтительными, все же они могут быть полезными в рамках настоящего изобретения, в частности при деполимеризации in situ.
Кроме того, в соответствии с настоящим изобретением углеводный компонент может быть использован в сочетании с неуглеводным полигидроксиреагентом. Примеры неуглеводных полигидроксиреагентов, которые могут использоваться в сочетании с углеводным компонентом, включают без ограничения: триметилолпропан, глицерин, пентаэритрит, поливиниловый спирт, частично гидролизованный поливинилацетат, полностью гидролизованный поливинилацетат и их смеси. Например, неуглеводный полигидрокси-реагент является достаточно нелетучим, чтобы в максимальной степени сохранить пригодность для реакции с аминным компонентом. Кроме того, в соответствии с настоящим изобретением гидрофобность не углеводного полигидрокси-реагента может быть фактором, определяющим физические свойства связующего, полученного описанным здесь способом.
Кроме того, в данном описании термин «аминный компонент» включает любое химическое соединение или смесь соединений, которое(ые) содержит(ат) по меньшей мере один атом азота и способен(ны) вступать в реакцию по меньшей мере с одним углеводным компонентом.
В соответствии с настоящим изобретением по меньшей мере один аминный компонент может быть выбран из NH3, неорганического амина или органического амина, содержащего по меньшей мере одну первичную аминогруппу, а также их солей. Например, в качестве аминного компонента может использоваться NH3 сам по себе (например, в виде водного раствора), а также в виде любого типа его неорганической и органической соли аммония при условии, что эти соли способны вступать в реакцию с указанным выше углеводным компонентом. Конкретные примеры неорганических солей аммония включают сульфат аммония (AmSO4), хлорид аммония и нитрат аммония.
Кроме того, в соответствии с настоящим изобретением аминным компонентом может быть полиамин. В данном описании термин «полиамин» включает любое органическое соединение, имеющее две или более аминогрупп, которые могут быть независимо замещенными или незамещенными.
Например, полиамин может быть первичным полиамином. Используемый здесь термин «первичный полиамин» представляет собой органическое соединение, имеющее две или более групп первичного амина (-NH2). Термин «первичный полиамин» охватывает те соединения, которые могут быть модифицированы in situ или изомеризированы с получением соединения, имеющего две или более групп первичного амина (-NH2).
В соответствии с одним из вариантов осуществления настоящего изобретения первичный полиамин может быть молекулой, имеющей формулу H2N-Q-NH2, где Q представляет собой алкил, циклоалкил, гетероалкил или циклогетероалкил, каждый из которых может быть необязательно замещен. Например, Q может представлять собой алкильную группу, выбранную из С224, алкильную группу, выбранную из С29, или алкильную группу, выбранную из С37. В соответствии с предпочтительным вариантом осуществления, Q представляет собой С6 алкил. Согласно другому варианту осуществления Q может быть циклогексилом, циклопентилом или циклобутилом, или бензильной группой.
Используемый здесь термин «алкил» включает цепочку атомов углерода, которая необязательно может быть разветвленной. Следует также понимать, что алкил предпочтительно имеет ограниченную длину, в т.ч. C1-C24, С112, C1-C8, C16 и С14. В частности, более короткие алкильные группы могут придать меньшую липофильность соединению и, соответственно, будут иметь различную реакционную способность по отношению к углеводному компоненту и растворимость в связующем растворе.
Используемый здесь термин «циклоалкил» включает цепочку атомов углерода, которая необязательно может быть разветвленной и в которой по меньшей мере часть цепи является циклической. Кроме того, в соответствии с настоящим изобретением следует отметить, что термин «циклоалкил» включает также полициклические структуры. Например, такие циклоалкилы включают без ограничения циклопропил, циклопентил, циклогексил, 2-метилциклопропил, циклопентилэт-2-ил, адамантил и т.п. Кроме того, образующий цепь циклоалкил предпочтительно имеет ограниченную длину, в т.ч. С324, С312, С38, С36 и С56. В соответствии с настоящим изобретением более короткие алкильные цепи, образующие циклоалкил, могут придавать меньшую липофильность соединению и, соответственно, будут иметь различные свойства.
Используемый здесь термин «гетероалкил» включает цепочку атомов, включающую как углерод, так и по меньшей мере один гетероатом, и являющуюся необязательно разветвленной. Примеры таких гетероатомов включают азот, кислород и серу. В некоторых вариантах указанные гетероатомы также включают фосфор и селен. В одном варианте осуществления гетероалкил является полиэфиром. Используемый здесь термин «циклогетероалкил» включает цепочку атомов, включающую как углерод, так и по меньшей мере один гетероатом, такой как гетероалкил, и которая необязательно может быть разветвленной, причем по меньшей мере часть цепи является циклической. В частности, примеры циклогетероалкила включают без ограничения: тетрагидрофурил, пирролидинил, тетрагидропиранил, пиперидинил, морфолинил, пиперазинил, гомопиперазинил, хинуклидинил и т.п.
В данном описании термин «необязательно замещенный» включает замену атомов водорода другими функциональными группами. Такие другие функциональные группы включают без ограничения: амино, гидроксил, галоген, тиол, алкил, галогеналкил, гетероалкил, арил, арилалкил, арилгетероалкил, нитро, сульфокислоты и их производные, карбоновые кислоты и их производные и т.п. Кроме того, в соответствии с настоящим изобретением любая из амино, гидроксила, тиола, алкила, галогеналкила, гетероалкила, арила, арилалкила, арилгетероалкила и/или сульфокислоты является необязательно замещенной.
Например, первичный полиамин может быть диамином, триамином, тетрамином или пентамином. В соответствии с конкретным вариантом осуществления полиамин представляет собой триамин, выбранный из диэтилентриамина, 1-пиперазинэтанамина или бис(гексаметилен)триамина. В другом варианте осуществления полиамин является тетрамином, например, триэтилентетрамином. Еще в одном варианте осуществления полиамин является пентамином, например, тетраэтиленпентамином.
Одной из особенностей первичного полиамина является то, что он может обладать низким стерическим препятствием.
Например, 1,2-диаминоэтан, 1,4-диаминобутан, 1,5-диаминопентан, 1,6-диаминогексан, 1,12-диаминододекан, 1,4-диаминоциклогексан, 1,4-диаминобензол, диэтилентриамин, триэтилентетрамин, тетраэтиленпен-тамин, 1-пиперазин-этанамин, 2-метил-пентаметилендиамин, 1,3-пентандиамин и бис(гексаметилен)триамин, а также 1,8-диаминооктан имеют низкое стерическое препятствие в рамках настоящего изобретения.
В соответствии с предпочтительным вариантом осуществления указанного выше способа аминный компонент является первичным полиамином 1,6-диаминогексаном (гексаметилендиамином, HMDA). В другом варианте осуществления аминный компонент является 1,5-диамино-2-метилпентаном (2-метил-пентаметилендиамином).
В другом варианте осуществления аминный компонент является первичным полиамином полиэфир-полиамином. Например, в соответствии с настоящим изобретением указанный полиэфир-полиамин представляет собой диамин или триамин. В одном варианте осуществления, полиэфир-полиамин представляет собой первичный амин с тремя функциональными группами, имеющий среднюю молекулярную массу 440, известный как Jeffamine Т-403 Polyetheramine (например, производства Huntsman Corporation).
В другом варианте осуществления аминный компонент может включать полимерный полиамин. Например, полимерные полиамины, входящие в объем настоящего изобретения, включают хитозан, полилизин, полиэтиленимин, поли(N-винил-N-метил амин), полиаминостирол и поливиниламины. В конкретном примере аминный компонент включает поливиниловый амин. Используемый здесь термин «поливиниловый амин» может означать гомополимер или сополимер.
Еще один вариант осуществления настоящего изобретения относится к указанному выше способу, в котором по меньшей мере один углеводный компонент выбран из группы, состоящей из рибозы, арабинозы, ксилозы, ликсозы, глюкозы (декстрозы), маннозы, галактозы, аллозы, альтрозы, талозы, гулозы, идозы, фруктозы, псикозы, сорбозы, дигидроксиацетона, сахарозы и тагатозы, а также их смесей, и по меньшей мере один аминный компонент выбран из группы, состоящей из сульфата аммония (AmSO4), хлорида аммония, нитрата аммония, 1,2-диаминоэтана, 1,4-диаминобутана, 1,5-диаминопентана, 1,6-диаминогексана, 1,12-диаминододекана, 1,4-диаминоциклогексана, 1,4-диаминобензола, диэти-лентриамина, триэтилентетрамина, тетраэтиленпентамина, 1-пиперазин-этанамина, 2-метил-пентаметилендиамина, 1,3-пентандиамина, и бис(гексаметилен)-триамина, 1,8-диаминооктана, а также их смесей.
Углеводная связующая композиция может использоваться в виде раствора и/или дисперсии по меньшей мере одного углеводного компонента и по меньшей мере одного аминного компонента в растворителе. В данном описании термин «растворитель» включает в себя любой растворитель или смесь растворителей, которые могут быть использованы для растворения или диспергирования углеводного компонента и аминного компонента. Например, растворителем может быть вода, органический растворитель или их смеси. Примеры органических растворителей включают спирты, простые эфиры, сложные эфиры, кетоны, альдегиды, алканы и циклоалканы.
Углеводная связующая композиция может наноситься, например, на древесные частицы, в виде водного раствора или дисперсии, содержащей 10-95 мас. %, 20-90 мас. %, 30-85 мас. % или 40-80 мас. % общего количества углеводного и аминного компонентов относительно общей массы раствора или дисперсии.
Количество углеводного компонента и аминного компонента включает такие количества, которые позволяют формировать отвержденное связующее. Согласно одному варианту осуществления указанного выше способа углеводная связующая композиция содержит 50-90 мас. % общего количества углеводного компонента и 10-50 мас. % общего количества аминного компонента относительно общего содержания углеводного и аминного компонентов.
Согласно конкретному варианту осуществления настоящего изобретения в указанном выше способе углеводная связующая композиция содержит 25-50 мас. % моногидрата декстрозы (DMH), 25-50 мас. % фруктозы и 10-50 мас. % HMDA от общего содержания углеводного и аминного компонентов.
Другие примеры включают связующие композиции, содержащие 10-90 мас. %, 10-80 мас. %, 10-70 мас. %, 10-60 мас. % или 10-50 мас. % DMH, 5-80 мас. %, 10-70 мас. %, 20-60 мас. % или 30-50 мас. % фруктозы и 5-50 мас. %, 10-40 мас. % и 15-35 мас. % HMDA от общего содержания углеводного и аминного компонентов. Следует понимать, что в данном описании все верхние и нижние границы диапазонов могут использоваться в произвольных сочетаниях.
Углеводный компонент и аминный компонент могут использоваться в стехиометрических количествах, которые обеспечивают по существу полное протекание реакции отверждения, или могут использоваться в субстехиометрических количествах. Например, углеводная связующая композиция может быть получена путем использования меньшего количества аминного компонента, чем требуется для стехиометрической реакции, и последующего предварительного отверждения указанной связующей композиции, например, путем нагревания. К этой подвергнутой предварительной реакции связующей композиции затем добавляют оставшийся аминный компонент, например, для достижения стехиометрического соотношения. Использование таких подвергнутых предварительной реакции связующих композиций обеспечивает преимущества в части срока хранения связующей композиции и может привести к улучшению процессов отверждения и усилению внутренних связей.
В соответствии с одним из вариантов осуществления настоящего изобретения в углеводной связующей композиции соотношение карбонильных групп углеводного компонента и реагирующих аминогрупп аминного компонента может быть в интервале от 5:1 до 1:2. Например, отношение карбонильных групп к реагирующим азотсодержащим группам может быть в диапазоне от 5:1 до 1:1,8, от 5:1 до 1:1,5, от 5:1 до 1:1,2, от 5:1 до 1:1, от 5:1 до 1:0,8 и от 5:1 до 1:0,5. Другие примеры включают такие значения отношения, как от 4:1 до 1:2, от 3,5:1 до 1:2, от 3:1 до 1:2, от 2,5:1 до 1:2, от 2:1 до 1:2 и от 1,5:1 до 1:2.
В данном описании термин «реагирующая аминогруппа» включает любую аминогруппу в аминном компоненте, способную вступать в реакцию с углеводным компонентом. В частности, примеры таких реагирующих аминогрупп включают первичные и вторичные аминогруппы, амидные группы, иминные и имидные группы, а также цианатные и изоцианатные группы.
В отличие от обычных UF/MUF связующих, используемых в производстве древесно-стружечных плит, применение указанной здесь углеводной связующей композиции обеспечивает различные преимущества. Например, в отличие от UF/MUF связующих, в процессе постотверждения углеводные связующие могут обеспечивать улучшенное отверждение/сшивание с продуктами распада древесины и, таким образом, обеспечивать улучшение связующих свойств. Кроме того, в то время как UF/MUF связующие системы чувствительны к воздействию повышенных температур и имеют тенденцию к ухудшению свойств при длительном воздействии тепла, углеводные связующие системы термически стабильны при температурах, необходимых для эффективного постотверждения ДСП. И, наконец, в процессе нагревания на этапе постотверждения компоненты древесины, такие как гемицеллюлоза, могут распадаться до сахаров, которые могут потенциально участвовать в процессе дальнейшего отверждения углеводного связующего и обеспечивать в результате более прочный продукт.
Кроме того, в настоящее время считается, что постотверждение согласно изобретению может привести к превращению сахаров, которые не были преобразованы в процессе начального отверждения, отверждению или иному связыванию с углеводным связующем в процессе постотверждения; таким образом, они более не будут представлять никакой потенциальной опасности в плане роста бактерий и даже смогут внести положительный вклад в повышение прочности и/или улучшение других свойств связующего. Если постотверждение происходит по меньшей мере частично в условиях, при которых высвобожденные сахара, например глюкоза, не карамелизируются (например, ниже, чем около 150°С при рН 9), данное изобретение может обеспечить особое преимущество, заключающееся во включении высвобожденного(ых) сахара(ов) в связующее. Это может наблюдаться, в частности, в связующей системе углевод + амин.
При отверждении углеводное связующее может содержать продукты реакции Майяра, например, меланоидины, и/или полиэстровые компоненты.
В данном описании термин «постотверждение» не предполагает конкретных ограничений и просто означает нагревание ДСП до температуры выше комнатной температуры (20°С).
При постотверждении температура древесной плиты, в частности, внутреннего ее слоя, может быть выше, чем при начальном отверждении. Например, в процессе производства ДСП температура в сердцевине плиты редко поднимается выше 110-115°С. При постотверждении температура внутреннего слоя может оказаться выше, чем в процессе производства, и, следовательно, обеспечить результат, не достигаемый за счет начального отверждения.
На этапе постотверждения древесной плиты, в частности дополнительного отверждения с использованием радиочастотных волн, внутренняя температура древесной плиты, особенно температура в центре древесной плиты в направлении ее толщины, может повышаться до температуры:
a) ≥100°С, ≥110°С, ≥115°С, ≥120°С, ≥130°С или ≥140°С, и/или
b) ≤200°С, ≤180°С, ≤170°С или ≤160°С;
в частности, от температуры в конце этапа нагревания и прессования плиты (d), которая ниже, чем температура, достигаемая на этапе постотвержения, по меньшей мере на 5°С, по меньшей мере на 10°С или по меньшей мере на 15°С.
Еще в одном варианте осуществления указанного выше способа постотверждение на этапе (е) проводят при температуре в диапазоне от 75°С до 280°С. Другие примеры температуры постотверждения включают диапазоны от 80 до 260°С, от 90 до 240°С, от 110 до 220°С и от 130 до 210°С.
Этап постотверждения (е) в определенном выше способе может быть проведен любым подходящим методом, например с помощью нагретого пресса, обычной печи, горячего пара, электромагнитного излучения (в частности, с частотой от 1 МГц до 10 ГГц), включая микроволновые печи и/или электромагнитное излучение в радиочастотном (РЧ) диапазоне. Например, этап постотверждения (е) отвержденной ДСП, полученной на этапе (d), может осуществляться с применением электромагнитного излучения с уровнем энергии по меньшей мере 50 Вт или по меньшей мере 80 Вт или по меньшей мере 100 Вт и/или менее 2000 Вт, менее 1500 Вт или менее 1000 Вт. Мощность применяемого излучения может составлять по меньшей мере 5 кВт/м2 по меньшей мере 10 кВт/м2 или по меньшей мере 20 кВт/м2; она может не превышать 200 кВт/м2, 150 кВт/м2 или 100 кВт/м2.
Например, типичные СВЧ включают 900 МГц и 2450 МГц, в то время как типичные РЧ включает 13, 17 или 40 МГц, без каких-либо ограничений. При использовании РЧ частота может быть ≥0,5 МГц или ≥1 МГц или ≥5 МГц и/или ≤200 МГц или ≤150 МГц или ≤100 МГц.
Кроме того, согласно другому примеру предполагается, что использование электромагнитного излучения, в частности радиочастотной энергии, для постотверждения древесных плит будут наиболее эффективным в случае применения непосредственно после выхода плиты с этапа отверждения. В этой точке производственного процесса внутренняя температура древесной плиты, как правило, будет достаточно высокой, например выше 100°С. Это позволит сократить количество электромагнитной энергии, необходимой для достижения заданной температуры постотверждения, например 140°С или 160°С.
В другом варианте осуществления этап постотверждения (е) может осуществляться путем повторного нагрева ДСП в прессе при пониженном давлении контакта; преимущество такой процедуры заключается в отсутствии необходимости в дополнительном оборудовании.
В соответствии с настоящим изобретением в указанном выше способе нагрев на этапе постотверждения (е) проводят в течение от 10 секунд до 30 часов. Другие примеры включают продолжительность нагревания от 2 минут до 24 часов, от 5 минут до 18 часов, от 10 минут до 12 часов и от 12 минут до 8 часов. С другой стороны, если электромагнитные волны, например микроволновые и/или РЧ-волны, применяются в качестве источника энергии для нагревания плиты на этапе постотверждения, длительность нагревания на этапе (е) может быть выгодно сокращена до гораздо более коротких промежутков времени по сравнению с обычным нагреванием горячим воздухом и/или паром. Если электромагнитные волны, например микроволновые и/или РЧ-волны, применяются в качестве источника тепла, могут использоваться периоды нагревания от 10 секунд до 10 минут, от 20 секунд до 8 минут, от 40 секунд до 5 минут или от 60 секунд до 3 минут, в зависимости от толщины и плотности ДСП, а также от частоты и/или мощности электромагнитных волн. Скоростью нагревания и/или температурой, получаемой посредством электромагнитных волн, можно управлять путем регулирования количества присутствующей воды, например путем регулирования количества добавляемой воды и/или количества воды в древесине подложки и/или количества воды, образующейся в процессе отверждения связующего.
Перед этапом постотверждения (е) множество отвержденных древесных плит, полученных на этапе (d), может быть уложено в стопку древесных плит, например, стопку, содержащую по меньшей мере 2, 3, 4 или 5 древесных плит и/или не более чем 20, 15, 10 или 8 древесных плит. Стопка древесных плит может формироваться путем укладки древесных плит одна поверх другой, например, когда каждая древесная плита располагается по существу горизонтально, и причем поверхность каждой древесной плиты покрывает или по существу покрывает поверхность соседних древесных плит, предпочтительно таким образом, чтобы стопка имела ровные боковые стороны. Стопка может иметь общую толщину ≥2 см, ≥5 см или ≥10 см и/или ≤200 см, ≤150 см или ≤100 см. Этап (е) постотверждения, особенно при использовании электромагнитного излучения, может проводиться со стопкой древесных плит.
Сам по себе процесс постотверждения будет происходить не только в течение указанных выше периодов нагревания, но и пока температура нагретой ДСП остается достаточно высокой для протекания соответствующих химических реакций отверждения. Соответственно, периоды постотверждения могут быть значительно больше, чем периоды нагревания. Например, стопка из 3-10 (например, от 4 до 8) ДСП может нагреваться с помощью электромагнитных волн в течение от 10 секунд до 5 минут (например, в течение от 30 секунд до 2 минут), а затем храниться в термоизолированной среде для поддержания температуры в течение длительного времени. Эта процедура позволит быстро нагреть несколько древесно-стружечных плит и обеспечить условия последующего нагрева для достижения необходимой степени постотверждения.
В свете вышеизложенного, общая продолжительность постотверждения может быть в интервале от 5 минут до 72 часов, например, от 10 минут до 48 часов, от 15 минут до 36 часов, от 30 минут до 30 часов, от 45 минут до 24 часов или от 1 часа до 18 часов. Общая продолжительность постотверждения может составлять по меньшей мере 5 минут и/или менее 2 часов или менее 1 часа.
В соответствии с другим вариантом осуществления описанного выше способа на этапе (d) плиту, полученную на этапе (с), нагревают, например, в горячем прессе с установкой температуры в диапазоне от 140°С до 270°С для получения отвержденной ДСП. Другие примеры типичных температур, используемых на этапе (d) для производства ДСП, включают установки температуры в диапазоне от 150 до 250°С, от 160 до 240°С и от 180 до 220°С.
Согласно другому варианту осуществления на этапе (d) способа по настоящему изобретению плиту, полученную на стадии (с), прессуют, например, в горячем прессе при давлении в диапазоне от 20 до 80 бар, для получения отвержденной ДСП. В целом, давление, применяемое на этапе (d), зависит от различных факторов, таких как тип древесины и связующей композиции, толщина и плотность ДСП, температура и т.д. В других примерах давление может быть от 25 до 75 бар, от 30 до 70 бар или от 35 до 65 бар.
В соответствии с другим вариантом осуществления на этапе (d) указанного выше способа плиту, полученную на этапе (с), прессуют при значении пресс-фактора в диапазоне от 2 с/мм до 60 с/мм с получением отвержденной ДСП. Таким образом, время прессования будет зависеть от толщины ДСП и может быть, в соответствии с дополнительными примерами осуществления настоящего изобретения, в диапазоне от 3 с/мм до 40 с/мм, от 4 с/мм до 30 с/мм или от 5 с/мм до 20 с/мм.
Способ по настоящему изобретению может дополнительно включать, между этапами (с) и (d), этап (с') холодного прессования плиты, полученной на этапе (с).
Далее описаны другие объекты настоящего изобретения. Однако следует понимать, что все приведенные выше определения, касающиеся способа согласно настоящему изобретению, также применимы к следующим объектам, если только не указано иное.
Другой объект настоящего изобретения относится к древесной плите, в частности, ДСП, получаемой описанным выше способом.
Еще в одном варианте осуществления указанной выше древесной плиты, и в частности в отношении ДСП, набухание в направлении толщины плиты, определяемое в соответствии с EN 317:1993 при времени погружения 24 часа, составляет 70% или меньше, предпочтительно - 60% или меньше и более предпочтительно - 50% или меньше.
Другой объект настоящего изобретения относится к ДСП, отличающейся тем, что набухание в направлении толщины плиты, определяемое в соответствии с EN 317:1993 при времени погружения 24 часа, составляет 70% или меньше, предпочтительно - 60% или меньше и более предпочтительно - 50% или меньше.
В предпочтительном варианте осуществления указанная выше ДСП демонстрирует набухание в направлении толщины плиты, определяемое в соответствии с EN 317:1993 при времени погружения 24 часа, которое составляет 50% или меньше, 45% или меньше, 40% или меньше, 35% или меньше либо 30% или меньше. В еще более предпочтительных вариантах осуществления указанные выше ДСП характеризуются набуханием в направлении толщины плиты, определяемое в соответствии с EN 317:1993 при времени погружения 24 часа, составляющим 25% или меньше, 20% или меньше, 15% или меньше, 10% или меньше либо 5% или меньше.
Древесная плита может представлять собой фанеру. В этом случае фанера, предпочтительно, имеет класс 1 качества соединения, более предпочтительно - класс 2 качества соединения и наиболее предпочтительно - класс 3 качества соединения в соответствии с требованиями EN 314-2:1993 и по результатам испытаний согласно EN 314-1:1993.
Древесная плита может представлять собой ориентированно-стружечную плиту. В частности, в этом случае древесная плита может иметь:
- Прочность на изгиб по главной оси по меньшей мере 14 Н/мм2, предпочтительно по меньшей мере 16 Н/мм2, а более предпочтительно по меньшей мере 18 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Прочность на изгиб по малой оси по меньшей мере 6 Н/мм2, предпочтительно - по меньшей мере 7 Н/мм2, а более предпочтительно по меньшей мере 8 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Модуль упругости при изгибе по главной оси по меньшей мере 2500 Н/мм2, предпочтительно по меньшей мере 3500 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Модуль упругости при изгибе по малой оси по меньшей мере 1200 Н/мм2, предпочтительно по меньшей мере 1400 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Прочность внутренних связей по меньшей мере 0,26 Н/мм2, предпочтительно по меньшей мере 0,28 Н/мм2, а более предпочтительно по меньшей мере 0,29 Н/мм2 при измерении в соответствии с EN 319:1993; и/или
- Набухание по толщине при погружении на 24 часа не более 25%, предпочтительно не более 20% и более предпочтительно не более 15% при измерении в соответствии с EN 317:1993.
Древесная плита может быть плитой (МДФ), полученной методом сухого прессования, или древесноволокнистой плитой. В частности, в этом случае древесная плита может иметь:
- Прочность на изгиб по меньшей мере 14 Н/мм2, предпочтительно по меньшей мере 17 Н/мм2 или 18 Н/мм2, а более предпочтительно по меньшей мере 20 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Модуль упругости при изгибе по меньшей мере 1400 Н/мм2, предпочтительно по меньшей мере 1700 Н/мм2 или 1900 Н/мм2, а более предпочтительно по меньшей мере 2000 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Прочность внутренних связей по меньшей мере 0,45 Н/мм2, предпочтительно по меньшей мере 0,5 или 0,55 Н/мм2, а более предпочтительно по меньшей мере 0,6 Н/мм2 при измерении в соответствии с EN 319:1993; и/или
- Набухание по толщине в течение 24 часов не более 45%, предпочтительно не более 30% и более предпочтительно не более 20% при измерении в соответствии с EN 317:1993.
Древесная плита может представлять собой древесно-стружечную плиту. В частности, в этом случае древесная плита может иметь:
- Прочность на изгиб по меньшей мере 7 Н/мм2, предпочтительно по меньшей мере 8,5 Н/мм2 или 11 Н/мм2, а более предпочтительно по меньшей мере 13 Н/мм2 или 14 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Модуль упругости при изгибе по меньшей мере 105 Н/мм2, предпочтительно по меньшей мере 1200 Н/мм2 или 1500 Н/мм2, а более предпочтительно по меньшей мере 1800 Н/мм2 или 1900 Н/мм2 при измерении в соответствии с EN 310:1993; и/или
- Прочность внутренних связей по меньшей мере 0,2 Н/мм2, предпочтительно по меньшей мере 0,25 Н/мм2, а более предпочтительно по меньшей мере 0,3 Н/мм2 при измерении в соответствии с EN 319:1993; и/или
- Набухание по толщине при погружении на 24 часа не более 23%, предпочтительно не более 19% и более предпочтительно не более 16% при измерении в соответствии с EN 317:1993.
Следующие документы включены в настоящее описание посредством ссылки: EN 300:2006; EN 310:1993; EN 314-1:1993; EN 314-2:1993; EN 317:1993; EN 319:1993
На фиг. 1 изображена зависимость между снижением массы и уменьшением набухания в процентах за счет постотверждения в печи при 140°С в течение 24 часов. Используемые связующие - 40:40:20 DMH : FRU : HMDA, плиты прессовали при 14 с/мм.
На фиг. 2 проиллюстрировано уменьшение плотности кусков плиты при постотверждении при различных температурах в течение 16 часов. Используемые связующие - 40:40:20 DMH : FRU : HMDA, плиты прессовали при 16 с/мм.
На фиг. 3 показана средняя толщина образцов до и сразу после постотверждения при температуре 140°С и их восстановленная толщина. Используемые связующие - 40:40:20 DMH : FRU : HMDA, плиты прессовали при 16 с/мм.
На фиг. 4 проиллюстрировано уменьшение набухания благодаря постотверждению в течение 16 часов при разных температурах. Используемые связующие - 40:40:20 DMH : FRU : HMDA, плиты прессовали при 16 с/мм.
На фиг. 5 проиллюстрировано уменьшение набухания по сравнению со стандартным значением, в процентах, при постотверждении при 140°С и 120°С в течение различных промежутков времени.
На фиг. 6 показана зависимость между температурой постотверждения с помощью РЧ-волн и прочностью внутренних связей (IB) и результатами набухания.
На фиг. 7 проиллюстрировано снижение массы и уменьшение набухания за счет постотверждения с использованием микроволнового излучения. Используемые связующие - 40:40:20 DMH : FRU : HMDA, плиты прессовали при 14 с/мм.
Настоящее изобретение относится к способу изготовления древесных плит, в частности древесно-стружечных плит, которые характеризуются лишь небольшим набуханием при контакте с влагой, а также к плитам, получаемым таким способом. В соответствии с настоящим изобретением термическое постотверждение древесных плит осуществляется в сочетании с использованием углеводных связующих систем, которые подходят именно для таких способов постотверждения. Как упоминалось ранее, эти углеводные связующие системы, используемые в указанном способе согласно настоящему изобретению, предпочтительно выбирать таким образом, чтобы они были термически стабильными в требуемых условиях, претерпевали дальнейшее отверждение при термообработке и были совместимыми с продуктами термодеструкции древесины. Кроме того, предпочтительно избегать добавления формальдегида.
Далее настоящее изобретение будет дополнительно проиллюстрировано с помощью не ограничивающих его примеров.
Пример 1: производство ДСП (300 мм × 300 мм × 10 мм)
Углеводную связующую композицию готовили путем добавления HMDA (10,53 г) к предварительно прореагировавшему раствору, состоящему из 32,44 г моногидрата декстрозы (DMH; 90,9 мас. % в H2O), 29,59 г фруктозы (FRU; 100% твердого вещества), 10,53 г гексаметилендиамина (HMDA; 70 мас. % в H2O) и 22,32 г воды. Эта углеводная связующая композиция соответствует 40:40:20 мас. % DMH : FRU : HMDA.
Связующую композицию (105,3 г; 70 мас. % в H2O) и щепу (526,5 г) смешивали и формовали в лист с требуемой конечной плотностью 650 кг/м3. Этот лист прессовали в горячем прессе (Fontijne Lab Econ 600) при 195°С и давлении 56 бар (504 кН). Пресс-фактор составлял 14 с/мм при общем времени прессования 140 секунд.
Впоследствии аналогичные результаты были достигнуты при пресс-факторе около 10 с/мм и меньше.
Пример 2: измерения набухания
Набухание измеряли в соответствии с EN 317:1993, если не указано иное.
В частности, использовали термостатически управляемую водяную баню, способную поддерживать температуру (20±1)°С. Образцы ДСП с длиной стороны (50±1) мм получали и выдерживали до постоянной массы в атмосфере со средней относительной влажностью (65±5) % и температуре (20±2)°С. Постоянная масса считается достигнутой, когда результаты двух последовательных операций взвешивания, осуществленных с интервалом 24 ч, не отличаются более чем на 0,1% от массы образца.
Далее, толщину каждого образца измеряли с точностью ±0,01 мм на пересечении диагоналей, и образцы погружали, держа их грани вертикально, в чистую, негазированную воду с рН 7±1 и температурой (20±1)°С. Эту температуру поддерживали в течение всего периода испытаний, который составлял 2 часа или 24 часа, в зависимости от экспериментов. Во время испытания образцы отделяли один от другого и от дна и боковых сторон водяной бани. Верхние кромки испытываемых образцов были покрыты (25±5) мм воды на протяжении всего испытания.
В заключение, после истечения времени погружения образцы вынимали из воды, избыток воды удаляли и измеряли толщину каждого образца описанным выше способом.
Пример 3: постотверждение ДСП (снижение массы/уменьшение набухания)
ДСП, полученные в соответствии с примером 1, подвергали постотверждению в печи при температуре 140°С в течение 24 часов. Затем образцы ДСП (50±1 мм × 50±1 мм × 10±1 мм) были восстановлены в соответствии с указанным выше начальным выдерживанием, определяли уменьшение массы и набухания и наносили данные на график. Результаты приведены на фиг. 1.
Пример 4: измерения уменьшения плотности после постотверждения
Образцы ДСП получали согласно примеру 1, за исключением того, что пресс-фактор составлял 16 с/мм, а образцы подвергали постотверждению в печи при различных температурах в течение 16 часов.
После постотверждения и восстановления, которые проводили, как описано выше, плотность измеряли и сравнивали с первоначальной плотностью образцов ДСП. Результаты наносили на график фиг. 2, иллюстрирующий снижение плотности при сравнении показателей до и после обработки.
Пример 5: измерение толщины
Образцы ДСП получали согласно примеру 1, за исключением того, что пресс-фактор составлял 16 с/мм. Затем определяли исходную толщину образцов ДСП (50±1 мм × 50±1 мм × 10±1 мм), а затем определяли толщину указанных образцов после постотверждения в печи при 140°С и после восстановления, которое выполняли, как описано выше. Результаты приведены на фиг. 3.
Пример 6: Улучшение показателей набухания после постотверждения (в зависимости от температуры)
Образцы ДСП получали в соответствии с примером 1. Затем образцы ДСП подвергали постотверждению в печи при различных температурах (65°С, 90°С, 115°С и 140°С) в течение 16 часов. После такого постотверждения определяли набухание в соответствии с EN 317:1993 для времени погружения 2 и 24 часа, соответственно. Результаты уменьшения набухания приведены на фиг. 4.
Пример 7: улучшение показателей набухания после постотверждения (в зависимости от времени)
Образцы ДСП получали в соответствии с примером 1. Затем образцы ДСП подвергали постотверждению в печи при температуре 120°С и 140°С в течение различного времени (30 мин., 60 мин., 90 мин. и 120 мин.). После такого постотверждения определяли набухание в соответствии с EN 317:1993 для времени погружения 2 и 24 часа, соответственно. Результаты по показателям набухания приведены на фиг. 5.
Пример 8: постотверждение с использованием РЧ волн
Образцы ДСП получали в соответствии с примером 1. Размеры отдельных образцов составляли 100±1 мм × 100±1 мм × 10±1 мм. Мощность РЧ-волн варьировалась в диапазоне 200-800 Вт. Это соответствует примерно 20-80 кВт/м2 для размера используемого образца. При больших уровнях мощности в некоторых случаях наблюдали возгорание. По существу, образование плазмы вызывало горение поверхности образца. Снижение уровня мощности позволило предотвратить возгорание и при этом обеспечить относительно быстрый нагрев. При уровне мощности 500 Вт температура 140°С достигалась в течение около 60 с, а 160°С - около 80 с. При уровне мощности 400 Вт температура 140°С достигалась в течение около 80 с, а 160°С - около 100 с. Удавалось достичь и температур свыше 180°С, однако временные показатели не удалось зарегистрировать из-за трудностей с возгоранием и необходимостью снижения подаваемой мощности.
После такого постотверждения определяли набухание в соответствии с EN 317:1993 для времени погружения 2 и 24 часа, соответственно. Кроме того, измеряли прочность внутренних связей в соответствии с BS EN 319:1993. Полученные данные приведены на фиг. 6.
Пример 9: влияние микроволнового постотверждения на уменьшение массы/набухание
Образцы ДСП получали согласно примеру 1 и проводили постотверждение в стандартной бытовой СВЧ-печи (700 Вт) на полной мощности в течение 40 и 60 с, соответственно. Размеры образцов составляли 50±1 мм × 50±1 мм × 10±1 мм. Затем определяли уменьшение массы и набухание (измерения в соответствии с EN 317:1993, время погружения 24 часа) относительно исходного (т.е. без постотверждения) образца ДСП, образцы подвергали постотверждению в течение 40 и 60 с, соответственно. Полученные данные приведены на фиг. 7.

Claims (19)

1. Способ производства древесной плиты, включающий следующие этапы: (a) подготовка кусков дерева; (b) нанесение углеводной связующей композиции на куски дерева, подготовленные на этапе (а); (c) формование полученных на этапе (b) кусков дерева с образованием листа; (d) нагревание и прессование полученного на этапе (с) листа для получения отвержденной древесной плиты; и (e) постотверждение древесной плиты, полученной на этапе (d).
2. Способ по п. 1, в котором древесная плита является древесно-стружечной плитой и куски дерева являются древесными частицами.
3. Способ по п. 1 или 2, в котором постотверждение на этапе (е) проводят при температуре в диапазоне от 75°С до 280°С.
4. Способ по п. 1 или 2, в котором этап постотверждения (е) проводят с использованием радиочастотных (РЧ) волн.
5. Способ по п. 1 или 2, в котором этап постотверждения (е) проводят с использованием горячего пресса, обычной печи, горячего пара и/или микроволн.
6. Способ по п. 1 или 2, в котором нагрев на этапе постотверждения (е) проводят в течение от 10 секунд до 30 часов.
7. Способ по п. 1 или 2, в котором углеводная связующая композиция содержит по меньшей мере один углеводный продукт реакции.
8. Способ по п. 1, в котором углеводная связующая композиция содержит по меньшей мере один углеводный компонент и по меньшей мере один аминный компонент.
9. Способ по п. 8, в котором по меньшей мере один углеводный компонент выбран из группы, состоящей из рибозы, арабинозы, ксилозы, ликсозы, глюкозы (декстрозы), маннозы, галактозы, аллозы, альтрозы, талозы, гулозы, идозы, фруктозы, псикозы, сорбозы, дигидроксиацетона, сахарозы и тагатозы, а также их смесей, и по меньшей мере один аминный компонент выбран из группы, состоящей из сульфата аммония (AmSO4), хлорида аммония, нитрата аммония, 1,2-диаминоэтана, 1,4-диаминобутана, 1,5-диаминопентана, 1,6-диаминогексана, 1,12-диаминододекана, 1,4-диаминоциклогексана, 1,4-диаминобензола, диэтилентриамина, триэтилентетрамина, тетраэтиленпентамина, 1-пиперазин-этанамина, 2-метил-пентаметилендиамина, 1,3-пентандиамина, и бис(гексаметилен)-триамина, 1,8-диаминооктана, а также их смесей.
10. Способ по п. 8 или 9, в котором в углеводной связующей композиции общее количество содержащегося углеводного компонента составляет от 50 до 90 мас.%, а общее количество аминного компонента - от 10 до 50 мас.% от общего содержания углеводного и аминного компонентов.
11. Способ по п. 8 или п. 9, в котором углеводная связующая композиция содержит от 25 до 50 мас.% диметилгидразина (DMH), от 25 до 50 мас.% фруктозы и от 10 до 50 мас.% гексаметилендиамина (HMDA) от общего содержания углеводного и аминного компонентов.
12. Способ по п. 1 или 2, в котором на этапе (d) плиту, полученную на этапе (с), нагревают с установкой температуры в диапазоне от 140 до 270°С для получения отвержденной древесной плиты.
13. Способ по п. 1 или 2, в котором на этапе (d) плиту, полученную на этапе (с), прессуют при давлении в диапазоне от 20 до 80 бар для получения отвержденной древесной плиты.
14. Способ по п. 1 или 2, в котором на этапе (d) плиту, полученную на этапе (с), прессуют с пресс-фактором в диапазоне от 2 до 60 с/мм для получения отвержденной древесной плиты.
15. Способ по п. 1 или 2, включающий этап укладывания множества отвержденных древесных плит, полученных на этапе (d), в стопку древесных плит, чтобы подвергнуть ее постотверждению в соответствии с этапом (е).
16. Способ по п. 1 или 2, в котором на этапе (е) постотверждения древесной плиты внутренняя температура древесной плиты, в частности температура в центре древесной плиты в направлении ее толщины, повышается по меньшей мере до 110°С от температуры в конце этапа (d) нагрева и прессования плиты, которая ниже температуры, полученной во время проведения этапа постотверждения, по меньшей мере на 5°С, в частности по меньшей мере на 10°С.
17. Древесная плита, в частности древесностружечная плита, полученная или получаемая способом по любому из пп. 1-16.
18. Древесная или древесностружечная плита по п. 17, в котором набухание в направлении толщины плиты, определяемое в соответствии с EN 317:1993 при времени погружения 24 часа, составляет 70% или меньше.
19. Использование постотверждения древесной плиты в способе по любому из пп. 1-16 для уменьшения набухания в направлении толщины древесной плиты.
RU2015109065A 2012-08-17 2013-08-17 Древесная плита и способ ее производства RU2627644C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1214734.4A GB201214734D0 (en) 2012-08-17 2012-08-17 Wood board and process for its production
GB1214734.4 2012-08-17
PCT/EP2013/067204 WO2014027115A1 (en) 2012-08-17 2013-08-17 Wood board and process for its production

Publications (2)

Publication Number Publication Date
RU2015109065A RU2015109065A (ru) 2016-10-10
RU2627644C2 true RU2627644C2 (ru) 2017-08-09

Family

ID=47016964

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015109065A RU2627644C2 (ru) 2012-08-17 2013-08-17 Древесная плита и способ ее производства

Country Status (11)

Country Link
US (2) US9492943B2 (ru)
EP (1) EP2885116B2 (ru)
CN (2) CN104768720A (ru)
BR (1) BR112015003477B1 (ru)
CA (1) CA2881758C (ru)
ES (1) ES2763356T3 (ru)
GB (1) GB201214734D0 (ru)
MX (1) MX350804B (ru)
PL (1) PL2885116T3 (ru)
RU (1) RU2627644C2 (ru)
WO (1) WO2014027115A1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU206509U1 (ru) * 2021-08-05 2021-09-14 Общество с ограниченной ответственностью "ДОК Пиндуши" Строительная древесностружечная плита влагостойкая "waterproof wood-board"
RU2792811C2 (ru) * 2018-03-27 2023-03-24 Кнауф Инзулацьон Спрл Древесные плиты

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201206193D0 (en) * 2012-04-05 2012-05-23 Knauf Insulation Ltd Binders and associated products
GB201214734D0 (en) * 2012-08-17 2012-10-03 Knauf Insulation Ltd Wood board and process for its production
PT2930195T (pt) 2014-04-11 2017-04-13 SWISS KRONO Tec AG Composição de agente ligante para placas contendo fibras e um processo para a sua preparação
GB201413402D0 (en) * 2014-07-29 2014-09-10 Knauf Insulation Ltd Laminates
CN105216088A (zh) * 2015-09-01 2016-01-06 华中科技大学 一种无机粘结剂人造板的制备方法及装置
GB201517867D0 (en) * 2015-10-09 2015-11-25 Knauf Insulation Ltd Wood particle boards
GB201517882D0 (en) * 2015-10-09 2015-11-25 Knauf Insulation Ltd Wood particle boards
GB201609616D0 (en) 2016-06-02 2016-07-20 Knauf Insulation Ltd Method of manufacturing composite products
KR101922644B1 (ko) * 2017-04-13 2018-11-27 씨제이제일제당 주식회사 바인더 조성물, 물품 및 물품 제조방법
ES2950101T3 (es) 2018-01-11 2023-10-05 SWISS KRONO Tec AG Composición de aglutinante libre de formaldehído para planchas que contienen lignocelulosa y un procedimiento para su producción
US11234549B2 (en) 2018-01-26 2022-02-01 Current Products Corp. Grommet drapery system
US11744393B2 (en) 2018-01-26 2023-09-05 Current Products Corp. Tabbed drapery system
PL238744B1 (pl) * 2018-03-14 2021-09-27 Skarbonkiewicz Wojciech Sposób wytwarzania wielkowymiarowych drewnianych elementów konstrukcyjnych
GB201804906D0 (en) * 2018-03-27 2018-05-09 Knauf Insulation Ltd Wood boards
CN109262795A (zh) * 2018-11-05 2019-01-25 嘉木远景(北京)科技有限公司 一种利用微波预热的刨花板制备方法
WO2022258513A1 (en) 2021-06-07 2022-12-15 Basf Se Process of producing a lignocellulosic composite, corresponding lignocellulosic composite, and use thereof
WO2023117648A1 (en) 2021-12-22 2023-06-29 Basf Se Process of producing a lignocellulosic composite or a product thereof using dielectric heating
WO2023247450A1 (en) 2022-06-22 2023-12-28 Basf Se Mineral fiber mat based on a binder comprising amino acid polymer and alpha-hydroxy carbonyl compound
WO2024088944A1 (en) 2022-10-28 2024-05-02 Basf Se Process of producing a lignocellulosic composite and corresponding binder composition, lignocellulosic composite, kit and use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1102829A1 (ru) * 1983-03-28 1984-07-15 Ленинградский ордена Трудового Красного Знамени технологический институт целлюлозно-бумажной промышленности Способ изготовлени влагопрочного волокнистого материала
SU1544567A1 (ru) * 1988-05-30 1990-02-23 Горьковское Производственное Объединение "Стройдеталь" Способ производства древесно-стружечных плит
SU1692841A1 (ru) * 1989-12-29 1991-11-23 Институт механики металлополимерных систем АН БССР Способ изготовлени древопластика
EP2223941A1 (en) * 2009-02-27 2010-09-01 Rohm and Haas Company Rapid cure carbohydrate composition
EP2253663A1 (de) * 2009-05-15 2010-11-24 AGM Mader GmbH Verfahren zur Herstellung eines Bindemittels sowie Verfahren zur Herstellung eines Formkörpers

Family Cites Families (471)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1886353A (en) 1922-04-27 1932-11-01 John Stogdell Stokes Synthetic resin and method of making same
US1801052A (en) 1923-02-06 1931-04-14 Meigsoid Corp Resinous condensation product and process of making same
US1801053A (en) 1925-01-22 1931-04-14 Meigsoid Corp Carbohydrate product and process of making same
US1902948A (en) 1931-08-14 1933-03-28 A M Castle & Co Welding electrode
US1964263A (en) 1932-06-15 1934-06-26 Anker Holth Mfg Company Spraying fixture
BE420665A (ru) 1936-03-20
US2261295A (en) 1936-09-30 1941-11-04 Walther H Duisberg Artificial textile materials
US2215825A (en) 1938-03-16 1940-09-24 Matilda Wallace Core binder
US2362086A (en) 1941-08-26 1944-11-07 Resinous Prod & Chemical Co Volume stabilized acid absorbing resin
US2371990A (en) 1942-02-18 1945-03-20 Du Pont Polymeric esters
BE471265A (ru) 1942-04-02
BE472469A (ru) 1942-06-16
US2500665A (en) 1944-03-30 1950-03-14 Owens Corning Fiberglass Corp High-temperature insulation and method of manufacture
BE472470A (ru) 1945-07-11
US2875073A (en) 1955-05-23 1959-02-24 Corn Prod Refining Co Core binder and process of making cores
GB809675A (en) 1955-05-23 1959-03-04 Corn Prod Refining Co Improvements in or relating to refractory insulating block and method of making same
US2894920A (en) 1957-02-12 1959-07-14 Ramos Thomas Resinous composition comprising epoxy resin, curing agent and mixture of dextrines, maltose and dextrose and process for preparing
US2965504A (en) 1958-04-01 1960-12-20 Corn Products Co Process for preparation of refractory insulating blocks
GB979991A (en) 1960-01-14 1965-01-06 Polygram Casting Co Ltd Improvements in or relating to thermosetting compositions based on carbohydrates
US3038462A (en) 1960-07-21 1962-06-12 Gen Electric Oven liner
US3231349A (en) 1960-11-21 1966-01-25 Owens Corning Fiberglass Corp Production of vitreous fiber products
NL275294A (ru) 1961-03-08 1900-01-01
US3138473A (en) 1962-01-26 1964-06-23 Gen Mills Inc Compositions and process to increase the wet strength of paper
US3222243A (en) 1962-07-11 1965-12-07 Owens Corning Fiberglass Corp Thermal insulation
DE1905054U (de) 1964-03-05 1964-11-26 Guenter Manzke Produktion Und Bauelement zur seitlichen fahrbahnbegrenzung.
US3232821A (en) 1964-12-11 1966-02-01 Ferro Corp Felted fibrous mat and apparatus for manufacturing same
US3297419A (en) 1965-08-17 1967-01-10 Fyr Tech Products Inc Synthetic fuel log and method of manufacture
DE1905054A1 (de) 1968-02-05 1969-08-21 Dierks Forests Inc Mischung zur Herstellung eines Bindemittels und Verfahren zu ihrer Verwendung
US3856606A (en) 1968-06-17 1974-12-24 Union Carbide Corp Coupling solid substrates using silyl peroxide compounds
US3551365A (en) 1968-11-29 1970-12-29 Ralph Matalon Composite cross - linking agent/resin former compositions and cold-setting and heat - setting resins prepared therefrom
SU374400A1 (ru) 1970-07-09 1973-03-20 Способ получения нетканых материалов
US3867119A (en) 1970-07-20 1975-02-18 Paramount Glass Mfg Co Ltd Apparatus for manufacturing glass fibers
US3784408A (en) 1970-09-16 1974-01-08 Hoffmann La Roche Process for producing xylose
US3826767A (en) 1972-01-26 1974-07-30 Calgon Corp Anionic dextran graft copolymers
US3791807A (en) 1972-05-02 1974-02-12 Certain Teed Prod Corp Waste water reclamation in fiber glass operation
US3961081A (en) 1972-06-05 1976-06-01 Mckenzie Carl O Molasses feed block for animals and method of making same
US4144027A (en) 1972-07-07 1979-03-13 Milliken Research Corporation Product and process
IT971367B (it) 1972-11-30 1974-04-30 Sir Soc Italiana Resine Spa Procedimento per la preparazione continua di poliesteri insaturi
US3955031A (en) 1973-01-18 1976-05-04 Owens-Corning Fiberglas Corporation Flame resistant building material
CH579109A5 (ru) 1973-02-22 1976-08-31 Givaudan & Cie Sa
US4186053A (en) 1973-02-22 1980-01-29 Givaudan Corporation Insolubilized enzyme product
US4201857A (en) 1973-02-22 1980-05-06 Givaudan Corporation Novel condensation products having high activity to insolubilize proteins and protein-insolubilized products
US3802897A (en) 1973-02-23 1974-04-09 Anheuser Busch Water resistant starch adhesive
US3809664A (en) 1973-08-16 1974-05-07 Us Agriculture Method of preparing starch graft polymers
DE2360876A1 (de) 1973-12-06 1975-06-12 Bayer Ag Kationische farbstoffe
US4054713A (en) 1973-12-28 1977-10-18 Kao Soap Co., Ltd. Process for preparing glass fiber mats
SE7410542L (sv) 1974-01-29 1976-01-12 Givaudan & Cie Sa Kondensationsprodukter.
GB1469331A (en) 1974-02-18 1977-04-06 Pfizer Ltd Flavouring agent
US4183997A (en) 1974-02-22 1980-01-15 John Jansky Bonding of solid lignocellulosic material
US4107379A (en) 1974-02-22 1978-08-15 John Stofko Bonding of solid lignocellulosic material
US4014726A (en) 1974-03-18 1977-03-29 Owens-Corning Fiberglas Corporation Production of glass fiber products
US3907724A (en) 1974-04-10 1975-09-23 Monsanto Co Phenolic binders for mineral fiber thermal insulation
US3919134A (en) 1974-04-10 1975-11-11 Monsanto Co Thermal insulation of mineral fiber matrix bound with phenolic resin
US3922466A (en) 1974-09-16 1975-11-25 Owens Corning Fiberglass Corp Silane coupling agents
US3956204A (en) 1975-03-10 1976-05-11 Monsanto Company Antipunking phenolic resin binder systems for mineral fiber thermal insulation
US4184986A (en) 1975-08-19 1980-01-22 Givaudan Corporation Novel condensation products having high activity to insolubilize proteins and protein-insolubilized products
CH594370A5 (ru) 1975-08-26 1978-01-13 Maggi Ag
US4028290A (en) 1975-10-23 1977-06-07 Hercules Incorporated Highly absorbent modified polysaccharides
JPS52142736A (en) 1976-05-24 1977-11-28 Sumitomo Durez Co Method of accelerating hardening of phenolic adhesive
US4048127A (en) 1976-07-22 1977-09-13 Cpc International Inc. Carbohydrate-based condensation resin
CA1090026A (en) 1976-07-22 1980-11-18 John P. Gibbons Carbohydrate-phenol based condensation resins incorporating nitrogen-containing compounds
US4217414A (en) 1976-11-01 1980-08-12 Cpc International Inc. Process for separating and recovering vital wheat gluten from wheat flour and the like
US4148765A (en) 1977-01-10 1979-04-10 The Dow Chemical Company Polyester resins containing dicyclopentadiene
US4097427A (en) 1977-02-14 1978-06-27 Nalco Chemical Company Cationization of starch utilizing alkali metal hydroxide, cationic water-soluble polymer and oxidant for improved wet end strength
JPS5717850Y2 (ru) 1977-02-16 1982-04-14
JPS53113784A (en) 1977-03-17 1978-10-04 Koei Chemical Co Scale removing agent
DE2721186C2 (de) 1977-05-11 1986-04-24 Bayer Ag, 5090 Leverkusen Verfahren zur Herstellung eines Gemisches von niedermolekularen Polyhydroxylverbindungen
US4201247A (en) 1977-06-29 1980-05-06 Owens-Corning Fiberglas Corporation Fibrous product and method and apparatus for producing same
AU530553B2 (en) 1978-05-09 1983-07-21 Commonwealth Scientific And Industrial Research Organisation Treatment of textile materials
DE2833138A1 (de) 1978-07-28 1980-02-07 Bayer Ag Methylolierte mono- und oligosaccharide
US4333484A (en) 1978-08-02 1982-06-08 Philip Morris Incorporated Modified cellulosic smoking material and method for its preparation
US4506684A (en) 1978-08-02 1985-03-26 Philip Morris Incorporated Modified cellulosic smoking material and method for its preparation
HU186349B (en) 1979-01-23 1985-07-29 Magyar Tudomanyos Akademia Process for producing polymeres containing metals of side-groups in complex bond
US4265963A (en) 1979-01-26 1981-05-05 Arco Polymers, Inc. Flameproof and fireproof products containing monoethanolamine, diethylamine or morpholine
US4233432A (en) 1979-05-10 1980-11-11 United States Steel Corporation Dicyclopentadiene polyester resins
US4310585A (en) 1979-06-15 1982-01-12 Owens-Corning Fiberglas Corporation Fibrous product formed of layers of compressed fibers
US4296173A (en) 1979-09-13 1981-10-20 Ppg Industries, Inc. Glass fibers with reduced tendency to form gumming deposits and sizing composition comprising two starches with different amylose content
US4259190A (en) 1979-09-13 1981-03-31 Ppg Industries, Inc. Glass fibers with reduced tendency to form gumming deposits and sizing composition
US4246367A (en) 1979-09-24 1981-01-20 United States Steel Corporation Dicyclopentadiene polyester resins
US4278573A (en) 1980-04-07 1981-07-14 National Starch And Chemical Corporation Preparation of cationic starch graft copolymers from starch, N,N-methylenebisacrylamide, and polyamines
US4379101A (en) 1980-06-04 1983-04-05 Allen Industries, Inc. Forming apparatus and method
US4330443A (en) 1980-06-18 1982-05-18 The United States Of America As Represented By The Secretary Of Agriculture Dry chemical process for grafting acrylic and methyl acrylic ester and amide monomers onto starch-containing materials
GB2078805A (en) 1980-06-27 1982-01-13 Tba Industrial Products Ltd Fire and Weld Splash Resistant for Glass Fabric
GB2079801B (en) 1980-06-27 1984-03-14 Tba Industrial Products Ltd Weld splash resistant glass fibre fabrics
US4361588A (en) 1980-07-30 1982-11-30 Nutrisearch Company Fabricated food products from textured protein particles
US4400496A (en) 1980-09-22 1983-08-23 University Of Florida Water-soluble graft copolymers of starch-acrylamide and uses therefor
JPS57101100U (ru) 1980-12-12 1982-06-22
JPS57101100A (en) 1980-12-15 1982-06-23 Nitto Boseki Co Ltd Production of mineral fiberboard
US4396430A (en) 1981-02-04 1983-08-02 Ralph Matalon Novel foundry sand binding compositions
US4357194A (en) 1981-04-14 1982-11-02 John Stofko Steam bonding of solid lignocellulosic material
JPS5811193A (ja) 1981-07-11 1983-01-21 Ricoh Co Ltd 感熱記録材料
US4393019A (en) 1981-11-30 1983-07-12 The United States Of America As Represented By The Secretary Of Agriculture Method of pressing reconstituted lignocellulosic materials
FR2529917A1 (fr) 1982-07-06 1984-01-13 Saint Gobain Isover Procede et dispositif pour la formation de feutre de fibres contenant un produit additionnel
US4464523A (en) 1983-05-16 1984-08-07 National Starch And Chemical Corporation Process for the preparation of graft copolymers of cellulose derivatives and diallyl, dialkyl ammonium halides
US4668716A (en) 1983-09-30 1987-05-26 Union Carbide Corporation Novel fatty ethenoid acylaminoorganosilicon compounds and their use as a coupling agent
US4524164A (en) 1983-12-02 1985-06-18 Chemical Process Corporation Thermosetting adhesive resins
US4654259A (en) * 1984-02-14 1987-03-31 Carbocol Inc. Method and composition for bonding solid lignocellulosic material
FR2559793B1 (fr) 1984-02-17 1986-12-19 Saint Gobain Isover Procede de production de matelas de fibres minerales a partir d'un materiau fondu
US4714727A (en) 1984-07-25 1987-12-22 H. B. Fuller Company Aqueous emulsion coating for individual fibers of a cellulosic sheet providing improved wet strength
GB2170208B (en) 1985-01-29 1988-06-22 Enigma Nv A formaldehyde binder
JPS61195647A (ja) 1985-02-27 1986-08-29 Kanebo Shokuhin Kk ビタ−チヨコの製法
US4754056A (en) 1985-04-05 1988-06-28 Desoto, Inc. Radiation-curable coatings containing reactive pigment dispersants
JPS61195647U (ru) 1985-05-27 1986-12-05
SE8504501D0 (sv) 1985-09-30 1985-09-30 Astra Meditec Ab Method of forming an improved hydrophilic coating on a polymer surface
US4828643A (en) 1986-02-19 1989-05-09 Masonite Corporation Liquified cellulosic fiber, resin binders and articles manufactured therewith, and method of manufacturing same
US4692478A (en) 1986-03-14 1987-09-08 Chemical Process Corporation Process for preparation of resin and resin obtained
US4780339A (en) 1986-07-30 1988-10-25 National Starch And Chemical Corporation Sized glass fibers and method for production thereof
DE3629470A1 (de) 1986-08-29 1988-03-10 Basf Lacke & Farben Carboxylgruppen und tertiaere aminogruppen enthaltendes polykondensations- und/oder additionsprodukt, ueberzugsmittel auf der basis desselben sowie deren verwendung
IL80298A (en) 1986-10-14 1993-01-31 Res & Dev Co Ltd Eye drops
US4720295A (en) 1986-10-20 1988-01-19 Boris Bronshtein Controlled process for making a chemically homogeneous melt for producing mineral wool insulation
US5013405A (en) 1987-01-12 1991-05-07 Usg Interiors, Inc. Method of making a low density frothed mineral wool
GB8809486D0 (en) 1987-04-22 1988-05-25 Micropore International Ltd Procedure to manufacture thermal insulating material for use at high temperatures
US4845162A (en) 1987-06-01 1989-07-04 Allied-Signal Inc. Curable phenolic and polyamide blends
DE3734752A1 (de) 1987-10-14 1989-05-03 Basf Ag Verfahren zur herstellung von waessrigen (meth)acrylsaeureester-copolymer-dispersionen in zwei stufen und deren verwendung als impraegnier-, ueberzugs- und bindemittel fuer flaechige fasergebilde
SE464687B (sv) 1987-11-10 1991-06-03 Biocarb Ab Foerfarande foer framstaellning av en gelprodukt
US5095054A (en) 1988-02-03 1992-03-10 Warner-Lambert Company Polymer compositions containing destructurized starch
FR2626578B1 (fr) 1988-02-03 1992-02-21 Inst Francais Du Petrole Polymeres amino-substitues et leur utilisation comme additifs de modification des proprietes a froid de distillats moyens d'hydrocarbures
US5441713A (en) 1988-04-29 1995-08-15 Nalco Fuel Tech Hardness suppression in urea solutions
JPH0299655A (ja) 1988-08-03 1990-04-11 Sequa Chemicals Inc 繊維マット用澱紛系バインダー組成物およびその製造方法
US4988780A (en) 1988-08-15 1991-01-29 Allied-Signal Flame resistant article made of phenolic triazine and related method using a pure cyanato novolac
US4918861A (en) 1988-11-15 1990-04-24 Hobbs Bonded Fibers Plant growth bed with high loft textile fibers
DE3839171A1 (de) 1988-11-19 1990-05-23 Bayer Ag Waessriges beschichtungsmittel, ein verfahren zu seiner herstellung und seine verwendung
CA2005321A1 (en) 1988-12-28 1990-06-28 Arthur Ferretti Thermosettable resin intermediate
US5582682A (en) 1988-12-28 1996-12-10 Ferretti; Arthur Process and a composition for making cellulosic composites
US5371194A (en) 1988-12-28 1994-12-06 Ferretti; Arthur Biomass derived thermosetting resin
US4992519A (en) 1989-02-01 1991-02-12 Borden, Inc. Binder composition with low formaldehyde emission and process for its preparation
US5278222A (en) 1989-02-13 1994-01-11 Rohm And Haas Company Low viscosity, fast curing binder for cellulose
US5198492A (en) 1989-02-13 1993-03-30 Rohn And Haas Company Low viscosity, fast curing binder for cellulose
JPH0734023Y2 (ja) 1989-04-17 1995-08-02 川崎重工業株式会社 粉粒体等の秤量輸送装置
AT393272B (de) 1989-06-07 1991-09-25 Rettenbacher Markus Dipl Ing Verfahren zur herstellung von extrudierten, direkt expandierten biopolymerprodukten und holzfaserplatten, verpackungs- und isoliermaterialien
US5037930A (en) 1989-09-22 1991-08-06 Gaf Chemicals Corporation Heterocyclic quaternized nitrogen-containing cellulosic graft polymers
DE358282T1 (de) 1989-11-08 1990-09-06 Shell Internationale Research Maatschappij B.V., Den Haag/S'gravenhage Weiche flexible polyurethanschaumstoffe, verfahren zu deren herstellung sowie in diesem verfahren verwendbare polyolzusammensetzung.
JP2515411B2 (ja) 1989-12-01 1996-07-10 新王子製紙株式会社 感熱記録材料の製造方法
JP2926513B2 (ja) 1989-12-11 1999-07-28 住友化学工業株式会社 樹脂組成物およびその製造方法
US5151465A (en) 1990-01-04 1992-09-29 Arco Chemical Technology, L.P. Polymer compositions and absorbent fibers produced therefrom
DE69111480T2 (de) 1990-02-14 1996-03-14 Shinsozai Sogo Kenkyusho Kk Gefüllter und abgedichteter, unabhängiger Mischbehälter.
JP2574051B2 (ja) 1990-02-28 1997-01-22 明治製菓株式会社 インドール酢酸生合成酵素をコードする遺伝子
DK0445578T3 (da) 1990-03-03 1994-11-21 Basf Ag Formlegemer
RU1765996C (ru) 1990-06-11 1995-08-27 Назаров Петр Васильевич Способ изготовления тепло- и звукоизоляционных изделий
FR2663049B1 (fr) 1990-06-12 1994-05-13 Isover Saint Gobain Recyclage de produits fibreux dans une ligne de production de matelas a partir de fibres.
US5041595A (en) 1990-09-26 1991-08-20 Union Carbide Chemicals And Plastics Technology Corporation Method for manufacturing vinylalkoxysilanes
US6495656B1 (en) 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
DE69034003T2 (de) 1990-12-28 2003-05-22 K C Shen Technology Internat L Wärmehärtbares Harz und Verbundstoff aus Lignozellulosematerial
GB9100277D0 (en) 1991-01-07 1991-02-20 Courtaulds Fibres Ltd Adhesive
US5240498A (en) 1991-01-09 1993-08-31 Martin Marietta Magnesia Specialties Inc. Carbonaceous binder
US5217741A (en) 1991-01-25 1993-06-08 Snow Brand Milk Products Co., Ltd. Solution containing whey protein, whey protein gel, whey protein powder and processed food product produced by using the same
GB9108604D0 (en) 1991-04-22 1991-06-05 Nadreph Ltd Gel products and a process for making them
US5143582A (en) 1991-05-06 1992-09-01 Rohm And Haas Company Heat-resistant nonwoven fabrics
US5128407A (en) 1991-07-25 1992-07-07 Miles Inc. Urea extended polyisocyanates
DE4127733A1 (de) 1991-08-22 1993-02-25 Basf Ag Pfropfpolymerisate aus saccharidstrukturen enthaltenden naturstoffen oder deren derivaten und ethylenisch ungesaettigten verbindungen und ihre verwendung
US5123949A (en) 1991-09-06 1992-06-23 Manville Corporation Method of introducing addivites to fibrous products
GB9126828D0 (en) 1991-12-18 1992-02-19 British American Tobacco Co Improvements relating to smoking articles
DE4142261A1 (de) 1991-12-20 1993-06-24 Man Technologie Gmbh Verfahren und vorrichtung zur herstellung von verbundbauteilen
JPH05186635A (ja) 1992-01-10 1993-07-27 Goyo Paper Working Co Ltd 包装用材料
DE4202248A1 (de) 1992-01-28 1993-07-29 Belland Ag Verfahren zur wiedergewinnung von in waessrig alkalischem oder saurem milieu geloesten polymeren
FR2688791B1 (fr) 1992-03-20 1995-06-16 Roquette Freres Composition liante pour la preparation d'un nouvel agglomere a base de materiaux finement divises, procede mettant en óoeuvre cette composition et nouvel agglomere obtenu.
US5550189A (en) 1992-04-17 1996-08-27 Kimberly-Clark Corporation Modified polysaccharides having improved absorbent properties and process for the preparation thereof
US6077883A (en) 1992-05-19 2000-06-20 Johns Manville International, Inc. Emulsified furan resin based glass fiber binding compositions, process of binding glass fibers, and glass fiber compositions
AU5347294A (en) 1992-05-19 1994-01-04 Schuller International, Inc. Glass fiber binding compositions, process of binding glass fibers, and glass fiber compositions
US5534612A (en) 1992-05-19 1996-07-09 Schuller International, Inc. Glass fiber binding compositions, process of making glass fiber binding compositions, process of binding glass fibers, and glass fiber compositions
US5389716A (en) 1992-06-26 1995-02-14 Georgia-Pacific Resins, Inc. Fire resistant cured binder for fibrous mats
US5661213A (en) 1992-08-06 1997-08-26 Rohm And Haas Company Curable aqueous composition and use as fiberglass nonwoven binder
US5582670A (en) 1992-08-11 1996-12-10 E. Khashoggi Industries Methods for the manufacture of sheets having a highly inorganically filled organic polymer matrix
US5434233A (en) 1992-08-12 1995-07-18 Kiely; Donald E. Polyaldaramide polymers useful for films and adhesives
US5352480A (en) 1992-08-17 1994-10-04 Weyerhaeuser Company Method for binding particles to fibers using reactivatable binders
US5807364A (en) 1992-08-17 1998-09-15 Weyerhaeuser Company Binder treated fibrous webs and products
US7144474B1 (en) 1992-08-17 2006-12-05 Weyerhaeuser Co. Method of binding particles to binder treated fibers
US6391453B1 (en) 1992-08-17 2002-05-21 Weyernaeuser Company Binder treated particles
AU5019993A (en) 1992-08-17 1994-03-15 Weyerhaeuser Company Particle binders
US5547541A (en) 1992-08-17 1996-08-20 Weyerhaeuser Company Method for densifying fibers using a densifying agent
US5308896A (en) 1992-08-17 1994-05-03 Weyerhaeuser Company Particle binders for high bulk fibers
US5641561A (en) 1992-08-17 1997-06-24 Weyerhaeuser Company Particle binding to fibers
US5543215A (en) 1992-08-17 1996-08-06 Weyerhaeuser Company Polymeric binders for binding particles to fibers
US5589256A (en) 1992-08-17 1996-12-31 Weyerhaeuser Company Particle binders that enhance fiber densification
US5300192A (en) 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
US5538783A (en) 1992-08-17 1996-07-23 Hansen; Michael R. Non-polymeric organic binders for binding particles to fibers
US6340411B1 (en) 1992-08-17 2002-01-22 Weyerhaeuser Company Fibrous product containing densifying agent
FR2694894B1 (fr) 1992-08-20 1994-11-10 Coletica Utilisation d'une réaction de transacylation entre un polysaccharide estérifié et une substance polyaminée ou polyhydroxylée pour la fabrication de microparticules, procédé et composition.
DE4233622C2 (de) 1992-10-06 2000-01-05 Rolf Hesch Preßverfahren zum Beschichten eines Werkstückes und Presse zur Durchführung des Verfahrens
FR2697023B1 (fr) 1992-10-16 1994-12-30 Roquette Freres Polymère soluble hypocalorique du glucose et procédé de préparation de ce polymère .
US5300144A (en) 1992-11-02 1994-04-05 Martin Marietta Magnesia Specialties, Inc. Binder composition
US5376614A (en) 1992-12-11 1994-12-27 United Technologies Corporation Regenerable supported amine-polyol sorbent
EP0601417A3 (de) 1992-12-11 1998-07-01 Hoechst Aktiengesellschaft Physiologisch verträglicher und physiologisch abbaubarer, Kohlenhydratrezeptorblocker auf Polymerbasis, ein Verfahren zu seiner Herstellung und seine Verwendung
US5545279A (en) 1992-12-30 1996-08-13 Hall; Herbert L. Method of making an insulation assembly
US5863985A (en) 1995-06-29 1999-01-26 Kinerton Limited Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
US6221958B1 (en) 1993-01-06 2001-04-24 Societe De Conseils De Recherches Et D'applications Scientifiques, Sas Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
US5672659A (en) 1993-01-06 1997-09-30 Kinerton Limited Ionic molecular conjugates of biodegradable polyesters and bioactive polypeptides
BR9406219A (pt) 1993-01-23 1996-01-09 Helmut Schiwek Processo e instalação para produção de fibras de vidro
IL104734A0 (en) 1993-02-15 1993-06-10 Univ Bar Ilan Bioactive conjugates of cellulose with amino compounds
DE69413434T2 (de) 1993-02-26 1999-04-01 Mitsui Chemicals Inc Harze für elektrophotographische Entwickler
US5554730A (en) 1993-03-09 1996-09-10 Middlesex Sciences, Inc. Method and kit for making a polysaccharide-protein conjugate
US5981719A (en) 1993-03-09 1999-11-09 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
US6090925A (en) 1993-03-09 2000-07-18 Epic Therapeutics, Inc. Macromolecular microparticles and methods of production and use
DE4308089B4 (de) 1993-03-13 2004-05-19 Basf Ag Formaldehydfreie Bindemittel für Holz
US5929184A (en) 1993-06-02 1999-07-27 Geltex Pharmaceuticals, Inc. Hydrophilic nonamine-containing and amine-containing copolymers and their use as bile acid sequestrants
US6855337B1 (en) 1993-06-17 2005-02-15 Carle Development Foundation Bear derived isolate and method
US5318990A (en) 1993-06-21 1994-06-07 Owens-Corning Fiberglas Technology Inc. Fibrous glass binders
US5340868A (en) 1993-06-21 1994-08-23 Owens-Corning Fiberglass Technology Inc. Fibrous glass binders
JP3399588B2 (ja) 1993-07-20 2003-04-21 東洋紡績株式会社 筆記具用インク
EP0739320B1 (en) 1993-09-29 1999-12-08 W.R. Grace & Co.-Conn. Improved cement admixture product having improved rheological properties and process of forming same
US5416139A (en) 1993-10-07 1995-05-16 Zeiszler; Dennis E. Structural building materials or articles obtained from crop plants or residues therefrom and/or polyolefin materials
US5393849A (en) 1993-10-19 1995-02-28 Georgia-Pacific Resins, Inc. Curable polyester/polyamino compositions
JP2811540B2 (ja) 1993-10-20 1998-10-15 呉羽化学工業株式会社 ガスバリヤー性フィルム及びその製造方法
US5503920A (en) 1993-12-27 1996-04-02 Owens-Corning Fiberglass Technology, Inc. Process for improving parting strength of fiberglass insulation
DE4406172C2 (de) 1994-02-25 2003-10-02 Sanol Arznei Schwarz Gmbh Polyester
DE4408688A1 (de) 1994-03-15 1995-09-21 Basf Ag Formaldehydfreie Binde-, Imprägnier- oder Beschichtungsmittel für faserförmige Flächengebilde
US5955448A (en) 1994-08-19 1999-09-21 Quadrant Holdings Cambridge Limited Method for stabilization of biological substances during drying and subsequent storage and compositions thereof
GB9411080D0 (en) 1994-06-02 1994-07-20 Unilever Plc Treatment
GB9412007D0 (en) 1994-06-15 1994-08-03 Rockwell International A S Production of mineral fibres
US5580856A (en) 1994-07-15 1996-12-03 Prestrelski; Steven J. Formulation of a reconstituted protein, and method and kit for the production thereof
US5492756A (en) 1994-07-22 1996-02-20 Mississippi State University Kenaf core board material
DE4432899A1 (de) 1994-09-15 1996-03-21 Wacker Chemie Gmbh Vernetzbare Polymerpulver-Zusammensetzungen
DE19581850T1 (de) 1994-11-21 1997-10-16 Asahi Chemical Ind Polymeres Verbundmaterial
EP0754656B1 (en) 1995-02-07 2004-09-15 Daicel-Degussa Ltd. Cement setting retarder and cement setting retarder sheet
EP0810981B2 (en) 1995-02-21 2008-11-19 Rockwool Lapinus B.V. Method for manufacturing a mineral wool product
DE59500267D1 (de) 1995-03-24 1997-07-03 Giulini Chemie Amphotere Polymerisatdispersion, Verfahren zur Herstellung und deren Verwendung
US5919831A (en) 1995-05-01 1999-07-06 Philipp; Warren H. Process for making an ion exchange material
US5670585A (en) 1995-06-13 1997-09-23 Schuller International, Inc. Use of polyacrylic acid and other polymers as additives in fiberglass formaldehyde based binders
US5562740A (en) 1995-06-15 1996-10-08 The Procter & Gamble Company Process for preparing reduced odor and improved brightness individualized, polycarboxylic acid crosslinked fibers
US5720796A (en) 1995-08-08 1998-02-24 W. R. Grace & Co.-Conn. Process of using roll press grinding aid for granulated blast furnace slag
US5942123A (en) 1995-09-05 1999-08-24 Mcardle; Blaise Method of using a filter aid protein-polysaccharide complex composition
US5788423A (en) 1995-09-08 1998-08-04 G.P. Industries, Inc. Masonry block retaining wall with attached keylock facing panels and method of constructing the same
ES2175168T3 (es) 1995-11-28 2002-11-16 Kimberly Clark Co Compuestos de colorantes estabilizados por la luz.
JPH09157627A (ja) 1995-12-13 1997-06-17 Sekisui Chem Co Ltd 水溶性粘着剤組成物
US6458889B1 (en) 1995-12-18 2002-10-01 Cohesion Technologies, Inc. Compositions and systems for forming crosslinked biomaterials and associated methods of preparation and use
US7883693B2 (en) 1995-12-18 2011-02-08 Angiodevice International Gmbh Compositions and systems for forming crosslinked biomaterials and methods of preparation of use
US6407225B1 (en) 1995-12-21 2002-06-18 The Dow Chemical Company Compositions comprising hydroxy-functional polymers
US5788243A (en) 1996-01-23 1998-08-04 Harshaw; Bob F. Biodegradable target
DE19606394A1 (de) 1996-02-21 1997-08-28 Basf Ag Formaldehydfreie, wäßrige Bindemittel
US6139619A (en) 1996-02-29 2000-10-31 Borden Chemical, Inc. Binders for cores and molds
US5922403A (en) 1996-03-12 1999-07-13 Tecle; Berhan Method for isolating ultrafine and fine particles
US6072086A (en) 1996-04-12 2000-06-06 Intergen Company Method and composition for controlling formaldehyde fixation by delayed quenching
EP0900367A1 (en) 1996-04-12 1999-03-10 Oncor, Inc. Method and composition for controlling formaldehyde fixation by delayed quenching
DE19621573A1 (de) 1996-05-29 1997-12-04 Basf Ag Thermisch härtbare, wäßrige Zusammensetzungen
US5719092A (en) 1996-05-31 1998-02-17 Eastman Kodak Company Fiber/polymer composite for use as a photographic support
CA2257545C (en) 1996-06-25 2008-12-30 Borden Chemical, Inc. Binders for cores and molds
AU742125B2 (en) 1996-08-21 2001-12-20 Rohm And Haas Company A formaldehyde-free, accelerated cure aqueous composition for bonding glass fiber-heat resistant nonwovens
US6067821A (en) 1996-10-07 2000-05-30 Owens Corning Fiberglas Technology, Inc. Process for making mineral wool fibers from lumps of uncalcined raw bauxite
NL1004379C2 (nl) 1996-10-29 1998-05-08 Borculo Cooep Weiprod Toepassing van suikeraminen en suikeramiden als lijm, alsmede nieuwe suikeraminen en suikeramiden.
HUP9904499A3 (en) 1996-11-04 2000-12-28 Huntsman Internat Llc Newcastl Rigid polyurethane foams
US20020161108A1 (en) 2000-03-09 2002-10-31 Stepan Company, A Corporation Of The State Of Delaware Emulsion polymerization process utilizing ethylenically unsaturated amine salts of sulfonic, phosphoric and carboxylic acids
US6310227B1 (en) 1997-01-31 2001-10-30 The Procter & Gamble Co. Reduced calorie cooking and frying oils having improved hydrolytic stability, and process for preparing
CZ293298B6 (cs) 1997-02-03 2004-03-17 Isover Saint-Gobain Pojivo pro minerální vlnu a jím pojený produkt z minerální vlny
US5932665A (en) 1997-02-06 1999-08-03 Johns Manville International, Inc. Polycarboxy polymer acid binders having reduced cure temperatures
JPH10234314A (ja) 1997-02-24 1998-09-08 Miyoujiyou Shokuhin Kk 食品に焦げ目をつけるための組成物
US6475552B1 (en) 1997-03-19 2002-11-05 Danisco Finland Oy Polymerization of mono and disaccharides using low levels of polycarboxylic acids
CA2284911C (en) 1997-03-19 2006-10-24 Cultor Food Science, Inc. Polymerization of mono-and disaccharides using low levels of mineral acids
CN1089727C (zh) 1997-04-11 2002-08-28 广州市环境保护科学研究所 阳离子/两性接枝型聚丙烯酰胺絮凝剂的制备方法
TW408152B (en) 1997-04-25 2000-10-11 Rohm & Haas Formaldehyde-free curable composition and method for bonding heat-resistant fibers of a nonwoven material by using the composition
ES2189174T3 (es) 1997-05-02 2003-07-01 Ledertech Gmbh Material compuesto termoplastico.
US5954869A (en) 1997-05-07 1999-09-21 Bioshield Technologies, Inc. Water-stabilized organosilane compounds and methods for using the same
ATE214237T1 (de) 1997-05-15 2002-03-15 Nestle Sa Verfahren zur herstellung und extraktion von aromas
DE19721691A1 (de) 1997-05-23 1998-11-26 Basf Ag Klebstoffe auf Basis einer wässrigen Polymerdispersion, Verfahren zu ihrer Herstellung und ihre Verwendung
IT1292024B1 (it) 1997-05-28 1999-01-25 Balzaretti Modigliani Spa Procedimento e dispositivo di riciclaggio di scarti in una produzione di fibre minerali
DE19729161A1 (de) 1997-07-08 1999-01-14 Basf Ag Thermisch härtbare, wässrige Zusammensetzungen
JP3188657B2 (ja) 1997-07-24 2001-07-16 株式会社第一化成 錠剤又は顆粒状製品
US5977232A (en) 1997-08-01 1999-11-02 Rohm And Haas Company Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heat-resistant nonwovens
DE19735959A1 (de) 1997-08-19 1999-02-25 Basf Ag Verwendung thermisch härtbarer, wässriger Zusammensetzungen als Bindemittel für Formkörper
US5895804A (en) 1997-10-27 1999-04-20 National Starch And Chemical Investment Holding Corporation Thermosetting polysaccharides
US5983586A (en) 1997-11-24 1999-11-16 Owens Corning Fiberglas Technology, Inc. Fibrous insulation having integrated mineral fibers and organic fibers, and building structures insulated with such fibrous insulation
US6171654B1 (en) 1997-11-28 2001-01-09 Seydel Research, Inc. Method for bonding glass fibers with cross-linkable polyester resins
JP3721530B2 (ja) 1997-12-12 2005-11-30 昭和電工株式会社 繊維処理剤組成物
US6143243A (en) 1997-12-29 2000-11-07 Prestone Products Corporation Method of inhibiting cavitation-erosion corrosion of aluminum surfaces using carboxylic acid based compositions comprising polymerizable-acid graft polymers
NL1008041C2 (nl) 1998-01-16 1999-07-19 Tidis B V I O Toepassing van een wateroplosbaar bindmiddelsysteem voor de productie van glas- of steenwol.
EP0933021A1 (en) 1998-02-02 1999-08-04 Rockwool International A/S Process for the manufacture of a mineral wool planth growth substrate and the obtainable mineral wool plant growth substrate
EP0936060A1 (en) 1998-02-13 1999-08-18 Rockwool International A/S Man-made vitreous fibre products and their use in fire protection systems
DE69909454T3 (de) 1998-03-19 2009-09-10 Rockwool International A/S Verfahren und Vorrichtung zur Herstellung eines Mineralfaserprodukts
US6140445A (en) 1998-04-17 2000-10-31 Crompton Corporation Silane functional oligomer
US6171444B1 (en) 1998-04-22 2001-01-09 Sri International Method and composition for the sizing of paper with a mixture of a polyacid and a polybase
US6291023B1 (en) 1998-04-22 2001-09-18 Sri International Method and composition for textile printing
ES2343604T3 (es) 1998-05-18 2010-08-04 Knauf Fiber Glass Gmbh Composiciones de ligante de fibra de vidrio y procedimiento para las mismas.
DE69902783T3 (de) 1998-05-18 2011-02-24 Rockwool International A/S Stabilisierte, wässrige phenolharz-bindemittel für mineralwolle und verfahren zur herstellung von mineralwolleprodukten
WO1999061384A1 (en) 1998-05-28 1999-12-02 Owens Corning Corrosion inhibiting composition for polyacrylic acid based binders
CA2458333C (en) 1998-05-28 2005-08-09 Owens Corning Corrosion inhibiting composition for polyacrylic acid based binders
JP3907837B2 (ja) 1998-06-12 2007-04-18 富士フイルム株式会社 画像記録材料
US5993709A (en) 1998-06-23 1999-11-30 Bonomo; Brian Method for making composite board using phenol formaldehyde binder
DE19833920A1 (de) 1998-07-28 2000-02-03 Basf Ag Textile Flächengebilde
US6468668B1 (en) 1998-09-14 2002-10-22 Canon Kabushiki Kaisha Cellulosic composite product and a method of producing the same
EP0990727A1 (en) 1998-10-02 2000-04-05 Johns Manville International Inc. Polycarboxy/polyol fiberglass binder
US6331350B1 (en) 1998-10-02 2001-12-18 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder of low pH
US6231721B1 (en) 1998-10-09 2001-05-15 Weyerhaeuser Company Compressible wood pulp product
JP4554012B2 (ja) 1998-10-13 2010-09-29 パナソニック株式会社 アルミニウム電解コンデンサ
CN1251738A (zh) 1998-10-21 2000-05-03 朱国和 一种无土栽培用介质产品及其生产方法
US6214265B1 (en) 1998-12-17 2001-04-10 Bayer Corporation Mixed PMDI/resole resin binders for the production of wood composite products
EP1038433B1 (fr) 1999-03-19 2008-06-04 Saint-Gobain Cultilene B.V. Substrat de culture hors-sol
US6440204B1 (en) 1999-03-31 2002-08-27 Penford Corporation Packaging and structural materials comprising potato peel waste
US6210472B1 (en) 1999-04-08 2001-04-03 Marconi Data Systems Inc. Transparent coating for laser marking
US7029717B1 (en) 1999-04-16 2006-04-18 San-Ei Gen F.F.I., Inc. Sucralose-containing composition and edible products containing the composition
US6331513B1 (en) 1999-04-28 2001-12-18 Jacam Chemicals L.L.C. Compositions for dissolving metal sulfates
WO2000069960A1 (en) 1999-05-14 2000-11-23 The Dow Chemical Company Process for preparing starch and epoxy-based thermoplastic polymer compositions
DE19923118A1 (de) 1999-05-19 2000-11-23 Henkel Kgaa Chromfreies Korrosionsschutzmittel und Korrosionsschutzverfahren
JP2000327841A (ja) 1999-05-24 2000-11-28 Canon Inc 糖鎖高分子組成物からなる成形体
US6194512B1 (en) 1999-06-28 2001-02-27 Owens Corning Fiberglas Technology, Inc. Phenol/formaldehyde and polyacrylic acid co-binder and low emissions process for making the same
DE19930555C1 (de) 1999-07-02 2001-01-18 Basf Coatings Ag Wäßriger Beschichtungsstoff, insbesondere wäßriger Füller oder Steinschlagschutzgrund
US6133347A (en) 1999-07-09 2000-10-17 Mbt Holding Ag Oligomeric dispersant
EP1086932A1 (en) 1999-07-16 2001-03-28 Rockwool International A/S Resin for a mineral wool binder comprising the reaction product of an amine with a first and second anhydride
US7814512B2 (en) 2002-09-27 2010-10-12 Microsoft Corporation Dynamic adjustment of EPG level of detail based on user behavior
WO2001007532A1 (en) 1999-07-26 2001-02-01 Minnesota Corn Processors Llc De-icing composition and method
US6306997B1 (en) 1999-07-29 2001-10-23 Iowa State University Research Foundation, Inc. Soybean-based adhesive resins and composite products utilizing such adhesives
US6281298B1 (en) 1999-08-20 2001-08-28 H. B. Fuller Licensing & Financing Inc. Water-based pressure sensitive adhesives having enhanced characteristics
DE60113393T3 (de) 2000-02-11 2010-05-12 Heartland Resource Technologies Llc Klebstoffzusammensetzungen aus pflanzlichem protein
US20030148084A1 (en) 2000-02-11 2003-08-07 Trocino Frank S. Vegetable protein adhesive compositions
AU2001251217A1 (en) 2000-03-31 2001-10-15 Norman L. Holy Compostable, degradable plastic compositions and articles thereof
US6410036B1 (en) 2000-05-04 2002-06-25 E-L Management Corp. Eutectic mixtures in cosmetic compositions
US20020096278A1 (en) 2000-05-24 2002-07-25 Armstrong World Industries, Inc. Durable acoustical panel and method of making the same
EP1164163A1 (en) 2000-06-16 2001-12-19 Rockwool International A/S Binder for mineral wool products
DE10030563B4 (de) 2000-06-21 2005-06-30 Agrolinz Melamin Gmbh Faserverbunde hoher Dimensionsstabilität, Bewitterungsresistenz und Flammfestigkeit, Verfahren zu deren Herstellung sowie deren Verwendung
EP1170265A1 (en) 2000-07-04 2002-01-09 Rockwool International A/S Binder for mineral wool products
DE60112527T2 (de) 2000-09-20 2006-06-01 Celanese International Corp., Dallas Vernetzersysteme aus Monohydroxyalkylharnstoff und Polysaccharid
US6379739B1 (en) 2000-09-20 2002-04-30 Griffith Laboratories Worldwide, Inc. Acidulant system for marinades
US6613378B1 (en) 2000-10-18 2003-09-02 The United States Of America As Represented By The Secretary Of Agriculture Sugar-based edible adhesives
US6525009B2 (en) 2000-12-07 2003-02-25 International Business Machines Corporation Polycarboxylates-based aqueous compositions for cleaning of screening apparatus
DE10101944A1 (de) 2001-01-17 2002-07-18 Basf Ag Zusammensetzungen für die Herstellung von Formkörpern aus feinteiligen Materialien
FR2820736B1 (fr) 2001-02-14 2003-11-14 Saint Gobain Isover Procede et dispositif de formation de laine minerale
US7816514B2 (en) 2001-02-16 2010-10-19 Cargill, Incorporated Glucosamine and method of making glucosamine from microbial biomass
JP3750552B2 (ja) 2001-03-28 2006-03-01 日東紡績株式会社 ガラス繊維巻糸体の製造方法およびガラス繊維織物の製造方法
US6989171B2 (en) 2001-04-02 2006-01-24 Pacifichealth Laboratories, Inc. Sports drink composition for enhancing glucose uptake into the muscle and extending endurance during physical exercise
US20020197352A1 (en) 2001-04-02 2002-12-26 Pacifichealth Laboratories, Inc. Sports drink composition for enhancing glucose uptake into the muscle and extending endurance during physical exercise
DE10116810A1 (de) 2001-04-04 2002-12-19 Wacker Chemie Gmbh Bindemittel und deren Verwendung in Verfahren zur Herstellung von Formteilen auf der Basis von Mineralfasern
AU2002309541B8 (en) 2001-04-10 2008-11-20 Danisco Usa, Inc. Polymerization of mono and disaccharides with monocarboxylic acids and lactones
NZ549563A (en) 2001-04-10 2008-01-31 Danisco Usa Inc Carbohydrate polymers prepared by the polymerization of mono and disaccharides with monocarboxylic acids and lactones
US20030040239A1 (en) 2001-05-17 2003-02-27 Certainteed Corporation Thermal insulation containing supplemental infrared radiation absorbing material
US7157524B2 (en) 2001-05-31 2007-01-02 Owens Corning Fiberglas Technology, Inc. Surfactant-containing insulation binder
NL1018568C2 (nl) 2001-07-17 2003-01-21 Tno Winning van polysachariden uit plantaardig en microbieel materiaal.
JP2004060058A (ja) 2002-07-24 2004-02-26 Mitsubishi Heavy Ind Ltd 複合材料用繊維基材
US6755938B2 (en) 2001-08-20 2004-06-29 Armstrong World Industries, Inc. Fibrous sheet binders
JP4135387B2 (ja) 2001-08-31 2008-08-20 東洋製罐株式会社 ガスバリアー材、その製法、ガスバリアー層形成用コーティング液及びガスバリアー材を備えた包装材
US20040161993A1 (en) 2001-09-06 2004-08-19 Gary Tripp Inorganic fiber insulation made from glass fibers and polymer bonding fibers
KR20030023285A (ko) * 2001-09-13 2003-03-19 (주)서영산업 건축 내장용 흡음 단열재 패널 제조방법
TWI331526B (en) 2001-09-21 2010-10-11 Bristol Myers Squibb Pharma Co Lactam-containing compounds and derivatives thereof as factor xa inhibitors
US20030087095A1 (en) 2001-09-28 2003-05-08 Lewis Irwin Charles Sugar additive blend useful as a binder or impregnant for carbon products
US6592211B2 (en) 2001-10-17 2003-07-15 Hewlett-Packard Development Company, L.P. Electrostatic mechanism for inkjet printers resulting in improved image quality
WO2003035740A1 (en) 2001-10-24 2003-05-01 Temple-Inland Forest Products Corporation Saccharide-based resin for the preparation of composite products
US6858074B2 (en) 2001-11-05 2005-02-22 Construction Research & Technology Gmbh High early-strength cementitious composition
JP3787085B2 (ja) 2001-12-04 2006-06-21 関東化学株式会社 フォトレジスト残渣除去液組成物
JP4464596B2 (ja) 2002-02-15 2010-05-19 日本合成化学工業株式会社 バインダー
ATE328973T1 (de) 2002-02-20 2006-06-15 Du Pont Lacke mit hochverzweigtem copolyesterpolyol
CN1305932C (zh) 2002-02-22 2007-03-21 植入疗法公司 碳水化合物修饰的聚合物、其组合物及其应用
ATE443996T1 (de) 2002-02-22 2009-10-15 Genencor Int Bräunungsmittel
US6992203B2 (en) 2002-03-26 2006-01-31 Jh Biotech, Inc. Metal complexes produced by Maillard Reaction products
DE10218871A1 (de) 2002-04-26 2003-11-13 Degussa Verfahren zur Imprägnierung von porösen mineralischen Substraten
US6955844B2 (en) 2002-05-24 2005-10-18 Innovative Construction And Building Materials Construction materials containing surface modified fibers
FR2839966B1 (fr) 2002-05-27 2004-07-23 Saint Gobain Isover Media filtrant comprenant des fibres minerales obtenues par centrifugation
WO2003104284A2 (en) 2002-06-06 2003-12-18 Georgia-Pacific Resins, Inc. Epoxide-type formaldehyde free insulation binder
AU2003237324B8 (en) 2002-06-18 2009-12-10 Georgia-Pacific Chemicals Llc Polyester-type formaldehyde free insulation binder
US20040002567A1 (en) 2002-06-27 2004-01-01 Liang Chen Odor free molding media having a polycarboxylic acid binder
FR2842189B1 (fr) 2002-07-12 2005-03-04 Saint Gobain Isover Produit d'isolation notamment thermique et son procede de fabrication
EP1382642A1 (en) 2002-07-15 2004-01-21 Rockwool International A/S Formaldehyde-free aqueous binder composition for mineral fibers
US6887961B2 (en) 2002-07-26 2005-05-03 Kimberly-Clark Worldwide, Inc. Absorbent binder composition and method of making it
US6962714B2 (en) 2002-08-06 2005-11-08 Ecolab, Inc. Critical fluid antimicrobial compositions and their use and generation
US7384881B2 (en) 2002-08-16 2008-06-10 H.B. Fuller Licensing & Financing, Inc. Aqueous formaldehyde-free composition and fiberglass insulation including the same
US20040048531A1 (en) 2002-09-09 2004-03-11 Hector Belmares Low formaldehyde emission panel
US7090745B2 (en) 2002-09-13 2006-08-15 University Of Pittsburgh Method for increasing the strength of a cellulosic product
KR100684682B1 (ko) 2002-09-24 2007-02-22 아사히 가세이 케미칼즈 가부시키가이샤 글리콜산 공중합체 및 그의 제조 방법
US20060135433A1 (en) 2002-10-08 2006-06-22 Murray Christopher J Phenolic binding peptides
US6818694B2 (en) 2002-10-10 2004-11-16 Johns Manville International, Inc. Filler extended fiberglass binder
US7201825B2 (en) 2002-10-25 2007-04-10 Weyerhaeuser Company Process for making a flowable and meterable densified fiber particle
US7141626B2 (en) 2002-10-29 2006-11-28 National Starch And Chemical Investment Holding Corporation Fiberglass non-woven catalyst
US6699945B1 (en) 2002-12-03 2004-03-02 Owens Corning Fiberglas Technology, Inc. Polycarboxylic acid based co-binder
US7026390B2 (en) 2002-12-19 2006-04-11 Owens Corning Fiberglas Technology, Inc. Extended binder compositions
US20040131874A1 (en) 2003-01-08 2004-07-08 Georgia-Pacific Resins, Inc. Reducing odor in fiberglass insulation bonded with urea-extended phenol-formaldehyde resins
US7201778B2 (en) 2003-01-13 2007-04-10 North Carolina State University Ionic cross-linking of ionic cotton with small molecular weight anionic or cationic molecules
US6884849B2 (en) 2003-02-21 2005-04-26 Owens-Corning Fiberglas Technology, Inc. Poly alcohol-based binder composition
US7265169B2 (en) 2003-03-20 2007-09-04 State of Oregon Acting by and trhough the State Board of Higher Education on Behalf of Oregon State University Adhesive compositions and methods of using and making the same
US7056563B2 (en) 2003-04-04 2006-06-06 Weyerhaeuser Company Hot cup made from an insulating paperboard
DE10317937A1 (de) 2003-04-17 2004-11-04 Saint-Gobain Isover G+H Ag Verfahren zur Herstellung von Rohrschalen aus Mineralwolle sowie derartige Rohrschalen
FR2854626B1 (fr) 2003-05-07 2006-12-15 Saint Gobain Isover Produit a base de fibres minerales et dispositif d'obtention des fibres
US7947766B2 (en) 2003-06-06 2011-05-24 The Procter & Gamble Company Crosslinking systems for hydroxyl polymers
CA2470783A1 (en) 2003-06-12 2004-12-12 National Starch And Chemical Investment Holding Corporation Fiberglass nonwoven binder
US20040254285A1 (en) 2003-06-12 2004-12-16 Rodrigues Klein A. Fiberglass nonwoven binder
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
US8870814B2 (en) 2003-07-31 2014-10-28 Boston Scientific Scimed, Inc. Implantable or insertable medical devices containing silicone copolymer for controlled delivery of therapeutic agent
CN1251738C (zh) 2003-08-05 2006-04-19 王春荣 一种治疗灰指甲的中药及其制备方法
AU2004201002B2 (en) 2003-08-26 2009-08-06 Rohm And Haas Company Curable aqueous composition and use as heat-resistant nonwoven binder
DE10342858A1 (de) 2003-09-15 2005-04-21 Basf Ag Verwendung formaldehydfreier wässriger Bindemittel für Substrate
US20050059770A1 (en) 2003-09-15 2005-03-17 Georgia-Pacific Resins Corporation Formaldehyde free insulation binder
DE10344926B3 (de) * 2003-09-25 2005-01-20 Dynea Erkner Gmbh Verfahren zur Herstellung von Holzwerkstoffkörpern, Holzwerkstoffkörper sowie nachverformbarer Holzwerkstoffkörper
EP1522642A1 (de) 2003-10-06 2005-04-13 Saint-Gobain Isover G+H Ag Dämmstoffbahnen aus einem zu einer Rolle aufgewickelten Mineralfaserfilz für den klemmenden Einbau zwischen Balken
CA2541487A1 (en) 2003-10-06 2005-04-21 Saint-Gobain Isover Insulating material consisting of a web of mineral fibres for wedging between beams and the like
US20070009582A1 (en) 2003-10-07 2007-01-11 Madsen Niels J Composition useful as an adhesive and use of such a composition
EP1524282A1 (de) 2003-10-15 2005-04-20 Sika Technology AG Zweikomponentige Polyurethanzusammensetzung mit hoher Frühfestigkeit
US20050208095A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
ES2394404T3 (es) 2004-02-18 2013-01-31 Meadwestvaco Corporation Procedimiento para producir composiciones bituminosas
US7297204B2 (en) 2004-02-18 2007-11-20 Meadwestvaco Corporation Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US7833338B2 (en) 2004-02-18 2010-11-16 Meadwestvaco Packaging Systems, Llc Method for producing bitumen compositions
ES2366648T3 (es) * 2004-03-11 2011-10-24 Knauf Insulation Gmbh Composiciones aglutinantes y métodos asociados.
DE102004033561B4 (de) 2004-03-11 2007-09-13 German Carbon Teterow Gmbh Verfahren zur Herstellung von Formaktivkohle
US7842382B2 (en) 2004-03-11 2010-11-30 Knauf Insulation Gmbh Binder compositions and associated methods
DE102004013390A1 (de) 2004-03-17 2005-10-06 Basf Ag Dachbahnen
US20050215153A1 (en) 2004-03-23 2005-09-29 Cossement Marc R Dextrin binder composition for heat resistant non-wovens
JP4527435B2 (ja) 2004-04-19 2010-08-18 関西ペイント株式会社 硬化型組成物及び該組成物を用いた塗装方法
US7404875B2 (en) 2004-04-28 2008-07-29 Georgia-Pacific Consumer Products Lp Modified creping adhesive composition and method of use thereof
US6977116B2 (en) 2004-04-29 2005-12-20 The Procter & Gamble Company Polymeric structures and method for making same
US8580953B2 (en) 2004-06-21 2013-11-12 Evonik Degussa Gmbh Water-absorbing polysaccharide and method for producing the same
US20060044302A1 (en) 2004-08-25 2006-03-02 Wilson Chen Notebook DC power sharing arrangement
JP2008516071A (ja) 2004-10-13 2008-05-15 クナーフ インシュレーション ゲーエムベーハー ポリエステル結合性組成物
DE102004051861A1 (de) 2004-10-26 2006-04-27 Degussa Ag Verwendung einer wässrigen Dispersion auf Basis eines ungesättigten, amorphen Polyesters auf Basis bestimmter Dicidolisomerer
US20060099870A1 (en) 2004-11-08 2006-05-11 Garcia Ruben G Fiber mat bound with a formaldehyde free binder, asphalt coated mat and method
US7514027B2 (en) 2005-02-17 2009-04-07 Saint-Gobain Isover Process for manufacturing products of mineral wool, in particular monolayer and multilayer products
FR2882366B1 (fr) 2005-02-18 2008-04-18 Coletica Sa Polymere reticule de carbohydrate, notamment a base de polysaccharides et/ou de polyols
KR100712970B1 (ko) 2005-03-03 2007-05-02 롬 앤드 하아스 컴패니 부식을 줄이기 위한 방법
US20060231487A1 (en) 2005-04-13 2006-10-19 Bartley Stuart L Coated filter media
CA2607611C (en) 2005-05-06 2013-11-26 Dynea Oy Poly (vinyl alcohol) - based formaldehyde-free curable aqueous composition
DE102005023431A1 (de) 2005-05-20 2006-11-23 Juchem Gmbh Lösung zur Verstärkung der Maillardreaktion und Konzentrat zu deren Herstellung
DE102005029479A1 (de) 2005-06-24 2007-01-04 Saint-Gobain Isover G+H Ag Verfahren zur Herstellung von gebundener Mineralwolle und Bindemittel hierfür
US8147979B2 (en) * 2005-07-01 2012-04-03 Akzo Nobel Coatings International B.V. Adhesive system and method
EP1741726A1 (en) 2005-07-08 2007-01-10 Rohm and Haas France SAS Curable aqueous composition and use as water repellant fiberglass nonwoven binder
US7989524B2 (en) * 2005-07-19 2011-08-02 The United States Of America, As Represented By The Secretary Of Agriculture Fiber-reinforced starch-based compositions and methods of manufacture and use
KR20220062129A (ko) 2005-07-26 2022-05-13 크나우프 인설레이션, 인크. 접착제 및 이들로 만들어진 물질
EP1917319B1 (en) 2005-08-26 2011-03-16 Asahi Fiber Glass Company, Limited Aqueous binder for inorganic fiber and thermal and/or acoustical insulation material using the same
ATE359315T1 (de) 2005-09-14 2007-05-15 Nat Starch Chem Invest Neue wässrige klebstoffe für gewerbliche anwendungen
WO2007050964A1 (en) 2005-10-26 2007-05-03 Polymer Ventures, Inc. Grease and water resistant article
DE102005056792B4 (de) 2005-11-28 2008-06-19 Saint-Gobain Isover G+H Ag Zusammensetzung für formaldehydfreies Phenolharzbindemittel und deren Verwendung
US7872088B2 (en) 2006-02-16 2011-01-18 Knauf Insulation Gmbh Low formaldehyde emission fiberglass
US20070270070A1 (en) 2006-05-19 2007-11-22 Hamed Othman A Chemically Stiffened Fibers In Sheet Form
US20070287018A1 (en) 2006-06-09 2007-12-13 Georgia-Pacific Resins, Inc. Fibrous mats having reduced formaldehyde emissions
US7803879B2 (en) 2006-06-16 2010-09-28 Georgia-Pacific Chemicals Llc Formaldehyde free binder
US9169157B2 (en) 2006-06-16 2015-10-27 Georgia-Pacific Chemicals Llc Formaldehyde free binder
US7795354B2 (en) 2006-06-16 2010-09-14 Georgia-Pacific Chemicals Llc Formaldehyde free binder
US8048257B2 (en) * 2006-06-23 2011-11-01 Akzo Nobel Coating International B.V. Adhesive system and method of producing a wood based product
US7579289B2 (en) 2006-07-05 2009-08-25 Rohm And Haas Company Water repellant curable aqueous compositions
US7829611B2 (en) 2006-08-24 2010-11-09 Rohm And Haas Company Curable composition
US7749923B2 (en) 2006-09-07 2010-07-06 Johns Manville Facing and faced insulation products
UA99115C2 (ru) 2006-11-03 2012-07-25 Дайнеа Ой Водная твердеющая композиция, способ ее получения, способ скрепления нетканых волокон, скрепленное связующим нетканое изделие и теплоизоляция зданий
US20080160302A1 (en) 2006-12-27 2008-07-03 Jawed Asrar Modified fibers for use in the formation of thermoplastic fiber-reinforced composite articles and process
JP2008163178A (ja) 2006-12-28 2008-07-17 Advics:Kk ブレーキ用摩擦材
PL2124521T3 (pl) 2007-01-25 2019-09-30 Knauf Insulation Podłoże do uprawy hydroponicznej
WO2008089848A1 (en) 2007-01-25 2008-07-31 Knauf Insulation Limited Mineral fibre insulation
US9828287B2 (en) 2007-01-25 2017-11-28 Knauf Insulation, Inc. Binders and materials made therewith
BRPI0721232B1 (pt) 2007-01-25 2023-01-24 Knauf Insulation Limited Placa de madeira compósita
CN101668713B (zh) 2007-01-25 2012-11-07 可耐福保温材料有限公司 矿物纤维板
WO2008089851A1 (en) 2007-01-25 2008-07-31 Knauf Insulation Limited Formaldehyde-free mineral fibre insulation product
EP2137223B1 (en) 2007-04-13 2019-02-27 Knauf Insulation GmbH Composite maillard-resole binders
WO2008141201A1 (en) 2007-05-10 2008-11-20 Fish Christopher N Composite materials
CN101802031B (zh) 2007-07-05 2012-10-17 可耐福保温材料有限公司 羟基单羧酸基梅拉德粘结剂
DE102007035334A1 (de) 2007-07-27 2009-01-29 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue substituierte Arylsulfonylglycine, deren Herstellung und deren Verwendung als Arzneimittel
GB0715100D0 (en) * 2007-08-03 2007-09-12 Knauf Insulation Ltd Binders
FR2924719B1 (fr) 2007-12-05 2010-09-10 Saint Gobain Isover Composition d'encollage pour laine minerale comprenant un monosaccharide et/ou un polysaccharide et un acide organique polycarboxylique, et produits isolants obtenus.
JP4927066B2 (ja) 2007-12-26 2012-05-09 ローム アンド ハース カンパニー 硬化性組成物
JP4789995B2 (ja) 2007-12-26 2011-10-12 ローム アンド ハース カンパニー コンポジット材料及びその製造方法
PE20100438A1 (es) 2008-06-05 2010-07-14 Georgia Pacific Chemicals Llc Composicion de suspension acuosa con particulas de materiales valiosos e impurezas
US8048332B2 (en) 2008-11-12 2011-11-01 Georgia-Pacific Chemicals Llc Method for inhibiting ice formation and accumulation
US8580375B2 (en) 2008-11-24 2013-11-12 Rohm And Haas Company Soy composite materials comprising a reducing sugar and methods of making the same
FR2946352B1 (fr) 2009-06-04 2012-11-09 Saint Gobain Isover Composition d'encollage pour laine minerale comprenant un saccharide, un acide organique polycarboxylique et un silicone reactif, et produits isolants obtenus
CA2770396A1 (en) 2009-08-07 2011-02-10 Knauf Insulation Molasses binder
US8708162B2 (en) 2009-08-19 2014-04-29 Johns Manville Polymeric fiber webs with binder comprising salt of inorganic acid
US8377564B2 (en) 2009-08-19 2013-02-19 Johns Manville Cellulosic composite
PL2464773T3 (pl) 2009-08-11 2018-02-28 Johns Manville Sposób wiązania włókna szklanego i wyrób z włókna szklanego
US8372900B2 (en) 2009-08-19 2013-02-12 Johns Manville Cellulosic composite with binder comprising salt of inorganic acid
US9994482B2 (en) 2009-08-11 2018-06-12 Johns Manville Curable fiberglass binder
US9365963B2 (en) 2009-08-11 2016-06-14 Johns Manville Curable fiberglass binder
US20110040010A1 (en) 2009-08-11 2011-02-17 Kiarash Alavi Shooshtari Curable fiberglass binder comprising salt of inorganic acid
CN101659838B (zh) * 2009-09-24 2011-08-10 广东三和化工科技有限公司 一种氯丁胶乳胶粘剂及其制备方法
US20110135907A1 (en) * 2009-12-09 2011-06-09 Kiarash Alavi Shooshtari Fiber reinforced composite materials and methods for their manufacture and use
US8680224B2 (en) 2010-02-01 2014-03-25 Johns Manville Formaldehyde-free protein-containing binder compositions
US20110191425A1 (en) * 2010-02-02 2011-08-04 Solace Systems Geospatially Aware Message System and Method
MX352241B (es) 2010-03-31 2017-11-15 Knauf Insulation Gmbh Star Productos de aislamiento que tienen una emulsion humectante no acuosa.
PL2386394T3 (pl) 2010-04-22 2020-11-16 Rohm And Haas Company Trwałe termoutwardzalne kompozycje wiążące z 5-węglowych cukrów redukujących i zastosowanie jako spoiw do drewna
EP2386605B1 (en) 2010-04-22 2017-08-23 Rohm and Haas Company Durable thermosets from reducing sugars and primary polyamines
EP2566903B1 (en) * 2010-05-07 2021-07-14 Knauf Insulation Carbohydrate binders and materials made therewith
AU2011249759B2 (en) * 2010-05-07 2014-11-06 Knauf Insulation Carbohydrate polyamine binders and materials made therewith
EP2576882B1 (en) 2010-06-07 2015-02-25 Knauf Insulation Fiber products having temperature control additives
JP5616291B2 (ja) 2010-06-11 2014-10-29 ローム アンド ハース カンパニーRohm And Haas Company ジアルデヒドから製造された5−および6−員環式エナミン化合物からの速硬化性熱硬化性物質
EP2617088B2 (en) 2010-09-17 2020-12-02 Knauf Insulation GmbH Organic acid carbohydrate binders and materials made therewith
JP5977015B2 (ja) * 2010-11-30 2016-08-24 ローム アンド ハース カンパニーRohm And Haas Company 還元糖およびアミンの安定な反応性熱硬化性配合物
FR2978768B1 (fr) 2011-08-05 2014-11-28 Saint Gobain Isover Composition d'encollage pour laine minerale a base de saccharide reducteur et de saccharide hydrogene, et produits isolants obtenus
GB201120137D0 (en) 2011-11-22 2012-01-04 Dynea Oy Modified binder compositions
US9933491B2 (en) 2012-02-03 2018-04-03 Toyota Jidosha Kabushiki Kaisha Electric storage system
GB201206193D0 (en) 2012-04-05 2012-05-23 Knauf Insulation Ltd Binders and associated products
US10815593B2 (en) 2012-11-13 2020-10-27 Johns Manville Viscosity modified formaldehyde-free binder compositions
GB201214734D0 (en) * 2012-08-17 2012-10-03 Knauf Insulation Ltd Wood board and process for its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1102829A1 (ru) * 1983-03-28 1984-07-15 Ленинградский ордена Трудового Красного Знамени технологический институт целлюлозно-бумажной промышленности Способ изготовлени влагопрочного волокнистого материала
SU1544567A1 (ru) * 1988-05-30 1990-02-23 Горьковское Производственное Объединение "Стройдеталь" Способ производства древесно-стружечных плит
SU1692841A1 (ru) * 1989-12-29 1991-11-23 Институт механики металлополимерных систем АН БССР Способ изготовлени древопластика
EP2223941A1 (en) * 2009-02-27 2010-09-01 Rohm and Haas Company Rapid cure carbohydrate composition
EP2253663A1 (de) * 2009-05-15 2010-11-24 AGM Mader GmbH Verfahren zur Herstellung eines Bindemittels sowie Verfahren zur Herstellung eines Formkörpers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2792811C2 (ru) * 2018-03-27 2023-03-24 Кнауф Инзулацьон Спрл Древесные плиты
RU2816964C1 (ru) * 2019-12-27 2024-04-08 Кнауф Инзулацьон Композитные изделия
RU206509U1 (ru) * 2021-08-05 2021-09-14 Общество с ограниченной ответственностью "ДОК Пиндуши" Строительная древесностружечная плита влагостойкая "waterproof wood-board"

Also Published As

Publication number Publication date
ES2763356T3 (es) 2020-05-28
EP2885116B1 (en) 2019-10-09
CN110788958A (zh) 2020-02-14
WO2014027115A1 (en) 2014-02-20
RU2015109065A (ru) 2016-10-10
US10183416B2 (en) 2019-01-22
US20170106561A1 (en) 2017-04-20
CA2881758C (en) 2020-12-29
EP2885116B2 (en) 2024-05-22
GB201214734D0 (en) 2012-10-03
BR112015003477B1 (pt) 2022-06-28
CN104768720A (zh) 2015-07-08
MX2015002074A (es) 2015-07-14
PL2885116T3 (pl) 2020-04-30
US20150224671A1 (en) 2015-08-13
BR112015003477A2 (pt) 2017-07-04
MX350804B (es) 2017-09-18
CA2881758A1 (en) 2014-02-20
EP2885116A1 (en) 2015-06-24
US9492943B2 (en) 2016-11-15

Similar Documents

Publication Publication Date Title
RU2627644C2 (ru) Древесная плита и способ ее производства
JP7269915B2 (ja) バインダーおよび関連製品
US11230031B2 (en) Wood particle boards
RU2735098C2 (ru) Древесностружечные плиты