RU2601037C2 - Высококремнистые двухфазные стали с улучшенной пластичностью - Google Patents

Высококремнистые двухфазные стали с улучшенной пластичностью Download PDF

Info

Publication number
RU2601037C2
RU2601037C2 RU2014126384/02A RU2014126384A RU2601037C2 RU 2601037 C2 RU2601037 C2 RU 2601037C2 RU 2014126384/02 A RU2014126384/02 A RU 2014126384/02A RU 2014126384 A RU2014126384 A RU 2014126384A RU 2601037 C2 RU2601037 C2 RU 2601037C2
Authority
RU
Russia
Prior art keywords
mass
steel sheet
steels
steel
temperature
Prior art date
Application number
RU2014126384/02A
Other languages
English (en)
Other versions
RU2014126384A (ru
Inventor
Хюнь Цзо ЦЗУНЬ
Нарайан С. ПОТТОРЕ
Нина Михайловна ФОНШТЕЙН
Original Assignee
Арселормитталь Инвестигасьон И Десарролло С.Л.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Арселормитталь Инвестигасьон И Десарролло С.Л. filed Critical Арселормитталь Инвестигасьон И Десарролло С.Л.
Publication of RU2014126384A publication Critical patent/RU2014126384A/ru
Application granted granted Critical
Publication of RU2601037C2 publication Critical patent/RU2601037C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Изобретение относится к области металлургии, а именно к получению листа двухфазной стали, используемому в автомобильной промышленности. Горячекатаный лист из двухфазной стали, содержащей 0,1-0,3 мас.% С, 1,5-2,5 мас.% Si, 1,75-2,5 мас.% Mn, подвергают отжигу при температуре от 750 до 875°C. Закаливают полученный отожженный лист в воде при температуре от 400 до 420°C и осуществляют его перестаривание при температуре от 400 до 420°C для превращения мартенсита в указанном горячекатаном стальном листе в отпущенный мартенсит и получения структуры листа, содержащей феррит и отпущенный мартенсит. Лист обладает пределом прочности при растяжении по меньшей мере 980 МПа и общим удлинением по меньшей мере 15%. 6 з.п. ф-лы, 7 ил., 4 табл.

Description

Перекрестная ссылка на родственные заявки
Эта заявка испрашивает приоритет на основании 35 U.S.С.119 (е) по предварительной заявке US №61/ 629757, поданной 28 ноября 2011.
Область техники, к которой относится изобретение
Настоящее изобретение в целом относится к двухфазным (DP) сталям. Более конкретно, настоящее изобретение относится к DP стали с высоким содержанием кремния в диапазоне 0,5-3,5% масс. Более конкретно, настоящее изобретение относится к DP стали с высоким содержанием Si с улучшенной пластичностью за счет непрерывного отжига охлаждением водой.
Известный уровень техники
В связи с ростом использования высокопрочных сталей в автомобильной промышленности существует растущий спрос на сталь с повышенной прочностью без потери пластичности. Двухфазные (DP) стали являются обычным выбором, поскольку они обеспечивают хороший баланс прочности и пластичности. Поскольку в недавно разработанных сталях объемная доля мартенсита продолжает увеличиваться, еще больше увеличивая прочность, пластичность становится ограничивающим фактором. Кремний является предпочтительным легирующим элементом, потому что было найдено, что кривая прочность-пластичность сдвигается вверх и вправо в DP сталях. Однако кремний образует оксиды, которые могут вызвать проблемы с адгезией цинковых покрытий, что требует снизить до минимума содержание кремния при достижении требуемых механических свойств.
Таким образом, в известном уровне техники существует потребность в DP сталях с конечным пределом прочности при растяжении, большем или равном около 980 МПа и общим удлинением большем или равном около 15%.
Краткое изложение существа изобретения
Настоящее изобретение относится к двухфазной стали (мартенсит+феррит). Предел прочности при растяжении двухфазной стали составляет, по меньшей мере, 980 МПа, и общее удлинение, по меньшей мере, 15%. Общее удлинение двухфазной стали также может составлять, по меньшей мере, 18%. Предел прочности при растяжении двухфазной стали также может составлять, по меньшей мере, 1180 МПа.
Двухфазная сталь может содержать 0,5-3,5% масс. Si и более предпочтительно 1,5-2,5% масс. Si. Двухфазная сталь может дополнительно включать 0,1-0,3% масс. С, более предпочтительно 0,14-0,21% масс. С и наиболее предпочтительно менее 0,19% масс. С, например около 0,15% масс. С. Двухфазная сталь также может дополнительно включать 1-3% масс. Μn, более предпочтительно 1,75-2,5% масс. Μn и наиболее предпочтительно около 1,8-2,2% масс. марганца.
Двухфазная сталь может дополнительно включать 0,05-1% масс. Аl, 0,005-0,1% масс. общего содержания одного или нескольких элементов, выбранных из группы, состоящей из Nb, Ti и V, и 0-0,3% масс. Мо.
Краткое описание чертежей
Фиг. 1A и 1B представляют зависимость ТЕ от TS для 0,15C-1,8Mn-0,15Mo-0,02Nb-XSi и 0,20C-1,8Mn-0,15Mo-0,02Nb-XSi с изменяющимся содержанием кремния 1,5-2,5% масс;
Фиг. 2A и 2B представляют SEM микрофотографии 0,2% С сталей, имеющих сходные TS около 1300 МПа при двух уровнях содержания Si. 2A - при 1,5% Si и 2B - при 2,5% Si;
Фиг. 3A и 3B представляют SEM микрофотографии горячих полос при CTs 580°С и 620°С, соответственно, на которых можно различить микроструктуру сталей;
Фиг. 4A и 4B представляют зависимость предела прочности при растяжении (TS и YS) и ТЕ соответственно от температуры отжига (AT) с температурой охлаждающей газовой струи (GJC) 720°С и температурой перестаривания (OA) 400°С;
Фиг. 5A-5D являются SEM микрофотографиями образцов, отожженных при: 5A=750°С, 5B=775°С, 5C=800°С и 5D=825°С, показывающими микроструктуру отожженных образцов;
Фиг. 6A-6E представляют зависимость механических свойств при растяжении от температуры отжига образцов таблицы 4А;
Фиг. 6F представляют зависимость ТЕ от TS для образцов таблицы 4А;
Фиг. 7А-7E представляют зависимость механических свойств при растяжении от температуры отжига образцов таблицы 4В; и
Фиг. 7F представляют зависимость ТЕ от TS для образцов таблицы 4В.
Подробное описание изобретения
Настоящее изобретение относится к семейству сталей с двухфазной (DP) микроструктурой (феррит+мартенсит). Стали имеют минимальное содержание или отсутствие остаточного аустенита. Стали изобретения имеют уникальное сочетание высокой прочности и пластичности. Механические свойства при растяжении согласно настоящему изобретению предпочтительно предусматриваются для многих стальных изделий. Один такой продукт имеет предел прочности при растяжении (UTS)≥980 МПа с общим удлинением (ТЕ)≥18%. Другой такой продукт будет иметь UTS≥1180 МПа и ТЕ≥15%.
В широком смысле сплав имеет состав (% масс.), включающий С: 0,1-0,3; Μn: 1-3, Si: 0,5-3,5; Αl: 0,05-1, необязательно Mo: 0-0,3, Nb, Ti, V: 0,005-0,1 в сумме, остальное железо и неизбежные примеси, такие как S, Ρ и N. Более предпочтительно содержание углерода составляет 0,14-0,21% масс. и предпочтительно менее 0,19% масс. для хорошей свариваемости. Наиболее предпочтительно содержание углерода составляет около 0,15% масс. сплава. Содержание марганца более предпочтительно составляет 1,75-2,5% масс. и наиболее предпочтительно около 1,8-2,2% масс. Содержание кремния более предпочтительно составляет 1,5-2,5% масс.
Примеры
WQ-CAL (линия непрерывного отжига с водяным охлаждением) используют для производства мартенситных сталей на малолегированной основе и сталей DP марок из-за его уникальной производительности водяного охлаждения. Таким образом, авторы настоящего изобретения сконцентрировались на DP микроструктуре при использовании WQ-CAL. В DP сталях феррит и мартенсит преимущественно соответственно регулируют пластичность и прочность. Таким образом, для одновременного достижения высокой прочности и пластичности требуется упрочнение и феррита и мартенсита. Добавление Si эффективно повышает прочность феррита и облегчает использование меньшей доли мартенсита для создания того же уровня прочности. Следовательно, пластичность в DP сталях улучшается. Поэтому DP стали с высоким содержанием Si выбраны в качестве основы металлургического концепции.
Для того чтобы проанализировать металлургические эффекты DP сталей с высоким содержанием Si, лабораторные опыты с различными количествами Si были произведены вакуумной индукционной плавкой. Химический состав исследованных сталей приведен в таблице 1. Первые шесть сталей на основе 0,15C-1,8Mn-0,15Mo-0,02Nb с содержанием Si в диапазоне 0-2,5% масс. Остальные включают 0,2% С с 1,5-2,5% масс. Si. Следует отметить, что хотя эти стали содержат 0,15% масс. Мо, добавление Мо не требуется для получения DP микроструктуры с использованием WQ-CAL. Таким образом, Мо является необязательным элементом в семействе сплавов настоящего изобретения.
Figure 00000001
После горячей прокатки при FT 870°С и СТ 580°С обе стороны горячих полос механически зачищают для удаления обезуглероженных слоев перед холодной прокаткой с обжатием около 50%. Материалы с максимальной твердостью отжигают в соляной ванне при высокой температуре от 750 до 875°С в течение 150 секунд, быстро переносят в резервуар с водой с последующим отпуском термообработкой при 400/420°С в течение 150 секунд. Высокая температура перестаривания была выбрана, чтобы улучшить раздачу отверстий и сгибаемость сталей. Два JIS-T испытания на растяжение проводят для каждого условия. Фиг. 1A и 1B представляют зависимость ТЕ от TS для 0,15С-1,8Мn-0,15Mo-0,02Nb-XSi и 0,20C-1,8Mn-0,15Mo-0,02Nb-XSi с различным содержанием кремния 1,5-2,5% масс. Фиг. 1A и 1B представляют эффект добавления Si на баланс между пределом прочности при растяжении и полным удлинением. Увеличение содержания Si явно повышает пластичность с тем же пределом прочности при растяжении для сталей с 0,15% С и 0,20% С.Фиг. 2A и 2B являются SEM микрофотографиями 0,2% С сталей, имеющих сходные TS около 1300 МПа при двух содержаниях Si, 2A - с 1,5% масс. Si и 2B - с 2,5% масс. Si. Фиг. 2A и 2B подтверждают, что чем выше содержание Si, тем больше доля фракции феррита с тем же пределом прочности при растяжении (TS около 1300 МПа). Кроме того, результаты РФА не выявляют остаточного аустенита в отожженных сталях, что приводит к отсутствию ТРИП эффекта при добавлении Si.
Характеристики отжига сталей с содержанием 2,5% Si
Поскольку 0,2% С стали с 2,5% масс. Si обеспечивают пригодные механические свойства при растяжении, как показано на фиг.1, выполняют дальнейший анализ 0,2% масс. С и 2,5% масс. Si стали.
Горячая/холодная прокатка
Два режима горячей прокатки с различной температурой намотки (СТ) 580 и 620°С и одной конечной температурой прокатки (FT) 870°С осуществляют с использованием 0,2% масс. С и 2,5% масс. Si стали. Механические свойства при растяжении полученных горячих полос приведены в таблице 2. Более высокая СТ приводит к более высокому YS, более низкому TS и лучшей пластичности. Более низкая СТ способствует формированию бейнита (бейнитный феррит), что приводит к более низкому YS, более высокому TS и более низкому ТЕ. Однако основная микроструктура состоит из феррита и перлита при обоих СТ. Фиг. 3A и 3B являются SEM микрофотографиями горячих полос при СТ 580°С и 620°С соответственно, на которых можно различить микроструктуру сталей. Однако отсутствуют серьезные проблемы с нагрузкой стана холодной прокатки, так как при обе СТ имеют более низкую прочность, чем GA DP Т980. Кроме того, добавление Мо не требуется для получения DP микроструктуры с использованием WQ-CAL. Композиция без Мо снижает прочность горячей полосы во всех диапазонах СТ. После механической зачистки для удаления обезуглероженных слоев, горячие полосы подвергают холодной прокатке с обжатием около 50% на лабораторном стане холодной прокатки.
Figure 00000002
Отжиг
Моделирование отжига проводят для сталей с максимальной твердостью, полученных из горячих полос с СТ 620°С, используя солевую ванну. Материалы с максимальной твердостью отжигают при различных температурах от 775 до 825°С в течение 150 секунд с последующей обработкой при 720°С в течение 50 секунд, чтобы моделировать охлаждение газовой струей, и затем быстро охлаждают водой. Затем проводят перестаривание закаленных образцов при 400°С в течение 150 секунд. Высокая ОAT 400°С выбрана, чтобы улучшить раздачу отверстия и сгибаемость. Фиг. 4A и 4B представляют прочностные свойства при растяжении (TS как и YS) и ТЕ соответственно в зависимости от температуры отжига (AT) при температуре охлаждения газовой струей (GJC) 720°С и температуре перестаривания (OA) 400°С. YS и TS повышаются с ростом AT за счет ТЕ. Температура отжига 800°С с GJC 720°С и ОАТ 400°С может давать сталь с YS около 950 МПа, TS около 1250 МПа и ТЕ около 16%. Следует отметить, что эта композиция может давать различные марки стали при различных уровнях TS 980-1270 МПа: 1) YS=800МПа, TS=1080МПа и ТЕ=20%; и 2) YS=1040МПа, TS=1310МПа и ТЕ =15% (см. таблицу 3). Фиг. 5А-5D являются SEM микрофотографиями образцов, отожженных при: 5A=750°С, 5B=775°С, 5С=800°С и 2D=825°С, показывающими микроструктуру отожженных образцов. Образец, отожженный при 750°С, по-прежнему содержит нерастворенный цементит в полностью рекристаллизованной ферритной матрице, что приводит в высоким ТЕ и YPE. Начиная с AT 775°С получается двухфазная микроструктура феррита и отпущенного мартенсита. Образец, обработанный при AT 800°С, содержит долю мартенсита около 40%, и TS составляет около 1180 МПа; аналогичный современной промышленной DP стали с TS 980 с более низким содержанием Si, которая также содержит около 40% мартенсита. Можно ожидать потенциальное сочетание более высоких TS и ТЕ в DP сталях с высоким содержанием Si, обрабатываемых при AT 825°С и выше. Проводят испытания на раздачу отверстия (НЕ) и загиб на 90° на образцах, отожженных при 800°С. Раздача отверстия и сгибаемость в среднем составляют 22% (стандартное откл. 3% и на основе 4 испытаний) и 1,1 r/t соответственно.
Figure 00000003
Таблица 4А представляет прочностные характеристики сплавов настоящего изобретения основной формулы 0,15C-1,8Mn-Si-0,02Nb-0,15Mo с различным содержанием Si 1,5-2,5% масс. Холоднокатаные листы сплава отжигают при различных температурах 750-900°С и проводят перестаривание при 200°С.
Таблица 4 В представляет прочностные характеристики сплавов настоящего изобретения основной формулы 0,15C-1,8Mn-Si-0,02Nb-0,15Mo с различным содержанием Si 1,5-2,5% масс. Холоднокатаные листы сплава отжигают при различных температурах 750-900°С и проводят перестаривание при 420°С.
Фиг. 6A-6E представляют зависимость прочностных характеристик в зависимости от температуры отжига образцов таблицы 4А. Фиг. 6F представляют зависимость ТЕ от TS образцов таблицы 4А.
Фиг. 7A-7E представляют зависимость прочностных характеристик в зависимости от температуры отжига образцов таблицы 4 В. Фиг. 7F представляют зависимость ТЕ от TS образцов таблицы 4 В.
Как можно видеть, прочность (TS, как и YS) увеличивается с увеличением температуры отжига для температур перестаривания и 200 и 420°С. Также удлинение (и ТЕ, и UE) уменьшается с ростом температуры отжига для температур перестаривания и 200 и 420°С. С другой стороны, раздача отверстия (НЕ), по всей вероятности, не зависит заметным образом от температуры отжига, но повышение температуры OA, по-видимому, в некоторой степени увеличивает среднее значение НЕ. Наконец, различные температуры OA, по всей вероятности, не влияют на зависимость ТЕ от ТС.
Следует понимать, что сделанное раскрытие представлено в виде подробных осуществлений, описанных с целью полного раскрытия настоящего изобретения, и что такие детали не следует интерпретировать как ограничивающие объем притязаний этого изобретения, представленный и определенный прилагаемой формулой изобретения.
Figure 00000004
Figure 00000005
Figure 00000006

Claims (7)

1. Способ производства двухфазного стального листа, имеющего микроструктуру, содержащую феррит и отпущенный мартенсит, и обладающего пределом прочности при растяжении по меньшей мере 980 МПа, общим удлинением по меньшей мере 15%, при этом способ включает стадии, на которых:
обеспечивают двухфазный горячекатаный стальной лист, имеющий микроструктуру, содержащую феррит и мартенсит, композиция стали которого включает:
0,1-0,3 мас.% С;
1,5-2,5 мас.% Si;
1,75-2,5 мас.% Mn;
отжигают указанный горячекатаный лист при температуре от 750 до 875°C;
закаливают его в воде при температуре от 400 до 420°C; и
перестаривают указанный стальной лист при указанной температуре от 400 до 420°C для превращения мартенсита в указанном горячекатаном стальном листе в отпущенный мартенсит.
2. Способ по п. 1, в котором композиция стали двухфазного горячекатаного стального листа включает 1,8-2,2 мас.% Mn.
3. Способ по п. 1, в котором композиция стали двухфазного горячекатаного стального листа включает 0,05-1 мас.% Al.
4. Способ по п. 1, в котором композиция стали двухфазного горячекатаного стального листа включает 0,005-0,1 мас.% в сумме одного или несколько элементов, выбранных из группы, состоящей из Nb, Ti и V.
5. Способ по п. 1, в котором композиция стали двухфазного горячекатаного стального листа включает 0-0,3 мас.% Мо.
6. Способ по п. 1, в котором двухфазный стальной лист имеет предел прочности при растяжении по меньшей мере 1180 МПа.
7. Способ по п. 1, в котором двухфазный стальной лист имеет коэффициент раздачи отверстия 19-25%.
RU2014126384/02A 2011-11-28 2012-11-28 Высококремнистые двухфазные стали с улучшенной пластичностью RU2601037C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161629757P 2011-11-28 2011-11-28
US61/629,757 2011-11-28
PCT/US2012/066877 WO2013082171A1 (en) 2011-11-28 2012-11-28 High silicon bearing dual phase steels with improved ductility

Publications (2)

Publication Number Publication Date
RU2014126384A RU2014126384A (ru) 2016-01-27
RU2601037C2 true RU2601037C2 (ru) 2016-10-27

Family

ID=48536019

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014126384/02A RU2601037C2 (ru) 2011-11-28 2012-11-28 Высококремнистые двухфазные стали с улучшенной пластичностью

Country Status (13)

Country Link
US (3) US10131974B2 (ru)
EP (1) EP2785889A4 (ru)
JP (1) JP2014534350A (ru)
KR (3) KR20200106559A (ru)
CN (1) CN104350166B (ru)
BR (1) BR112014012756B1 (ru)
CA (1) CA2857281C (ru)
IN (1) IN2014CN04226A (ru)
MA (1) MA35720B1 (ru)
MX (1) MX371405B (ru)
RU (1) RU2601037C2 (ru)
WO (1) WO2013082171A1 (ru)
ZA (1) ZA201403746B (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435763B2 (en) 2014-04-15 2019-10-08 Thyssenkrupp Steel Europe Ag Method for producing a cold-rolled flat steel product with high yield strength and flat cold-rolled steel product
EP4109037A1 (en) 2014-12-16 2022-12-28 Greer Steel Company Steel compositions, methods of manufacture and uses in producing rimfire cartridges
MX2018000520A (es) * 2015-07-15 2019-04-29 Ak Steel Properties Inc Alta formabilidad de acero en fase dual.
SE539519C2 (en) 2015-12-21 2017-10-03 High strength galvannealed steel sheet and method of producing such steel sheet
USD916126S1 (en) 2019-05-28 2021-04-13 Samsung Electronics Co., Ltd. Display screen or portion thereof with icon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2246552C2 (ru) * 1999-07-31 2005-02-20 Тиссен Крупп Шталь Аг Обладающая повышенной прочностью стальная полоса или лист и способ его изготовления (варианты)
EP1548142A1 (en) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating film adhesion
US7507307B2 (en) * 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
RU2418090C2 (ru) * 2008-02-19 2011-05-10 ДжФЕ СТИЛ КОРПОРЕЙШН Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0830212B2 (ja) 1990-08-08 1996-03-27 日本鋼管株式会社 加工性に優れた超高強度冷延鋼板の製造方法
JPH0499226A (ja) 1990-08-08 1992-03-31 Kobe Steel Ltd 低降伏比高強度冷延鋼板の製造方法
BE1009719A3 (nl) 1995-10-24 1997-07-01 Wiele Michel Van De Nv Systeem voor het onder spanning brengen van grondkettingdraden op een boomstand.
EP1514951B1 (en) * 2002-06-14 2010-11-24 JFE Steel Corporation High strength cold rolled steel plate and method for production thereof
FR2850671B1 (fr) 2003-02-05 2006-05-19 Usinor Procede de fabrication d'une bande d'acier dual-phase a structure ferrito-martensitique, laminee a froid et bande obtenue
JP4005517B2 (ja) 2003-02-06 2007-11-07 株式会社神戸製鋼所 伸び、及び伸びフランジ性に優れた高強度複合組織鋼板
JP2004256872A (ja) * 2003-02-26 2004-09-16 Jfe Steel Kk 伸びおよび伸びフランジ性に優れる高張力冷延鋼板およびその製造方法
JP4649868B2 (ja) * 2003-04-21 2011-03-16 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN1273633C (zh) 2003-06-24 2006-09-06 宝山钢铁股份有限公司 超细晶粒低碳低合金双相钢板及其制造方法
JP4461112B2 (ja) 2006-03-28 2010-05-12 株式会社神戸製鋼所 加工性に優れた高強度鋼板
JP4503001B2 (ja) * 2006-11-21 2010-07-14 株式会社神戸製鋼所 耐パウダリング性と加工性に優れた高強度合金化溶融亜鉛めっき鋼板
JP5438302B2 (ja) * 2008-10-30 2014-03-12 株式会社神戸製鋼所 加工性に優れた高降伏比高強度の溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板とその製造方法
JP5418168B2 (ja) * 2008-11-28 2014-02-19 Jfeスチール株式会社 成形性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板およびそれらの製造方法
JP5379494B2 (ja) 2009-01-07 2013-12-25 株式会社神戸製鋼所 コイル内での強度ばらつきの小さい高強度冷延鋼板コイルおよびその製造方法
JP5302840B2 (ja) * 2009-10-05 2013-10-02 株式会社神戸製鋼所 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板
JP5530209B2 (ja) 2010-02-05 2014-06-25 株式会社神戸製鋼所 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板およびその製造方法
US20130160889A1 (en) 2010-03-24 2013-06-27 Jfe Steel Corporation High-strength electric resistance welded steel tube and production method therefor
JP5466562B2 (ja) 2010-04-05 2014-04-09 株式会社神戸製鋼所 伸びおよび曲げ性に優れた高強度冷延鋼板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2246552C2 (ru) * 1999-07-31 2005-02-20 Тиссен Крупп Шталь Аг Обладающая повышенной прочностью стальная полоса или лист и способ его изготовления (варианты)
US7507307B2 (en) * 2002-06-10 2009-03-24 Jfe Steel Corporation Method for producing cold rolled steel plate of super high strength
EP1548142A1 (en) * 2003-12-25 2005-06-29 Kabushiki Kaisha Kobe Seiko Sho High-strength cold-rolled steel sheet excellent in coating film adhesion
RU2418090C2 (ru) * 2008-02-19 2011-05-10 ДжФЕ СТИЛ КОРПОРЕЙШН Лист высокопрочной стали, обладающий повышенной пластичностью, и способ его производства

Also Published As

Publication number Publication date
US20190010585A1 (en) 2019-01-10
US20150267280A1 (en) 2015-09-24
US10131974B2 (en) 2018-11-20
US11198928B2 (en) 2021-12-14
BR112014012756B1 (pt) 2019-02-19
CA2857281A1 (en) 2013-06-06
MX371405B (es) 2020-01-29
JP2014534350A (ja) 2014-12-18
RU2014126384A (ru) 2016-01-27
BR112014012756A2 (pt) 2017-06-27
US20200080177A1 (en) 2020-03-12
KR20170054554A (ko) 2017-05-17
IN2014CN04226A (ru) 2015-07-17
CN104350166B (zh) 2018-08-03
WO2013082171A1 (en) 2013-06-06
MX2014006415A (es) 2015-11-16
EP2785889A1 (en) 2014-10-08
CA2857281C (en) 2018-12-04
ZA201403746B (en) 2015-07-29
KR20200106559A (ko) 2020-09-14
EP2785889A4 (en) 2016-03-02
MA35720B1 (fr) 2014-12-01
CN104350166A (zh) 2015-02-11
KR20140117365A (ko) 2014-10-07

Similar Documents

Publication Publication Date Title
RU2680042C2 (ru) Способ производства высокопрочного стального листа, обладающего улучшенной прочностью, пластичностью и формуемостью
KR102419630B1 (ko) 높은 항복 강도를 갖는 냉간-압연 판상 강 제품을 제조하기 위한 방법 및 판상 냉간-압연 강 제품
RU2686729C2 (ru) Способ производства высокопрочного стального листа с покрытием, обладающего высокой прочностью, пластичностью и формуемостью
RU2684912C2 (ru) Способ изготовления сверхпрочного стального листа с покрытием или без покрытия и полученный лист
US11198928B2 (en) Method for producing high silicon dual phase steels with improved ductility
RU2677888C2 (ru) Способ изготовления высокопрочной листовой стали, имеющей улучшенную формуемость, и полученный лист
US20150000797A1 (en) Cold-Rolled Flat Steel Product and Method for its Production
US20140147329A1 (en) High silicon bearing dual phase steels with improved ductility
RU2680043C2 (ru) Способ изготовления высокопрочного стального листа, обладающего улучшенной формуемостью и пластичностью, и полученный лист
JP6621769B2 (ja) 強度、成形性が改善された高強度被覆鋼板の製造方法および得られた鋼板
JP5365758B2 (ja) 鋼板及びその製造方法
JP6037087B1 (ja) 高強度冷延鋼板およびその製造方法
KR102490989B1 (ko) 초고강도 갈바닐링된 강판을 제조하기 위한 방법 및 획득된 갈바닐링된 강판
KR101443441B1 (ko) 고강도 냉연강판 및 그 제조 방법
KR101607011B1 (ko) 강판 및 그 제조 방법
JP6967628B2 (ja) 超高強度合金化溶融亜鉛めっき鋼板を製造するための方法、及び得られた合金化溶融亜鉛めっき鋼板
KR101586893B1 (ko) 강판 및 그 제조 방법