RU2570419C2 - Способ димеризации этилена в бутен-1 с использованием композиции, содержащей комплекс титана с алкокси-лигандом, функционализированным гетероатомом - Google Patents

Способ димеризации этилена в бутен-1 с использованием композиции, содержащей комплекс титана с алкокси-лигандом, функционализированным гетероатомом Download PDF

Info

Publication number
RU2570419C2
RU2570419C2 RU2011119802/04A RU2011119802A RU2570419C2 RU 2570419 C2 RU2570419 C2 RU 2570419C2 RU 2011119802/04 A RU2011119802/04 A RU 2011119802/04A RU 2011119802 A RU2011119802 A RU 2011119802A RU 2570419 C2 RU2570419 C2 RU 2570419C2
Authority
RU
Russia
Prior art keywords
group
heteroatom
catalytic composition
ethylene
alkoxy
Prior art date
Application number
RU2011119802/04A
Other languages
English (en)
Other versions
RU2011119802A (ru
Inventor
Фабьен ГРАССЕ
Лионель МАНЬЯ
Original Assignee
Ифп Энержи Нувелль
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ифп Энержи Нувелль filed Critical Ифп Энержи Нувелль
Publication of RU2011119802A publication Critical patent/RU2011119802A/ru
Application granted granted Critical
Publication of RU2570419C2 publication Critical patent/RU2570419C2/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0211Oxygen-containing compounds with a metal-oxygen link
    • B01J31/0212Alkoxylates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/08Alkenes with four carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/36Catalytic processes with hydrides or organic compounds as phosphines, arsines, stilbines or bismuthines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/56Addition to acyclic hydrocarbons
    • C07C2/58Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/28Titanium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/20Olefin oligomerisation or telomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу селективной димеризации этилена в бутен-1 с использованием каталитической композиции. Каталитическая композиция включает металлоорганический комплекс титана соответствующей общей формулы [Ti(OR)n(Y)(4-n)], в которой: Y является гидрокарбильным радикалом, содержащим от 1 до 30 атомов углерода, или радикалом, выбранным из группы, включающей галогениды, алкокси R'O-, амидо R'2N- и карбоксилаты R'COO-, где R' является гидрокарбильным радикалом, n может принимать целые значения от 1 до 4, лиганд -OR является органическим соединением, выбранным из семейства алкокси-лигандов, общая структура которых О-(CR10R11)n-X-L, в которой: функциональная группа L является группой, содержащей гетероатом, выбранный из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой, группа X является углеводородной группой (CR7R8), атомом кислорода или группой, содержащей атом азота -NR9, группы R7, R8, R9, R10 и R11 обозначают атом водорода или углеводородную цепочку, циклическую или нециклическую, содержащую от 1 до 30 атомов углерода и возможно содержащую гетероатом, указанную группу (CR10R11)n выбирают из следующих групп: -CH2-, -(CH2)2-, -(CH2)3-, -(СН2)4-, -(СН2)5-, -С(СН3)2-, - С(СН3)2-СН2, -С(СН3)2-СН2-СН2, -C(CF3)2-, -C(CF3)2-CH2 и -С(CF3)2-СН2-СН2. Технический результат - высокая селективность димеризации этилена и низкая доля полиэтилена по отношению к содержанию продукта С4. 2 н. и 6 з.п. ф-лы, 2 табл., 20 пр.

Description

Настоящее изобретение относится к селективной димеризации этилена в бутен-1. Объектом изобретения является способ димеризации этилена с использованием особой каталитической композиции.
Уровень техники
Хорошо известно, что олефины, такие как этилен, пропилен или бутен-1, могут быть димеризованы при помощи каталитических систем на основе переходных металлов, таких как никель, хром, титан, цирконий или другие металлы, в присутствии сокатализатора, такого как соединение гидрокарбилалюминия, галогенида гидрокарбилалюминия или алюминооксана.
Было описано несколько типов лигандов, стабилизирующих каталитическое соединение и ориентирующих селективность реакции димеризации. В патенте US 2943125 К. Циглер описал метод димеризации этилена в бутен-1 посредством катализатора, полученного смешиванием триалкилалюминия и тетраалкоголята титана и циркония. В процессе реакции образуется также некоторое количество полиэтилена с высокой молекулярной массой, который в значительной степени препятствует осуществлению. Некоторые улучшения были предложены для уменьшения количества полимера, в частности, в патенте US 3686350, в котором говорится об использовании органических соединений фосфора совместно с элементами катализатора, в патенте US 4101600, в котором описана обработка катализатора водородом, или в патенте US 3879485, в котором описано использование различных простых эфиров в качестве растворителей реакционной среды. Хотя эти модификации первоначальной каталитической системы существенно улучшают селективность реакции, они оказываются малопригодными на практике, в частности в промышленном способе, в котором требуется отделять бутен-1 от растворителя, оставляя только следы полярного соединения в бутене. С этой точки зрения в патенте FR 2552079 показано, что использование ассоциата простого эфира с титанатом алкила в количестве, близком к стехиометрии, и с тригидрокарбилалюминием значительно улучшает активность и селективность катализаторов титанатов алкилтригидрокарбилалюминия при димеризации этилена в бутен-1. Этот эффект становится более явным, чем тот, который дает использование простых эфиров в количестве, соответствующем использованию в качестве растворителя. Его преимущество заключается также в том, что простые эфиры не используются в качестве растворителя, недостатки которого были указаны.
Основной недостаток каталитических систем на основе титана, приводящих к селективному образованию бутена-1, заключается в образовании существенного количества полимеров. Это образование полимеров может являться причиной быстрой дезактивации катализатора, а также существенно затрудняет использование на промышленной установке. Контроль количества полимеров является, таким образом, очень важным параметром при использовании каталитических систем этого типа в производстве.
Контроль копродуцирования полимеров применяется в большей части систем, связанных с использованием добавок (органических или иных), что очень часто усложняет каталитическую композицию. К тому же являясь эффективными для контроля продуцирования полиэтилена (РЕ), эти добавки часто приводят к снижению производительности катализатора.
Объектом изобретения является новая каталитическая композиция для селективной димеризации этилена в бутен-1.
Другим объектом изобретения является способ селективной димеризации этилена в бутен-1, в котором используется указанная каталитическая композиция, причем указанный способ имеет улучшенную каталитическую активность.
Описание изобретения
Было обнаружено, что способ, в котором используется каталитическая композиция, содержащая по меньшей мере один металлоорганический комплекс титана, причем указанный металлоорганический комплекс содержит по меньшей мере один лиганд типа алкокси, функционализированный гетероатомом, выбранным из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой, и соответствующая общей формуле
[Ti(OR)n(Y)(4-n)],
в которой:
- Y является гидрокарбильным (углеводородным) радикалом, содержащим от 1 до 30 атомов углерода, или радикалом, выбранным из группы, образованной галогенидами, алкокси R'O-, амидо R'2N- и карбоксилатами R'COO-, где R' является гидрокарбильным радикалом, предпочтительно нефункционализированным, содержащим от 1 до 30 атомов углерода,
- n может принимать целые значения от 1 до 4,
- лиганд -OR является органическим соединением, выбранным из семейства алкокси-лигандов, общая структура которых предлагается ниже:
O-(CR10R11)n-X-L,
в которой:
- функциональная группа L является группой, содержащей гетероатом, выбранный из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой,
- группа Х является углеводородной группой (CR7R8), атомом кислорода или группой, содержащей атом азота -NR9,
- группы R7, R8, R9, R10 и R11 обозначают атом водорода или углеводородную цепочку, циклическую или нециклическую, содержащую от 1 до 30 атомов углерода и возможно содержащую гетероатом,
- n может принимать целые значения от 0 до 30 и предпочтительно от 0 до 10,
позволяет достигать очень высокой селективности при селективной димеризации этилена в бутен-1 и ограничивать образование полимеров.
В рамках изобретения термин «алкокси» определяют как обозначающий группу общей формулы -OR, в которой группа R является алкильной или замещенной алкильной группой. Это определение термина «алкокси» не включает группы типа арилокси или фенокси. В каталитической композиции по изобретению лиганд типа алкокси, такой как определен выше, функционализирован гетероатомом, выбранным из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой и соответствует заявленной формуле.
Предпочтительно указанная функциональная группа L является группой, содержащей гетероатом, причем указанная группа содержит гетероатом, выбранный из групп -NR1R2, -OR3, -PR4R5 и -SR6, в которых R1, R2, R3, R4, R5, R6 обозначают атом водорода или углеводородную цепочку, циклическую или нециклическую, содержащую от 1 до 30 атомов углерода.
Предпочтительно Y является радикалом, выбранным из группы, образованной радикалами алкокси R'O-, где R' обозначает гидрокарбильный радикал, предпочтительно нефункционализированный, содержащий от 1 до 30 атомов углерода. Также предпочтительно Y является атомом хлора.
Предпочтительно группы (CR10R11)n выбирают из следующих групп: -СН2-, -(СН2)2-, -(СН2)3-, -(СН2)4-, -(СН2)5-, -С(СН3)2-, -С(СН3)2-СН2, -С(СН3)2-СН2-СН2, -C(CF3)2-, -C(CF3)2-СН2 и -C(CF3)2-СН2 -СН2.
Предпочтительно указанную функциональную группу L выбирают из следующих групп: метокси (-ОМе), бутокси (-OBu), диметиламино (-NMe2), пирролидино (-C4H8N), пиридино (-C5H4N), фосфино (-PR2), в которой R обозначает алкильную или арильную группу, замещенную или незамещенную, тиофен (-C4H3S), терагидрофуран (-C4H7O), фуран (-C4H3O) и фенил (-C6H5), причем указанные группы могут быть замещенными или незамещенными. Указанная группа L предпочтительно является группой фосфино (-PR2), в которой R обозначает алкильную или арильную группу, замещенную или незамещенную.
Предпочтительно Х обозначает углеводородную группу (CR7R8). Очень предпочтительно Х обозначает углеводородную группу (CR7R8), выбранную из групп -СН2- и -С(СН3)2-.
Каталитическая композиция, используемая в способе селективной димеризации этилена в бутен-1 по изобретению, может также преимущественно содержать соединение гидрокарбилалюминия, называемое активатором, выбранное из группы, образованной соединениями три(гидрокарбил)алюминия, хлорсодержащими или бромсодержащими соединениями гидрокарбилалюминия и алюминооксанами.
Соединения три(гидрокарбил)алюминия и хлорсодержащие или бромсодержащие соединения гидрокарбилалюминия предпочтительно соответствуют общей формуле AlR''xZ3-x, в которой R'' обозначает моновалентный углеводородный радикал, содержащий, например, до 12 атомов углерода, такой как алкил, арил, аралкил, алкарил или циклоалкил, Z обозначает атом галогена, выбранный, например, из хлора и брома, причем Z предпочтительно обозначает атом хлора, х принимает значение от 1 до 3. В качестве примеров таких соединений формулы AlR''xZ3-x можно назвать этилалюминий сескихлорид (Et3Al2Cl3), дихлорэтилалюминий (EtAlCl2), дихлоризобутилалюминий (iBuAlCl2), хлордиэтилалюминий (Et2AlCl) и триэтилалюминий (AlEt3). Из алюминооксанов, пригодных по изобретению, можно назвать метилалюминооксан и модифицированный метилалюминооксан (ММАО). Эти активаторы можно использовать индивидуально или в смеси.
В зависимости от природы металлоорганического комплекса [Ti(OR)nY(4-n)] активатор можно также выбирать из группы кислот Льюиса типа три(арил)борана, таких как три(перфторфенил)боран, три(3,5-бис(трифторметил)фенил)боран, три(2,3,4,6-тетрафторфенил)боран, три(перфторнафтил)боран, три(перфлуобифенил)боран, и их производных. Можно также использовать в качестве активатора (арил)борат в ассоциации с катионом трифенилкарбения или с катионом тризамещенного аммония, таких как трифенилкарбений тетракис(перфторфенил)борат, N,N-диметиланилиния тетракис(перфторфенил)борат, N,N-диэтиланилиния теракис(3,5-бис(трифторметил)фенил)борат, трифенилкарбения тетракис(3,5-бис(трифторметил)фенил)борат.
Вне зависимости от какой-либо теории функциональная группа L, которая характеризуется присутствием гетероатома, выбранного из азота, кислорода, фосфора, серы, сурьмы и мышьяка, или присутствием ароматической группы, может взаимодействовать с металлическим центром Ti, образуя связь, например, типа дативной, способствующую, таким образом, образованию активного комплекса катализа и способствующую его стабильности. Нижеследующие неограничительные примеры иллюстрируют лиганды ''O-(CR10R11)n-X-L'' по изобретению. Лиганды представлены ниже в протонированной форме:
Figure 00000001
Figure 00000002
Figure 00000003
Способ получения металлоорганического комплекса
Способ получения металлоорганического комплекса титана каталитической композиции, используемой в способе по изобретению, осуществляется методами, известными из литературы, касающейся синтеза металлоорганических комплексов, содержащих по меньшей мере один алкокси-лиганд. Любой способ получения этого соединения является пригодным, как, например, взаимодействие лиганда типа алкокси, функционализированного гетероатомом, выбранным из азота, кислорода, фосфора или серы, или ароматической группой, с солью титана непосредственно или в присутствии органического растворителя, такого, например, как простой эфир, алкан, например, такой как пентан и циклогексан, ароматического растворителя, такого как, например, толуол, хлорсодержащего растворителя, такого, например, как дихлорметан или хлорбензол.
В предпочтительном варианте осуществления указанного способа получения металлоорганический комплекс получают in situ в растворителе, используемом для реакции димеризации. В этом случае порядок смешивания соли титана не имеет решающего значения. Тем не менее, предпочтительно сначала получают раствор соединения титана, растворимого в органической среде, и затем добавляют лиганд типа алкокси, функционализированный гетероатомом, выбранным из азота, кислорода, фосфора или серы, или ароматической группой.
В соответствии с другим предпочтительным вариантом осуществления указанного способа получения указанный металлоорганический комплекс выделяют до растворения в растворителе реакции димеризации.
Способ получения каталитической композиции, используемой в способе по изобретению
В соответствии с предпочтительным вариантом осуществления способа получения указанной каталитической композиции и если используется активатор, оба компонента указанной каталитической композиции, т.е. металлоорганический комплекс [Ti(OR)nY(4-n)] и активатор, могут приводиться в контакт в любом порядке в растворителе, выбранном из группы, образованной алифатическими и циклоалифатическими углеводородами, такими как гексан, циклогексан, гептан, бутан или изобутан, ненасыщенным углеводородом, таким как моноолефин или диолефин, содержащий например, от 4 до 20 атомов углерода, ароматическим углеводородом, таким как бензол, толуол, ортоксилен, мезитилен, этилбензол, или хлорсодержащим углеводородом, таким как хлорбензол или дихлорметан, чистые и в смеси. Предпочтительно используют алифатические углеводороды, такие как циклогексан или н-гептан, и ароматические углеводороды, такие как ортоксилен.
В соответствии с другим предпочтительным вариантом осуществления способа получения указанной каталитической композиции и если используется активатор, активатор вводят в раствор, содержащий металлоорганический комплекс титана.
Концентрация титана в каталитическом растворе преимущественно составляет от 1.10-4 до 1 моля/л, предпочтительно от 1.10-3 до 0,5 моля/л.
Молярное соотношение возможного активатора и металлоорганического комплекса титана преимущественно составляет от 1/1 до 2000/1, предпочтительно от 2/1 до 800/1 и более предпочтительно от 2/1 до 500/1.
Температура, при которой смешивают компоненты каталитической системы, преимущественно составляет от -10 до +180°С, предпочтительно от 0 до +150°С, например, является температурой, близкой к комнатной температуре (от 15 до 30°С). Смешивать можно в атмосфере этилена или инертного газа.
Реакция димеризации
Способ по изобретению является способом селективной димеризации этилена в бутен-1 с использованием каталитической композиции, описанной выше.
В соответствии с предпочтительным вариантом осуществления в качестве металла используют титан, триэтилалюминий в качестве активатора и молярное отношение активатора к титану составляет от 1 до 5 при димеризации этилена.
Реакцию димеризации этилена преимущественно осуществляют при полном давлении от 0,5 до 15 МРа, предпочтительно от 1 до 10 МРа и при температуре от 20 до 180°С, предпочтительно от 40 до 140°С.
В соответствии с предпочтительным вариантом осуществления реакцию димеризации проводят непрерывно. Вводят выбранный объем каталитического раствора, имеющий состав, описанный выше, в реактор, снабженный обычными устройствами перемешивания, нагревания и охлаждения, затем создают давление при помощи этилена и устанавливают требуемую температуру. В реакторе димеризации поддерживают постоянное давление путем введения этилена до получения полного объема продуцируемой жидкости, например, составляющего от 2 до 50 объемов первоначально введенного каталитического раствора. Тогда катализатор разрушают любым известным специалисту средством, затем извлекают и разделяют продукты реакции и растворитель.
В соответствии с другим предпочтительным вариантом осуществления каталитическую реакцию димеризации проводят периодически. Каталитический раствор впрыскивают одновременно с этиленом в реактор при перемешивании традиционными механическими средствами, известными специалисту, или внешней рециркуляцией и при постоянной требуемой температуре. Можно также отдельно впрыскивать компоненты катализатора в реакционную среду. Этилен вводят через впускной клапан, контролирующий давление, который поддерживает последнее постоянным. Реакционную смесь выводят при помощи клапана, контролирующего уровень жидкости, поддерживая его постоянным. Катализатор разрушается непрерывно любым традиционным средством, известным специалисту, затем продукты, полученные в результате реакции, а также растворитель, разделяют, например, дистилляцией. Непревращенный этилен можно рециркулировать в реактор. Остатки катализатора, включенные в тяжелую фракцию, можно сжечь.
Полученные продукты
Способ по изобретению обеспечивает селективное получение бутена-1. Это соединение используется в качестве сомономеров с этиленом при производстве полиэтилена с низкой линейной плотностью.
Следующие примеры иллюстрируют изобретение
Пример 1: Синтез комплекса [(L7)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 3,6 г (35 ммоль) лиганда L7, 10 мл сухого циклогексана, а также 5 г (17,5 ммоля) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L7)2Ti(OiPr)2] в виде оранжевого масла. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н и 13С.
Пример 2: Синтез комплекса [(L8)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 3,4 г (35 ммоль) лиганда L8, 10 мл сухого циклогексана, а также 5,0 г (17,5 ммоля) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L8)2Ti(OiPr)2] в виде темно-оранжевого масла. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н и 13С.
Пример 3: Синтез комплекса [(L9)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 3,8 г (35 ммоль) лиганда L9, 10 мл сухого циклогексана, а также 5,0 г (17,5 ммоля) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L9)2Ti(OiPr)2] в виде бесцветного масла. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н и 13С.
Пример 4: Синтез комплекса [(L11)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 4,3 г (35 ммоль) лиганда L11, 10 мл сухого циклогексана, а также 5,0 г (17,5 ммоля) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L11)2Ti(OiPr)2] в виде оранжевого масла. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н и 13С.
Пример 5: Синтез комплекса [(L12)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 4,0 г (35 ммоль) лиганда L12, 10 мл сухого циклогексана, а также 5,0 г (17,5 ммоля) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L12)2Ti(OiPr)2] в виде жидкости желтого цвета. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н и 13С.
Пример 6: Синтез комплекса [(L14)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 3,2 г (14 ммолей) лиганда L14, 10 мл сухого циклогексана, а также 2,0 г (7 ммолей) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L14)2Ti(OiPr)2] в виде вязкой жидкости желтого цвета. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н, 13С и 31Р.
Пример 7: Синтез комплекса [(L16)2Ti(OiPr)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 3,4 г (14 ммолей) лиганда L16, 10 мл сухого циклогексана, а также 2,0 г (7 ммолей) [Ti(OiPr)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L16)2Ti(OiPr)2] в виде вязкой жидкости желтого цвета. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н, 13С и 31Р.
Пример 8: Синтез комплекса [(L16)2Ti(OnBu)2]
В сосуд Шленка в атмосфере аргона при комнатной температуре вводят 2,9 г (12 ммолей) лиганда L16, 10 мл сухого циклогексана, а также 2,0 г (6 ммолей) [Ti(OnBu)4]. Эту смесь затем нагревают с обратным холодильником в течение 30 минут, затем перемешивают также в атмосфере аргона в течение одной ночи. После испарения растворителя получают комплекс [(L16)2Ti(OnBu)2] в виде вязкой жидкости желтого цвета. Выход близок к количественному. Структуру комплекса подтверждают анализы ЯМР1Н, 13С, 31Р и элементарный анализ.
Примеры 9-16 (по изобретению): Селективная димеризация С2Н4
В автоклаве из нержавеющей стали с полезным объемом 35 мл, снабженным электронагревателем и системой охлаждения с турбулентным движением сжатого воздуха, позволяющими регулировать температуру, вводят по порядку в атмосфере аргона 0,15 ммоля комплекса [(L)nTi(OiPr)4-n] или [(L)nTi(OnBu)4-n], такого как описан в изобретении, предварительно растворенного в циклогексане. Затем вводят 0,45 ммоля триэтилалюминия в растворе в циклогексане, т.е. молярное отношение Al/Ti=3. Общее количество циклогексана составляет 6 мл. Тогда в автоклав вводят этилен так, чтобы поддерживать постоянное давление 2 МПа. Через период времени "t" с начала реакции введение этилена останавливают и реактор охлаждают до комнатной температуры. Затем сбрасывают давление в автоклаве и каталитическую систему нейтрализуют путем впрыскивания 1 мл воды. Извлекают газообразную фракцию и жидкую фракцию, которые анализируют хроматографией. В случае необходимости также извлекают небольшое количество полиэтилена.
На нижеследующей таблице 1 подробно приведена совокупность полученных результатов.
Таблица 1
Результаты испытаний по изобретению
N Природа комплекса Время
(час)
Продуктивность (г/г Ti/час Распределение (% pds)
С4(α1) С6(α2) РЕ
9 [(L7)2Ti(OiPr)2] 1 600 95(99+) 3(15) 2
10 [(L9)2Ti(OiPr)2] 1 700 91(99) 7,5(6) 0,5
11 [(L11)2Ti(OiPr)2] 1 1400 94(99+) 5,5(8) 0,5
12 [(L8)2Ti(OiPr)2] 1 800 94,5(99+) 4,5(9) 1
13 [(L12)2Ti(OiPr)2] 1 500 95(99+) 4(11) 1
14 [(L14)2Ti(OiPr)2] 0,43 3400 94(99+) 6(12) <,0,5
15 [(L16)2Ti(OiPr)2] 0,22 6600 92(99+) 8(12) <,0,5
16 [(L16)2Ti(OnBu)2] 0,15 9700 93(99+) 7(9) <,0,5
В этой таблице производительность определяется как масса этилена (С2Н4), потребляемая на грамм титана, вводимого первоначально и в час.
Распределение С4 - это количество олефинов, содержащих число атомов углерода, равное 4, в общем распределении.
(α1) обозначает селективность по бутену-1 во фракции С4.
Также распределение С6 - это количество олефинов, содержащих число атомов углерода, равное 6 в общем распределении.
(α2) обозначает селективность по гексану-1 во фракции С6.
Селективность по бутену-1 во фракции С4 и по гексану-1 во фракции С6 измеряют хроматографией в газовой фазе способом, известным специалисту.
Примеры 17-20 (сравнительные): Селективная димеризация С2Н4 посредством [Ti(OiPr)4] в присутствии органических добавок не по изобретению
Примеры 17-20 из таблицы 2 осуществляли в тех же условиях, что и примеры, описанные в таблице 1 (время реакции равно 1 часу). Эти примеры иллюстрируют негативное воздействие органических добавок, являющихся гетероатомами, но не входящих в рамки настоящего изобретения (и, следовательно, демонстрируют преимущество способа по изобретению), на продуктивность [Ti(OiPr)4] при селективной димеризации этилена в бутен-1.
Таблица 2
Результаты сравнительных испытаний
Природа комплекса Природа внешней добавки Молярное отношение «Добавка/Ti» Продуктивность (г/г Ti/час) Распределение (%pds)
C4(α) C6(α) PE
17 [Ti(OiPr)4] THF 2 300 97(99+) 3(15) <0,5
18 [Ti(OiPr)4] Пиридин 2 <100 99(99+) <0,5 <0,5
19 [Ti(OiPr)4] MeOBu 2 700 95(99+) <5 <0,5
20 [Ti(OiPr)4] PPh3 2 1300 96(99+) 3,5 (13) 0,5

Claims (8)

1. Каталитическая композиция для селективной димеризации этилена в бутен-1, включающая по меньшей мере один металлоорганический комплекс титана, причем указанный металлоорганический комплекс содержит по меньшей мере один лиганд типа алкокси, функционализированный гетероатомом, выбранным из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой, и соответствующая общей формуле
[Ti(OR)n(Y)(4-n)],
в которой:
- Y является гидрокарбильным радикалом, содержащим от 1 до 30 атомов углерода, или радикалом, выбранным из группы, включающей галогениды, алкокси R'O-, амидо R'2N- и карбоксилаты R'COO-, где R' является гидрокарбильным радикалом, предпочтительно нефункционализированным, содержащим от 1 до 30 атомов углерода,
- n может принимать целые значения от 1 до 4,
- лиганд -OR является органическим соединением, выбранным из семейства алкокси-лигандов, общая структура которых предлагается ниже:
О-(CR10R11)n-X-L,
в которой:
- функциональная группа L является группой, содержащей гетероатом, выбранный из азота, кислорода, фосфора, серы, мышьяка и сурьмы, или ароматической группой,
- группа X является углеводородной группой (CR7R8), атомом кислорода или группой, содержащей атом азота -NR9,
- группы R7, R8, R9, R10 и R11 обозначают атом водорода или углеводородную цепочку, циклическую или нециклическую, содержащую от 1 до 30 атомов углерода и возможно содержащую гетероатом,
- указанную группу (CR10R11)n выбирают из следующих групп: -CH2-, -(CH2)2-, -(CH2)3-, -(СН2)4-, -(СН2)5-, -С(СН3)2-, - С(СН3)2-СН2, -С(СН3)2-СН2-СН2, -C(CF3)2-, -C(CF3)2-CH2 и -С(CF3)2-СН2-СН2.
2. Каталитическая композиция по п. 1, в которой указанная функциональная группа L является группой, содержащей гетероатом, причем указанная группа содержит гетероатом, выбранный из групп: -NR1R2, -OR3, -PR4R5 и -SR6, в которых R1, R2, R3, R4, R5, R6 обозначают атом водорода или углеводородную цепочку, циклическую или нециклическую, содержащую от 1 до 30 атомов углерода.
3. Каталитическая композиция по п. 1 или 2, в которой указанная каталитическая композиция содержит соединение гидрокарбилалюминия, называемое активатором, выбранное из группы, включающей соединения три(гидрокарбил)алюминия, хлорсодержащие или бромсодержащие соединения гидрокарбилалюминия и алюминооксаны.
4. Каталитическая композиция по любому из пп. 1-2, в которой указанную функциональную группу L выбирают из следующих групп: метокси (-ОМе), бутокси (-OBu), диметиламино (-NMe2), пирролидино (-C4H8N), пиридино (-C5H4N), фосфино (-PR2), в которой R обозначает алкильную или арильную группу, замещенную или незамещенную, тиофен (-C4H3S), терагидрофуран (-C4H7O), фуран (-С4Н3О) и фенил (-С6Н5), причем указанные группы могут быть замещенными или незамещенными.
5. Каталитическая композиция по п. 4, в которой указанная группа L является группой фосфино (-PR2), в которой R обозначает алкильную или арильную группу, замещенную или незамещенную.
6. Каталитическая композиция по любому из пп. 1-2 и 5, в которой Y обозначает радикал, выбранный из группы, включающей радикалы алкокси R'O-, где R' является гидрокарбильным радикалом, содержащим от 1 до 30 атомов углерода,
7. Каталитическая композиция по любому из пп. 1-2 и 5, в которой X обозначает углеводородную группу (CR7R8).
8. Способ селективной димеризации этилена в бутен-1 с использованием каталитической композиции по любому из пп. 1-7.
RU2011119802/04A 2010-05-18 2011-05-17 Способ димеризации этилена в бутен-1 с использованием композиции, содержащей комплекс титана с алкокси-лигандом, функционализированным гетероатомом RU2570419C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1002089A FR2960234B1 (fr) 2010-05-18 2010-05-18 Procede de dimerisation de l'ethylene en butene-1 utilisant une composition comprenant un complexe a base de titane et un ligand alcoxy fonctionnalise par un hetero-atome.
FR10/02089 2010-05-18

Publications (2)

Publication Number Publication Date
RU2011119802A RU2011119802A (ru) 2012-11-27
RU2570419C2 true RU2570419C2 (ru) 2015-12-10

Family

ID=43242912

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011119802/04A RU2570419C2 (ru) 2010-05-18 2011-05-17 Способ димеризации этилена в бутен-1 с использованием композиции, содержащей комплекс титана с алкокси-лигандом, функционализированным гетероатомом

Country Status (7)

Country Link
US (1) US8624042B2 (ru)
EP (1) EP2388069A1 (ru)
JP (2) JP6228724B2 (ru)
KR (1) KR101799110B1 (ru)
BR (1) BRPI1102097A2 (ru)
FR (1) FR2960234B1 (ru)
RU (1) RU2570419C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707299C1 (ru) * 2019-04-29 2019-11-26 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Способ получения бутенов в процессе димеризации этилена

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960235B1 (fr) * 2010-05-18 2013-11-01 Inst Francais Du Petrole Procede d'oligomerisation des olefines utilisant une composition comprenant un complexe organometallique contenant un ligand alcoxy fonctionnalise par un hetero-atome.
AU2013207783B2 (en) 2012-01-13 2017-07-13 Lummus Technology Llc Process for providing C2 hydrocarbons via oxidative coupling of methane and for separating hydrocarbon compounds
KR101668548B1 (ko) 2012-05-11 2016-10-21 사우디 아라비안 오일 컴퍼니 에틸렌 올리고머화 방법
US9469577B2 (en) 2012-05-24 2016-10-18 Siluria Technologies, Inc. Oxidative coupling of methane systems and methods
UY34824A (es) 2012-05-25 2013-11-29 Janssen R & D Ireland Nucleósidos de espirooxetano de uracilo
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
AU2013355038B2 (en) 2012-12-07 2017-11-02 Lummus Technology Llc Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
KR102327888B1 (ko) 2012-12-21 2021-11-17 얀센 바이오파마, 인코퍼레이트. 치환된 뉴클레오사이드, 뉴클레오타이드 및 그것의 유사체
US10035741B2 (en) 2013-03-07 2018-07-31 Tpc Group Llc High throughput oxidative dehydrogenation process
WO2014138520A2 (en) 2013-03-07 2014-09-12 Tpc Group Llc Multi-stage oxidative dehydrogenation process with inter-stage cooling
WO2014138510A1 (en) * 2013-03-07 2014-09-12 Tpc Group Llc Oxidative dehydrogenation process with hydrocarbon moderator gas and reduced nitrogen feed
WO2015006071A1 (en) 2013-07-10 2015-01-15 Tpc Group, Llc Manufacture of butadiene from ethylene
FR3008697B1 (fr) * 2013-07-19 2015-07-31 IFP Energies Nouvelles Procede de dimerisation selective de l'ethylene en butene-1 utilisant une composition catalytique comprenant un complexe a base de titane additive en association avec un ligand alcoxy fonctionnalise par un hetero-atome
EP3074119B1 (en) 2013-11-27 2019-01-09 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN105814097B (zh) * 2013-12-13 2018-02-02 沙特基础工业公司 用于乙烯的选择性二聚和聚合的催化剂组合物
WO2015105911A1 (en) 2014-01-08 2015-07-16 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3097068A4 (en) 2014-01-09 2017-08-16 Siluria Technologies, Inc. Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
FR3023183A1 (fr) * 2014-07-04 2016-01-08 IFP Energies Nouvelles Composition catalytique et procede de dimerisation selective de l'ethylene en butene-1
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
WO2016205411A2 (en) 2015-06-16 2016-12-22 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
WO2017065947A1 (en) 2015-10-16 2017-04-20 Siluria Technologies, Inc. Separation methods and systems for oxidative coupling of methane
FR3044781B1 (fr) 2015-12-03 2018-07-13 Axens Utilisation d'un controleur multivariable avance pour le controle des unites alphabutol
CA3019396A1 (en) 2016-04-13 2017-10-19 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
EP3554672A4 (en) 2016-12-19 2020-08-12 Siluria Technologies, Inc. PROCEDURES AND SYSTEMS FOR CHEMICAL DEPOSITION
HUE064375T2 (hu) 2017-05-23 2024-03-28 Lummus Technology Inc Metán oxidatív csatolási folyamatainak integrálása
US10836689B2 (en) 2017-07-07 2020-11-17 Lummus Technology Llc Systems and methods for the oxidative coupling of methane
JP7059892B2 (ja) 2018-10-23 2022-04-26 日本製鉄株式会社 セラミックスロールの加熱方法および加熱装置
CN111408412B (zh) * 2019-01-04 2023-05-09 中国石油化工股份有限公司 一种催化剂组合物、其制备方法及其在乙烯选择性二聚化合成1-丁烯的反应中的应用
KR102652166B1 (ko) * 2019-01-29 2024-03-27 란자테크, 인크. 바이오 기반 액화 석유 가스의 생산
TWI794742B (zh) 2020-02-18 2023-03-01 美商基利科學股份有限公司 抗病毒化合物
EP4323362A1 (en) 2021-04-16 2024-02-21 Gilead Sciences, Inc. Methods of preparing carbanucleosides using amides

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3879485A (en) * 1974-01-25 1975-04-22 Gennady Petrovich Belov Method of producing butene-1
SU496258A1 (ru) * 1972-08-04 1975-12-25 Филиал Ордена Ленина Институт Химической Физики Ан Ссср Способ получени бутена
SU681032A1 (ru) * 1976-02-23 1979-08-25 Грозненский филиал Охтинского научно-производственного объединения "Пластполимер" Способ получени димеров и содимеров -олефинов
CA1298829C (en) * 1987-10-20 1992-04-14 Andrzej Krzywicki Catalytic systems for ethylene dimerization to 1-butene
RU2005122962A (ru) * 2002-12-20 2006-01-20 Сасоль Текнолоджи (Пти) Лимитед (Za) Тетрамеризация олефинов
FR2916199A1 (fr) * 2007-05-14 2008-11-21 Inst Francais Du Petrole Procede d'oligomerisation des olefines utilisant une composition catalytique comprenant un complexe organometallique contenant un ligand phenoxy fonctionnalise par un hetero-atome

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2943125A (en) 1954-08-07 1960-06-28 Ziegler Production of dimers and low molecular polymerization products from ethylene
GB1312974A (en) 1969-05-29 1973-04-11 Toyo Soda Mfg Co Ltd Process and catalyst for dimerization of alpha-olefins
JPS4823054B1 (ru) * 1969-05-29 1973-07-11
US3911042A (en) * 1974-01-25 1975-10-07 Gennady Petrovich Belov Method of producing butene-1
FR2274583A1 (fr) * 1974-06-14 1976-01-09 Otdel I Procede de preparation du butene-1
JPS58146517A (ja) * 1982-02-24 1983-09-01 Mitsubishi Petrochem Co Ltd 1−ブテンの製造法
JPS58146518A (ja) * 1982-02-24 1983-09-01 Mitsubishi Petrochem Co Ltd 1−ブテンの製造法
FR2552079B1 (fr) 1983-09-20 1986-10-03 Inst Francais Du Petrole Procede ameliore de synthese du butene-1 par dimerisation de l'ethylene
EP0135441B1 (fr) * 1983-09-20 1986-11-05 Institut Français du Pétrole Procédé amélioré de synthèse du butène-1 par dimérisation de l'éthylène
JPH0612073B2 (ja) * 1984-09-01 1994-02-16 マツダ株式会社 エンジンのトルク変動制御装置
US5043514A (en) * 1986-01-27 1991-08-27 Phillips Petroleum Company Ethylene dimerization and polymerization
CA1270002A (en) * 1986-01-27 1990-06-05 Max P. Mcdaniel Ethylene dimerization and polymerization
EP1683802A4 (en) * 2003-10-29 2008-12-31 Sumitomo Chemical Co TRANSITION METAL COMPLEX LIGAND, AND OLEFIN POLYMERIZATION CATALYST CONTAINING A TRANSITION METAL COMPLEX

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU496258A1 (ru) * 1972-08-04 1975-12-25 Филиал Ордена Ленина Институт Химической Физики Ан Ссср Способ получени бутена
US3879485A (en) * 1974-01-25 1975-04-22 Gennady Petrovich Belov Method of producing butene-1
SU681032A1 (ru) * 1976-02-23 1979-08-25 Грозненский филиал Охтинского научно-производственного объединения "Пластполимер" Способ получени димеров и содимеров -олефинов
CA1298829C (en) * 1987-10-20 1992-04-14 Andrzej Krzywicki Catalytic systems for ethylene dimerization to 1-butene
RU2005122962A (ru) * 2002-12-20 2006-01-20 Сасоль Текнолоджи (Пти) Лимитед (Za) Тетрамеризация олефинов
FR2916199A1 (fr) * 2007-05-14 2008-11-21 Inst Francais Du Petrole Procede d'oligomerisation des olefines utilisant une composition catalytique comprenant un complexe organometallique contenant un ligand phenoxy fonctionnalise par un hetero-atome

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2707299C1 (ru) * 2019-04-29 2019-11-26 Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) Способ получения бутенов в процессе димеризации этилена

Also Published As

Publication number Publication date
RU2011119802A (ru) 2012-11-27
US20110288308A1 (en) 2011-11-24
JP6228724B2 (ja) 2017-11-08
EP2388069A1 (fr) 2011-11-23
BRPI1102097A2 (pt) 2013-12-17
KR101799110B1 (ko) 2017-11-17
KR20110127073A (ko) 2011-11-24
FR2960234B1 (fr) 2013-11-01
JP2011240336A (ja) 2011-12-01
FR2960234A1 (fr) 2011-11-25
US8624042B2 (en) 2014-01-07
JP2016215202A (ja) 2016-12-22

Similar Documents

Publication Publication Date Title
RU2570419C2 (ru) Способ димеризации этилена в бутен-1 с использованием композиции, содержащей комплекс титана с алкокси-лигандом, функционализированным гетероатомом
JP4747416B2 (ja) 触媒組成物および特にエチレンの1−ヘキセンへのオリゴマー化方法
US9309167B2 (en) Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains an alkoxy ligand that is functionalized by a heteroatom
US9545623B2 (en) Nickel-based catalytic composition and method of oligomerization of olefins using said composition
US9260358B2 (en) Process for oligomerization of olefins that uses a catalytic composition that comprises an organometallic complex that contains a phenoxy ligand that is functionalized by a heteroatom
RU2665551C1 (ru) Каталитическая композиция и способ олигомеризации этилена с образованием 1-гексена и/или 1-октена
JP6175192B2 (ja) 触媒組成物およびエチレンのオリゴマ化のための方法
JP2013515601A (ja) エチレンの三量化による1−ヘキセンの合成用触媒及びその使用
US11377398B2 (en) Ethylene selective oligomerization catalyst systems and method for ethylene oligomerization using the same
RU2456076C2 (ru) Композиция катализатора и способ получения линейных альфа-олефинов
CN112742483B (zh) 一种用于乙烯选择性齐聚的催化剂体系及其制备和应用
KR20180008269A (ko) 에틸렌의 올리고머화 방법
JP6379190B2 (ja) 新規なニッケルベースの触媒組成物およびオレフィンのオリゴマー化方法におけるその使用
KR20210138694A (ko) 크롬 보조 에틸렌 올리고머화 방법에서 1-옥텐 생성용 리간드
CN114160210A (zh) 一种乙烯选择性四聚用催化剂及其制备方法和应用
Sharifi et al. The Effect of Co-Catalysts and Halides on Selective Ethylene Trimerization using Chromium-based Catalyst

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190518