RU2557812C2 - Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником - Google Patents

Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником Download PDF

Info

Publication number
RU2557812C2
RU2557812C2 RU2013143959/06A RU2013143959A RU2557812C2 RU 2557812 C2 RU2557812 C2 RU 2557812C2 RU 2013143959/06 A RU2013143959/06 A RU 2013143959/06A RU 2013143959 A RU2013143959 A RU 2013143959A RU 2557812 C2 RU2557812 C2 RU 2557812C2
Authority
RU
Russia
Prior art keywords
heat exchanger
thickness
flange
heat
rib
Prior art date
Application number
RU2013143959/06A
Other languages
English (en)
Other versions
RU2013143959A (ru
Inventor
Сангму ЛИ
Масахико ТАКАГИ
Акира ИСИБАСИ
Такуя МАЦУДА
Original Assignee
Мицубиси Электрик Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Мицубиси Электрик Корпорейшн filed Critical Мицубиси Электрик Корпорейшн
Publication of RU2013143959A publication Critical patent/RU2013143959A/ru
Application granted granted Critical
Publication of RU2557812C2 publication Critical patent/RU2557812C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F2001/428Particular methods for manufacturing outside or inside fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/12Fastening; Joining by methods involving deformation of the elements
    • F28F2275/125Fastening; Joining by methods involving deformation of the elements by bringing elements together and expanding

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Изобретение относится к теплотехнике и может использоваться при изготовлении теплообменников. Теплообменник из оребренных трубок включает в себя множество параллельно расположенных теплообменных трубок 10 и множество листообразных ребер 1, предусмотренных ортогонально теплообменным трубкам 10, причем каждая из теплообменных трубок находится в контакте с фланцами ребер листообразных ребер и вкладывается вдоль фланцев ребер. Каждый фланец 2 ребра выполнен так, что предусмотрен изгиб на каждом из обратно выступающего участка 3 и корневого участка 4 фланца 2 ребра, и плоский промежуточный участок 5 выполнен между изгибами. Толщина Tw1 обратно выступающего участка 3 меньше, чем толщина Tw2 корневого участка 4. Радиус R1 изгиба обратно выступающего участка 3 больше, чем радиус R2 изгиба корневого участка 4, и соотношение (Tw1/R1) радиуса R1 и толщины Tw1 изгиба обратно выступающего участка 3 равно половине или более соотношения (Tw2/R2) радиуса R2 и толщины Tw2 изгиба корневого участка 4. Технический результат - снижение сопротивления термического контакта между теплообменными трубками и фланцами ребер. 3 н. и 3 з.п. ф-лы, 11 ил., 4 табл.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
[0001] Настоящее изобретение относится к теплообменнику, применяемому в холодильниках и устройствах кондиционирования воздуха, например, и относится к холодильнику и устройству кондиционирования воздуха, которые снабжены теплообменником.
УРОВЕНЬ ТЕХНИКИ
[0002] Традиционные теплообменники, применяемые в холодильниках и устройствах кондиционирования воздуха, включают в себя такие теплообменники, которые представляют собой теплообменники из оребренных трубок. Один такой теплообменник состоит из: листообразных ребер, которые расположены с заданным интервалом и между которыми газ (воздух) проходит насквозь; и теплообменных трубок, которые введены под прямым углом сквозь эти листообразные ребра (далее в данном документе просто называемые «ребрами») и по которым протекает хладагент. Известные факторы влияния на характеристики теплопередачи этого теплообменника из оребренных трубок включают в себя коэффициент теплопередачи со стороны хладагента между хладагентом и теплообменными трубками, коэффициент контактной теплопередачи между теплообменными трубками и ребрами и коэффициент теплопередачи со стороны воздуха между воздухом и ребрами.
[0003] Для того чтобы увеличивать коэффициент теплопередачи со стороны хладагента между хладагентом и теплообменными трубками, характеристики внутри трубок обеспечиваются посредством увеличения площади теплообменных трубок и нарезания внутренних канавок, что позволяет получить эффект перемешивания хладагента в теплообменных трубках. Кроме того, для того чтобы улучшать коэффициент теплопередачи со стороны воздуха между воздухом и ребрами, группы щелей, которые выполнены срезанием и поднятием ребер, предусмотрены между соседними теплообменными трубками. Эти группы щелей выполнены так, что края щелей обращены в направлении воздушного потока. Посредством того, что делают тоньше гидродинамический пограничный слой и тепловой пограничный слой воздушного потока на этих кромках, упрощается теплопередача и увеличивается теплообменная способность. Кроме того, на коэффициент контактной теплопередачи между теплообменными трубками и ребрами влияют условия контакта между теплообменными трубками и ребрами.
[0004] Например, как проиллюстрировано на фиг.8, когда теплообменная трубка 10 развальцована и прикреплена к ребрам 1, возникают, между внешней поверхностью теплообменной трубки 10 и ребрами 1, зазоры, вызванные волнистостью внешней поверхности теплообменной трубки 10, зазоры, вызванные деформацией промежуточного участка фланца 2 ребер, и зазор между ребром 1 и ребром 1. Падение коэффициента контактной теплопередачи вследствие этих зазоров считается равным приблизительно пяти процентам теплообменника (см. непатентный документ 1, например).
[0005] Соответственно, для того чтобы уменьшать эти зазоры и увеличивать коэффициент контактной теплопередачи, была предложена технология, например, которая проиллюстрирована на фиг.9, в которой три или более изгибов R предусмотрены для фланца 2 ребра, вдоль которого введена теплообменная трубка 10. В этой технологии, дополнительно, изгибы R плавно соединены друг другу, фланец 2 ребра, в целом, имеет форму выпуклости в сторону теплообменной трубки 10 без присутствия прямого участка (см. патентный документ 1).
СПИСОК БИБЛИОГРАФИЧЕСКИХ ССЫЛОК
[0006] Патентный документ 1. Патент № 3356151 (Япония) (формула изобретения, фиг.1).
[0007] Непатентный документ 1. Наката. «Экономическая эффективность и оптимальные установки в теплообменниках для кондиционеров воздуха» («Economic efficiency and optimal setting in heat exchanger for air-conditioner»), Kikai No Kenkyu, 1989; том 41, № 9: стр. 1005-1011.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
ТЕХНИЧЕСКАЯ ЗАДАЧА
[0008] Однако традиционная технология, описанная выше, имеет следующую проблему. В технологии, описанной в патентном документе 1, три или более изгибов R предусмотрены для каждого фланца 2 ребра, и, дополнительно, изгибы R плавно соединены друг другу, формой фланца ребра является, в целом, выпуклость в сторону теплообменной трубки 10, и прямой участок отсутствует. Соответственно, вследствие дефектного изготовления изгиба R, когда теплообменная трубка 10 размещается на фланце 2 ребра, возникает увеличение усилия вставки, и стоимость массового производства увеличивается; таким образом, возникает проблема в том, что предполагаемая характеристика теплопередачи не может быть получена.
[0009] Настоящее изобретение задумано для того, чтобы преодолевать вышеописанную проблему, и его задачей является предоставление теплообменника, который может увеличивать свою теплообменную способность посредством уменьшенного сопротивления термического контакта между теплообменными трубками и фланцами ребер, и, дополнительно, предоставление холодильника и устройства кондиционирования воздуха, снабженных этим теплообменником.
РЕШЕНИЕ ЗАДАЧИ
[0010] Настоящее изобретение является теплообменником из оребренных трубок, включающим в себя множество теплообменных трубок, расположенных параллельно друг другу, и множество листообразных ребер, предусмотренных ортогонально теплообменным трубкам. Каждая из теплообменных трубок находится в контакте с фланцами ребер листообразных ребер и введена вдоль фланцев ребер. Каждый фланец ребра выполнен так, что предусмотрен изгиб на каждом из обратно выступающего участка и корневого участка фланца ребра, толщина обратно выступающего участка меньше в сравнении с толщиной корневого участка, и радиус изгиба обратно выступающего участка больше в сравнении с радиусом изгиба корневого участка.
[0011] Холодильник или устройство кондиционирования воздуха согласно изобретению снабжено вышеописанным теплообменником.
ПРЕИМУЩЕСТВА ИЗОБРЕТЕНИЯ
[0012] Согласно настоящему изобретению может быть получен теплообменник, в котором сопротивление термического контакта между теплообменными трубками и фланцами ребер уменьшено и в котором теплообменная способность может быть увеличена, и могут быть получены холодильник и устройство кондиционирования воздуха, снабженные этим теплообменником.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0013] Фиг.1 - это увеличенный вид в разрезе главного участка теплообменника согласно первому варианту осуществления изобретения.
Фиг.2 включает в себя примерные схемы способа изготовления теплообменника согласно первому варианту осуществления.
Фиг.3 - это диаграмма, показывающая взаимосвязь между отношением толщины к радиусу каждого изгиба фланца ребра и эффективностью теплообменника для теплообменника согласно первому варианту осуществления.
Фиг.4 - это диаграмма, показывающая взаимосвязь между отношением толщины к радиусу каждого изгиба фланца ребра и эффективностью теплообменника для теплообменника согласно первому варианту осуществления.
Фиг.5 включает в себя увеличенный вид главного участка теплообменника и вид в разрезе теплообменной трубки согласно второму варианту осуществления настоящего изобретения.
Фиг.6 - это диаграмма, показывающая взаимосвязь между выражением отношения и эффективностью теплообменника для теплообменника согласно второму варианту осуществления, в котором выражение отношения представляет отношение между толщиной фланца ребра, внешним диаметром теплообменной трубки и числом жил внутренних выступов.
Фиг.7 - это диаграмма, показывающая взаимосвязь между выражением отношения и эффективностью теплообменника для теплообменника согласно второму варианту осуществления, в котором выражение отношения представляет отношение между толщиной фланца ребра, внешним диаметром теплообменной трубки и числом жил внутренних выступов.
Фиг.8 - это увеличенный вид в разрезе главного участка традиционного теплообменника из оребренных трубок.
Фиг.9 - это примерная схема ребра по фиг.8.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
[0014] ПЕРВЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
Фиг.1 - это увеличенный вид в разрезе главного участка теплообменника согласно первому варианту осуществления изобретения, после того как трубка теплообменника была развальцована. Обращаясь к фиг.1, ссылочный номер 1 обозначает ребро, которое выполнено из листа, выполненного из термостойкого металла, такого как медный сплав или алюминиевый сплав (аналогично в других вариантах осуществления), и теплообменная трубка 10, выполненная из металлического материала, такого как медь или медный сплав, или алюминий или алюминиевый сплав (аналогично в других вариантах осуществления), предусмотрена ортогонально ребрам 1.
[0015] Фиг.2(a) и 2(b) - это примерные схемы, иллюстрирующие способ производства теплообменника согласно первому варианту осуществления изобретения.
При производстве теплообменника множество U-образных трубок сначала изготавливают посредством сгибания в U-образную форму, среднего участка отдельных теплообменных трубок 10 в продольном направлении с заданным шагом изгиба. Впоследствии каждая из этих U-образных трубок вкладывается между фланцами 2 ребер и фланцами 2 ребер множества ребер 1, которые расположены параллельно друг другу с заданным интервалом. Затем, каждая U-образная трубка развальцовывается посредством механического способа развальцовки, в котором шар 15 для развальцовки проталкивается в U-образную трубку посредством стержня 16, как иллюстрировано на фиг.2(a), или развальцовывается посредством гидравлического способа развальцовки, в котором шар 15 для развальцовки проталкивается в U-образную трубку посредством текучей среды 17, как иллюстрировано на фиг.2(b). По существу, каждое ребро 1 и U-образные трубки, т.е. теплообменные трубки 10, соединяют вместе. Таким образом, изготавливается теплообменник из оребренных трубок.
[0016] Теплообменник, который изготовлен, как описано выше, включает в себя множество теплообменных трубок 10, которые расположены параллельно друг другу, и множество ребер 1, которые находятся ортогонально теплообменным трубкам 10. Теплообменные трубки 10 находятся в контакте с фланцами 2 ребер для ребер 1, вдоль этих фланцев ребер вкладывают теплообменные трубки 10.
Что касается формы фланца 2 ребра, обратно выступающий участок 3 и корневой участок 4, каждый, снабжен аркообразным изгибом и каждый имеет радиус R1 и R2 соответственно; толщина Tw1 обратно выступающего участка 3 выполнена меньшей, чем толщина Tw2 корневого участка 4; и отношение (Tw1/R1) толщины Tw1 к радиусу R1 изгиба обратно выступающего участка 3 равно половине или более отношения (Tw2/R2) толщины Tw2 к радиусу R2 изгиба корневого участка 4. Необходимо отметить, что промежуточный участок 5, внешняя сторона поверхности которого является плоской, предусмотрен между изгибом обратно выступающего участка 3 и изгибом корневого участка 4. В целом, формируется ребро, по существу, J-образной формы.
[0017] В этом случае, когда радиус R1 изгиба обратно выступающего участка 3 фланца 2 ребра выполнен большим, чем радиус R2 изгиба корневого участка 4, тогда, после развальцовки теплообменной трубки 10, площадь соприкосновения корневого участка 4 фланца 2 ребра для ребра 1 спереди и обратно выступающего участка 3 фланца 2 ребра для ребра 1 сзади увеличивается, и сопротивление термического контакта уменьшается; таким образом, теплообменная способность увеличивается.
[0018] Фиг.3 и 4 - это диаграммы, каждая из которых иллюстрирует взаимосвязь между взаимосвязью и эффективностью теплообменника, взаимосвязью между толщиной Tw1 и радиусом R1 изгибов обратно выступающего участка 3 фланца 2 ребра и между толщиной Tw2 и радиусом R2 корневого участка фланца 2 ребра.
Радиус R1 изгиба обратно выступающего участка 3 фланца 2 ребра имеет тесную взаимосвязь с толщиной Tw1 обратно выступающего участка 3; соответственно, когда радиус R1 изгиба обратно выступающего участка 3 должен быть увеличен, толщина Tw1 обратно выступающего участка 3 также должна быть увеличена. Если толщина Tw1 обратно выступающего участка 3 небольшая, когда радиус R1 изгиба обратно выступающего участка 3 фланца 2 ребра большой, механическое напряжение будет концентрироваться на обратно выступающем участке 3, и давление контакта между промежуточной частью 5 и теплообменной трубкой 10 будет падать. Соответственно, сопротивление термического контакта будет повышаться, и теплообменная способность будет падать.
[0019] Кроме того, когда отношение (Tw1/R1) толщины Tw1 к радиусу R1 изгиба обратно выступающего участка 3 фланца 2 ребра равно половине или менее отношения (Tw2/R2) толщины Tw2 к радиусу R2 изгиба корневого участка 4, тогда давление контакта между корневой частью 4 фланца 2 ребра для ребра 1 спереди и обратно выступающей частью 3 фланца 2 ребра для ребра 1 сзади будет падать. Соответственно, давление контакта между промежуточной частью 5 фланца 2 ребра и теплообменной трубкой 10 будет падать, и сопротивление термического контакта будет увеличиваться, приводя к падению в теплообменной способности.
[0020] Следовательно, желательно, чтобы отношение (Tw1/R1) толщины Tw1 к радиусу R1 изгиба обратно выступающего участка 3 фланца 2 ребра составляло 0,6 или более относительно отношения (Tw2/R2) толщины Tw2 к радиусу R2 изгиба корневого участка 4.
[0021] ВТОРОЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
Фиг.5 - это увеличенный вид в разрезе главного участка теплообменника и вид в разрезе теплообменной трубки согласно второму варианту осуществления изобретения. Необходимо отметить, что те же части, что и в первом варианте осуществления, обозначены аналогичными ссылочными номерами.
На чертеже ссылочный номер 1 обозначает ребро, которое выполнено из листа, выполненного из термостойкого металла, такого как медный сплав или алюминиевый сплав. Теплообменная трубка 10, которая выполнена из металлического материала, такого как медь, медный сплав, алюминий или алюминиевый сплав, и которая снабжена множеством внутренних выступов 11, расположенных в осевом направлении внутренней круговой поверхности, предусмотрена ортогонально ребрам 1.
[0022] Теплообменник согласно второму варианту осуществления выполнен так, что изгиб предусмотрен на обратно выступающем участке 3 и на корневом участке 4 фланца 2 ребра для каждого ребра 1; соотношение (Tw1/R1) толщины Tw1 к радиусу R1 изгиба обратно выступающего участка 3 выполнено так, чтобы равняться половине или более соотношения (Tw2/R2) толщины Tw2 к радиусу R2 изгиба корневого участка 4; и результат выражения отношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2 составляет от 0,26 до 0,34, при этом выражение отношения является произведением отношения (3,14×D/N) длины (3,14×D) окружности теплообменной трубки 10, имеющей внешний диаметр D, к общему числу N жил внутренних выступов 11, на отношение ((Tw1+Tw2))/2/Tw2 средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра к толщине Tw2 корневого участка 4 фланца 2 ребра.
[0023] Впоследствии, причина числового ограничения второго варианта осуществления будет описана.
Фиг.6 и 7 - это диаграммы, показывающие соотношение между следующими двумя параметрами: одним является выражение отношения, показывающее отношение между толщиной Tw фланца 2 ребра для ребра 1, внешним диаметром D теплообменной трубки 10 и числом N жил внутренних выступов 11 теплообменной трубки 10; а другим является эффективность теплообменника (%).
Как показано на фиг.6 и 7, для сохранения теплообменником теплообменной способности, выражение отношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2, которое является произведением отношения (3,14×D/N) длины (3,14*D) окружности теплообменной трубки 10, имеющей внешний диаметр D, к числу N жил внутренних выступов 11, на отношение ((Tw1+Tw2)/2))/Tw2 средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра к толщине Tw2 корневого участка 4 фланца 2 ребра, должно составлять от 0,26 до 0,34.
[0024] С другой стороны, если результат выражения соотношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2 меньше, чем 0,26, при этом выражение отношения представляет произведение отношения (3,14×D/N) длины (3,14×D) окружности теплообменной трубки 10, имеющей внешний диаметр D, к числу N жил внутренних выступов 11, на отношение ((Tw1+Tw2)/2)/Tw2) средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра, к толщине Tw2 корневого участка 4, тогда давление контакта между промежуточной частью 5 фланца 2 ребра и теплообменной трубкой 10 будет падать, и сопротивление термического контакта будет увеличиваться, следовательно, теплообменная способность будет падать.
[0025] Кроме того, если результат выражения отношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2 больше, чем 0,34, при этом выражение отношения представляет произведение отношения (3,14×D/N) окружности (3,14×D) теплообменной трубки 10, имеющей внешний диаметр D, к числу N жил внутренних выступов 11, на отношение ((Tw1+Tw2)/2)/Tw2 средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра к толщине Tw2 корневого участка 4, тогда механическое напряжение будет концентрироваться на корневом участке 4 фланца 2 ребра, давление контакта между промежуточной частью 5 фланца 2 ребра и теплообменной трубкой 10 будет падать, и сопротивление термического контакта будет увеличиваться; следовательно, теплообменная способность будет падать.
[0026] Необходимо отметить, что особенно предпочтительно, чтобы результат выражения отношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2 составлял от 0,27 до 0,31, при этом выражение отношения представляет произведение отношения (3,14×D/N) длины (3,14×D) окружности теплообменной трубки 10, имеющей внешний диаметр D, к числу N жил внутренних выступов 11, на отношение ((Tw1+Tw2)/2)/Tw2 средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра к толщине Tw2 корневого участка 4.
[0027] Соответственно, во втором варианте осуществления результат выражения отношения (3,14×D/N)×((Tw1+Tw2)/2)/Tw2, которое является произведением отношения (3,14×D/N) длины (3,14×D) окружности теплообменной трубки 10, имеющей внешний диаметр D, к числу N жил внутренних выступов 11, на соотношение (Tw1+Tw2)/2)/Tw2 средней толщины (Tw1+Tw2)/2 промежуточного участка 5 фланца 2 ребра и толщины Tw2 корневого участка 4, задан так, чтобы составлять от 0,26 до 0,34.
С такой конфигурацией сопротивление термического контакта между ребрами 1 и теплообменными трубками 10 уменьшается, и теплообменная способность увеличивается.
[0028] ТРЕТИЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ
Третий вариант осуществления является примером, в котором теплообменник согласно первому варианту осуществления или второму варианту осуществления применяется в холодильнике или устройстве кондиционирования воздуха.
Соответственно, сопротивление контакта между ребрами 1 и теплообменными трубками 10 теплообменника уменьшается, и могут быть получены высокоэффективный холодильник или устройство кондиционирования воздуха с увеличенной теплообменной способностью.
[0029] Необходимо отметить, что вышеописанные холодильник и устройство кондиционирования воздуха согласно изобретению применяют, в качестве своей рабочей текучей среды, любой из однокомпонентного хладагента HC, смешанного хладагента, включающего в себя HC, и неазеотропной смеси холодильных агентов, включающих в себя R32, R410A, R407C, тетрафторопропилен и HFC-хладагент, имеющий точку кипения, которая ниже, чем у тетрафторопропилена; и двуокись углерода. В случае устройства кондиционирования воздуха теплообменник согласно изобретению применяется в любом одном или обоих из испарителя и конденсатора.
[0030] ПРИМЕРЫ
Далее будет дано описание примеров изобретения, при этом сравнивая примеры со сравнительными примерами, которые отклоняются от рамок изобретения.
Как иллюстрировано в таблице 1, были изготовлены теплообменники, в которых изгиб корневого участка 4 фланца 2 ребра для ребра 1 имеет радиус R2 0,3 мм и толщину Tw2 0,1 мм и в которых изгиб обратно выступающего участка 3 имеет радиус R1 0,4 мм и толщину Tw1 0,067 мм или 0,09 мм (пример 1 и пример 2).
Кроме того, в качестве сравнительных примеров были изготовлены теплообменники, в которых изгиб корневого участка 4 фланца 2 ребра для ребра 1 имеет радиус R2 0,3 мм и толщину Tw2 0,1 мм и в котором изгиб обратно выступающего участка 3 имеет радиус R1 0,4 мм и толщину Tw1 0,05 мм или 0,06 мм (сравнительный пример 1 и сравнительный пример 2).
[0031]
[Таблица 1]
Tw1 [мм] R1 [мм] Tw2 [мм] R2 [мм] (Tw1/R1)/(Tw2/R2) Эффективность теплообменника [%]
Сравнительный пример 1 0,05 0,4 0,1 0,3 0,38 96
Сравнительный пример 2 0,06 0,4 0,1 0,3 0,45 99
Пример 1 0,067 0,4 0,1 0,3 0,5 100,5
Пример 2 0,09 0,4 0,1 0,3 0,68 102
[0032] Как видно из таблицы 1, оба теплообменника из примера 1 и примера 2 имеют более высокую эффективность теплообменника по сравнению с теплообменниками из сравнительного примера 1 и сравнительного примера 2 и имеют улучшенный коэффициент контактной теплопередачи.
[0033] Далее, как иллюстрировано в таблице 2, были изготовлены теплообменники, в которых изгиб корневого участка 4 фланца 2 ребра для ребра 1 имеет радиус R2 0,3 мм и толщину Tw2 0,1 мм и в которых изгиб обратно выступающего участка 3 имеет радиус R1 0,5 мм и толщину Tw1 0,083 мм или 0,09 мм (пример 3 и пример 4).
Кроме того, в качестве сравнительных примеров были изготовлены теплообменники, в которых изгиб корневого участка 4 фланца 2 ребра для ребра 1 имеет радиус R2 0,3 мм и толщину Tw2 0,1 мм и в котором изгиб обратно выступающего участка 3 имеет радиус R1 0,5 мм и толщину Tw1 0,06 мм или 0,07 мм (сравнительный пример 3 и сравнительный пример 4).
[0034]
[Таблица 2]
Tw1 [мм] R1 [мм] Tw2 [мм] R2 [мм] (Tw1/R1)/(Tw2/R2) Эффективность теплообменника [%]
Сравнительный пример 3 0,06 0,5 0,1 0,3 0,36 95
Сравнительный пример 4 0,07 0,5 0,1 0,3 0,42 98
Пример 3 0,083 0,5 0,1 0,3 0,5 100,5
Пример 4 0,09 0,5 0,1 0,3 0,54 101,8
[0035] Как видно из таблицы 2, оба теплообменника из примера 3 и примера 4 имеют более высокую эффективность теплообменника по сравнению с теплообменниками из сравнительного примера 3 и сравнительного примера 4 и имеют улучшенный коэффициент контактной теплопередачи.
[0036] Затем, как иллюстрировано в таблице 3, были изготовлены теплообменники, в которых фланец 2 ребра для ребра 1 имеет обратно выступающий участок 3 с толщиной Tw1 0,07 мм и корневой участок 4 с толщиной Tw2 0,1 мм и в которых теплообменная трубка 10 имеет внешний диаметр D 7 мм и число N жил внутренних выступов 11, равное 55 или 72 (пример 5 и пример 6).
Кроме того, в качестве сравнительных примеров были изготовлены теплообменники, в которых фланец 2 ребра для ребра 1 имеет обратно выступающий участок 3 с толщиной Tw1 0,07 мм и корневой участок 4 с толщиной Tw2 0,1 мм и в которых теплообменная трубка 10 имеет внешний диаметр D 7 мм и 45, 50 или 80 жил N внутренних выступов 11 (сравнительный пример 5, сравнительный пример 6 и сравнительный пример 7).
[0037]
[Таблица 3]
Внешний диаметр D [мм] Число жил N
[-]
Tw1 [мм] Tw2 [мм] 3,14*внешний диаметр (D)/число жил (N)× ((Tw1/Tw2)/2)/Tw2 Эффективность теплообменника
[%]
Сравнительный пример 5 7 45 0,07 0,1 0,42 92
Сравнительный пример 6 7 50 0,07 0,1 0,37 97
Сравнительный пример 7 7 80 0,07 0,1 0,23 97
Пример 5 7 55 0,07 0,1 0,34 101
Пример 6 7 72 0,07 0,1 0,26 101,5
[0038] Как видно из таблицы 3, оба теплообменника из примера 5 и примера 6 имеют более высокую эффективность теплообменника по сравнению с теплообменниками из сравнительного примера 5, сравнительного примера 6 и сравнительного примера 7 и имеют улучшенный коэффициент контактной теплопередачи.
[0039] Кроме того, как иллюстрировано в таблице 4, были изготовлены теплообменники, в которых фланец 2 ребра для ребра 1 имеет обратно выступающий участок 3 с толщиной Tw1 0,09 мм и корневой участок 4 с толщиной Tw2 0,1 мм и в которых теплообменная трубка 10 имеет внешний диаметр D 7 мм и 60 или 80 жил N внутренних выступов 11 (пример 7 и пример 8).
Кроме того, в качестве сравнительных примеров были изготовлены теплообменники, в которых фланец 2 ребра для ребра 1 имеет обратно выступающий участок 3 с толщиной Tw1 0,09 мм и корневой участок 4 с толщиной Tw2 0,1 мм и в которых теплообменная трубка 10 имеет внешний диаметр D 7 мм и 50, 55 или 85 жил N внутренних выступов 11 (сравнительный пример 8, сравнительный пример 9 и сравнительный пример 10).
[0040] [Таблица 4]
Внешний диаметр D [мм] Число жил N [-] Tw1 [мм] Tw2 [мм] 3,14*внешний диаметр (D)/число жил (N)× ((Tw1/Tw2)/ 2)/Tw2 Эффективность теплообменника [%]
Сравнительный пример 8 7 50 0,09 0,1 0,41 91
Сравнительный пример 9 7 55 0,09 0,1 0,37 97
Сравнительный пример 10 7 85 0,09 0,1 0,24 98
Пример 7 7 60 0,09 0,1 0,34 101
Пример 8 7 80 0,09 0,1 0,26 101,5
[0041] Как видно из таблицы 4, оба теплообменника из примера 7 и примера 8 имеют более высокую эффективность теплообменника по сравнению с теплообменниками из сравнительного примера 8, сравнительного примера 9 и сравнительного примера 10 и имеют улучшенный коэффициент контактной теплопередачи.
СПИСОК ССЫЛОЧНЫХ ПОЗИЦИЙ
[0042]
1 Ребро
2 Фланец ребра
3 Обратно выступающий участок фланца ребра
4 Корневой участок фланца ребра
5 Промежуточный участок фланца ребра
10 Теплообменная трубка
11 Внутренний выступ
15 Шар для развальцовки трубки
16 Стержень
17 Текучая среда

Claims (6)

1. Теплообменник, содержащий:
множество теплообменных трубок, расположенных параллельно друг другу; и множество листообразных ребер, предусмотренных ортогонально теплообменным трубкам, каждая из которых находится в контакте с фланцами ребер листообразных ребер посредством развальцовки и введена вдоль фланцев ребер,
при этом каждый фланец ребра выполнен так, что предусмотрен изгиб на каждом из обратно выступающего участка и корневого участка фланца ребра, причем толщина обратно выступающего участка является небольшой по сравнению с толщиной корневого участка, а радиус изгиба обратно выступающего участка является большим по сравнению с радиусом изгиба корневого участка.
2. Теплообменник по п. 1, в котором промежуточный участок, внешняя сторона поверхности которого является плоской, выполнен между изгибом на обратно выступающем участке и изгибом на корневом участке каждого фланца ребра.
3. Теплообменник по п. 2, в котором каждая теплообменная трубка выполнена так, что произведение отношения длины окружности к общему числу жил внутренних выступов каждой теплообменной трубки на отношение средней толщины промежуточного участка к толщине корневого участка составляет от 0,26 до 0,34.
4. Теплообменник по любому из пп. 1-3, в котором каждый фланец ребра выполнен таким образом, что отношение толщины к радиусу изгиба обратно выступающего участка равно половине или более отношения толщины к радиусу изгиба корневого участка.
5. Холодильник, содержащий теплообменник по любому из пп. 1-4.
6. Устройство кондиционирования воздуха, содержащее теплообменник по любому из пп. 1-4.
RU2013143959/06A 2011-03-01 2011-03-01 Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником RU2557812C2 (ru)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/001170 WO2012117440A1 (ja) 2011-03-01 2011-03-01 熱交換器及びこの熱交換器を備えた冷蔵庫、空気調和機

Publications (2)

Publication Number Publication Date
RU2013143959A RU2013143959A (ru) 2015-04-10
RU2557812C2 true RU2557812C2 (ru) 2015-07-27

Family

ID=46757416

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013143959/06A RU2557812C2 (ru) 2011-03-01 2011-03-01 Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником

Country Status (7)

Country Link
US (1) US9279624B2 (ru)
EP (1) EP2682704B1 (ru)
JP (1) JP5649715B2 (ru)
CN (1) CN103403486B (ru)
ES (1) ES2602120T3 (ru)
RU (1) RU2557812C2 (ru)
WO (1) WO2012117440A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089099B1 (ko) 2014-09-08 2020-03-13 미쓰비시덴키 가부시키가이샤 열교환기
JP6575895B2 (ja) * 2015-01-28 2019-09-18 パナソニックIpマネジメント株式会社 熱交換器
FR3037388B1 (fr) * 2015-06-12 2019-07-26 Valeo Systemes Thermiques Ailette d'un echangeur thermique notamment pour vehicule automobile, et echangeur thermique correspondant
JP6559334B2 (ja) * 2016-04-15 2019-08-14 三菱電機株式会社 熱交換器
JP6233540B2 (ja) * 2016-04-20 2017-11-22 ダイキン工業株式会社 熱交換器及び空調機
CN106040904B (zh) * 2016-07-28 2018-03-30 海信(广东)空调有限公司 一种管翅式换热器的生产方法及管翅式换热器
JP7000027B2 (ja) * 2017-02-20 2022-02-04 三星電子株式会社 熱交換器及び空気調和機
WO2019062493A1 (zh) * 2017-09-30 2019-04-04 杭州三花微通道换热器有限公司 换热器和翅片
JP2020076531A (ja) * 2018-11-07 2020-05-21 ダイキン工業株式会社 熱交換器およびそれを備えた空気調和装置
CN111043109A (zh) * 2019-12-30 2020-04-21 福建中维动力科技股份有限公司 一种节能环保型散热器
CN112683098B (zh) * 2020-12-31 2023-07-04 南宁市安和机械设备有限公司 一种错位打点的油冷器管

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU634647A3 (ru) * 1969-05-22 1978-11-25 Хютогепгьяр (Инопредприятие) Способ изготовлени теплообменников
JPS62124040A (ja) * 1985-11-25 1987-06-05 Hitachi Ltd コイニングドロ−レスフインの製造方法
SU1611679A1 (ru) * 1989-01-24 1990-12-07 Опытно-Конструкторское Бюро Приборов Контроля И Автоматики Способ изготовлени оребренных труб
JP2001221587A (ja) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp フィンチューブ型熱交換器およびそれを用いた冷凍空調装置
JP2003329385A (ja) * 2002-05-07 2003-11-19 Mitsubishi Electric Corp 熱交換器フィンおよび熱交換器フィン形成金型

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007838A (en) * 1934-11-08 1935-07-09 Roy J Scott Heat transfer apparatus
JPS5716319B2 (ru) * 1973-09-03 1982-04-03
US3889745A (en) * 1973-12-19 1975-06-17 Reynolds Metals Co Heat exchanger and method of making same
DE2909620C2 (de) * 1979-02-01 1985-04-04 Schweizerische Aluminium Ag, Chippis Vorrichtung zum Abdichten von Fugen an der Innenwand von zylindrischen Hohlräumen und Verfahren zur Anwendung dieser Vorrichtung
JPS57144895A (en) * 1981-03-04 1982-09-07 Hitachi Ltd Fin and tube type of heat exchanger
US4580623A (en) * 1984-10-02 1986-04-08 Inglis Limited Heat exchanger
JPH04123828A (ja) * 1990-09-13 1992-04-23 Hidaka Seiki Kk 熱交換器用フィンの製造金型
JP2511183B2 (ja) * 1990-07-19 1996-06-26 日高精機株式会社 熱交換器用フィンの製造金型
US5275234A (en) * 1991-05-20 1994-01-04 Heatcraft Inc. Split resistant tubular heat transfer member
DE9213724U1 (de) * 1991-10-12 1993-04-08 Becker, Karl-Hermann, 5241 Friedewald Wärmetauscher hoher Leistung und Hygiene
MY115423A (en) * 1993-05-27 2003-06-30 Kobe Steel Ltd Corrosion resistant copper alloy tube and fin- tube heat exchanger
FR2706197B1 (fr) * 1993-06-07 1995-07-28 Trefimetaux Tubes rainurés pour échangeurs thermiques d'appareils de conditionnement d'air et de réfrigération, et échangeurs correspondants.
US5554234A (en) * 1993-06-28 1996-09-10 Furukawa Aluminum Co., Ltd. High strength aluminum alloy for forming fin and method of manufacturing the same
US5660230A (en) * 1995-09-27 1997-08-26 Inter-City Products Corporation (Usa) Heat exchanger fin with efficient material utilization
JP3188645B2 (ja) 1996-04-12 2001-07-16 住友軽金属工業株式会社 フィンドコイル式熱交換器の製造方法及びそれに用いられるアルミニウムプレートフィン
JP2912590B2 (ja) * 1996-11-28 1999-06-28 日高精機株式会社 熱交換器用フィンおよびその製造金型
JP3038179B2 (ja) * 1998-04-08 2000-05-08 日高精機株式会社 熱交換器用フィン及びその製造方法
US6266882B1 (en) * 1999-05-20 2001-07-31 Carrier Corporation Fin collar and method of manufacturing
JP4339665B2 (ja) * 2003-10-31 2009-10-07 住友軽金属工業株式会社 熱交換器の製作方法
JP2008232499A (ja) * 2007-03-19 2008-10-02 Daikin Ind Ltd 熱交換器用フィン
CN201116845Y (zh) * 2007-09-27 2008-09-17 姚德林 一种低风阻管翅片式空气换热器
JP4738401B2 (ja) * 2007-11-28 2011-08-03 三菱電機株式会社 空気調和機
CN101509741A (zh) * 2009-03-19 2009-08-19 上海交通大学 换热器翅片以及翅片管式热交换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU634647A3 (ru) * 1969-05-22 1978-11-25 Хютогепгьяр (Инопредприятие) Способ изготовлени теплообменников
JPS62124040A (ja) * 1985-11-25 1987-06-05 Hitachi Ltd コイニングドロ−レスフインの製造方法
SU1611679A1 (ru) * 1989-01-24 1990-12-07 Опытно-Конструкторское Бюро Приборов Контроля И Автоматики Способ изготовлени оребренных труб
JP2001221587A (ja) * 2000-02-10 2001-08-17 Mitsubishi Electric Corp フィンチューブ型熱交換器およびそれを用いた冷凍空調装置
JP2003329385A (ja) * 2002-05-07 2003-11-19 Mitsubishi Electric Corp 熱交換器フィンおよび熱交換器フィン形成金型

Also Published As

Publication number Publication date
WO2012117440A1 (ja) 2012-09-07
CN103403486A (zh) 2013-11-20
JPWO2012117440A1 (ja) 2014-07-07
CN103403486B (zh) 2015-12-09
US9279624B2 (en) 2016-03-08
RU2013143959A (ru) 2015-04-10
EP2682704A4 (en) 2015-03-04
EP2682704A1 (en) 2014-01-08
EP2682704B1 (en) 2016-10-05
JP5649715B2 (ja) 2015-01-07
ES2602120T3 (es) 2017-02-17
US20130340986A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
RU2557812C2 (ru) Теплообменник, холодильник, снабженный теплообменником и устройство кондиционирования воздуха, снабженное теплообменником
JP4738401B2 (ja) 空気調和機
WO2009131072A1 (ja) 熱交換器、及びこの熱交換器を用いた空気調和機
JP5094771B2 (ja) 熱交換器の製造方法及びその熱交換器を用いた空気調和機
WO2014147919A1 (ja) 熱交換器、冷凍サイクル装置、及び熱交換器の製造方法
JP2012233680A (ja) フィンチューブ型熱交換器及び冷凍サイクル装置
US20130000347A1 (en) Hybrid heat exchanger
KR101173842B1 (ko) 엘형 턴핀 튜브 및 이를 이용한 턴핀형 열교환기
JP2018021756A (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
JP6360791B2 (ja) フィン・アンド・チューブ型熱交換器用伝熱管及びそれを用いたフィン・アンド・チューブ型熱交換器
JPWO2014076757A1 (ja) 扁平形状伝熱管、それを備えたクロスフィンチューブ型熱交換器の製造方法、その方法で製造されたクロスフィンチューブ型熱交換器
JP2011075122A (ja) アルミニウム製内面溝付伝熱管
JP6053693B2 (ja) 空気調和機
EP3115730B1 (en) Refrigeration cycle device
WO2017080269A1 (zh) 换热器和换热管
JP2012200769A (ja) 熱交換器用扁平管及びその製造方法
JP2010230300A (ja) 熱交換器、及びこの熱交換器を備えた空気調和機
JP2009162389A (ja) 伝熱管、及び、伝熱管の製造方法
JP2010078256A (ja) フィンチューブ型熱交換器、これを用いた冷凍サイクル装置及び空気調和機
JP4874320B2 (ja) 熱交換器及びこの熱交換器を備えた空気調和機
JP2010151403A (ja) 熱交換器
JP2015094499A (ja) 熱交換器
KR101323254B1 (ko) 방사형 돌출구조를 가진 엘형 턴핀 튜브
JP2012202560A (ja) 熱交換器及びその製造方法
JP2008281263A (ja) 熱交換器

Legal Events

Date Code Title Description
QA4A Patent open for licensing

Effective date: 20170830