RU2532266C2 - Способ получения диметилкарбоната высокой чистоты - Google Patents

Способ получения диметилкарбоната высокой чистоты Download PDF

Info

Publication number
RU2532266C2
RU2532266C2 RU2012120048/04A RU2012120048A RU2532266C2 RU 2532266 C2 RU2532266 C2 RU 2532266C2 RU 2012120048/04 A RU2012120048/04 A RU 2012120048/04A RU 2012120048 A RU2012120048 A RU 2012120048A RU 2532266 C2 RU2532266 C2 RU 2532266C2
Authority
RU
Russia
Prior art keywords
dimethyl carbonate
heating
range
high purity
cooling
Prior art date
Application number
RU2012120048/04A
Other languages
English (en)
Other versions
RU2012120048A (ru
Inventor
Маурицио Гирардини
НАРДО Лаура ДЕ
Элена НОВЕЛЛО
Original Assignee
ВЕРСАЛИС С.п.А.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ВЕРСАЛИС С.п.А. filed Critical ВЕРСАЛИС С.п.А.
Publication of RU2012120048A publication Critical patent/RU2012120048A/ru
Application granted granted Critical
Publication of RU2532266C2 publication Critical patent/RU2532266C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/08Purification; Separation; Stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids

Abstract

Изобретение относится к способу получения диметилкарбоната высокой чистоты, включающему проведение охлаждения диметилкарбоната товарного сорта, имеющего содержание хлора выше 1 ppm, при температуре охлаждения до -5°C и при скорости охлаждения в диапазоне от 0,5°C/час до 2°C/час для получения диметилкарбоната в твердом виде; проведение первого нагревания указанного диметилкарбоната в твердом виде при температуре нагревания до +6°C и скорости нагревания в диапазоне от 1°C/час до 5°C/час для получения смеси, содержащей диметилкарбонат в твердом виде и заданное количество диметилкарбоната в жидком виде; отделение указанного диметилкарбоната в жидком виде от указанной смеси, чтобы получить диметилкарбонат в твердом виде; проведение второго нагревания указанного диметилкарбоната в твердом виде при температуре нагревания в диапазоне от 20°C до 40°C для получения диметилкарбоната в жидком виде, при этом указанный диметилкарбонат в жидком виде имеет степень чистоты выше 99,99% и содержание хлора не выше 1 ppm. Полученный диметилкарбонат может применяться в качестве органического растворителя для получения электролита литиевых источников тока. 16 з.п. ф-лы, 1 ил., 1 пр.

Description

Данное изобретение относится к способу получения диметилкарбоната высокой чистоты.
Более конкретно, данное изобретение относится к способу получения диметилкарбоната высокой чистоты, в ходе которого диметилкарбонат подвергают воздействию цикла охлаждения и нагревания, который осуществляют при конкретных температурных условиях и с конкретными скоростями охлаждения и нагревания.
Указанный диметилкарбонат особенно пригоден в качестве органического растворителя в электронной промышленности, а более конкретно - в качестве органического растворителя для производства электролита литиевых источников тока.
Данное изобретение также относится к применению диметилкарбоната, полученного вышеуказанным способом, в качестве органического растворителя в электронной промышленности, а более конкретно - в качестве органического растворителя для производства электролита литиевых источников тока.
Известно, что диалкилкарбонаты являются важными промежуточными соединениями для синтеза химических веществ тонкого органического синтеза, фармацевтических продуктов и пластиков, и они пригодны в качестве синтетических смазывающих веществ, растворителей, пластификаторов, мономеров для органических стекол и различных полимеров, в том числе поликарбонатов.
В частности, благодаря его низкой токсичности и низкой реакционной способности, диметилкарбонат (ДМК) можно применять в качестве текучей среды, в малой степени воздействующей на окружающую среду, в многочисленных применениях, которые требуют присутствия растворителя, например, в качестве замены содержащих фтор растворителей, применяемых в электронной промышленности.
Известно, что применение в электронике, в частности, в качестве растворителя для получения электролита литиевых источников тока требует использования диметилкарбоната высокой чистоты, то есть выше 99,99%.
В этом отношении на существующем уровне техники известны способы получения диметилкарбоната высокой чистоты.
Например, в китайской патентной заявке 1944392 описан способ очистки диметилкарбоната высокой чистоты, включающий: охлаждение диметилкарбоната товарного сорта до температуры 4ºС (то есть до температуры, соответствующей температуре плавления диметилкарбоната), чтобы получить кристаллическое твердое вещество; прекращение охлаждения в момент, когда будет достигнуто заданное количество кристаллического твердого вещества, с получением смеси твердое вещество/жидкость; удаление жидкости, присутствующей в указанной смеси твердое вещество/жидкость, с получением кристаллического твердого вещества; нагревание указанного кристаллического твердого вещества с получением жидкого продукта, то есть диметилкарбоната, имеющего степень чистоты выше 99,99%. Утверждают, что диметилкарбонат, полученный вышеуказанным способом, пригоден в качестве растворителя для получения электролита литиевых источников тока.
В корейской патентной заявке KR 713141 описан способ получения диметилкарбоната высокой чистоты, включающий следующие стадии:
охлаждение исходного материала, содержащего по меньшей мере 85% масс. диметилкарбоната, полученного переэтерификацией алкиленкарбоната метанолом; переход от комнатной температуры до температуры в диапазоне от -5ºС до -25ºС, со скоростью охлаждения в диапазоне от 0,05ºС/мин до 0,7ºС/мин, чтобы произвести кристаллизацию в отсутствии растворителя; нагревание кристаллов, полученных в ходе указанной кристаллизации, до температуры в диапазоне от 10ºС до 20ºС, при скорости нагревания от 0,1ºС/мин до 0,5ºС/мин, чтобы частично расплавить указанные кристаллы и в то же время удалить примеси, содержащиеся в указанных кристаллах, с получением диметилкарбоната, имеющего степень чистоты по меньшей мере выше 99%.
Однако в вышеуказанных технологиях не указано количество хлора, присутствующего в полученном диметилкарбонате.
Автор изобретения рассмотрел проблему разработки способа получения диметилкарбоната, имеющего, в дополнение к высокой чистоте, то есть при степени чистоты выше 99,99%, содержание хлора не более 1 ppm (частей на миллион).
Автор изобретения обнаружил, что, подвергая диметилкарбонат циклу охлаждения и нагревания, проводимому при конкретных температурных условиях и при конкретных скоростях охлаждения и нагревания, можно получить диметилкарбонат, обладающий не только степенью чистоты выше 99,99% (то есть высокой чистотой), но также и содержанием хлора не более 1 ppm. Высокая степень чистоты и чрезвычайно низкое содержание хлора (то есть не более 1 ppm) делают указанный диметилкарбонат особенно пригодным в качестве органического растворителя в электронной промышленности, а более конкретно - в качестве органического растворителя для получения электролита литиевых источников тока.
Таким образом, объект данного изобретения относится к способу получения диметилкарбоната высокой чистоты, включающему:
- проведение охлаждения по меньшей мере одного диметилкарбоната товарного сорта, имеющего содержание хлора более 1 ppm, предпочтительно в диапазоне от 10 до 100 ppm, при температуре охлаждения в диапазоне от +6ºС до -5ºС, предпочтительно в диапазоне от +5ºС до -3ºС, и со скоростью охлаждения в диапазоне от 0,5ºС/час до 2ºС/час, предпочтительно в диапазоне от 0,8ºС/час до 1,5ºС/час, для получения диметилкарбоната в форме твердого вещества;
- проведение первого нагревания указанного диметилкарбоната в форме твердого вещества при температуре нагревания в диапазоне от -5ºС до +6ºС, предпочтительно в диапазоне от -3ºС до +5ºС, и при скорости нагревания в диапазоне от 1ºС/час до 5ºС/час, предпочтительно в диапазоне от 1,5ºС/час до 4ºС/час, для получения смеси, содержащей диметилкарбонат в твердом виде и заданное количество диметилкарбоната в жидком виде;
- отделение указанного диметилкарбоната в жидком виде от указанной смеси для получения диметилкарбоната в твердом виде;
- проведение второго нагревания указанного диметилкарбоната в твердом виде при температуре нагревания в диапазоне от 20ºС до 40ºС, предпочтительно в диапазоне от 25ºС до 35ºС, для получения диметилкарбоната в жидком виде, при этом указанный диметилкарбонат в жидком виде имеет степень чистоты выше 99,99% и содержание хлора не более 1 ppm.
Для целей данного описания и последующей формулы изобретения определения численных диапазонов всегда включают крайние значения, если не указано иного.
Для целей данного описания и последующей формулы изобретения термин «товарного сорта» означает диметилкарбонат, имеющий степень чистоты в диапазоне от 98% до 99,95%.
Для целей данного описания и последующей формулы изобретения термин «температура охлаждения» означает температуру охлаждающей текучей среды, используемой с целью проведения обработки по данному изобретению.
Для целей данного описания и последующей формулы изобретения термин «температура нагревания» означает температуру охлаждающей текучей среды, используемой с целью проведения обработки по данному изобретению.
В соответствии с предпочтительным примером воплощения данного изобретения, указанное охлаждение можно проводить в течение времени в диапазоне от 1 часа до 20 часов, предпочтительно в диапазоне от 5 часов до 15 часов.
Согласно предпочтительному примеру воплощения данного изобретения, указанное первое нагревание можно осуществлять в течение времени в диапазоне от 2 часов до 10 часов, предпочтительно в диапазоне от 3 часов до 8 часов.
Согласно предпочтительному примеру воплощения данного изобретения, указанное первое нагревание можно начинать, когда диметилкарбонат товарного сорта, подвергаемый указанному охлаждению, достиг температуры не ниже -2ºС, предпочтительно в диапазоне от -1,8ºС до -1ºС.
Согласно предпочтительному примеру воплощения данного изобретения, указанный диметилкарбонат в жидком виде может присутствовать в смеси, полученной после указанного первого нагревания, в количестве в диапазоне от 15% масс. до 30% масс., предпочтительно в диапазоне от 18% масс. до 25% масс. в расчете на общую массу исходного диметилкарбоната товарного сорта.
Следует отметить, что хлор, содержащийся в исходном диметилкарбонате товарного сорта, преимущественно остается в находящемся в жидком виде диметилкарбонате, находящемся в смеси, полученной после указанного первого нагревания.
Согласно предпочтительному примеру воплощения данного изобретения, диметилкарбонат, присутствующий в жидком виде в смеси, полученной после указанного первого нагревания, представляет собой диметилкарбонат, имеющий содержание хлора не ниже 4 ppm, предпочтительно в диапазоне от 40 ppm до 500 ppm.
Отделение диметилкарбоната в жидком виде от диметилкарбоната в твердом виде, которые оба присутствуют в смеси, полученной после указанного первого нагревания, осуществляют путем выпуска указанного диметилкарбоната в жидком виде из оборудования, применяемого для осуществления вышеуказанного способа.
Вышеуказанный способ можно осуществить на оборудовании, известном на существующем уровне техники, таком как, например, теплообменники, особенно в теплообменниках, снабженных оребренными трубами.
Диметилкарбонат, полученный вышеописанным способом, используют в качестве органического растворителя в электронной промышленности, в частности в качестве органического растворителя для получения электролита литиевых источников тока.
Ниже представлено несколько иллюстративных и неограничивающих примеров для лучшего понимания настоящего изобретения и для его воплощения.
ПРИМЕР 1
4450 кг диметилкарбоната товарного сорта, имеющего степень чистоты 99,9% и содержание хлора 15 ppm, загружали в теплообменник, снабженный оребренными трубами, со стороны межтрубного пространства. С другой стороны трубы теплообменника присоединены к системе охлаждения, способной контролировать температуру охлаждающей текучей среды, которая находится внутри оребренных труб.
В ходе подачи охлаждающую текучую среду поддерживали при температуре 22°C. В конце подачи, через 30 минут, охлаждающую текучую среду охлаждали до температуры 4,5°C в течение 20 минут, и диметилкарбонат оставляли при этой температуре в течение 30 минут.
Далее охлаждающую текучую среду дополнительно охлаждали до температуры -2,5°C, в течение 7 часов, при скорости охлаждения 1°C/час, и диметилкарбонат оставляли при этой температуре на 3 часа. В конце диметилкарбонат достигает температуры -1,5ºС и находится в форме твердого вещества.
Далее охлаждающую текучую среду нагревали до температуры 4,5ºС в течение 2 часов, при скорости нагревания 3,5ºС/час, и диметилкабонат оставляли при этой температуре в течение 5 часов, с получением смеси, содержащей жидкий диметилкарбонат (22,4% масс. в расчете на общую массу исходного диметилкарбоната) и твердый диметилкарбонат. Жидкий диметилкарбонат, имеющий содержание хлора 70 ppm, выпускали из теплообменника.
Затем охлаждающую текучую среду нагревали до температуры 30ºС в течение 40 минут, и оставляли диметилкарбонат при этой температуре на 4 часа, с получением жидкого диметилкарбоната. Полученный жидкий диметилкарбонат, имеющий степень чистоты 99,99% и содержание хлора менее 1 ppm, выпускали из теплообменника.
Степень чистоты определяли с помощью газохроматографического анализа, в то время как содержание хлора определяли согласно стандарту ASTM D4929-07 (Метод В).
На фиг.1 показан характер изменения температуры охлаждающей текучей среды и температуры диметилкарбоната в ходе вышеописанного процесса: по ординате указана температура в ºС, по абсциссе - время в часах.

Claims (17)

1. Способ получения диметилкарбоната высокой чистоты, включающий:
- проведение охлаждения диметилкарбоната товарного сорта, имеющего содержание хлора выше 1 ppm, при температуре охлаждения до -5°C и при скорости охлаждения в диапазоне от 0,5°C/час до 2°C/час для получения диметилкарбоната в твердом виде;
- проведение первого нагревания указанного диметилкарбоната в твердом виде, при температуре нагревания до +6°C и скорости нагревания в диапазоне от 1°C/час до 5°C/час для получения смеси, содержащей диметилкарбонат в твердом виде и заданное количество диметилкарбоната в жидком виде;
- отделение указанного диметилкарбоната в жидком виде от указанной смеси, чтобы получить диметилкарбонат в твердом виде;
- проведение второго нагревания указанного диметилкарбоната в твердом виде, при температуре нагревания в диапазоне от 20°C до 40°C для получения диметилкарбоната в жидком виде, при этом указанный диметилкарбонат в жидком виде имеет степень чистоты выше 99,99% и содержание хлора не выше 1 ppm (частей на миллион).
2. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанный диметилкарбонат товарного сорта имеет содержание хлора в диапазоне от 10 ppm до 100 ppm.
3. Способ получения диметилкарбоната высокой чистоты по любому из пп.1-2, в котором указанное охлаждение осуществляют при температуре охлаждения в диапазоне от +5°C до -3°C.
4. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное охлаждение осуществляют при скорости охлаждения в диапазоне от 0,8°C/час до 1,5°C/час.
5. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное первое нагревание осуществляют при температуре нагревания в диапазоне от -3°C до +5°C.
6. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное первое нагревание проводят при скорости нагревания в диапазоне от 1,5°C/час до 4°C/час.
7. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное второе нагревание осуществляют при температуре нагревания в диапазоне от 25°C до 35°C.
8. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное охлаждение проводят в течение времени в диапазоне от 1 часа до 20 часов.
9. Способ получения диметилкарбоната высокой чистоты по п.8, в котором указанное охлаждение проводят в течение времени в диапазоне от 5 часов до 15 часов.
10. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное первое нагревание проводят в течение времени в диапазоне от 2 часов до 10 часов.
11. Способ получения диметилкарбоната высокой чистоты по п.10, в котором указанное первое нагревание проводят в течение времени в диапазоне от 3 часов до 8 часов.
12. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанное первое нагревание начинают, когда диметилкарбонат товарного сорта, подвергаемый указанному охлаждению, достигает температуры не ниже -2°C.
13. Способ получения диметилкарбоната высокой чистоты по п.12, в котором указанное первое нагревание начинают, когда диметилкарбонат товарного сорта, подвергаемый указанному охлаждению, достигает температуры в диапазоне от -1,8°C до -1°C.
14. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанный диметилкарбонат в жидком виде присутствует в смеси, полученной после указанного первого нагревания, в количестве в диапазоне от 15 мас.% до 30 мас.% в расчете на общую массу исходного диметилкарбоната товарного сорта.
15. Способ получения диметилкарбоната высокой чистоты по п.14, в котором указанный диметилкарбонат в жидком виде присутствует в смеси, полученной после указанного первого нагревания, в количестве в диапазоне от 18 мас.% до 25 мас.% в расчете на общую массу исходного диметилкарбоната товарного сорта.
16. Способ получения диметилкарбоната высокой чистоты по п.1, в котором указанный диметилкарбонат в жидком виде, присутствующий в смеси, полученной после указанного первого нагревания, представляет собой диметилкарбонат, имеющий содержание хлора не ниже 4 ppm.
17. Способ получения диметилкарбоната высокой чистоты по п.16, в котором указанный диметилкарбонат в жидком виде, присутствующий в смеси, полученной после указанного первого нагревания, представляет собой диметилкарбонат, имеющий содержание хлора в диапазоне от 40 ppm до 500 ppm.
RU2012120048/04A 2009-11-04 2010-10-29 Способ получения диметилкарбоната высокой чистоты RU2532266C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ITMI2009A001927A IT1396592B1 (it) 2009-11-04 2009-11-04 Procedimento per la produzione di dimetil carbonato ad elevata purezza
ITMI2009A001927 2009-11-04
PCT/IB2010/002776 WO2011055204A1 (en) 2009-11-04 2010-10-29 Process for the production of high-purity dimethyl carbonate

Publications (2)

Publication Number Publication Date
RU2012120048A RU2012120048A (ru) 2013-12-10
RU2532266C2 true RU2532266C2 (ru) 2014-11-10

Family

ID=42026085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120048/04A RU2532266C2 (ru) 2009-11-04 2010-10-29 Способ получения диметилкарбоната высокой чистоты

Country Status (17)

Country Link
US (1) US9006476B2 (ru)
EP (1) EP2496547B1 (ru)
JP (1) JP5730889B2 (ru)
KR (1) KR101760151B1 (ru)
CN (1) CN102656136B (ru)
AR (1) AR079194A1 (ru)
BR (1) BR112012010701B1 (ru)
CL (1) CL2012001167A1 (ru)
ES (1) ES2663568T3 (ru)
HU (1) HUE038514T2 (ru)
IT (1) IT1396592B1 (ru)
MX (1) MX339298B (ru)
MY (1) MY161476A (ru)
PL (1) PL2496547T3 (ru)
RU (1) RU2532266C2 (ru)
TW (1) TWI471304B (ru)
WO (1) WO2011055204A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410632B2 (ja) * 2014-10-24 2018-10-24 株式会社ジェイエスピー 無機質系発泡体の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2055066C1 (ru) * 1991-05-08 1996-02-27 Снампрогетти С.П.А. Способ непрерывного интегрального получения диметилкарбоната и метил-трет-бутилового эфира
EP1460056A1 (en) * 2001-12-27 2004-09-22 Asahi Kasei Chemicals Corporation Process for producing carbonic ester
JP2006273726A (ja) * 2005-03-28 2006-10-12 Ishikawajima Harima Heavy Ind Co Ltd 炭酸ジメチルの精製方法及び精製装置
CN1944392A (zh) * 2006-10-11 2007-04-11 北京格瑞华阳科技发展有限公司 高纯度碳酸二甲酯精制方法
EP1944392A1 (en) * 2005-09-21 2008-07-16 Toho Titanium Co., Ltd. Molten salt electrolyzer for reducing metal, method of electrolyzing the same and process for producing high-melting-point metal with use of reducing metal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4317032A1 (de) * 1993-05-21 1994-11-24 Varta Batterie Wiederaufladbare galvanische Lithiumzelle
CN100414765C (zh) * 2000-09-05 2008-08-27 三星Sdi株式会社 锂电池
KR100558842B1 (ko) * 2001-05-16 2006-03-10 에스케이씨 주식회사 유기전해액 및 이를 채용한 리튬 전지
KR100713141B1 (ko) * 2006-09-01 2007-05-02 한국화학연구원 경막 용융결정화에 의한 디메틸 카보네이트의 분리방법
KR100735861B1 (ko) * 2007-03-23 2007-07-04 삼전순약공업(주) 고순도 및 고수율 디메틸카보네이트의 정제 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2055066C1 (ru) * 1991-05-08 1996-02-27 Снампрогетти С.П.А. Способ непрерывного интегрального получения диметилкарбоната и метил-трет-бутилового эфира
EP1460056A1 (en) * 2001-12-27 2004-09-22 Asahi Kasei Chemicals Corporation Process for producing carbonic ester
JP2006273726A (ja) * 2005-03-28 2006-10-12 Ishikawajima Harima Heavy Ind Co Ltd 炭酸ジメチルの精製方法及び精製装置
EP1944392A1 (en) * 2005-09-21 2008-07-16 Toho Titanium Co., Ltd. Molten salt electrolyzer for reducing metal, method of electrolyzing the same and process for producing high-melting-point metal with use of reducing metal
CN1944392A (zh) * 2006-10-11 2007-04-11 北京格瑞华阳科技发展有限公司 高纯度碳酸二甲酯精制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DELLEDONNE D. ET AL: "Developments in the production and application of dimethylcarbonate", APPLIED CATALYSIS A: GENERAL, vol. 221, 2001, pages 241-251. *

Also Published As

Publication number Publication date
KR20120101671A (ko) 2012-09-14
EP2496547B1 (en) 2018-01-03
JP2013510132A (ja) 2013-03-21
WO2011055204A1 (en) 2011-05-12
US9006476B2 (en) 2015-04-14
PL2496547T3 (pl) 2018-06-29
MX339298B (es) 2016-05-19
BR112012010701A2 (pt) 2017-12-19
US20120283464A1 (en) 2012-11-08
HUE038514T2 (hu) 2018-10-29
ITMI20091927A1 (it) 2011-05-05
MX2012005291A (es) 2012-09-28
KR101760151B1 (ko) 2017-07-20
EP2496547A1 (en) 2012-09-12
IT1396592B1 (it) 2012-12-14
TW201124374A (en) 2011-07-16
AR079194A1 (es) 2012-01-04
MY161476A (en) 2017-04-14
CN102656136B (zh) 2014-08-13
TWI471304B (zh) 2015-02-01
CL2012001167A1 (es) 2013-01-25
CN102656136A (zh) 2012-09-05
BR112012010701B1 (pt) 2018-05-02
ES2663568T3 (es) 2018-04-13
RU2012120048A (ru) 2013-12-10
JP5730889B2 (ja) 2015-06-10

Similar Documents

Publication Publication Date Title
CN111004203A (zh) 电子级碳酸乙烯酯的纯化方法及其纯化装置
KR101898307B1 (ko) 폴리카보네이트 수지의 제조 방법
CA3004795A1 (en) Process for purifying alkanesulfonic acids
KR20080103518A (ko) 에틸렌 카보네이트의 정제 방법, 정제 에틸렌 카보네이트의제조방법 및 에틸렌 카보네이트
US10505228B2 (en) Method for drying electrolyte solution
KR20230110677A (ko) 정류-용융 결정화 결합 기술로 비닐렌 카보네이트를 정제하는 방법
RU2532266C2 (ru) Способ получения диметилкарбоната высокой чистоты
CN103333206A (zh) Tpo光引发剂的制备方法
JP5901918B2 (ja) 高純度ビニレンカーボネート
EP0996611A1 (en) Process for the production of methyl methacrylate
KR20130137204A (ko) 슬러리로부터 고체 입자들을 분리하기 위한 장치 및 방법
WO2015129640A1 (ja) ビスフェノールaの製造方法
EP2374786A1 (en) Purification of monochloroacetic acid rich streams
KR20150084054A (ko) 6,6''-(에틸렌디옥시)디-2-나프토산디에스테르의 제조 방법
JPS63268736A (ja) ポリカ−ボネ−トの製造方法
EP0757030B1 (en) Process for purifying diaryl carbonates
CN114989130B (zh) 一种碳酸亚乙烯酯的制备方法
US20170162915A1 (en) High-purity vinylene carbonate, nonaqueous electrolytic solution, and electricity storage device including same
US5136083A (en) Process for the purification of 4-acetoxystyrene
KR100671846B1 (ko) 고순도 알킬렌 카보네이트의 제조방법
WO2017064069A1 (en) Process for the purification of levulinic acid
WO2010095927A1 (en) Process for crystallizing and separating different diisocyanate isomers
KR20180041415A (ko) 용융결정화법에 의한 전해질용 초고순도 디메틸 카보네이트 정제 장치 및 방법
CN117208864A (zh) 一种双卤代磺酰亚胺酸的纯化方法及其应用