RU2530045C2 - Компактный концентратор сточных вод, работающий на отбросном тепле - Google Patents

Компактный концентратор сточных вод, работающий на отбросном тепле Download PDF

Info

Publication number
RU2530045C2
RU2530045C2 RU2011137006/05A RU2011137006A RU2530045C2 RU 2530045 C2 RU2530045 C2 RU 2530045C2 RU 2011137006/05 A RU2011137006/05 A RU 2011137006/05A RU 2011137006 A RU2011137006 A RU 2011137006A RU 2530045 C2 RU2530045 C2 RU 2530045C2
Authority
RU
Russia
Prior art keywords
gas
liquid
fluid
inlet
concentrator
Prior art date
Application number
RU2011137006/05A
Other languages
English (en)
Other versions
RU2011137006A (ru
Inventor
Бернард Ф. ДЮСЕЛЬ
Майкл Дж. РУТШ
Крейг КЛЕРКИН
Original Assignee
Хартлэнд Текнолоджи Партнерс Ллк
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Хартлэнд Текнолоджи Партнерс Ллк filed Critical Хартлэнд Текнолоджи Партнерс Ллк
Publication of RU2011137006A publication Critical patent/RU2011137006A/ru
Application granted granted Critical
Publication of RU2530045C2 publication Critical patent/RU2530045C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/14Evaporating with heated gases or vapours or liquids in contact with the liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/30Accessories for evaporators ; Constructional details thereof
    • B01D1/305Demister (vapour-liquid separation)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/048Purification of waste water by evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/08Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks
    • F23G7/085Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases using flares, e.g. in stacks in stacks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/10Treatment of water, waste water, or sewage by heating by distillation or evaporation by direct contact with a particulate solid or with a fluid, as a heat transfer medium
    • C02F1/12Spray evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/16Treatment of water, waste water, or sewage by heating by distillation or evaporation using waste heat from other processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)
  • Gas Separation By Absorption (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

Изобретение относится к концентраторам жидкости, а точнее к компактным передвижным недорогим концентраторам сточных вод, которые легко можно подключать к источникам отбросного тепла и использовать их для концентрирования жидкости. Компактный передвижной концентратор жидкости содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем проточный канал содержит суженный участок, который увеличивает скорость протекания газа по проточному каналу. Впускной патрубок жидкости впрыскивают жидкость в поток газа перед суженным участком таким образом, чтобы газожидкостная смесь полностью перемешивалась в проточном канале, вызывая частичное испарение жидкости. Туманоуловитель или газопромывной аппарат за суженным участком удаляет из потока газа унесенные им капельки жидкости и возвращает собранную жидкость во впускной патрубок жидкости по рециркуляционному контуру. Свежую жидкость, поступившую на концентрирование, также подают в рециркуляционный контур со скоростью, достаточно большой, чтобы компенсировать испарившееся в проточном канале количество жидкости. Техническим результатом изобретения является обеспечение надежного концентратора, обладающего большим сроком службы, который в непрерывном режиме концентрирует сточные воды, сильно отличающиеся друг от друга по своим параметрам. 2 н. и 18 з.п. ф-лы, 16 ил.

Description

Область техники, к которой относится изобретение
Эта заявка относится, в общем, к концентраторам жидкости, а точнее к компактным передвижным недорогим концентраторам сточных вод, которые легко можно подключать к источникам отбросного тепла и использовать их для концентрирования жидкости.
Уровень техники
Концентрированно летучих веществ может оказаться эффективной формой обработки или предварительной обработки самых разных сточных вод, и оно может проводиться в составе коммерческих систем обработки разного типа. При высоком уровне концентрирования многие сточные воды можно превратить в отходы, имеющие консистенцию шлама, с высоким содержанием растворенных и суспендированных веществ. Подобные концентрированные отходы легко поддаются отверждению обычными способами, используемыми на свалках, или, если это целесообразно, их направляют на дальнейшую обработку перед окончательным удалением. Концентрирование сточных вод может значительно снизить стоимость фрахта и потребность в хранилищах и может способствовать дальнейшей регенерации материалов из сточных вод.
Промышленные сточные воды очень сильно отличаются друг от друга по своим параметрам, поскольку они образуются при проведении множества промышленных процессов. Сточные воды образуются не только в нормальном режиме эксплуатации промышленных предприятий, но и в результате наступления неконтролируемых событий, возникающих при поломках, авариях и стихийных бедствиях. С образовавшимися сточными водами поступают следующим образом: сразу направляют на очистные сооружения; подвергают предварительной обработке, а затем направляют на очистные сооружения; подвергают обработке на месте их образования или вне места их образования с целью утилизации ценных компонентов или подвергают обработке на месте их образования или вне места их образования с целью простой подготовки к окончательному удалению. Если источником сточных вод служит неконтролируемое событие, в какой-либо из сценариев удаления сточных вод должен быть включен эффективный способ локализации и регенерации пролива.
Важным параметром, характеризующим эффективность процесса концентрирования сточных вод, является отношение объема остатка после концентрирования к объему сточной воды, поступившей на концентрирование. Желательно добиваться низких отношений объема остатка к объему поступающих сточных вод (высоких уровней концентрирования). Если сточные воды содержат растворенные и/или суспендированные нелетучие вещества, то уменьшение объема, которого удается добиться при использовании конкретного процесса концентрирования, основанного на испарении летучих веществ, в значительной степени определяется выбранным способом передачи тепла обрабатываемой жидкости.
Обычные системы, используемые для концентрирования путем испарения воды и других летучих веществ, можно разделить на системы прямого теплопереноса и системы непрямого теплопереноса в зависимости от используемого способа переноса тепла к жидкости, подвергаемой концентрированию (технологической жидкости). К устройствам непрямого теплопереноса относятся сосуды с рубашкой, наполненные технологической жидкостью, или пластинчатые, погружные трубчатые или змеевиковые теплообменники, которые погружают в технологическую жидкость. Для подачи тепла, необходимого для испарения, через рубашки или теплообменники пропускают греющую среду, такую как водяной пар или горячее масло. Устройства прямого теплопереноса, в которых греющую среду приводят в прямое соприкосновение с технологической жидкостью, используют, например, в системах с погружной камерой сгорания.
Эффективность систем непрямого теплопереноса, в которых используются теплообменники, такие как рубашки, пластинчатые, погружные трубы или змеевики, обычно ограничивается образованием твердого осадка на поверхностях теплообменников, соприкасающихся с технологической жидкостью. Конструкция таких систем усложняется также из-за необходимости иметь отдельное устройство для переноса тепла к теплоносителю, такое как паровой котел, или устройство, используемое для нагревания иного теплоносителя, такое как маслонагреватель. Эта конструкция ограничивается использованием двух систем непрямого теплопереноса для проведения концентрирования. Те жидкости, которые образуют осадки на теплообменниках в процессе нагревания, называют накипеобразующими жидкостями. Если жидкости содержат определенные соединения, такие как карбонаты, у которых при повышении температуры растворимость уменьшается, то осадок, обычно называемый накипью, будет образовываться даже при сравнительно низкой концентрации из-за высокой температуры на поверхности теплообменника. Если в сточной воде присутствуют соединения, обладающие высокой растворимостью при высоких температурах, такие как хлористый натрий, они также будут выпадать в осадок после достижения высокой концентрации. Осадки, которые приходится часто удалять с поверхности теплообменника, чтобы обеспечивать эффективность нагревания, могут представлять собой смесь суспендированных твердых веществ, принесенных сточными водами, и твердых веществ, выпавших в осадок из технологической жидкости. Отрицательное воздействие осаждения твердых веществ на поверхность теплообменника заключается в сокращении времени, в течение которого может производиться непрямая теплопередача перед тем, как приходится прекращать работу для очередной чистки. Это отрицательное воздействие вводит ограничение по количеству сточных вод, которые удается эффективно нагревать, особенно если в состав сточных вод входят накипеобразующие жидкости. Поэтому процессы, работающие по принципу непрямой теплопередачи, в общем, непригодны для концентрирования большинства сточных вод и обеспечения низкого отношения объема остатка к объему поступающих сточных вод.
В патенте США №5.342.482, который включен в данное описание путем ссылки на него, приведено описание концентратора особого типа с прямой теплопередачей, в котором реализован процесс барботажного теплообмена, согласно которому газообразные продукты сгорания генерируются и подаются по впускной трубе в диспергирующее устройство, погруженное в технологическую жидкость. Диспергирующее устройство содержит несколько расположенных на расстоянии друг от друга газовыпускных трубок, расходящихся в радиальном направлении от впускной трубы, причем каждая газовыпускная трубка имеет небольшие отверстия, расположенные на расстоянии друг от друга в разных местах по поверхности газовыпускной трубки, чтобы можно было выпускать газообразные продукты сгорания в виде мелких пузырьков настолько равномерно, насколько это целесообразно, по всему поперечному сечению жидкости, подвергаемой нагреванию в сосуде. Согласно современным представлениям об известных устройствах подобного типа этот концентратор обеспечивает требуемый тесный контакт между жидкостью и горячим газом на большой поверхности раздела фаз. Особенность этого процесса заключается в том, что и теплообмен, и массообмен происходят в динамических условиях на постоянно обновляемой межфазной поверхности, образующейся в результате барботажа газовой фазы через технологическую жидкость, а не на твердой поверхности теплообменника, на которой могут осаждаться твердые частицы. Таким образом, реализованный в этом концентраторе барботажный процесс обеспечивает значительные преимущества по сравнению с обычными процессами непрямой теплопередачи. Однако небольшие отверстия в газовыпускных трубках, которые используются для распределения горячих газов по объему технологической жидкости в концентраторе согласно патенту США №5.342.482, засоряются твердыми веществами, осаждающимися из накипеобразующих жидкостей. Вследствие этого впускная труба, по которой горячие газы подаются в технологическую жидкость, покрывается коркой твердого осадка.
Из-за необходимости пропускать большой объем газа через непрерывно поступающий поток жидкой фазы сосуд с концентратором, предложенным в патенте США 5.342.482, обычно должен иметь большое поперечное сечение. Внутреннюю поверхность такого сосуда и любой арматуры, установленной внутри него, называют «смоченной поверхностью» этого процесса. Эта смоченная поверхность должна выдерживать воздействие меняющихся концентраций горячей технологической среды во время эксплуатации системы. В системах, предназначенных для обработки самых разных сточных вод, конструкционные материалы смоченной поверхности нуждаются в особых проектных решениях в отношении коррозионной стойкости и температуроустойчивости, которые должны учитывать стоимость оборудования и расходы на его техническое обслуживание и замену по истечению определенного времени. Вообще говоря, увеличение срока службы и снижение расходов на техническое обслуживание/замену смоченной поверхности обеспечивают, выбирая либо высококачественные металлические сплавы, либо определенные конструкционные пластики, подобные тем, что используют для производства стеклопластиковых сосудов. Однако обычные процессы концентрирования, использующие системы непрямого или прямого нагревания, нуждаются еще и в приспособлениях для подачи горячих теплоносителей, таких как водяной пар, масло или газ, способных нагревать жидкость в сосуде. Хотя многие высококачественные сплавы отвечают требованиям в отношении коррозионной стойкости и температуроустойчивости, но сосуды и арматура, изготовленные из них, являются слишком дорогостоящими. С другой стороны, хотя конструкционные пластики и можно использовать для изготовления всего сосуда в целом или в качестве покрытия на смоченной поверхности, низкая температуроустойчивость не позволяет применять многие конструкционные пластики. Например, высокая температура впускной трубы, предназначенной для подачи горячего газа внутрь сосуда согласно патенту США №5.342.482, не позволяет использовать для ее изготовления конструкционные пластики. Таким образом, производство сосудов и другого оборудование, используемого для реализации этих процессов, и их техническое обслуживание являются очень дорогостоящими.
Кроме того, во всех этих системах необходим источник тепла, чтобы можно было проводить концентрирование или испарение. Было разработано множество систем, использующих тепло, выделяемое различными источниками, например тепло, выделяемое двигателем, камерой сгорания или газовым компрессором, в качестве источника тепла для обработки сточных вод. Описание одной из таких систем приведено в патенте США №7.214.290. В этой системе тепло выделяется при сжигании газа, выделяющегося из органических отходов, и используется в погружном газовом испарителе для обработки сточных вод на свалке. В патенте США №7.416.172 приведено описание погружного газового испарителя, в котором можно обеспечить подачу отбросного тепла на вход газового испарителя, чтобы использовать его для концентрирования или выпаривания жидкостей. Хотя отбросное тепло и считают дешевым источником энергии, для эффективного его использования при обработке сточных вод, отбросное тепло во многих случаях приходится транспортировать на значительное расстояние от источника отбросного тепла до того места, где проводят испарение или концентрирование. Например, во многих случаях на свалке будут работать электрогенераторы, которые используют один или несколько двигателей внутреннего сгорания, использующих в качестве топлива газ, выделяющийся из органических отходов. Выхлопные газы этих двигателей, которые обычно выбрасывают через глушитель и выхлопную трубу в атмосферу на крыше здания, в котором находятся электрогенераторы, являются источником отбросного тепла. Но чтобы собрать и использовать это отбросное тепло, нужно подсоединить к выхлопной трубе значительное количество дорогостоящих труб и трубопроводов и подавать по ним отбросное тепло на то место, где находится обрабатывающая система, которую обычно размещают на нулевой отметке вдали от здания, в котором находятся генераторы. Следует отметить, что трубы, трубопроводы и регулирующие устройства (например, дроссельные или отсечные клапаны) изготовляют из дорогостоящих материалов, способных выдерживать высокие температуры, которые имеют выхлопные газы в выхлопной трубе (например, 1800°F), и их приходиться изолировать, чтобы выхлопные газы не остывали во время транспортировки. Материалы, используемые для их изоляции, склонны к разрушению под действием множества факторов, таких как хрупкость, склонность к эрозии по истечению определенного времени и чувствительность к циклических колебаниям температуры, что еще более усложняет конструкцию. Изоляция увеличивает также массу труб, трубопроводов и регулирующих устройств, что приводит к удорожанию опорных конструкций.
Раскрытие изобретения
Предлагаемое здесь компактное устройство для концентрирования жидкостей легко можно подсоединить к источнику отбросного тепла, такому как факел для сжигания газа, выделяющегося из органических отходов, или выхлопная труба двигателя внутреннего сгорания, и использовать это отбросное тепло для проведения процесса концентрирования с прямой теплопередачей без использования крупных дорогостоящих сосудов и множества дорогостоящих температуроустойчивых материалов. Компактный концентратор жидкости содержит газовпускной патрубок, газовыпускной патрубок и смесительный или проточный канал, соединяющий газовпускной патрубок с газовыпускным патрубком, причем проточный канал имеет суженный участок, в котором скорость протекания газа через проточный канал возрастает. Через патрубок для подачи жидкости, расположенный между газовпускным патрубком и суженным участком проточного канала, впрыскивают в поток газа жидкость в точке перед суженным участком таким образом, чтобы газожидкостная смесь полностью перемешивалась в проточном канале, приводя к испарению или концентрированию порции жидкости. В туманоуловителе или газоочистителе, расположенном позади суженного участка и подсоединенном к газовыпускному патрубку, отделяются унесенные потоком газа капельки жидкости, а собранная жидкость возвращается в патрубок для подачи ее по рециркуляционному контуру. Свежая жидкость, поступающая на концентрирование, также вводится в рециркуляционный контур со скоростью, достаточной для того, чтобы компенсировать суммарное уменьшение количество жидкости за счет ее испарения в проточном канале и за счет отвода сконцентрированной жидкости.
Предлагаемый компактный концентратор жидкости обладает рядом признаков, которые обеспечивают рентабельное концентрирование сточных вод, сильно отличающихся друг от друга по своим параметрам. Концентратор обладает коррозионной стойкостью в отношении сточных вод, сильно отличающихся друг от друга по своим параметрам, отличается умеренной стоимостью изготовления и приемлемыми эксплуатационными расходами, способен работать в непрерывном режиме при высокой степени концентрирования и эффективно использует тепловую энергию непосредственно из множества источников. Кроме того, концентратор является достаточно компактным, чтобы его можно было перемещать при транспортировке в те места, где сточные воды образовались в результате наступления неконтролируемых событий, и устанавливать непосредственно возле источников отбросного тепла. Таким образом, предлагаемый концентратор представляет собой рентабельное, надежное устройство, обладающее большим сроком службы, которое в непрерывном режиме концентрирует сточные воды, сильно отличающиеся друг от друга по своим параметрам, и тем самым позволяет обходиться без обычных теплообменников с твердой поверхностью теплообмена, используемых в обычных системах с непрямой теплопередачей, которые подвергаются засорению и обрастают коркой накипи.
В первом аспекте изобретения предлагается система концентрирования жидкости, содержащая блок концентратора, имеющий газовпуской патрубок; газовыпускное отверстие; смесительный канал, расположенный между газовпускным патрубком и газовыпускным отверстием, причем смесительный канал имеет суженный участок, в котором поток газа внутри смесительного канала повышает свою скорость при протекании от газовпускного патрубка до газовыпускного отверстия; и впускной патрубок жидкости, через который жидкость, подвергаемая концентрированию, впрыскивается в смесительный канал, причем впускной патрубок жидкости расположен в смесительном канале между газовпускным патрубком и суженным участком; туманоуловитель, расположенный за блоком концентратора и содержащий газопропускной канал туманоуловителя, подсоединенный к газовыпускному патрубку блока концентратора, сборник жидкости, расположенный в газопропускном канале туманоуловителя для удаления жидкости из газа, протекающего по газопропускному каналу туманоуловителя, и резервуар для сбора жидкости, удаленной сборником жидкости из газа, протекающего по газопропускному каналу туманоуловителя; и вентилятор, подсоединенный к туманоуловителю для создания потока газа, протекающего по смесительному и газопропускному каналам.
Система предпочтительно содержит рециркуляционный контур, расположенный между резервуаром и смесительным каналом для подачи находящейся в резервуаре жидкости в смесительный канал.
Рециркуляционный контур предпочтительно подключен к впускному патрубку жидкости блока концентратора.
Блок концентратора предпочтительно содержит другой впускной патрубок жидкости, расположенный в смесительном канале между газовпускным патрубком и суженным участком, причем этот впускной патрубок жидкости подключен к рециркуляционному контуру для впрыскивания жидкости из резервуара в смесительный канал для дальнейшего ее концентрирования.
Другой впускной патрубок жидкости предпочтительно расположен в смесительном канале за впускным патрубком жидкости.
Рециркуляционный контур предпочтительно впрыскивает концентрированную жидкость в смесительный канал без использования распылителя.
Система предпочтительно содержит перегородку, расположенную в смесительном канале возле впускного патрубка жидкости, чтобы концентрированная жидкость из рециркуляционного контура ударялась об эту перегородку и впрыскивалась в смесительный канал в виде мелких капель.
Впускной патрубок жидкости предпочтительно содержит множество входных отверстий жидкости, причем отдельное входное отверстие расположено в каждой из двух или нескольких боковых стенок смесительного канала, а рециркуляционный контур содержит трубу, которая частично охватывает смесительный канал для обеспечения подачи концентрированной жидкости в каждое из множества входных отверстий.
Впускной патрубок жидкости предпочтительно содержит сменное распылительное сопло.
Блок концентратора предпочтительно содержит регулируемый ограничитель потока, расположенный на суженном участке смесительного канала, причем ограничитель можно регулировать для изменения расхода газа, протекающего по смесительному каналу.
Регулируемый ограничитель потока предпочтительно представляет собой пластину Вентури, которая выполнена с возможностью регулирования для изменения размера и формы суженного участка смесительного канала.
Система предпочтительно содержит выгребной люк концентрированной жидкости, расположенный в резервуаре.
Вентилятор предпочтительно представляет собой вытяжной вентилятор, расположенный за туманоуловителем, для возможности создания в туманоуловителе градиента отрицательного давления.
Вытяжной вентилятор предпочтительно подсоединен к частотно-регулируемому электроприводу, который служит для изменения скорости вытяжного вентилятор для возможности создания разных уровней градиентов отрицательного давления в туманоуловителе.
Вентилятор предпочтительно представляет собой вытяжной вентилятор, расположенный за туманоуловителем, при этом туманоуловитель содержит газовпускной патрубок туманоуловителя и рециркуляционный контур газа, подсоединенный между участком за вытяжным вентилятором и газовпускным патрубком туманоуловителя для отведения части газа с участка за вытяжным вентилятором в газовпускной патрубок туманоуловителя.
Система предпочтительно содержит заслонку, расположенную в рециркуляционном контуре газа для возможности регулирования количества газа, отводимого с участка за вытяжным вентилятором в газовпускной патрубок туманоуловителя.
Система предпочтительно содержит датчик давления, расположенный возле газовпускного патрубка туманоуловителя, и контроллер, подключенный к заслонке для регулирования положения заслонки по показаниям датчика давления.
Система предпочтительно содержит два датчика давления, один из которых расположен возле газовпускного патрубка туманоуловителя, а другой - возле газовыпускного патрубка туманоуловителя.
Газовпускной патрубок блока концентратора предпочтительно сообщается с источником отбросного тепла, а туманоуловитель находится на значительном расстоянии от блока концентратора и содержит трубопровод, расположенный между газовыводным патрубком блока концентратора и туманоуловителем.
Газовпускной патрубок блока концентратора предпочтительно установлен непосредственно возле источника отбросного тепла.
Вентилятор предпочтительно расположен между блоком концентратора и трубопроводом для возможности подачи жидкости по трубопроводу в туманоуловитель.
Система предпочтительно содержит затопленное колено, подсоединенное между суженным участком смесительного канала и трубопроводом.
Затопленное колено предпочтительно создает поворот примерно на 90 градусов.
Трубопровод предпочтительно изготовлен из стеклопластика.
Туманоуловитель предпочтительно представляет собой поперечноточный газопромывной аппарат.
Система предпочтительно содержит впускной клапан атмосферного воздуха, расположенный в смесительном канале перед суженным участком, причем впускной клапан атмосферного воздуха служит для впуска атмосферного воздуха в смесительный канал для смешивания его с горячим газом, поступающим в смесительный канал из газовпускного патрубка.
Впускной клапан атмосферного воздуха предпочтительно является нормально открытым клапаном.
Система предпочтительно содержит контроллер, подключенный к клапану атмосферного воздуха для регулирования положения запорного органа клапана атмосферного воздуха.
Система предпочтительно содержит датчик температуры, расположенный в смесительном канале, причем этот датчик температуры соединен линией связи с контроллером, а контроллер регулирует положение запорного органа клапана атмосферного воздуха по показаниям датчика температуры.
Датчик температуры предпочтительно расположен за суженным участком смесительного канала.
Контроллер предпочтительно регулирует положение запорного органа клапана атмосферного воздуха для возможности поддержания температуры газа, поступающего по смесительному каналу на суженный участок, в диапазоне от 150°F до 190°F.
Система предпочтительно содержит затопленное колено, подсоединенное к выходу суженного участка смесительного канала, причем затопленное колено меняет направление потока газа, протекающего по смесительному каналу.
Система предпочтительно содержит легко открывающийся смотровой люк, расположенный на затопленном колене.
Легко открывающийся смотровой люк предпочтительно содержит крышку люка, соединенную с затопленным коленом с помощью одной или нескольких петель, и, по меньшей мере, один быстро открывающийся запор, установленный на крышке люка для удерживания легко открывающегося смотрового люка в закрытом положении.
Туманоуловитель предпочтительно представляет собой поперечноточный газопромывной аппарат, работающий в режиме удаления унесенной жидкости из газа, протекающего по смесительному каналу.
Поперечноточный газопромывной аппарат предпочтительно содержит отбойную перегородку, а коллектор жидкости содержит сменный фильтр, расположенный поперек направления протекания газа через поперечноточный газопромывной аппарат.
Унесенная жидкость, удаленная из газа, протекающего через поперечноточный газопромывной аппарат, предпочтительно стекает из фильтра в резервуар, расположенный под фильтром в поперечноточном газопромывном аппарате.
Система предпочтительно содержит распылитель, расположенный внутри поперечноточного газопромывного аппарата, причем распылитель расположен для распыления жидкости на сменный фильтр для очистки сменного фильтра.
Система предпочтительно содержит, по меньшей мере, один смотровой люк, расположенный на стенке блока концентратора или туманоуловителя.
По меньшей мере, один смотровой люк предпочтительно содержит крышку люка, соединенную со стенкой блока концентратора или туманоуловителя с помощью одной или нескольких петель, и, по меньшей мере, один быстро открывающийся запор, установленный на крышке люка для удерживания легко открывающегося смотрового люка в закрытом положении.
Система предпочтительно дополнительно содержит множество быстро открывающихся запоров, расположенных по периметру крышки люка.
По меньшей мере, один быстро открывающийся запор предпочтительно содержит ручку и защелку, установленную на шарнирной оси.
Защелка предпочтительно имеет U-образную форму.
Коллектор жидкости предпочтительно содержит сменный фильтр, расположенный поперек направления протекания газа через туманоуловитель, и, по меньшей мере, один смотровой люк, расположенный на стенке туманоуловителя возле фильтра и имеющий соответствующие размеры для возможности удаления фильтра через смотровой люк.
Во втором аспекте изобретения предлагается система концентрирования жидкости, содержащая газоотводную трубу для подключения к источнику отбросного тепла; и концентратор, имеющий газовпуской патрубок, подсоединенный к газоотводной трубе, газовыпускной патрубок, смесительный канал, расположенный между газовпускным и газовыпускным патрубками и имеющий инжекционную камеру жидкости, расположенную за газовпускным патрубком, и суженный участок, расположенный за инжекционной камерой жидкости, причем суженный участок смесительного канала повышает скорость газа при его протекании от газовпускного патрубка до газовыпускного патрубка; и впускной патрубок жидкости, расположенный в инжекционной камере жидкости, через который жидкость, подвергаемая концентрированию, впрыскивается в инжекционную камеру жидкости; причем смесительный канал проходит в вертикальном направлении, так что инжекционная камера жидкости находится над суженным участком и газ поступает по смесительному каналу сверху вниз от газовпускного патрубка к газовыпускному патрубку.
Газоотводная труба предпочтительно расположена в вертикальном положении над смесительным каналом.
Газоотводная труба предпочтительно расположена в горизонтальном положении между газовпускным патрубком и источником отбросного тепла.
Концентратор предпочтительно содержит блок предварительной обработки газа, расположенный между газовпускным патрубком и инжекционной камерой жидкости.
Источник отбросного тепла предпочтительно представляет собой выхлопную трубу, а газоотводная труба и блок предварительной обработки газа образуют U-образую конструкцию, стоящую в вертикальной плоскости в таком положении, что газоотводная труба оказывается расположенной выше инжекционной камеры жидкости.
Система предпочтительно содержит впускной клапан атмосферного воздуха, расположенный в блоке предварительной обработки газа над инжекционной камерой жидкости.
Система предпочтительно содержит переходник, расположенный в смесительном канале и содержащий первый компонент, способный перемещаться относительно второго компонента для изменения размера смесительного канала по высоте, принимающего несколько разных значений.
Переходник предпочтительно содержит первый компонент, который перемещается внутри второго компонента, причем первый и второй компоненты можно перемещать друг относительно друга с возможностью увеличения или уменьшения высоты переходника.
Смесительный канал предпочтительно содержит затопленное колено, расположенное в вертикальном положении под суженным участком.
В третьем аспекте изобретения предлагается блок выхлопного колпака для выхлопной трубы дымового газа, который содержит переходник для установки блока выхлопного колпака на выхлопную трубу дымового газа, причем этот переходник имеет первичные выпускное отверстие дымового газа для сброса дымовых газов из выхлопной трубы дымового газа в атмосферу и вторичный выпускной патрубок дымового газа, причем вторичный выпускной патрубок дымового газа направляет дымовой газ на вторичную обработку; и выхлопной колпак дымового газа, установленный на переходнике возле первичного выпускного отверстия дымового газа, причем этот выхлопной колпак дымового газа может перемещаться между открытым положением, в котором выхлопной колпак дымового газа позволяет выбрасывать дымовой газ из выхлопной трубы дымового газа в атмосферу, и закрытым положением, в котором выхлопной колпак дымового газа закрывает первичные выпускное отверстие дымового газа, отводя дымовой газ из выхлопной трубы дымового газа через вторичный выпускной патрубок дымового газа.
Блок выхлопного колпака предпочтительно дополнительно содержит отводную трубу, подсоединенную к вторичному выпускному патрубку дымового газа, причем отводная труба создает проток между переходником и устройством для проведения вторичного процесса.
Блок выхлопного колпака предпочтительно дополнительно содержит привод колпака, установленный на переходнике и подключенный к выхлопному колпаку дымового газа, причем привод колпака служит для перемещения выхлопного колпака дымового газа между открытым и закрытым положениями.
Блок выхлопного колпака предпочтительно дополнительно содержит контроллер, подключенный к приводу колпака, причем контроллер может служить для перемещения выхлопного колпака дымового газа между открытым и закрытым положениями.
Блок выхлопного колпака предпочтительно дополнительно содержит датчик температуры, который может генерировать сигнал температуры и в котором контроллер соединен линией связи с датчиком температуры, причем контроллер может служить для включения привода выхлопного колпака дымового газа по сигналу температуры.
Блок выхлопного колпака предпочтительно дополнительно содержит впускной клапан атмосферного воздуха, образующий проход между отводной трубой и атмосферой, а контроллер подключен к впускному клапану атмосферного воздуха и перемещает запорный орган впускного клапана атмосферного воздуха по сигналу температуры.
Привод колпака предпочтительно представляет собой двигатель.
Двигатель предпочтительно выбран из группы, в состав которой входят электродвигатель, пневматический двигатель и гидравлический двигатель.
Привод колпака предпочтительно содержит цепную передачу, подключенную к выхлопному колпаку дымового газа.
Блок выхлопного колпака предпочтительно дополнительно содержит противовес, установленный по одну сторону шарнирной оси, на противоположной стороне которой находится выхлопной колпак дымового газа, причем противовес имеет такой размер, что уравновешивает, по меньшей мере, часть веса выхлопного колпака дымового газа относительно шарнирной оси.
Выхлопной колпак дымового газа предпочтительно изготовлен из материала с высокой температуростойкостью.
Материал с высокой температуростойкостью предпочтительно выбран из группы, в состав которой входят нержавеющая сталь и углеродистая сталь.
Выхлопной колпак дымового газа предпочтительно имеет огнеупорную футеровку из материала, выбранного из группы, в состав которой входят окись алюминия и окись циркония.
Блок выхлопного колпака предпочтительно дополнительно содержит отклоняющий элемент, установленный на блоке выхлопного колпака дымового газа и переходника возле шарнирной оси выхлопного колпака дымового газа, причем отклоняющий элемент отклоняет выхлопной колпак дымового газа в открытое положение.
Отклоняющий элемент предпочтительно представляет собой пружину.
Отклоняющий элемент предпочтительно представляет собой противовес.
В четвертом аспекте изобретения предлагается блок концентрирования сточных вод, снабженный колпаком вытяжной трубы, который содержит вытяжную трубу, открытый конец которой образует первичный выход дымового газа; концентратор сточных вод; отводную трубу, причем отводная труба подключена между вытяжной трубой и концентратором сточных вод, а отводная труба образует вторичный выход дымового газа в вытяжной трубе; и колпак вытяжной трубы, установленный возле открытого конца вытяжной трубы, причем колпак вытяжной трубы выполнен с возможностью перемещения между открытым положением, в котором колпак вытяжной трубы позволяет дымовому газу выходить через первичный выход дымового газа, и закрытым положением, в котором колпак вытяжной трубы закрывает первичный выход дымового газа и отводит дымовой газ через вторичный выход дымового газа.
В пятом аспекте изобретения предлагается блок колпака факела для сжигания газа из органических отходов, содержащий факел для сжигания газа из органических отходов, подсоединенный к источнику газа из органических отходов, причем этот факел имеет открытый верхний конец, образующий выход дымового газа; и факельный колпак, прикрепленный к факелу для сжигания газа из органических отходов возле открытого верхнего конца, причем факельный колпак может перемещаться между открытым положением, в котором открытый верхний конец факела для сжигания газа из органических отходов остается незакрытым, и закрытым положением, в котором колпак закрывает открытый верхний конец факела для сжигания газа из органических отходов.
Блок колпака факела предпочтительно дополнительно содержит двигатель, подключенный к факельному колпаку, причем этот двигатель служит для установки факельного колпака либо в открытое положение, либо в закрытое положение.
Блок колпака факела предпочтительно дополнительно содержит контроллер, причем этот контроллер содержит процессор, который выполняет логическое управление, устанавливая факельный колпак либо в открытое положение, либо в закрытое положение.
Контроллер предпочтительно устанавливает факельный колпак в закрытое положение, когда факел сжигает газ из органических отходов.
Блок колпака факела предпочтительно дополнительно содержит противовес, установленный на противоположной стороне шарнирной оси по отношению к факельному колпаку, причем противовес имеет такой размер, что уравновешивает, по меньшей мере, частично вес факельного колпака относительно шарнирной оси.
Блок колпака факела предпочтительно содержит вторичный выход дымового газа в факеле для сжигания газа из органических отходов, причем этот вторичный выход дымового газа расположен перед выходом дымового газа.
В шестом аспекте изобретения предлагается блок концентратора сточных вод, содержащий вытяжную трубу дымового газа, имеющую открытый верхний конец, образующий первичный выход дымового газа, и вторичный выход дымового газа, расположенный перед первичным выходом дымового газа; отводную трубу, установленную возле вытяжной трубы дымового газа и подключенную к вторичному выходу дымового газа; концентратор сточных вод, подключенный к отводной трубе; и впускной клапан атмосферного воздуха, расположенный либо на отводной трубе, либо на концентраторе сточных вод, причем впускной клапан атмосферного воздуха может перемещать запорный орган между открытым положением, в котором открыт доступ атмосферному воздуху либо в отводную трубу, либо в концентратор сточных вод, и закрытым положением, в котором закрыт доступ атмосферного воздуха либо в отводную трубу, либо в концентратор сточных вод; и контроллер, содержащий процессор, запрограммированный логикой управления для возможности изменения положения запорного органа клапана атмосферного воздуха.
Блок концентратора предпочтительно дополнительно содержит датчик температуры, расположенный за клапаном атмосферного воздуха и способный генерировать сигнал температуры, причем контроллер подключен к датчику температуры и управляет положением запорного органа клапана атмосферного воздуха по сигналу температуры.
Блок концентратора предпочтительно дополнительно содержит колпак вытяжной трубы, установленный на вытяжной трубе дымового газа возле открытого верхнего конца вытяжной трубы дымового газа, причем колпак вытяжной трубы может перемещаться между открытым положением, которое позволяет выбрасывать дымовой газ в атмосферу через первичный выход дымового газа, и закрытым положением, в котором первичный выход дымового газа закрыт.
Контроллер предпочтительно подключен к колпаку вытяжной трубы и перемещает колпак вытяжной трубы по сигналу температуры.
Блок концентратора предпочтительно дополнительно содержит привод колпака вытяжной трубы, подключенный к колпаку вытяжной трубы и контроллеру, причем контроллер запускает привод колпака вытяжной трубы по сигналу температуры.
В седьмом аспекте изобретения предлагается блок концентратора сточных вод, предназначенный для использования с вытяжной трубой дымового газа, содержащий концентратор сточных вод, подключенный к вытяжной трубой дымового газа, причем концентратор сточных вод содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем этот проточный канал имеет суженный участок; подвижную пластину Вентури, расположенную на суженном участке проточного канала; и контроллер, содержащий процессор, запрограммированный логикой управления так, чтобы можно было менять положение пластины Вентури.
Блок концентратора предпочтительно дополнительно содержит первый датчик давления, расположенный перед пластиной Вентури, причем первый датчик давления служит для генерирования первого сигнала давления.
Контроллер предпочтительно подключен к первому датчику давления и меняет положение пластины Вентури по первому сигналу давления.
Блок концентратора предпочтительно дополнительно содержит второй датчик давления, расположенный за пластиной Вентури, причем второй датчик давления служит для генерирования второго сигнала давления.
Контроллер предпочтительно подключен и к первому датчику давления, и ко второму датчику давления и меняет положение пластины Вентури по первому и второму сигналам давления.
В восьмом аспекте изобретения предлагается блок концентратора сточных вод, предназначенный для использования с выхлопной трубой дымового газа, который содержит концентратор сточных вод, подключенный к выхлопной трубе дымового газа, причем этот концентратор сточных вод содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем этот проточный канал имеет суженный участок; вентилятор, служащий для создания отрицательного или положительного давления внутри концентратора сточных вод; и контроллер, содержащий процессор, запрограммированный логикой управления для возможности регулирования работы вентилятора.
Вентилятор предпочтительно содержит частотно-регулируемый двигатель, и контроллер подключен к частотно-регулируемому двигателю.
Блок концентратора предпочтительно дополнительно содержит датчик давления, расположенный в концентраторе сточных вод и служащий для генерирования сигнала давления.
Контроллер предпочтительно подключен к датчику давления и управляет частотно-регулируемым двигателем по сигналу давления.
Вентилятор предпочтительно расположен за суженным участком проточного канала.
Блок концентратора предпочтительно дополнительно содержит туманоуловитель за суженным участком проточного канала, в котором вентилятор расположен перед туманоуловителем и удален от туманоуловителя на расстояние, по меньшей мере, 20 футов.
В девятом аспекте изобретения предлагается блок концентратора сточных вод, предназначенный для использования с выхлопной трубой дымового газа, который содержит концентратор сточных вод, подключенный к выхлопной трубе дымового газа, причем этот концентратор сточных вод содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем этот проточный канал имеет суженный участок; туманоуловитель, расположенный за суженным участком проточного канала; вытяжной вентилятор, расположенный за туманоуловителем; и обратную линию газа, причем впускной патрубок обратной линии газа расположен за вытяжным вентилятором, а выпускной патрубок обратной линии газа подключен к газовпускному патрубку, и обратная линия газа содержит регулируемую заслонку, которая закрывается для ограничения подачи газа по обратной линии газа; и контроллер, содержащий процессор, запрограммированный логикой управления возможности регулирования положение заслонки.
Блок концентратора предпочтительно дополнительно содержит датчик давления возле газовпускного патрубка, который служит для генерирования сигнала давления.
Контроллер предпочтительно подключен к датчику давления, причем контроллер меняет положение заслонки по сигналу давления.
Заслонка предпочтительно представляет собой либо газовый клапан, либо жалюзийную заслонку.
В десятом аспекте изобретения предлагается блок концентратора сточных вод, предназначенный для использования с выхлопной трубой дымового газа, который содержит концентратор сточных вод, подключенный к выхлопной трубе дымового газа, причем этот концентратор сточных вод содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем этот проточный канал имеет суженный участок и содержит впускной патрубок сточной воды возле газовпускного патрубка и насос сточной воды, подсоединенный к впускному патрубку сточной воды и источнику сточной воды; и контроллер, содержащий процессор, запрограммированный логикой управления для возможности управления работой насоса сточной воды.
Блок концентратора предпочтительно дополнительно содержит датчик уровня жидкости в отстойнике для жидкости, который служит для генерирования сигнала уровня жидкости в отстойнике для жидкости.
Контроллер предпочтительно подключен к датчику уровня жидкости в отстойнике для жидкости, причем этот контроллер управляет работой насоса сточной воды по сигналу температуры.
Датчик уровня жидкости в отстойнике для жидкости предпочтительно представляет собой или поплавковое реле уровня, или бесконтактный датчик, или датчик дифференциального давления.
В одиннадцатом аспекте изобретения предлагается блок концентратора сточных вод, предназначенный для использования с выхлопной трубой дымового газа, который содержит концентратор сточных вод, подключенный к выхлопной трубе дымового газа, причем этот концентратор сточных вод содержит газовпускной патрубок, газовыпускное отверстие и проточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие, причем этот проточный канал имеет суженный участок; туманоуловитель, содержащий отстойник для жидкости сточной воды; рециркуляционный контур сточной воды, причем этот рециркуляционный контур сточной воды подсоединен к отстойнику для сточной воды и впускному патрубку сточной воды, и рециркуляционный контур сточной воды содержит рециркуляционный насос сточной воды; и контроллер, содержащий процессор, запрограммированный логикой управления для возможности управления работой рециркуляционного насоса сточной воды.
Блок концентратора предпочтительно дополнительно содержит датчик уровня жидкости в отстойнике для жидкости сточной воды, который может служить для генерирования сигнала уровня жидкости в отстойнике для жидкости.
Контроллер предпочтительно подключен к датчику уровня жидкости в отстойнике для жидкости, причем контроллер управляет работой рециркуляционного насоса сточной воды по сигналу уровня жидкости в отстойнике для жидкости.
Рециркуляционный контур сточной воды предпочтительно содержит впускной патрубок свежей сточной воды и насос свежей сточной воды, причем впускной патрубок свежей сточной воды подсоединен к источнику свежей сточной воды.
Контроллер предпочтительно подключен к насосу свежей сточной воды.
В двенадцатом аспекте изобретения предлагается концентратор жидкости, содержащий газовпускной патрубок; газовыпускное отверстие; газопроточный канал, соединяющий газовпускной патрубок и газовыпускное отверстие; и впускной патрубок жидкости, предназначенный для впрыскивания жидкости в газопроточный канал, в котором концентратор жидкости подсоединен к источнику отбросного тепла, причем источник отбросного тепла представляет собой горячий газ, который протекает по газопроточному каналу, испаряя, по меньшей мере, часть жидкости, впрыснутой через впускной патрубок жидкости.
Источник отбросного тепла предпочтительно представляет собой факел.
Факел предпочтительно представляет собой факел для сжигания газа из органических отходов.
Концентратор жидкости предпочтительно дополнительно содержит предварительный нагреватель жидкости.
Предварительный нагреватель жидкости предпочтительно работает на древесине, или биогазе, или метане.
Источник отбросного тепла предпочтительно представляет собой выхлопную трубу двигателя внутреннего сгорания.
Двигатель внутреннего сгорания предпочтительно работает на газе из органических отходов и служит для выработки электроэнергии.
Двигатель внутреннего сгорания предпочтительно работает на нефтепродукте.
В тринадцатом аспекте изобретения предлагается способ использования отбросного тепла для испарения, по меньшей мере, частичного испарения, жидкости, в котором обеспечивают источник отбросного тепла; пропускают отбросное тепло через концентратор жидкости, который содержит впускной патрубок отбросного тепла; выпускной патрубок отбросного тепла; и газопроточный канал, соединяющий впускной патрубок отбросного тепла и выпускной патрубок отбросного тепла, причем газопроточный канал имеет суженный участок, который повышает скорость протекания отбросного тепла по газопроточному каналу; впрыскивают жидкость в газопроточный канал возле суженного участка; смешивают отбросное тепло и жидкость, причем энергия отбросного тепла, по меньшей мере, частично испаряет жидкость; и удаляют унесенные капельки жидкости из отбросного тепла.
Источник отбросного тепла предпочтительно представляет собой факел, сжигающий газ из органических отходов.
Источник отбросного тепла предпочтительно имеет температуру, по меньшей мере, 900°F.
Источник отбросного тепла предпочтительно представляет собой двигатель внутреннего сгорания.
Двигатель внутреннего сгорания предпочтительно работает на газе из органических отходов и используется для производства электроэнергии.
Двигатель внутреннего сгорания предпочтительно работает на нефтепродукте.
Краткое описание чертежей
На фиг.1 приведена общая схема компактного концентратора жидкости.
На фиг.2 показан вариант осуществления концентратора жидкости, схема которого приведена на фиг.1, установленного на отстойнике для жидкости или салазках, чтобы облегчить его транспортировку на грузовике.
На фиг.3 приведено изображение в перспективе компактного концентратора жидкости, который реализует процесс концентрирования, схема которого приведена на фиг.1, подключенного к источнику отбросного тепла, представляющего собой факел для сжигания газа, выделяющегося из органических отходов.
На фиг.4 приведено изображение и перспективе блока теплопереноса компактного концентратора жидкости, изображенного на фиг.3.
На фиг.5 приведено изображение в перспективе блока испарения / концентрирования компактного концентратора жидкости, изображенного на фиг.3.
На фиг.6 приведено изображение в перспективе легко открываемых смотровых люков на блоке компактного концентратора жидкости, изображенного на фиг.3.
На фиг.7 приведено изображение в перспективе открытого состояния одного из легко открываемых смотровых люков, изображенных на фиг.6.
На фиг.8 приведено изображение в перспективе легко открываемого запорного механизма, используемого на смотровых люках, изображенных на фиг.6 и 7.
На фиг.9 приведено схематическое изображение системы управления, которую можно использовать для регулировки различных блоков в компактном концентраторе жидкости, изображенном на фиг.3.
На фиг.10 приведено изображение компактного концентратора жидкости, изображенного на фиг.3, который подсоединен к выхлопной трубе двигателя сгорания в качестве источника отбросного тепла.
На фиг.11 приведено схематическое изображение другого варианта осуществления компактного концентратора жидкости.
На фиг.12 приведен вид сверху компактного концентратора жидкости, изображенного на фиг.11.
На фиг.13 приведено схематическое изображение третьего варианта осуществления компактного концентратора жидкости, который представляет собой распределенный концентратор жидкости.
На фиг.14 приведено увеличенное поперечное сечение блока концентрирования жидкости распределенного концентратора жидкости, изображенного на фиг.13.
На фиг.15 приведен вид сверху блока концентрирования жидкости, изображенного на фиг.14.
На фиг.16 приведен вид сбоку находящегося в закрытом состоянии блока охладителя и участка с профилем Вентури распределенного концентратора жидкости, изображенного на фиг.13.
Осуществление изобретения
На фиг.1 приведена общая схема концентратора жидкости 10, который содержит газовпускной патрубок 20, газовыпускное отверстие 22 и проточный канал 24, связывающий газовпускной патрубок 20 с газовыпускным отверстием 22. Проточный канал 24 имеет суженный участок 26, на котором возрастает скорость протекания газа по проточному каналу 24, и в этом месте или возле него в проточном канале 24 возникает турбулентный поток. Суженный участок 26 в этом варианте осуществления может представлять собой устройство Вентури. Через патрубок для подачи жидкости 30 жидкость, подвергаемая концентрированию (путем испарения), впрыскивается в камеру концентрирования жидкости в проточном канале 24 в точке перед суженным участком 26, и впрыснутая жидкость смешивается с газовым потоком в проточном канале 24. Патрубок для подачи жидкости 30 может содержать одно или несколько сменных форсунок 31, предназначенных для впрыскивания жидкости в проточный канал 24. Впускной патрубок 30 независимо от того, содержит он сопло 31 или нет, может подавать жидкость в проточный канал 24 под любым углом, в том числе перпендикулярно и параллельно потоку газа. Возле патрубка для подачи жидкости 30 может также находиться перегородка 33 в таком положении, чтобы жидкость, поступающая из патрубка 30, отражалась от нее в проточный канал в виде мелких капель.
При протекании газожидкостного потока через суженный участок 26 согласно эффекту Вентури скорость возрастает, и возникает турбулентный поток, который полностью перемешивает газ и жидкость в проточном канале 24 возле патрубка 30 и позади него. В результате турбулентного перемешивания часть жидкости быстро испаряется и становится компонентом газового потока. При протекании газожидкостной смеси через суженный участок 26 можно менять направление и/или скорость потока газожидкостной смеси с помощью регулируемых ограничителей потока, таких как пластина Вентури 32. Положение пластины Вентури 32 можно регулировать для изменения размера и/или формы суженного участка 26, и она может изготовляться из коррозионностойкого материала, в том числе из высококачественных сплавов, таких как «хастеллой», «инконель» или «монель».
Из суженного участка 26 газожидкостная смесь поступает в туманоуловитель 34 (называемый также газоочистителем), подсоединенный к газовыпускному отверстию 22. Туманоуловитель 34 удаляет из газового потока унесенные им капельки жидкости. Туманоуловитель 34 содержит газопропускной канал. Отделившаяся жидкость скапливается в сборнике жидкости или отстойнике для жидкости 36 в этом газопропускном канале, причем отстойник для жидкости 36 может быть снабжен сосудом для хранения собранной жидкости. К отстойнику для жидкости 36 и/или этому сосуду может быть подсоединен насос 40, предназначенный для подачи жидкости по рециркуляционному контуру 42 обратно в патрубок для подачи жидкости 30 и/или проточный канал 24. Таким образом, объем жидкости можно уменьшить путем испарения до требуемой степени концентрирования. Свежую или новую жидкость, направленную на концентрирование, подают в рециркуляционный контур 42 через патрубок для подачи жидкости 44. Вместо этого эту новую жидкость можно впрыскивать прямо проточный канал 24 перед пластиной Вентури 32. Скорость подачи свежей жидкости в рециркуляционный контур 42 может равняться сумме скорости испарения жидкости при прохождении газожидкостной смеси по проточному каналу 24 и скорости отбора жидкости через патрубок для отбора концентрированной жидкости 46, расположенный на сосуде или возле сосуда для хранения отделившейся жидкости. Отношение объема циркулирующей жидкости к объему свежей жидкости вообще может иметь значение в диапазоне от 1:1 до 100:1, но обычно находится в диапазоне от 5:1 до 25:1. Например, если в рециркуляционном контуре 42 жидкость циркулирует со скоростью около 10 галлон/мин, то свежую или новую жидкость можно подавать со скоростью около 1 галлон/мин (т.е. в отношении 10:1). Отбирать часть жидкости через патрубок для отбора концентрированной жидкости 46 можно будет после того, как жидкость в рециркуляционном контуре 42 достигнет требуемого уровня концентрирования.
После прохождения через туманоуловитель 34 газовый поток поступает в вытяжной вентилятор 50, который отсасывает газ через проточный канал 24 и газопропускной канал туманоуловителя, создавая разрежение. Конечно, концентратор 10 мог бы работать и при повышенном давлении, создаваемом газодувкой (не показанной на рисунке), размещаемой перед патрубком для подачи жидкости 30. Наконец, газ выбрасывается в атмосферу через газовыпускное отверстие 22 или направляется на дальнейшую обработку.
Концентратор 10 может содержать систему предварительной обработки 52, предназначенную для обработки концентрируемой жидкости, которая может представлять собой сточные воды. Например, в качестве системы предварительной обработки 52 может использоваться воздушный дезодоратор, предназначенный для удаления веществ, способных создавать отвратительный запах или контролируемых в качестве загрязнителей воздуха. В этом случае воздушный дезодоратор может представлять собой воздушный дезодоратор обычного типа или же может представлять собой еще один концентратор предлагаемого здесь типа, который можно подсоединить последовательно в качестве воздушного дезодоратора. В системе предварительной обработки 52 концентрируемая жидкость может в случае необходимости подвергаться нагреванию любым подходящим способом. Кроме того, газ и/или сточные воды, циркулирующие через концентратор 10, могут подвергаться предварительному нагреванию в нагревателе 54. Предварительное нагревание может использоваться с целью повысить скорость испарения, а следовательно, и скорость концентрирования жидкости. Предварительное нагревание газа и/или сточных вод можно производить путем сжигания возобновляемых видов топлива, таких как древесная стружка, биогаз, метан или их смеси, ископаемых видов топлива или путем использования отбросного тепла. Кроме того, предварительное нагревание газа и/или сточных вод можно производить путем использования отбросного тепла, генерируемого в вытяжной трубе или в факеле для сжигания газа, выделяющегося из органических отходов. Для предварительного нагревания газа и/или сточных вод можно также использовать отбросное тепло из двигателя, такого как двигатель внутреннего сгорания. Кроме того, газовый поток, выходящий из газовыпускного отверстия 22 концентратора 10, можно подавать в факельную установку или какое-либо иное устройство для последующей обработки 56, предназначенное для обработки газа перед его выбросом в атмосферу.
Предлагаемый здесь концентратор жидкости 10 можно использовать для концентрирования множества сточных вод, таких как промышленные сточные воды, сточных вод, образовавшихся при стихийных бедствиях (наводнениях, ураганах), истощенный каустик или фильтраты, такие как фильтраты свалок. Концентратор жидкости 10 удобен в эксплуатации, энергоэкономичен, надежен и рентабелен. Полезность этого концентратора жидкости еще более возрастает благодаря возможности устанавливать концентратор жидкости 10 на прицеп или передвижные салазки, чтобы можно было успешно обрабатывать сточные воды, образовавшиеся при авариях и стихийных бедствиях, или использовать для регулярной обработки сточных вод, образовавшихся на пространственно разрозненных или удаленных объектах. Предлагаемый здесь концентратор жидкости 10 обладает всеми требуемыми параметрами и обеспечивает значительные преимущества перед обычными концентраторами жидкости, особенно когда требуется обрабатывать самые разнообразные сточные воды.
Кроме того, концентратор 10 можно изготовлять преимущественно из обладающих высокой коррозионной стойкостью материалов низкой стоимости, таких как стеклопластик и/или другие конструкционные пластики. Эта возможность отчасти обусловлена тем, что предлагаемый концентратор предназначен для работы при минимальном дифференциальном давлении. Например, дифференциальное давление вообще должно иметь значение в диапазоне от 10 до 30 дюймов водяного столбца. А поскольку в зоне контактирования газа с жидкостью при приведении процесса концентрирования возникает сильная турбулентность внутри ограниченного (компактного) прохода на участке с профилем Вентури или непосредственно позади него, то вся конструкция в целом являются очень компактной по сравнению с обычными концентраторами, в которых контактирование газа с жидкостью протекает в крупном технологическом сосуде. В результате количество высококачественных металлических сплавов, потребное для изготовления концентратора 10, довольно мало. А поскольку размер деталей, изготовленных из высококачественных сплавов, мал и эти детали легко можно заменить за короткий промежуток времени с минимальными трудозатратами, то расходы на изготовление можно урезать еще в большей степени путем конструирования некоторых из этих изнашиваемых деталей или всех этих изнашиваемых деталей из менее качественных сплавов и путем периодической их замены. В случае необходимости на эти менее качественные сплавы (например, углеродистую сталь) можно наносить коррозионностойкий и/или эрозионностойкий футеровочный материал, такой как конструкционные пластики, в том числе и эластомерные полимеры, чтобы увеличить срок службы подобных деталей. Аналогичным образом, насос 40 можно покрыть коррозионностойким и/или эрозионностойким футеровочным материалом, чтобы увеличить срок службы насоса 40 и тем самым обеспечить дальнейшее снижение расходов на техническое обслуживание и замену деталей.
Понятно, что концентратор жидкости 10 обеспечивает прямой контакт подвергаемой концентрированию жидкости с горячим газом, создавая теплообмен и массоперенос между горячим газом и жидкостью, например, подвергаемыми концентрированию сточными водами, в сильно турбулентном режиме. Кроме того, концентратор 10 создает очень компактную зону газожидкостного контакта, делая ее минимальной по размерам по сравнению с известными концентраторами. Теплообмен, производимый путем прямого контакта, способствует повышению эффективности использования энергии и делает ненужными теплообменники с твердой поверхностью теплообмена, которые используются в обычных концентраторах с непрямой теплопередачей. Кроме того, компактная зона газожидкостного контакта делает ненужными громоздкие технологические сосуды, используемые в обычных концентраторах непрямой или прямой теплопередачи. Эти особенности позволяют изготовлять концентратор 10 небольшой массы по сравнению с обычными концентраторами с использованием сравнительно дешевой технологии изготовления. Оба эти фактора повышают его портативность и рентабельность. Таким образом, концентратор жидкости 10 является более компактным и легким, чем обычные концентраторы, что делает его идеально пригодным в качестве передвижной установки. Кроме того, концентратор жидкости 10 менее склонен к засорению и закупориванию благодаря теплообмену путем прямого контакта и отсутствию твердых поверхностей теплообмена. Благодаря теплообмену путем прямого контакта концентратор жидкости 10 можно также использовать для обработки жидкостей, содержащих значительное количество суспендированных веществ. В результате удается добиться высокой степени концентрирования, не проводя частой чистки концентратора 10.
В частности, в концентраторах жидкости, в которых используется непрямая теплопередача, теплообменники склонны к засорению и подвергаются ускоренной коррозии при нормальных рабочих температурах циркулирующего в них теплоносителя (пара или другой горячей текучей среды). Каждый из этих факторов накладывает значительные ограничения на срок службы и/или стоимость возведения обычных концентраторов с непрямой теплопередачей, а также на то, как долго они могут работать, прежде чем потребуется остановить их и провести чистку или ремонт теплообменников. В результате отказа от громоздких технологических сосудов масса концентратора жидкости, а также начальная стоимость и стоимость замены деталей из высококачественных сплавов значительно уменьшается. Кроме того, благодаря перепаду температур между газом и жидкостью, сравнительно малому объему жидкости, находящейся в системе, и низкой относительной влажности газа перед его смешением с жидкостью концентратор 10 работает при температуре, близкой к температуре адиабатического насыщения конкретной газожидкостной смеси, которая обычно имеет значение в диапазоне от 150°F до 215°F (т.е. концентратор является «низкоинерционным» концентратором).
Кроме того, концентратор 10 предназначен для работы под разрежением, что в значительной степени способствует использованию самых разных видов топлива или источников отбросного тепла в качестве источника энергии для испарения. Фактически, благодаря проточной конструкции этих систем для нагревания и подачи газа в концентратор 10 можно использовать горелки с наддувом и без наддува. Простота конструкции и надежность концентратора 10 обеспечиваются минимальным количеством подвижных деталей и минимальной потребностью в запасных деталях. В общем, для концентратора нужны лишь два насоса и один вытяжной вентилятор, если он предназначен для работы на отбросном тепле, таком, как выхлопные газы двигателей (например, двигателя генератора или автомашины), дымовые газы из промышленных труб, газокомпрессорных систем и факельных установок, используемых, например, для сжигания газа, выделяющегося из органических отходов. Эти особенности обеспечивают значительные преимущества в том, что благоприятно сказываются на эксплуатационной гибкости и расходах на покупку, эксплуатацию и техническое обслуживание концентратора 10.
На фиг.2 приведен вид сбоку концентратора жидкости 10, установленного на передвижной станине 60, такой как отстойник для жидкости, прицеп или салазки. Передвижная станина имеет такие размеры и форму, чтобы ее легко было грузить на транспортное средство или прицеплять к транспортному средству 62, такому как тягач с прицепом. Аналогичным образом, концентратор, установленный на такой станине, легко можно загрузить на поезд, судно или самолет (не показанные на рисунке), чтобы быстро доставлять в удаленные места. Концентратор жидкости 10 может работать в качестве полностью автономной установки, имеющей свою собственную горелку и систему подачи топлива, или же концентратор жидкости 10 может использовать имеющуюся на месте его использования горелку и/или источник топлива или отбросного тепла. Топливом для концентратора 10 могут служить возобновляемые виды топлива, такие как отходы (например, бумага или древесная стружка) и газ, выделяющийся из органических отходов. Кроме того, концентратор 10 может работать на любой смеси традиционного ископаемого топлива, такого как уголь или нефть, возобновляемого топлива и/или отбросного тепла.
Установленный на прицепе типовой концентратор 10 способен обработать не менее ста тысяч галлонов сточных вод в сутки, в то время как более крупные стационарные блоки, которые устанавливают на свалках, установках для очистки сточных вод или газовых или нефтяных месторождениях, способны обработать сотни тысяч галлонов сточных вод в сутки.
На фиг.3 показан конкретный вариант осуществления компактного концентратора жидкости 110, который работает, используя те принципы, которые описаны выше со ссылкой на фиг.1, который подсоединен к источнику отбросного тепла в виде факельной установки для сжигания газа, выделяющегося из органических отходов. Вообще говоря, компактный концентратор жидкости 110, показанный на фиг.3, предназначен для концентрирования сточных вод, таких как фильтрат свалок, с использованием бросового или отбросного тепла, выделяющегося в факельной установке при сжигании газа, выделяющегося из органических отходов, таким образом, как указано в стандартах Агентства по охране окружающей среды США. Как известно, большинство свалок имеет факельную установку, используемую для сжигания газа, выделяющегося из органических отходов, чтобы удалять из него метан и другие газы, прежде чем они попадут в атмосферу. Обычно газ на выходе из факельной установки имеет температуру в диапазоне от 1000°F до 1500°F, но может нагреваться и до 1800°F.
Как показано на фиг.3, компактный концентратор жидкости 110 обычно подсоединен к факельной установке 115 и содержит теплопередающий блок 117 (показанный в увеличенном виде на фиг.4), блок для предварительной обработки воздуха 119, концентрирующий блок 120 (показанный в увеличенном виде на фиг.5), газопромывной блок 122 и вытяжной блок 124. Важной особенностью является то, что факельная установка 115 содержит факел 130, в котором каким-либо известным способом сжигается газ, выделяющийся из органических отходов, и факельно-колпачковый блок 132. Факельно-колпачковый блок 132 содержит откидной колпак 134 (например, факельный колпак или выхлопной колпак), который закрывает сверху факел 130 или вытяжную трубу другого типа (например, выхлопную трубу дымовых газов), когда факельный колпак 134 находиться в закрытом положении, или отводит часть факельного газа, когда факельный газ частично прикрыт, и который позволяет дымовому газу, образовавшемуся в факеле 130, выходить в атмосферу через открытый конец, который образует первичное газовыпускное отверстие 143, когда факельный колпак 134 находиться в открытом или частично открытом положении. Факельно-колпачковый блок 132 содержит также привод колпака 135, такой как двигатель (например, электродвигатель, гидравлический двигатель или пневматический двигатель, показанный на фиг.4), который перемещает факельный колпак 134 между полностью открытым положением и полностью закрытым положением. Как показано на фиг.4, привод факельного колпака 135 может, например, поворачивать факельный колпак 134 вокруг шарнирной оси 136, открывая и закрывая факельный колпак 134. Привод факельного колпака 135 может использовать цепную передачу или приводной механизм какого-либо иного типа, подсоединенный к факельному колпаку 134, чтобы поворачивать факельный колпак 134 вокруг шарнирной оси 136. Факельно-колпачковый блок 132 может также содержать противовес 137, расположенный на противоположной стороне от шарнирной оси 136 факельного колпака 134, чтобы можно было уравновешивать часть веса факельного колпака 134 во время его перемещения факельного колпака 134 вокруг шарнирной оси 136. Противовес 137 позволяет уменьшить размеры привода 135 или понизить его мощность настолько, чтобы он еще мог поворачивать факельный колпак 134 между открытым положением, в котором верхняя часть факела 130 (или первичное газовыпускное отверстие 143) открыта в атмосферу, и закрытым положением, в котором факельный колпак 134 в значительной степени герметизирует верхний конец факела 130 (или первичные газовыпускное отверстие 143). Сам факельный колпак 134 может быть изготовлен из материала с высокой температуростойкостью, такого как нержавеющая сталь или углеродистая сталь, и может быть футерован огнеупорным материалом, например окисью алюминия и/или окисью циркония, с нижней стороны, которая непосредственно контактирует с горячими факельными газами, когда факельный колпак 134 находится в закрытом положении.
В случае необходимости факел 130 может быть снабжен переходным устройством 138, содержащим первичное газовыпускное отверстие 143 и вторичный газовыпускной патрубок 141 перед первичным газовыпускным отверстием 143. Когда факельный колпак 130 находится в закрытом положении, дымовые газы отводятся через вторичный газовыпускной патрубок 141. Переходное устройство 138 может иметь штуцер 139, который соединяет факел 130 (или вытяжную трубу) с теплопередающим блоком 117 с помощью 90-градусного колена или изгиба. Можно использовать и другие соединительные приспособления. Например, факел 130 и теплопередающий блок 117 можно соединять, в сущности, под любым углом в диапазоне от 0 до 180 градусов. В данном случае факельно-колпачковый блок 132 установлен сверху на переходное устройство 138 возле первичного газовыпускного отверстия 143.
Как показано на фиг.3 и 4, теплопередающий блок 117 содержит теплопередающую трубу 140, которая соединяет впускной патрубок блока предварительной обработки воздуха 119 с факелом 130, а точнее, с переходным устройством 138 факела 130. Теплопередающая труба 140 между факелом 130 и блоком для предварительной обработки воздуха 119 лежит на определенной высоте над землей, опираясь на стойку в виде вертикальной балки или столба. Теплопередающая труба 140 подсоединена к штуцеру 139 или к вторичному газовыпускному патрубку 141 переходного устройства 138, образуя проток между переходным устройством 138 и устройством для проведения вторичного процесса, такого как концентрирование жидкости. Без опорной стойки 142 обычно не обойтись, поскольку теплопередающую трубу 140 изготовляют из металла, такого как углеродистая или нержавеющая сталь, и она может быть футерована такими материалами, как окись алюминия и/или окись циркония, чтобы она могла выдерживать температуру газа, поступающего из факела 130 в блок для предварительной обработки воздуха 119. Таким образом, теплопередающая труба 140 обычно является тяжеловесной частью оборудования. Однако факел 130, с одной стороны, и блок для предварительной обработки воздуха 119 и концентрирующий блок 120, с другой стороны, расположены непосредственно друг возле друга, поэтому теплопередающая труба 140 должна быть сравнительно короткой, что способствует снижению стоимости материалов, используемых в концентраторе 110, а также стоимости несущих конструкций, удерживающих тяжеловесные части концентратора 110 над землей. Как показано на фиг.3, теплопередающая труба 140 и блок для предварительной обработки воздуха 119 образуют U-образную конструкцию, обращенную ножками вниз.
Блок для предварительной обработки воздуха 119 содержит вертикальную трубу 150 и впускной клапан атмосферного воздуха (не показанный явно на фиг.3 и 4), расположенный сверху на трубе 150. Впускной клапан атмосферного воздуха (называемый также воздушным клапаном) образует проток между теплопередающей трубой 140 (или блоком предварительной обработки воздуха 119) и атмосферой. Впускной клапан атмосферного воздуха позволяет атмосферному воздуху поступать сквозь проволочный экран 152, используемый для зашиты от птиц, и смешиваться внутри блока для предварительной обработки воздуха 119 с горячим газом, поступающим из факела 130. В случае необходимости блок для предварительной обработки воздуха 119 может иметь постоянно открытое окошко возле воздушного клапана, которое всегда может впустить некоторое количество воздуха в блок для предварительной обработки воздуха 119, причем это окошко позволяет уменьшить размер требуемого воздушного клапана и повысить безопасность эксплуатации концентратора. Хотя управление работой впускного клапана атмосферного воздуха или воздушного клапана будет рассмотрено ниже более подробно, следует отметить, что этот клапан позволяет охлаждать газ, поступающий из факела 130, до более приемлемой температуры перед тем, как он поступит в концентрирующий блок 120. Блок для предварительной обработки воздуха 119 может отчасти опираться на поперечины 154, прикрепленные к опорной стойке 142. Поперечины 154 стабилизируют блок для предварительной обработки воздуха 119, который обычно изготовляют также из тяжелой углеродистой или нержавеющей стали или из другого металла и который может быть футерован, чтобы повысить эффективность использования энергии и температуростойкость на этом участке концентратора 110. В случае необходимости вертикальную трубу 150 можно удлинять, чтобы можно было ее использовать для факелов разной высоты, и тем самым сделать концентратор жидкости 110 пригодным для множества разных факелов или для факелов разной высоты. Этот принцип поясняется более подробно со ссылкой на фиг.3. Как показано на фиг.3, вертикальная труба 150 содержит первую секцию 150 А (изображенную пунктирными линиями), которая входит внутрь второй секции 150 В и тем самым позволяет регулировать длину (высоту) вертикальной трубы 150.
Вообще говоря, блок предварительной обработки воздуха 119 служит для того, чтобы смешивать атмосферный воздух, поступающий через впускной клапан атмосферного воздуха под проволочным экраном 152, с горячим газом, поступающим из факела 130 по теплопередающей трубе 140, чтобы получать газ, имеющий требуемую температуру на входе в концентрирующий блок 120.
Концентрирующий блок 120 содержит направляющий участок 156 с уменьшающимся поперечным сечением, верхний конец которого сопряжен с нижним концом вертикальной трубы 150, а нижний конец - с охладителем 159 концентрирующего блока 120. Концентрирующий блок 120 содержит также первый впускной патрубок жидкости 160, через который новая или необработанная жидкость, направляемая на концентрирование, такая как фильтрат свалок, впрыскивается внутрь охладителя 159. Патрубок 160 может содержать, хотя это и не показано на фиг.3, крупнокапельный распылитель с соплом большого сечения для впрыска необработанной жидкости в охладитель 159. Жидкость, впрыскиваемая в охладитель 159 в этой точке системы, еще не подвергалась концентрированию, а следовательно, содержит большое количество воды, а распылитель имеет большое сечение, поэтому сопло распылителя не загрязняется и не забивается мелкими частицами, содержащимися в жидкости. Понятно, что охладитель 159 предназначен для быстрого понижения температуры газового потока (например, от 900°F до 200°F) в результате сильного испарения жидкости, впрыснутой через впускной патрубок 160. В случае необходимости можно установить, хотя это и не показано на фиг.3, датчик температуры на выходе или возле выхода из трубы 150 или же в охладителе 159 и использовать его для регулирования положения запорного органа впускного клапана атмосферного воздуха и тем самым для регулирования температуры газа во впускном патрубке концентрирующего блока 120.
Как показано на фиг.3 и 5, охладитель 159 соединен с инжекционной камерой жидкости, подсоединенной к суженному участку или участку с профилем Вентури 162, который имеет суженное поперечное сечение по сравнению с охладителем 159 и который содержит пластину Вентури 163 (изображенную пунктирными линиями). Пластина Вентури 163 создает суженный проход на участке с профилем Вентури 162, который приводит к созданию большого падение давления между входом и выходом участка с профилем Вентури 162. Это большое падение давления создает турбулентный поток газа в охладителе 159 и в верхней части или на входе участка с профилем Вентури 162 и заставляет газ вытекать с участка с профилем Вентури 162 с большой скоростью, и все это приводит к полному перемешиванию газа и жидкости на участке с профилем Вентури 162. Положение пластины Вентури 163 можно регулировать ручкой ручного управления 165 (показанной на фиг.5), соединенной с шарнирной осью пластины 163, или с помощью механизма электроуправления, такого как двигатель (не показанного на фиг.5).
Рециркуляционная труба 166 охватывает с противоположных сторон вход на участок с профилем Вентури 162 и служит для впрыска частично сконцентрованной (т.е. циркулированной) жидкости на участок с профилем Вентури 162, чтобы и дальше концентрировать ее и/или предотвращать образование сухих частиц внутри концентрирующего блока 120, через множество впускных отверстий жидкости, расположенных с одной или с нескольких сторон проточного канала. Хотя на фиг.3 и 5 явно и не указано, от каждого из противоположных ответвлений трубы 166, частично охватывающих участок с профилем Вентури 162, могут отходить несколько трубок, например три трубки диаметра ½ дюйма, и проникать сквозь стенки внутрь участка с профилем Вентури 162. Поскольку жидкость, поступающая в концентратор 110 в этой точке, является циркулирующей жидкостью, а следовательно, является либо частично сконцентрированной, либо достигшей определенной равновесной концентрации и более склонной забивать распылительные сопла, чем менее концентрированная жидкость, впрыскиваемая через патрубок 160, то эту жидкость следует вводить прямо из трубок, без распылителей, чтобы избежать засорения. Однако в случае необходимости перед каждым отверстием полудюймовых трубок можно установить перегородку в виде плоской пластины, чтобы заставить жидкость, поступающую в систему в этой точке, разбиваться при ударе о перегородку на мелкие капельки и рассеиваться в концентрирующем блоке 120. Имея такую конфигурацию, эта рециркуляционная система лучше распределяет или разбрызгивает рециркуляционную жидкость по газовому потоку внутри концентрирующего блока 120.
Смесь горячего газа и жидкости протекает в турбулентном режиме через участок с профилем Вентури 162. Как было указано выше, участок с профилем Вентури 162, который имеет подвижную пластину Вентури 163, расположенную поперек концентрирующего блока 120, вызывает турбулизацию потока и полное перемешивание жидкости и газа, способствующее быстрому испарению жидкости в газе. Поскольку перемешивающее действие, оказываемое участком с профилем Вентури 162, обеспечивает высокую степень испарения, газ в значительной степени охлаждается в концентрирующем блоке 120 и выходит с участка с профилем Вентури 162 в затопленное колено 164 с высокой скоростью. Фактически, температура газожидкостной смеси в этой точке может составлять около 160°F.
Как обычно, нижняя часть затопленного колена 164 заполнена жидкостью, и газожидкостная смесь, выходящая с участка с профилем Вентури 162 с высокой скоростью, ударяется о жидкость в нижней части затопленного колена 164, поскольку газо-воздушная смесь вынуждена повернуть на 90 градусов, чтобы попасть в газопромывной блок 122. В результате взаимодействия газожидкостного потока с жидкостью в затопленном колене 164 из газожидкостного потока удаляются капли жидкости и предотвращается столкновение суспендированных частиц, содержащихся в газожидкостном потоке, с днищем затопленного колена 164 на высокой скорости и тем самым предотвращается эрозия металлической стенки затопленного колена 164.
Из затопленного колена 164 газожидкостной поток, который содержит испарившуюся жидкость, некоторое количество капель жидкости и другие частицы, поступает в газопромывной блок 122, который представляет собой в данном случае поперечноточный газопромывной аппарат. Газопромывной блок 122 содержит разные экраны или фильтры, которые способствуют удалению унесенной жидкости из газожидкостного потока и удаляют другие частицы, которые могли присутствовать в газожидкостном потоке. В одном конкретном варианте осуществления поперечноточный газопромывной аппарат 122 может содержать на входе переднюю крупноячеистую отражательную перегородку 169, которая предназначена для удаления капель жидкости размером от 50 мкм до 100 мкм. Позади нее два сменных гофрированных фильтра 170 расположены поперек потока, протекающего через газопромывной блок 122, причем фильтры 170 могут постепенно менять размер или конфигурацию, чтобы можно было удалять капли все меньшего размера, такого как 20-30 мкм и менее 10 мкм. Конечно, можно использовать большее или меньшее количество фильтров или гофрированных фильтров.
Как и в обычных поперечноточных газопромывных аппаратах, жидкость, уловленная фильтрами 169 и 170, самотеком стекает в резервуар или отстойник для жидкости 172, расположенный в нижней части газопромывного блока 122. Отстойник для жидкости 172, который может вмещать, например, 200 галлонов жидкости, тем самым собирает сконцентрированную жидкость, содержащую растворенные и суспендированные твердые вещества, удаленные из газожидкостного потока, и служит в качестве источника рециркуляционной концентрированной жидкости, подаваемой обратно в концентрирующий блок 120 для дальнейшей обработки и/или для предотвращения образования сухих частиц в концентрирующем блоке 120 таким образом, как было описано выше со ссылкой на фиг.1. В одном варианте осуществления отстойник для жидкости 172 может иметь наклонное V-образное днище (не показанное на рисунках), имеющее V-образный желоб, проходящий от задней стороны газопромывного блока 122 (самой дальней от затопленного колена 164) до передней стороны газопромывного блока 122 (самой ближней к затопленному колену 164), причем V-образный желоб наклонен так, что днище V-образного желоба ниже на конце газопромывного блока 122, самом ближнем к затопленному колену 164, чем на конце газопромывного блока 122, удаленном от затопленного колена 164. Иначе говоря, V-образное днище может быть наклонено в сторону самой нижней точки этого V-образного днища, находящейся возле выгребного люка 173 и/или насоса 182. Кроме того, концентрированная жидкость из отстойника для жидкости 172 может подаваться насосом промывного контура (не показанного на рисунках) в распылитель (не показанный) внутри газопромывного блока 122, причем этот распылитель предназначен для распыления жидкости на V-образное днище. Но этот распылитель может распылять на V-образное днище и неконцентрированную жидкость или чистую воду. Этот распылитель может периодически или постоянно распылять жидкость на поверхность V-образного днища, чтобы смывать твердые вещества и предотвращать отложение осадка на V-образном днище или на выгребном люке 173 и/или насосе 182. Благодаря наличию этого V-образного наклонного днища и насоса жидкость, скопившаяся в отстойнике для жидкости 172, постоянно перемешивается и обновляется и тем самым сохраняет сравнительно неизменной свою консистенцию и оставляет твердые вещества в суспендированном состоянии. В случае необходимости распылительная система может представлять собой отдельный контур, использующий отдельный насос, подсоединяемый, например, через выгребной люк 173, или может использовать насос 182, связанный с рециркуляционным контуром концентрированной жидкости, описанным ниже, чтобы распылять концентрированную жидкость из отстойника для жидкости на V-образное днище отстойника для жидкости 172.
Как показано на фиг.3, обратная линия 180, а также насос 182 служат для возврата жидкости, удаленной из газожидкостного потока, из отстойника для жидкости обратно в концентратор 120 и тем самым замыкают рециркуляционный контур жидкости. Аналогичным образом, на подводящей линии 186 может быть установлен насос 184, чтобы подавать новую или необработанную жидкость, такую как фильтрат свалок, через патрубок 160 в концентрирующий блок 120. Внутри газопромывного блока 122 можно также установить один или несколько распылителей 185 возле гофрированных фильтров 170, чтобы они могли периодически распылять чистую воду или порцию подаваемой сточной воды на гофрированные фильтры 170, чтобы промывать их.
Концентрированную жидкость можно также удалять из отстойника для жидкости газопромывного блока 122 через выгребной люк 173 и затем подвергать дальнейшей обработке или удалять подходящим образом во вторичный рециркуляционный контур. В частности, концентрированная жидкость, удаленная через выгребной люк 173, содержит определенное количество суспендированных твердых веществ, которые можно отделить от этой порции концентрированной жидкости и удалить из системы с помощью вторичного рециркуляционного контура. Например, концентрированную жидкость, удаленную через выгребной люк 173, можно подавать через вторичный контур концентрированных сточных вод (не показанный на рисунках) в устройство для выделения твердых веществ из жидкости, такое как отстойный резервуар, вибрационное сито, карусельный вакуумный фильтр или фильтр-пресс. После удаления твердых веществ из порции концентрированных сточных вод в устройство для выделения твердых веществ из жидкости, эту порцию концентрированных сточных вод можно вернуть в отстойник для жидкости 172 для дальнейшей обработки в первичном или вторичном рециркуляционном контуре, подсоединенном к концентратору.
Газ, из которого при протекании через газопромывной блок 122 были удалены жидкость и суспендированные твердые вещества, поступает по трубе или коробу с задней стороны газопромывного блока 122 (за гофрированными фильтрами 170) в вытяжной вентилятор 190 вытяжной блока 124 и выбрасывается в атмосферу в виде охлажденного газа, смешанного с испарившейся водой. Конечно, к вытяжному вентилятору подсоединен двигатель 192, который заставляет вентилятор 190 создавать разрежение в газопромывном блоке 122, чтобы засасывать газ из факела 130 через теплопередающую трубу 140, блок предварительной обработки воздуха 119 и концентрирующий блок 120. Как было указано выше со ссылкой на фиг.1, вытяжной вентилятор 190 необходим лишь для того, чтобы создавать небольшое разрежение в газопромывном блоке 122 и тем самым обеспечивать надлежащую работу концентратора 110.
Хотя скорость вытяжного вентилятора 190 и можно менять с помощью такого устройства, как частотно-регулируемый электропривод, чтобы создавать разные уровни разрежения в газопромывном блоке 122 и работать в определенном диапазоне значений расхода газа и даже забирать весь газ из факела 130, если его не хватает, необязательно регулировать работу вытяжного вентилятора 190, чтобы создать надлежащее разрежение в самом газопромывном блоке 122. Чтобы обеспечить его надлежащую работу, газ, протекающий через газопромывной блок 122, должен иметь достаточно большую (минимально необходимую) скорость на входе газопромывного блока 122. Обычно это требование выполняют, поддерживая заранее заданное минимальное падение давления в газопромывном блоке 122. Но если факел 130 не обеспечивает минимально необходимое количество газа, то увеличение скорости вращения вытяжного вентилятора 190 не сможет обеспечить необходимое падение давления в газопромывном блоке 122.
Чтобы найти выход из такого положения, поперечноточный газопромывной блок 122 был снабжен контуром для рециркуляции газа, который можно использовать, чтобы обеспечить подачу достаточного количества газа на вход газопромывного блока 122 и создать требуемое падение давления в газопромывном блоке 122. В частности, контур для рециркуляции газа содержит обратную линию или канал газа 196, который соединяет сторону высокого давления вытяжного блока 124 (например, на участке за вытяжным вентилятором 190) с впускным патрубком газопромывного блока 122 (например, с газовпускным патрубком газопромывного блока 122), и заслонку или регулирующий механизм 198, расположенный в обратном канале 196, который предназначен для открывания и закрывания обратного канала 196, чтобы тем самым устанавливать сообщение стороны высокого давления вытяжного блока 124 с впускным патрубком газопромывного блока 122. Во время эксплуатации, когда подача газа в газопромывной блок 122 недостаточно велика, чтобы обеспечивать минимально необходимое падение давления в газопромывном блоке 122, заслонка 198 (которая может представлять собой, например, газовый клапан или жалюзийную заслонку) открыта, чтобы можно было направлять газ со стороны высокого давления вытяжного блока 124 (т.е. газ, который прошел через вытяжной вентилятор 190) обратно на вход газопромывного блока 122. Эта операция обеспечивает поступление достаточного количества газа на вход газопромывного блока 122, чтобы вытяжной вентилятор 190 мог обеспечить минимально необходимое падение давления в газопромывном блоке 122.
На фиг.6 показана особенно полезная отличительная особенность компактного концентратора жидкости 110, изображенного на фиг.3, заключающаяся в наличии группы легко открывающихся смотровых люков 200, которые можно использовать, чтобы проникать внутрь концентратора 110 с целью его чистки и осмотра. Хотя на фиг.6 показаны легко открывающиеся люки 200 с одной стороны газопромывного блока 122, аналогичную группу люков можно расположить и на другой стороне газопромывного блока 122, и аналогичный люк имеется на лицевой стороне затопленного колена 164, как показано на фиг.5. Как показано на фиг.6, каждый из легко открывающихся смотровых люков 200 на газопромывном блоке 122 содержит крышку люка 202, которая может представлять собой плоскую металлическую пластину, подвешенную на газопромывном блоке 122 на двух петлях 204, причем крышка люка 202 может закрываться и открываться, поворачиваясь на петлях 204. По краям крышки люка 202 расположено множество быстро открывающихся запоров 206, предназначенных для фиксации крышки люка 202 в закрытом положении и запирания крышки люка 202 во время работы газопромывного блока 122. В варианте осуществления, показанном на фиг.6, на каждой крышке люка имеется по восемь быстро открывающихся запоров 206, хотя можно использовать любое требуемое количество подобных быстро открывающихся запоров 206.
На фиг.7 показан один из люков 200 в открытом положении. Как показано на этой рисунке, рама люка 208 приподнята над стенкой газопромывного блока 122 и установлена на подпорках 209, расположенных между рамой люка 208 и наружной стенкой газопромывного блока 122. Вокруг отверстия в раме люка 208 установлена прокладка 210, которая может быть изготовлена из резины или другого сжимаемого материала. Аналогичная дополнительная или основная прокладка может быть установлена по периметру с внутренней стороны крышки люка 202, для улучшения качества герметизации, когда люк 200 находится в закрытом состоянии.
Каждый быстро открывающийся запор 206, который показан в увеличенном виде на фиг.8, имеет ручку 212 и защелку 214 (в данном случае в виде U-образной металлической скобы), установленную на шарнирной оси 216, пропущенной сквозь рукоятку 212. Рукоятка 212 установлена на другой шарнирной оси 218, установленной на наружной стенке крышки люка 202 с помощью крепежной скобы 219. При перемещении ручки 212 вверх и повороте вокруг другой шарнирной оси 218 (из положения, показанного на фиг.8) защелка 214 смещается вдоль наружной стенки газопромывного блока 122 (когда крышка люка 202 находится в закрытом положении), и защелка 214 может отцепиться от крючка 220, расположенного на подпорке 209, и отойти в сторону от крышки люка 202. При повороте ручки 210 в обратном направлении защелка 214 цепляется за крючок 220 и притягивает другую шарнирную ось 218, а следовательно, и крышку люка 202 к раме люка 208. При замыкании всех быстро открывающихся запоров 206 крышка люка 202 придавливается к раме люка 208, а прокладка 210 обеспечивает их герметичное соединение. Таким образом, замыкание всех восьми быстро открывающихся запоров 206 на определенном люке 200, как показано на фиг.6, обеспечивает надежное и плотное закрывание люка 200.
Использование легко открывающихся люков 200 заменяет крышки с отверстиями и множеством болтов, отходящих от наружной стенки концентратора, которые проходят сквозь эти отверстия на крышке и затягиваются гайками для прижатия крышки к стенке концентратора. Хотя подобный гаечно-болтовой механизм крепления, который широко используется в концентраторах жидкости, чтобы обеспечивать доступ внутрь концентратора, и является очень надежным, приходится тратить много времени и сил на снятие и установку съемной крышки. Легко открывающиеся люки 200 с быстро открывающимися запорами 206, показанными на фиг.6, можно использовать в данном случае и потому, что поскольку давление внутри газопромывного блока 122 меньше внешнего давления, внутри газопромывного блока 122 создается разрежение, при котором не нужно подтягивать болты и гайки съемной панели. Понятно, что конфигурация с люками 200 позволяет легко открывать и закрывать люки 200 с минимальными усилиями и без использования инструментов и тем самым обеспечивает быстрый и легкий доступ к оснастке внутри газопромывного блока 122, такой как отражательная перегородка 169 или сменные фильтры 170, или же к другим частям концентратора 110, которые находятся за смотровым люком 200.
Как показано на фиг.5, на передней стенке затопленного колена 164 концентрирующего блока 120 также имеется легко открывающийся смотровой люк 200, который обеспечивает легкий доступ внутрь затопленного колена 164. Однако подобные легко открывающиеся люки могут находиться в случае необходимости на любой части концентратора жидкости 110, поскольку большинство элементов концентратора 10 работает под разрежением.
Сочетание признаков, показанных на фиг.3-8, присуще компактному концентратору жидкости 110, который использует отбросное тепло газа, получаемого в результате сжигания в факеле газа из органических отходов, отбросное тепло, которое иначе было бы выброшено прямо в атмосферу. Важно отметить, что концентратор 110 использует лишь минимальное количество дорогостоящего материала с высокой температуростойкостью для изготовления из него труб и конструкционного оборудования, необходимого при работе с высокотемпературными газами, выходящими из факела 130. В частности, длина теплопередающей трубы 140, которая изготовлена из самых дорогостоящих материалов, минимизирована, что снижает стоимость и массу концентратора жидкости 110. Кроме того, из-за небольших размеров теплопередающей трубы 140 необходимо лишь минимальное количество подмостков в виде опорной стойки 142, что еще более снижает расходы на сооружение концентратора 110. К тому же блок предварительной обработки воздуха 119 расположен непосредственно на концентрирующем блоке 120, и газ в этих блоках поступает сверху вниз, что позволяет устанавливать эти блоки концентратора 110 прямо на грунт или на салазки. Далее, эта конфигурация позволяет размещать концентратор 110 очень близко к факелу 130, что делает его более компактным. Аналогичным образом эта конфигурация позволяет размещать высокотемпературные блоки концентратора 110 (например, верхнюю часть факела 130, теплопередающую трубу 140 и блок предварительной обработки воздуха 119) над землей, и не приходится опасаться случайного касания, что приводит к обеспечению более высокого уровня безопасности. Фактически, благодаря быстрому охлаждению, которое происходит на участке с профилем Вентури 162 концентрирующего блока 120, и сам участок с профилем Вентури 162, и затопленное колено 164, и газопромывной блок 122 обычно охлаждаются в достаточной степени, чтобы можно было их касается, не боясь обжечься (даже если на выходе из факела 130 газ имел температуру 1800°F). Благодаря этому компоненты можно изготовлять из менее дорогостоящих и менее тяжеловесных материалов, таких как углеродистая сталь или стеклопластик. Фактически, в одном варианте осуществления газопромывной блок 122 изготовлен из стеклопластика, что снижает стоимость его изготовления по сравнению с изготовлением из высококачественных сплавов, хотя и оставляет на прежнем уровне исключительно высокую коррозионную стойкость.
Концентратор жидкости 110 является также очень быстродействующим концентратором. Поскольку концентратор 110 является концентратором прямого контактирования, ему не грозит отложение осадка, забивание или засорение в той степени, что присуще большинству других концентраторов. Далее, возможность регулировать работу факела путем открывания и закрывания факельного колпака 134 позволяет непрерывно использовать факел 130 для сжигания газа из органических отходов независимо от того, работает концентратор 110 или не работает, не прекращая его работу во время пуска и остановки концентратора 110. В частности, факельный колпак 134 можно быстро открыть в любой момент времени, чтобы факел 130 мог просто сжигать газ из органических отходов, как он обычно делает при отключении концентратора 110. С другой стороны, факельный колпак можно быстро закрыть в момент пуска концентратора 110 и тем самым направить все горячие газы, образующиеся в факеле 130, в концентратор 110, что позволяет концентратору 110 начать работать без остановки факела 130. В любом случае концентратор 110 можно запускать и останавливать, меняя лишь положение факельного колпака 134, но не прекращая работу факела 130.
В случае необходимости во время работы концентратора 110 факельный колпак 134 можно открывать частично, чтобы регулировать количество газа, подаваемое из факела 130 в концентратор 110. Это регулирование подачи газа в сочетании с регулированием впускного клапана атмосферного воздуха можно использовать для регулирования температуры газа на входе участка с профилем Вентури 162.
Кроме того, благодаря компактной конфигурации блока предварительной обработки воздуха 119, концентрирующего блока 120 и газопромывного блока 122, отдельные части концентрирующего блока 120, газопромывной блок 122, вытяжной вентилятор 190 и, по меньшей мере, нижняя часть вытяжного блока 124 можно стационарно устанавливать (прикреплять) к салазкам или плите 230 (в качестве опоры), как показано на фиг.3. Верхнюю часть концентрирующего блока 120, блок предварительной обработки воздуха 119 и теплопередающую трубу 140, а также верхнюю часть вытяжной трубы можно снять и уложить на салазки или на плиту 230 при транспортировке или их можно транспортировать в отдельном грузовике. Благодаря тому, как нижние части концентратора 110 могут устанавливаться на салазки или плиту, концентратор 110 легко снимать и устанавливать. В частности, во время установки концентратора 110 салазки 230, на которых установлены газопромывной блок 122, затопленное колено 164 и вытяжной вентилятор 190, можно разгрузить в том месте, в котором концентратор должен использоваться, просто сгружая их с салазок 230 на землю или на другой складской участок, на котором концентратор 110 будет собран. После этого участок с профилем Вентури 162, охладитель 159 и блок предварительной обработки воздуха 119 можно поместить сверху и прикрепить к затопленному колену 164. Затем трубу 150 можно выдвинуть в высоту настолько, чтобы соответствовала высоте факела 130, к которому следует подсоединить концентратор 110. В некоторых случаях может потребоваться сначала установить факельно-колпачковый блок 132 на уже имеющийся факел 130. После этого можно поднять теплопередающую трубу 140 на надлежащую высоту и закрепить между факелом 130 и блоком для предварительной обработки воздуха 119, установив на место опорную стойку 142.
Поскольку большинство насосов, труб, датчиков и электронного оборудования расположено или подсоединено к концентрирующему блоку 120, газопромывному блоку 122 или вытяжному насосу 190, установка концентратора 110 на конкретное место не потребует большого количества труб и электромонтажных работ на месте установки. В результате концентратор 110 можно сравнительно легко устанавливать и монтировать (или демонтировать и разбирать) на конкретном месте. Кроме того, поскольку большинство компонентов концентратора 110 стационарно установлено на салазки 230, концентратор 110 легко можно транспортировать на грузовике или других транспортных средствах и легко можно сгружать и устанавливать на конкретном месте, таком, как участок возле факела на свалке.
На фиг.9 показана схема управления 300, которую можно использовать для концентратора 110, изображенного на фиг.3. Как показано на фиг.9, система управления 300 содержит контроллер 302, который может представлять собой контроллер типа цифрового процессора сигналов, программируемый логический контроллер, который может, например, осуществлять управление на основе многоступенчатой логики, или какой-либо контроллер другого типа. Контроллер 302 подключен, конечно, к разным компонентам в концентраторе 110. В частности, контроллер 302 подключен к приводному двигателю 135 факельного колпака 134, который производит открытие и закрытие факельного колпака 134. Приводной двигатель 135 может использоваться для регулирования положения факельного колпака 134, перемещая его между полностью открытым и полностью закрытым положениями. Но в случае необходимости контроллер 302 может регулировать приводной двигатель 135 так, чтобы он перемещал факельный колпак 134 в какое-либо из множества промежуточных положений в диапазоне от полностью открытого положения до полностью закрытого положения. В случае необходимости двигатель 135 может непрерывно перемещать факельный колпак 134, устанавливая в любой нужной точке между полностью открытым и полностью закрытым положениями.
Кроме того, контроллер 302 подключен к впускному клапану атмосферного воздуха 306, расположенному на фиг.3 в блоке предварительной обработки воздуха 119 перед участком с профилем Вентури 162, и может использоваться для управления насосами 182 и 184, которые регулируют величину и соотношение впрыска новой жидкости, поступившей на концентрирование, и рециркулированной жидкости, подвергавшейся обработке в концентраторе 110. Контроллер 302 может быть подключен к датчику уровня 317 в отстойнике для жидкости (например, к поплавковому датчику, бесконтактному датчику, такому как радарный датчик или датчик дифференциального давления). Контроллер 302 может использовать сигнал, поступивший от датчика уровня 317 в отстойнике для жидкости, чтобы управлять насосами 182 и 184 и поддерживать уровень концентрированной жидкости в отстойнике для жидкости 172, соответствующий заранее заданному или требуемому значению. Контроллер 302 можно также подключать к вытяжному вентилятору 190, чтобы управлять работой вытяжного вентилятора 190, который может представлять собой односкоростной вентилятор, переменноскоростной вентилятор или вентилятор с непрерывно регулируемой скоростью. В одном варианте осуществления приводом для вытяжного вентилятора 190 служит частотно-регулируемый двигатель, частоту которого меняют для регулировки скорости вращения вентилятора. Кроме того, контроллер 302 подключен к температурному датчику 308, расположенному, например, на входе концентрирующего блока 120 или на входе участка с профилем Вентури 162, и получает сигнал температуры, генерируемый температурным датчиком 308. Температурный датчик 308 может также находиться позади участка с профилем Вентури 162 или же температурный датчик 308 может содержать датчик давления, генерирующий сигнал давления.
Во время работы и, например, при пуске концентратора 110, когда факел 130 продолжает работать и таким образом сжигает газ из органических отходов, контроллер 302 должен сначала включить вытяжной вентилятор 190, чтобы создать разрежение в газопромывном блоке 122 и концентрирующем блоке 120. После этого или одновременно с этим контроллер 302 подает сигнал в двигатель 135, чтобы закрыть факельный колпак частично или полностью и направить отбросное тепло из факела 130 в теплопередающую трубу 140, а следовательно, в блок предварительной обработки воздуха 119. Получая сигнал температуры из температурного датчика 308, контроллер 302 может регулировать впускной клапан атмосферного воздуха 306 (обычно закрывая его частично или полностью) и/или привод факельного колпака, чтобы настроить температуру газа на входе концентрирующего блока 120. Вообще говоря, впускной клапан атмосферного воздуха 306 может приводиться в полностью открытое положение сдвигающим элементом, таким как пружина, (т.е. может быть нормально открытым клапаном), и контроллер 302 может начать закрывать клапан 306, чтобы регулировать количество атмосферного воздуха, поступающего в блок предварительной обработки воздуха 119 (благодаря созданию разрежения в блоке предварительной обработки воздуха 119), и таким образом доводить смесь атмосферного воздуха и горячих газов из факела 130 до требуемой температуры. В случае необходимости контроллер 302 может также регулировать положение факельного колпака 134 (устанавливая его в какое-либо положение между полностью открытым и полностью закрытым положениями) и может менять скорость вытяжного вентилятора 190, чтобы регулировать количество газа, поступающего в блок предварительной обработки воздуха 119 из факела 130. Понятно, что количество газа, протекающего через концентратор 110, можно менять, например, в зависимости от температуры и влажности атмосферного воздуха, температуры факельного газа или количества газа, выходящего из факела 130. Следовательно, контроллер 302 может регулировать температуру и количество газа, протекающего через концентрирующий блок 120, путем изменения одного или нескольких параметров, в том числе степени закрытия впускного клапана атмосферного воздуха 306, положения факельного колпака 134 и скорости вытяжного вентилятора 190, например, по результатам измерения температурного датчика 308 на входе концентрирующего блока 120. Эта система обратной связи необходима, поскольку во многих случаях воздух, выходящий из факела 130, имеет температуру в диапазоне от 1200°F до 1800°F, которая слишком велика или превышает то значение, которое она должна иметь для обеспечения эффективной работы концентратора 110.
В любом случае, как показано на фиг.9, контроллер 302 может быть также подключен к двигателю 310, который может менять положение пластины Вентури 163 в суженном участке концентрирующего блока 120, чтобы регулировать уровень турбулентности, создаваемой концентрирующим блоком 120. А еще контроллер 302 может контролировать работу насосов 182 и 184, чтобы менять скорость (и отношение скоростей), с которой насосы 182 и 184 подают циркулирующую жидкость и новую сточную воду на входы охладителя 159 и участка с профилем Вентури 162. В одном варианте осуществления контроллер 302 может регулировать отношение циркулирующей жидкости к новой жидкости на уровне 10:1, так что если насос 184 подает новую жидкость во впускной патрубок 160 со скоростью 8 галлонов в минуту, то рециркуляционный насос 182 подает концентрированную жидкость со скоростью 80 галлонов в минуту. Вместо этого или дополнительно контроллер 302 может регулировать расход новой жидкости, направляемой на обработку в концентратор (насосом 184), поддерживая на одном и том же или заранее заданном уровне количество концентрированной жидкости в отстойнике для жидкости 172, например, с помощью датчика уровня 317. Конечно, количество жидкости в отстойнике для жидкости 172 будет зависеть от скорости концентрирования в концентраторе, скорости, с которой концентрированная жидкость откачивается насосом или же подается в отстойник для жидкости 172 через вторичный рециркуляционный контур, а также от скорости, с которой насос 182 подает жидкость из отстойника для жидкости 172 в концентратор по первичному рециркуляционному контуру.
В случае необходимости впускной клапан атмосферного воздуха 306 или факельный колпак 132, порознь или совместно, могут находиться в обеспечивающем безопасность открытом положении, таком, когда факельный колпак 134 и впускной клапан атмосферного воздуха 306 открываются в случае неисправности системы (например, отсутствия управляющего сигнала) или отключения концентратора 110. В одном случае двигатель 135 факельного колпака может быть подпружинен или отжат отжимающим элементом, таким как пружина, чтобы удерживать факельный колпак 134 в открытом положении или обеспечивать открывание факельного колпака 134 после обесточивания двигателя 135. Или же отжимающий элемент может представлять собой противовес 137 факельного колпака 134, который может быть расположен в таком положении, что факельный колпак 134 сам переходит в открытое положение под действием противовеса 137, когда двигатель 135 обесточивается или пропадает управляющий сигнал. В результате этого факельный колпак 134 быстро открывается, когда прекращается подача энергии либо когда контроллер 302 открывает факельный колпак, позволяя горячему газу выходить из факела 130 через верхнее отверстие. Конечно, можно использовать и другие способы перевода факельного колпака 134 в открытое положение при отсутствии управляющего сигнала, в том числе с помощью торсионной пружины на шарнирной оси 136 факельного колпака 134, гидравлической или пневматической системы, которая поднимает давление в цилиндре, чтобы закрыть факельный колпак 134, а при понижении давления в цилиндре открывает факельный колпак 134 при отсутствии сигнала управления.
Согласно изложенному выше факельный колпак 134 и впускной клапан атмосферного воздуха 306 действуют синхронно, защищая конструкционные материалы, используемые в концентраторе 110, и, как только система будет отключена, немедленно автоматически открываются факельный колпак 134 и впускной клапан атмосферного воздуха 306 которые тем самым не позволяют горячему газу, образующемуся в факеле 130, проникать в концентратор 110 и в то же время позволяют атмосферному воздуху охлаждать концентратор 110.
Кроме того, впускной клапан атмосферного воздуха 306 может быть аналогичным образом подпружинен или отжат другим образом, чтобы он открывался при отключении концентратора 110 или при отсутствии управляющего сигнала, подаваемого в клапан 306. Благодаря этому блок предварительной обработки воздуха 119 и концентрирующий блок 120 быстро охлаждаются через открытый факельный колпак 134. Кроме того, благодаря быстрому открыванию клапана атмосферного воздуха 306 и факельного колпака 134 контроллер 302 может быстро прекращать работу концентратора 110, не отключая или не оказывая влияния на работу факела 130.
Далее, как показано на фиг.9, контроллер 302 может быть подключен к двигателю 310 пластины Вентури или какому-либо другому приводу, который поворачивает или устанавливает пластину Вентури 163 под определенным углом на участке с профилем Вентури 162. С помощью двигателя 310 контроллер 302 может менять угол наклона пластины Вентури 163, чтобы регулировать расход газа через концентрирующий блок 120 и тем самым менять характер турбулентного потока газа, протекающего через концентрирующий блок 120, добиваясь лучшего перемешивания в нем жидкости с газом и более полного испарения жидкости. В этом случае контроллер 302 может менять скорость насосов 182 и 184 и вместе с тем менять наклон пластины Вентури 163, чтобы добиться оптимального концентрирования сточной воды. Понятно, что таким образом контроллер 302 может координировать положение пластины Вентури 163 с положением факельного колпака 134, положением впускного клапана атмосферного воздуха 306 и скоростью вытяжного вентилятора 190, чтобы максимально увеличить степень концентрирования (турбулентного перемешивания) сточной воды, избегая полного испарения воды и тем самым не допуская образования твердых частиц. Контроллер 302 может использовать входные сигналы давления от датчиков давления, чтобы выбирать положение пластины Вентури 163. Конечно, пластину Вентури 163 можно регулировать или вручную, или автоматически.
Контроллер 302 можно также подключать к двигателю 312, который регулирует работу заслонки 198 в контуре рециркуляции газа газопромывного блока 122. Контроллер 302 может заставить двигатель 312 или привод другого типа переместить заслонку 198 из закрытого положения в открытое или частично открытое положение, например, по сигналам от датчиков давления 313, 315, расположенных на входе и выходе газа из газопромывного блока 122. Контроллер 302 может установить заслонку 198 в такое положение, при котором газ поступает со стороны высокого давления вытяжного блока 124 (за вытяжным вентилятором 190) на вход газопромывного блока, чтобы поддерживать заранее установленное минимальное падение давления между двумя датчиками давления 313, 315. Поддержание минимального падения давления обеспечивает надлежащую работу газопромывного блока 122. Конечно, заслонку 198 можно регулировать вручную или же использовать электрорегулирование.
Таким образом, из сказанного выше следует, что контроллер 302 может создавать один или несколько замкнутых/разомкнутых контуров регулирования, используемых для запуска или остановки концентратора 110 без нарушения работы факела 130. Например, контроллер 302 может создать контур управления факельным колпаком, который открывает или закрывает факельный колпак 134, контур управления воздушным клапаном, который открывает или начинает открывать впускной клапан атмосферного воздуха 306 и контур управления вытяжного вентилятора, который запускает или останавливает вытяжной вентилятор 190 в зависимости от того, запускается или останавливается концентратор 110. Кроме того, во время работы контроллер 302 может создавать один или несколько контуров управления в реальном масштабе времени, которые могут регулировать различные элементы концентратора 110 порознь или в совокупности друг с другом, чтобы совершенствовать или оптимизировать процесс концентрирования. Создавая эти контуры управления в реальном масштабе времени, контроллер 302 может контролировать скорость вытяжного вентилятора 190, положение или угол наклона пластины Вентури 163, положение факельного колпака 134 и/или положение запорного органа впускного клапана атмосферного воздуха 306, чтобы регулировать расход жидкости, протекающей через концентратор 110, и/или температуру воздуха на входе в концентрирующий блок 120 на основе сигналов от датчиков температуры и давления. Кроме того, контроллер 302 может обеспечивать эксплуатационные качества процесса концентрирования в стационарных условиях путем регулирования насосов 184 и 182, которые подают новую и циркулирующую жидкость в концентрирующий блок 120. А еще контроллер 302 может создавать контур управления давлением, чтобы регулировать положение заслонки 198 и обеспечить надлежащую работу газопромывного блока 122. Конечно, хотя контроллер 302 показан на фиг.9 в виде одиночного устройства управления, которое создает разные контуры управления, контроллер 302 может представлять собой множество разных устройств управления, например множество разных программируемых логических контроллеров.
Понятно, что предлагаемый здесь концентратор 110 непосредственно использует горячие газовые выбросы в технологических процессах после того, как эти газовые выбросы прошли тщательную обработку, чтобы отвечать требованиям стандартов на газовые выбросы, и, таким образом, безусловно, отвечают эксплуатационным требованиям процесса, который генерирует отбросное тепло, и процесса, который использует отбросное тепло простым, надежным и эффективным способом.
Помимо того, что он является важным компонентом концентратора 110 во время его эксплуатации, описанный здесь факельный колпак 134 с автоматическим или ручным приводом может использоваться в автономной режиме работы, чтобы обеспечить защиту от атмосферных воздействий самого факела или узла факел-концентратор, когда факел не работает. Закрытая факельным колпаком 134, внутренняя оснастка металлического корпуса факела 130 вместе с его футеровкой, горелками и другими важными компонентами факельной установки 115 и теплопередающего блока 117 защищается от коррозии и общего износа, связанного с воздействием на эти компоненты. В этом случае контроллер 302 может управлять двигателем 135 факельного колпака, устанавливая его в полностью открытое или частично открытое состояние во время работы факела 130 на холостом ходу. Кроме того, помимо использования факельного колпака 134, который автоматически закрывается, когда факел 130 отключают, и автоматически открывается, когда факел 130 зажигают, внутри факела 130 может быть установлена небольшая горелка, такая как обычный запальник, которая может гореть, когда факел 130 отключен и факельный колпак закрыт. Эта небольшая горелка дополнительно способствует защите от износа факельных компонентов под действием влаги, поскольку она будет держать внутреннее оснащение факела 130 в сухом состоянии. Примером автономного факела, который может использовать описанный здесь факельный колпак 134 при работе в автономном режиме, служит автономный факел, установленный на свалке, чтобы регулировать содержание газа в воздухе, когда энергоустановка, работающая на газе из органических отходов, отключена.
Хотя концентратор жидкости 110 и был описан выше подключенным к факелу для сжигания газа из органических отходов, чтобы использовать отбросное тепло из этого факела, концентратор жидкости 110 легко можно подключать к другим источникам отбросного тепла. Например, на фиг.10 показан концентратор жидкости 110 такой конструкции, чтобы его можно было подключать к вытяжной трубе электростанции 400 с двигателями внутреннего сгорания и использовать отбросное тепло двигателей для концентрирования сточных вод. Хотя в одном варианте осуществления двигатель на электростанции 400 может работать на газе из органических отходов, чтобы вырабатывать элетроэнергию, концентратор 110 можно подключить и к выхлопной трубе двигателей другого типа, в том числе к двигателям такого типа, которые работают на газолине или дизельном топливе.
На фиг.10 выхлопные газы, образующиеся в двигателе (не показанном на рисунке) на электростанции 400, поступают в глушитель 402 снаружи электростанции 400, а оттуда - в выхлопную трубу 404, снабженную сверху выхлопным колпаком 406. Колпак 406 снабжен противовесом, чтобы он мог закрывать выхлопную трубу 404, когда в трубе 404 нет выхлопных газов, но легко открывался под действием выхлопных газов, выходящих из трубы 404. В этом случае в выхлопной трубе 404 имеется Y-образный соединитель, предназначенный для подсоединения трубы 408 к теплопередающей трубе 408, по которой выхлопной газ (источник отбросного тепла) поступает из двигателя в расширительный участок 410. Расширительный участок 410 сопряжен с охладителем 159 концентратора 110 и направляет выхлопной газ из двигателя прямо в концентрирующий блок 120 концентратора 110. При использовании выхлопных газов двигателя в качестве источника отбросного тепла обычно не требуется устанавливать впускной клапан атмосферного воздуха перед концентрирующим блоком 120, поскольку выхлопной газ на выходе из двигателя обычно имеет температуру менее 900°F, так что не приходится его сильно охлаждать перед входом в охладитель 159. Остальные части концентратора 110 являются такими же, как было описано выше со ссылкой на фиг.3-8. В результате можно видеть, что концентратор жидкости 110 можно легко приспосабливать для использования самых разных источников отбросного тепла, не внося значительных изменений в конструкцию.
Обычно при управлении концентратором жидкости 110, изображенном на фиг.10, контроллер включает вытяжной вентилятор 190 в то время, когда двигатель на электростанции работает. Контроллер увеличивает скорость вытяжного вентилятора 190 от минимального значения до тех пор, пока большая часть или все выхлопные газы целиком не пойдут из трубы 404 в теплопередающую трубу 408 вместо того, чтобы выходить из выхлопной трубы 404 в атмосферу. Определить, когда будет достигнут такой режим работы, несложно, он соответствует тому моменту, когда при увеличении скорости вытяжного вентилятора 190 колпак 406 впервые сядет на вершину вытяжной трубы 404. Важно не допускать дальнейшего увеличения скорости вытяжного вентилятора 190 при которой создается режим большего, чем нужно, разрежения в концентраторе 110, и тем самым добиваться, чтобы работа концентратора 110 не приводила к изменению противодавления и, в частности, к созданию нежелательных уровней подсоса, испытываемых двигателем на электростанции 400. Изменение противодавления или создание подсоса в выхлопной трубе 404 может неблагоприятно сказаться на сгорании топлива в двигателе, что нежелательно. В одном варианте осуществления контроллер (не показанный на фиг.10), такой как программируемый логический контроллер, может использовать датчик давления, установленный в трубе 404 возле колпака 406, чтобы постоянно следить за давлением в этом месте. Затем контроллер может подавать сигнал в частотно-регулируемый электропривод на вытяжном вентиляторе 190, чтобы регулировать скорость вытяжного вентилятора 190, поддерживать давление на заданном уровне и тем самым добиваться, чтобы нежелательное противодавление или подсос не оказывали воздействия на двигатель.
На фиг.11 и 12 приведено поперечное сечение на виде сбоку и поперечное сечение на виде сверху еще одного варианта осуществления концентратора жидкости 500. Концентратор 500 установлен в вертикальном положении. Однако концентратор 500, изображенный на фиг.11, может быть расположен в горизонтальном положении либо в вертикальном положении в зависимости от конкретных ограничений, накладываемых при использовании для конкретного назначения. Например, установленная на грузовике модификация концентратора может находиться в горизонтальном положении с тем, чтобы концентратор мог проходить под мостами и путепроводами во время транспортировки из одного места в другое. Концентратор жидкости 500 имеет газовпускной патрубок 520 и газовыпускное отверстие 522. Газовпускной патрубок 520 и газовыпускное отверстие 522 соединены проточным каналом 524. Проточный канал 524 имеет суженный участок 526, который ускоряет протекание газа по проточному каналу 524. Перед суженным участком 526 в поток газа впрыскивается жидкость через патрубок 530. В отличие от варианта осуществления, показанного на фиг.1, в варианте осуществления, показанном на фиг.11, суженный участок 526 направляет газожидкостную смесь в циклонную камеру 551. Циклонная камера 551 усиливает перемешивание газа и жидкости, действуя в то же время в качестве туманоуловителя, показанного на фиг.1. Газожидкостная смесь поступает в циклонную камеру 551 по касательной (см. фиг.12), а затем движется через циклонную камеру 551, подобно воздуху в циклоне, в направлении участка для удаления жидкости 554. Циклонное завихрение усиливается расположенным в циклонной камере 551 полым цилиндром 556, через который газ поступает в газовыпускное отверстие 522. Полый цилиндр 556 представляет собой физический барьер, обеспечивающий циклонное завихрение по всей циклонной камере 551, в том числе и на участке для вывода жидкости 554.
Когда газожидкостная смесь проходит через суженный участок 526 проточного канала 524 и циркулирует в циклонной камере 551, то часть жидкости испаряется и абсорбируется газом. Затем центробежная сила ускоряет движение унесенных газом капель жидкости в направлении боковой стенки 552 циклонной камеры 551, где унесенные капельки жидкости сливаются, образуя пленку на боковой поверхности 552. Одновременно центростремительные силы, созданные вытяжным вентилятором 550, собирают освобожденный от капелек газ на входе 560 цилиндра 556 и направляют его в газовыпускное отверстие 522. Таким образом, циклонная камера 551 действует и как смесительная камера, и как туманоулавливающая камера. Когда пленка жидкости стекает в камере в направлении участка для вывода жидкости 554 под совместным действием силы тяжести и вихревого движения в циклонной камере 551 в направлении участка для вывода жидкости 554, то постоянно циркулирующий в циклонной камере 551 газ испаряет еще и часть жидкой пленки. Когда жидкая пленка стечет на участок для вывода жидкости 554 из циклонной камеры 551, жидкость поступает в рециркуляционный контур 542. Подобным образом жидкость циркулирует через концентратор 500, пока не будет достигнута требуемая степень концентрирования. Часть концентрированного шлама можно отобрать через выгребной люк 546, когда шлам достигнет требуемого уровня концентрирования (этот процесс называют продувкой). Свежую жидкость вводят в контур 542 через впускной патрубок 544 свежей жидкости со скоростью, равной сумме скорости испарения и скорости отбора шлама через выгребной люк 546.
Когда газ циркулирует в циклонной камере 551, он очищается от капелек жидкости и перемещается в направлении участка для вывода жидкости 554 циклонной камеры 551 под действием вытяжного вентилятора 550 и в направлении входного отверстия 560 полой трубы 556. Затем очищенный газ поступает в полую трубу 556 и, наконец, выбрасывается через газовыпускное отверстие 522 в атмосферу или направляется на дальнейшую обработку (например, на окисление в факеле).
На фиг.13 приведена схема распределенного концентратора жидкости 600, имеющего такую конфигурацию, которая позволяет использовать концентратор 600 с множеством источников отбросного тепла разного типа, даже источников отбросного тепла, расположенных в таких местах, доступ к которым затруднен, например, по бокам зданий, среди разных видов другого оборудования, вдали от дорог или других путей доступа. Хотя описанный здесь концентратор жидкости 600 используется для обработки и концентрирования фильтрата, такого как фильтрат, собранный на свалке, концентратор жидкости 600 можно использовать для концентрирования и жидкостей другого типа, в том числе и множества разных сточных вод.
Вообще говоря, концентратор жидкости 600 содержит газовпускной патрубок 620, газовыпускной патрубок или газовыхлопное отверстие 622, проточный канал 624, проходящий от газовпускного патрубка 620 до газовыхлопного отверстия 622, и систему рециркуляции жидкости 625. Концентрирующий блок содержит проточный канал 624, который включает участок охлаждения 659, включающий газовпускной патрубок 620 и впускной патрубок жидкости 630, участок с профилем Вентури 626, расположенный за участком охлаждения 659, и нагнетательный или вытяжной вентилятор 650, подсоединенный за участком с профилем Вентури 626. Вентилятор 650 и затопленное колено 654 подсоединяют газовыпускной патрубок концентрирующего блока (например, выпускной патрубок участка с профилем Вентури 626) к трубопроводу 652. В этом случае затопленное колено 654 обеспечивает поворот проточного канала 624 на 90 градусов. При необходимости затопленное колено 654 может обеспечивать поворот на угол, который меньше или больше 90 градусов. Трубопровод 652 подсоединен к туманоуловителю, показанному в данном случае в виде поперечноточного газопромывного аппарата 634, который, в свою очередь, подсоединен к дымовой трубе 622 А, имеющей газовыхлопное отверстие 622.
Рециркуляционная система 625 содержит отстойник для жидкости 636, подсоединенный к выпускному патрубку жидкости поперечноточного газопромывного аппарата 634, и рециркуляционный насос 640, включенный между отстойником для жидкости 636 и трубопроводом 642, который подает циркулирующую жидкость во впускной патрубок жидкости 630. Питатель 644 подает также фильтрат или другую подвергаемую обработке жидкость (например, концентрированную жидкость) во впускной патрубок жидкости 630, чтобы она попадала в охладитель 659. Рециркуляционная система 625 содержит также отвод жидкости 646, подсоединенный к трубопроводу 642, который подает некоторое количество циркулирующей жидкости (или концентрированной жидкости) в резервуар 649 для хранения, отстаивания и рециркуляции. Более тяжелые или более концентрированные порции жидкости в отстойном резервуаре 649 опускаются на дно резервуара 649 в виде шлама, который удаляется и транспортируется с целью удаления в концентрированном виде. Менее концентрированные порции жидкости из резервуара 649 подаются обратно в отстойник для жидкости 636 для повторной обработки и дальнейшего концентрирования, а также для того, чтобы обеспечивать в любой момент времени надлежащую подачу во впускном патрубке жидкости 630 и тем самым не допустить образования сухих частиц. Сухие частицы могут образоваться при пониженном отношении объема обрабатываемой жидкости к объему горячего газа.
Во время работы охладитель 659 смешивает жидкость, поступившую из впускного патрубка жидкости 630, с содержащим отбросное тепло газом, собранным, например, из глушителя двигателя и выхлопной трубы 629, связанной с двигателем внутреннего сгорания (не показанным на фигуре). Жидкость из впускного клапана жидкости 630 может представлять собой, например, фильтрат, подвергаемый обработке или концентрированию. Как показано на фиг.13, охладитель 659 подсоединен в вертикальном положении над участком с профилем Вентури 626, который содержит суженный участок, ускоряющий протекание газа и жидкости по проточному каналу 624 непосредственно за участком с профилем Вентури 626 и перед вентилятором 650. Конечно, вентилятор 650 служит для создания разрежения непосредственно за участком с профилем Вентури 626, засасывания газа из выхлопной трубы 629 через участок с профилем Вентури 626 и затопленное колено 564, чтобы обеспечивать перемешивание газа и жидкости.
Как было указано выше, охладитель 659 получает горячий выхлопной газ из выхлопной трубы 629 двигателя и может быть подсоединен непосредственно к любому требуемому участку выхлопной трубы 629. В этом показном варианте осуществления выхлопная труба 629 двигателя установлена снаружи здания 631, в котором находятся один или несколько электрогенераторов, который производят электроэнергию, используя газ из органических отходов в качестве топлива. В этом случае охладитель 659 может быть подсоединен прямо к конденсатоотводчику (например, конденсационному горшку), связанному с выхлопной трубой 629 (т.е. к нижней части выхлопной трубы 629). Здесь охладитель 659 может быть установлен непосредственно под или возле трубы 629, так что потребуется всего лишь несколько дюймов или самое большее несколько футов дорогостоящей трубы из материала с высокой температуростойкостью, чтобы соединить их вместе. Но в случае необходимости охладитель 659 можно подсоединить к другому участку выхлопной трубы 629, например к вершине или к средней части трубы 629 через соответствующее колено или отвод.
Как было указано выше, через впускной патрубок 630 жидкость, подвергаемая испарению (например, фильтрат свалки), впрыскивается в проточный канал 624 через охладитель 659. В случае необходимости впускной патрубок жидкости 630 может содержать сменное сопло для распыления жидкости в охладителе 659. Впускной патрубок жидкости 630 независимо от того, снабжен он соплом или нет, может вводить жидкость в любом направлении, и перпендикулярно потоку газа, и параллельно потоку газа, движущемуся по проточному каналу 624. Кроме того, когда газ (и отбросное тепло, содержащееся в нем) и жидкость проходят по участку с профилем Вентури 626, по принципу Вентури скорость течения возрастает и образуется турбулентный поток, который полностью перемешивает газ и жидкость в проточном канале 624 непосредственно за участком с профилем Вентури 626. В результате перемешивания в турбулентном режиме часть жидкости быстро испаряется и входит в состав газового потока. На испарение тратится большое количество тепловой энергии из отбросного тепла на увеличение скрытой теплоты, которая удаляется из системы концентрирования 600 в виде водяного пара в составе выхлопного газа.
С участка с профилем Вентури 626 газожидкостная смесь поступает в затопленное колено 654, где проточный канал 624 поворачивается под углом 90 градусов, меняя вертикальное направление течения на горизонтальное направление течения. Газожидкостная смесь обтекает вентилятор 650 и поступает в область высокого давления на стороне нагнетания вентилятора 650, причем область высокого давления находится на участке трубопровода 652. Использование затопленного колена 654 в этой точке системы необходимо, по меньшей мере, по двум причинам. Во-первых, жидкость в нижней части затопленного колена 654 уменьшает эрозию в точке поворота проточного канала 624, эрозию, которая обычно происходит под действием суспендированных в газожидкостной смеси частиц, которые с большой скоростью входили бы в колено и ударялись бы под крутым углом прямо о нижнюю поверхность обычного колена, не заполненного жидкостью. Жидкость в нижней части затопленного колена 654 поглощает энергию этих частиц и таким образом защищает нижнюю поверхность затопленного колена 654 от эрозии. Кроме того, капельки жидкости, все еще содержащиеся в газожидкостной смеси, в затопленном колене гораздо легче сливаются и удаляются из потока, если они ударяются о жидкость. То есть жидкость на дне затопленного колена 654 используется для улавливания капелек жидкости, ударяющихся в нее, поскольку капельки жидкости, содержащиеся в потоке, задерживаются гораздо легче, если эти распыленные капельки жидкости входят в соприкосновение с жидкостью. Таким образом, затопленное колено 654, которое может иметь отвод для жидкости (не показанный на рисунке), например, в рециркуляционный контур 625, служит для удаления некоторой части капелек обрабатываемой жидкости и конденсата из газожидкостной смеси, выходящей с участка с профилем Вентури 626.
Следует отметить, что газожидкостная смесь, протекающая по участку с профилем Вентури 626, быстро приближается к точке адиабатического насыщения, которая находится при температуре, которая гораздо ниже температуры газа на выходе из выхлопной трубы 629. Например, хотя на выходе из выхлопной трубы 629 газ может иметь температуру в диапазоне от 900°F до 1800°F, газожидкостная смесь на всех участках системы концентрирования 600 за участком с профилем Вентури 626 будет обычно иметь температуру в диапазоне от 150°F до 190°F, хотя температура смеси может быть и выше, и ниже этого температурного диапазона в зависимости от рабочих параметров системы. В результате участки системы концентрирования 600 за участком с профилем Вентури 626 не нужно изготовлять из температуростойких материалов и не нужно их изолировать вообще или можно изолировать лишь в той степени, которая необходима при транспортировке газов с повышенной температурой, если изоляция осуществляется с целью более полной утилизации отбросного тепла, содержащегося в горячем газе. А еще участки системы концентрирования 600 за участком с профилем Вентури 626, расположенные в таких местах, например, уложенные по поверхности земли, где люди могут контактировать с ними, не представляют значительной опасности или нуждаются лишь минимальной наружной защите. В частности, участки системы концентрирования 600 за участком с профилем Вентури 626 могут изготовляться из стеклопластика и могут нуждаться лишь в минимальной изоляции или не нуждаться в ней совсем. Следует отметить, что газожидкостной поток может подаваться по участкам системы концентрирования 600 за участком с профилем Вентури 626 на сравнительно большое расстояние, все еще оставаясь вблизи точки адиабатического насыщения, и тем самым позволяя легко транспортировать его по трубопроводу 652 из здания 631 в более доступное место, в котором другое оборудование, связанное с концентратором 600, может размещаться обычным образом. В частности, участок трубопровода 652 может простираться на 20 футов, 40 футов или даже на еще большее расстояние, хотя поток все еще остается в состоянии, близком к адиабатическому насыщению. Конечно, эти расстояния могут быть больше или меньше в зависимости, например, от окружающей температуры, используемого типа трубопровода или наличия изоляции. Кроме того, поскольку участок трубопровода 652 расположен на стороне высокого давления вентилятора 650, легко можно удалить конденсат из этого потока. В варианте осуществления, показанном на фиг.13, участок трубопровода 652 показан огибающим воздухоохладитель или пропущенным под воздухоохладителем, связанным с двигателями внутри здания 631. Но воздухоохладитель на фиг.13 представляет собой всего лишь один вариант тех преград, которые могут встречаться возле здания 631 и которые не позволяют разместить все компоненты концентратора 600 возле самого источника отбросного тепла (в данном случае возле выхлопной трубы 629). Другими преградами могут оказаться другое оборудование, растительность, такая как деревья, другие строения, недоступная территория без дорог и удобных подходов.
В любом случае участок трубопровода 652 направляет газожидкостной поток в состоянии, близком к точке адиабатического насыщения, в туманоуловитель 634, который может представлять собой, например, поперечноточный газопромывной аппарат. Туманоуловитель 634 служит для удаления унесенных капелек жидкости из газожидкостного потока. Отделившаяся жидкость собирается в отстойнике для жидкости 636, откуда она поступает в насос 640. Насос 640 подает жидкость по обратной линии 642 рециркуляционного контура 625 во впускной патрубок жидкости 630. Таким образом, унесенная жидкость может и дальше концентрироваться путем испарения до требуемого уровня концентрирования и/или подаваться для того, чтобы предотвратить образование сухих частиц. Свежая жидкость поступает на концентрирование через впускной патрубок свежей жидкости 644. Скорость подачи свежей жидкости в рециркуляционный контур 625 должна равняться сумме скорости испарения жидкости при прохождении газожидкостной смеси через проточный канал 624 и скорости отбора жидкости или шлама из отстойного резервуара 649 (при условии, что уровень жидкости в отстойном резервуаре 649 не меняется). В частности, часть жидкости можно отводить через выгребной люк 646, когда жидкость в рециркуляционном контуре 625 достигнет требуемой степени концентрирования. Часть жидкости, отведенную через выгребной люк 646, можно направить отстойный резервуар 649 на хранение, где концентрированной жидкости дают отстояться и разделяют на составляющие ее компоненты (например, на жидкую часть и полутвердую часть). Полутвердую часть можно выгрести из резервуара 649 и удалить или подвергнуть дальнейшей обработке.
Как было указано выше, вентилятор 650 засасывает газ через один участок проточного канала 624, находящийся под разрежением, и нагнетает газ через еще один участок проточного канала 624, находящийся под повышенным давлением. Охладитель 659, участок с профилем Вентури 626 и вентилятор 650 могут быть прикреплены к зданию 631 с помощью соединительного устройства любого типа и могут находиться в непосредственной близости к источнику отбросного тепла. Однако туманоуловитель 634 и газовыпускной патрубок 622, а также отстойный резервуар 649 могут находиться на некотором удалении от охладителя 659, участка с профилем Вентури 626 и вентилятора 650, например в легко доступном месте. В одном варианте осуществления, туманоуловитель 634 и газовыпускной патрубок 622, а также отстойный резервуар 649 могут быть установлены на передвижной платформе, такой как отстойник для жидкости или рама прицепа.
На фиг.14-16 показан еще один вариант осуществления концентратора жидкости 700, который можно устанавливать на отстойнике для жидкости или раме прицепа. В одном варианте осуществления некоторые компоненты концентратора 700 могут оставаться на раме и в таком положении использоваться для концентрирования жидкости, тогда как другие компоненты можно снимать и устанавливать возле источника отбросного тепла таким образом, как показано в варианте осуществления, изображенном на фиг.13. Концентратор жидкости 700 имеет газовпускной патрубок 720 и газовыпускное отверстие 722. Газовпускной патрубок 720 сообщается с газовыпускным отверстием 722 через проточный канал 724. Проточный канал 724 имеет суженный участок или участок с профилем Вентури 726, который увеличивает скорость протекания газа по проточному каналу 724. Газ засасывается в охладитель 759 вытяжным вентилятором (не показанным на рисунках). В газовый поток в охладителе 759 впрыскивается жидкость через впускной патрубок жидкости 730. Газ поступает с участка с профилем Вентури 726 в туманоуловитель (или поперечноточный газопромывной аппарат) 734 через колено 733. Из туманоуловителя 734 газ поступает в газовыпускное отверстие 722 по трубе 723. Конечно, как было указано выше, некоторые из этих компонентов можно снять с рамы и установить непосредственно возле источника отбросного тепла, тогда как другие компоненты (такие как туманоуловитель 734, труба 723 и газовыпускное отверстие 722) могут оставаться на раме.
Когда газожидкостная смесь проходит по участку с профилем Вентури проточного канала 724, часть жидкости испаряется и абсорбируется газом, расходуя большую часть тепловой энергии из отбросного тепла на увеличение скрытой теплоты, которая удаляется из системы концентрирования 700 в виде водяного пара в составе выхлопного газа.
В варианте осуществления, показанном на фиг.14-16, части концентратора жидкости 700 можно демонтировать и установить на отстойник для жидкости или прицеп грузовика для транспортировки. Например, охладитель 759 и участок с профилем Вентури 726 можно снять с колена 733, как показано на фиг.14 пунктирной линией. Аналогичным образом можно снять трубу 723 с вентилятора 750, как показано на фиг.14 пунктирной линией. Колено 733, туманоуловитель 734 и вытяжной вентилятор 750 можно закреплять на отстойнике для жидкости или прицепе грузовика 799 как единое целое. Трубу 723 можно закрепить на отстойнике для жидкости или прицепе грузовика 799 отдельно. Охладитель и участок с профилем Вентури также можно закрепить на отстойнике для жидкости или прицепе грузовика 799 или транспортировать их отдельно. Блочная конструкция концентратора жидкости 700 упрощает его транспортировку.
Хотя определенные характерные варианты осуществления и их особенности были приведены с целью пояснения сущности изобретения, сведущим в данной области понятно, что в описанные здесь способы и устройства можно вносить разные изменения, лишь бы они не выходили за рамки сущности данного изобретения.

Claims (20)

1. Система концентрирования жидкости, содержащая:
блок концентратора, имеющий:
газовпуской патрубок;
газовыпускное отверстие;
смесительный канал, расположенный между газовпускным патрубком и газовыпускным отверстием, причем смесительный канал имеет суженный участок, в котором поток газа внутри смесительного канала повышает свою скорость при протекании от газовпускного патрубка до газовыпускного отверстия;
охладитель, расположенный выше по потоку суженного участка для быстрого понижения температуры газового потока, протекающего по смесительному каналу; и
впускной патрубок жидкости, через который жидкость, подвергаемая концентрированию, впрыскивается в смесительный канал, причем впускной патрубок жидкости расположен в смесительном канале между газовпускным патрубком и суженным участком;
туманоуловитель, расположенный за блоком концентратора и содержащий:
газопропускной канал туманоуловителя, подсоединенный к газовыпускному патрубку блока концентратора,
сборник жидкости, расположенный в газопропускном канале туманоуловителя для удаления жидкости из газа, протекающего по газопропускному каналу туманоуловителя, и
резервуар для сбора жидкости, удаленной сборником жидкости из газа, протекающего по газопропускному каналу туманоуловителя; и
вентилятор, подсоединенный к туманоуловителю для создания потока газа, протекающего по смесительному и газопропускному каналам.
2. Система по п.1, отличающаяся тем, что содержит рециркуляционный контур, расположенный между резервуаром и смесительным каналом для подачи находящейся в резервуаре жидкости в смесительный канал.
3. Система по п.2, отличающаяся тем, что рециркуляционный контур подключен к впускному патрубку жидкости блока концентратора.
4. Система по п.2, отличающаяся тем, что блок концентратора содержит другой впускной патрубок жидкости, расположенный в смесительном канале между газовпускным патрубком и суженным участком, причем этот впускной патрубок жидкости подключен к рециркуляционному контуру для впрыскивания жидкости из резервуара в смесительный канал для дальнейшего ее концентрирования.
5. Система по п.4, отличающаяся тем, что другой впускной патрубок жидкости расположен в смесительном канале за впускным патрубком жидкости.
6. Система по п.5, отличающаяся тем, что содержит перегородку, расположенную в смесительном канале возле впускного патрубка жидкости, чтобы концентрированная жидкость из рециркуляционного контура ударялась об эту перегородку и впрыскивалась в смесительный канал в виде мелких капель.
7. Система по п.4, отличающаяся тем, что впускной патрубок жидкости содержит множество входных отверстий жидкости, причем отдельное входное отверстие расположено в каждой из двух или нескольких боковых стенок смесительного канала, а рециркуляционный контур содержит трубу, которая частично охватывает смесительный канал для обеспечения подачи концентрированной жидкости в каждое из множества входных отверстий.
8. Система по п.1, отличающаяся тем, что блок концентратора содержит регулируемый ограничитель потока, расположенный на суженном участке смесительного канала, причем ограничитель можно регулировать для изменения расхода газа, протекающего по смесительному каналу.
9. Система по п.8, отличающаяся тем, что регулируемый ограничитель потока представляет собой пластину Вентури, которая выполнена с возможностью регулирования для изменения размера и формы суженного участка смесительного канала.
10. Система по п.1, отличающаяся тем, что содержит выгребной люк концентрированной жидкости, расположенный в резервуаре.
11. Система по п.1, отличающаяся тем, что вентилятор представляет собой вытяжной вентилятор, расположенный за туманоуловителем, для возможности создания в туманоуловителе градиента отрицательного давления.
12. Система по п.1, отличающаяся тем, что газовпускной патрубок блока концентратора сообщается с источником отбросного тепла, а туманоуловитель находится на значительном расстоянии от блока концентратора и содержит трубопровод, расположенный между газовыводным патрубком блока концентратора и туманоуловителем.
13. Система по п.1, отличающаяся тем, что содержит впускной клапан атмосферного воздуха, расположенный в смесительном канале перед суженным участком, причем впускной клапан атмосферного воздуха служит для впуска атмосферного воздуха в смесительный канал для смешивания его с горячим газом, поступающим в смесительный канал из газовпускного патрубка.
14. Система по п.13, отличающаяся тем, что содержит контроллер, подключенный к клапану атмосферного воздуха для регулирования положения запорного органа клапана атмосферного воздуха.
15. Система по п.1, отличающаяся тем, что содержит затопленное колено, подсоединенное к выходу суженного участка смесительного канала, причем затопленное колено меняет направление потока газа, протекающего по смесительному каналу.
16. Система по п.1, отличающаяся тем, что туманоуловитель представляет собой поперечноточный газопромывной аппарат, работающий в режиме удаления унесенной жидкости из газа, протекающего по смесительному каналу.
17. Система по п.16, отличающаяся тем, что поперечноточный газопромывной аппарат содержит отбойную перегородку, а коллектор жидкости содержит сменный фильтр, расположенный поперек направления протекания газа через поперечноточный газопромывной аппарат.
18. Система по п.17, отличающаяся тем, что содержит распылитель, расположенный внутри поперечноточного газопромывного аппарата, причем распылитель расположен для распыления жидкости на сменный фильтр для очистки сменного фильтра.
19. Система по п.1, отличающаяся тем, что дополнительно содержит газоотводную трубу для подключения к источнику отбросного тепла, подсоединенную к газовпускому патрубку, причем смесительный канал проходит в вертикальном направлении, так что впускной патрубок жидкости находится над суженным участком и газ поступает по смесительному каналу сверху вниз от газовпускного патрубка к газовыпускному патрубку.
20. Способ использования тепла для испарения, по меньшей мере, частичного испарения, жидкости, в котором:
обеспечивают источник тепла;
пропускают тепло через концентратор жидкости, который содержит:
впускной патрубок тепла;
выпускной патрубок тепла;
газопроточный канал, соединяющий впускной патрубок тепла и выпускной патрубок тепла, причем газопроточный канал имеет суженный участок, который повышает скорость протекания тепла по газопроточному каналу, и охладитель, расположенный выше по потоку суженного участка;
быстро понижают температуру тепла, протекающего через охладитель;
впрыскивают жидкость в газопроточный канал возле суженного участка;
смешивают тепло и жидкость, причем энергия тепла, по меньшей мере, частично испаряет жидкость; и
удаляют унесенные капельки жидкости из тепла.
RU2011137006/05A 2009-02-12 2010-02-12 Компактный концентратор сточных вод, работающий на отбросном тепле RU2530045C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US15224809P 2009-02-12 2009-02-12
US61/152,248 2009-02-12
US22965009P 2009-07-29 2009-07-29
US61/229,650 2009-07-29
PCT/US2010/024143 WO2010093958A2 (en) 2009-02-12 2010-02-12 Compact wastewater concentrator using waste heat

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2014129305A Division RU2014129305A (ru) 2009-02-12 2014-07-17 Блок выхлопного колпака для выхлопной трубы дымового газа, блок концентрирования сточных вод и блок колпака факела для сжигания газа из органических отходов

Publications (2)

Publication Number Publication Date
RU2011137006A RU2011137006A (ru) 2013-03-20
RU2530045C2 true RU2530045C2 (ru) 2014-10-10

Family

ID=42562303

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2011137006/05A RU2530045C2 (ru) 2009-02-12 2010-02-12 Компактный концентратор сточных вод, работающий на отбросном тепле
RU2014129305A RU2014129305A (ru) 2009-02-12 2014-07-17 Блок выхлопного колпака для выхлопной трубы дымового газа, блок концентрирования сточных вод и блок колпака факела для сжигания газа из органических отходов

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2014129305A RU2014129305A (ru) 2009-02-12 2014-07-17 Блок выхлопного колпака для выхлопной трубы дымового газа, блок концентрирования сточных вод и блок колпака факела для сжигания газа из органических отходов

Country Status (10)

Country Link
US (6) US8568557B2 (ru)
EP (1) EP2396279A4 (ru)
JP (1) JP5903272B2 (ru)
CN (1) CN102356046A (ru)
AU (3) AU2010213608B2 (ru)
BR (1) BRPI1008631B1 (ru)
CA (1) CA2751720C (ru)
MX (2) MX2011008547A (ru)
RU (2) RU2530045C2 (ru)
WO (1) WO2010093958A2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11654391B2 (en) 2018-08-10 2023-05-23 Starklab Device for bringing a gas stream and a liquid stream into contact
RU2800557C2 (ru) * 2018-08-10 2023-07-24 Старклаб Устройство для приведения потока газа и потока жидкости в контакт

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801897B2 (en) * 2007-03-13 2014-08-12 Heartland Technology Partners Llc Compact wastewater concentrator and contaminant scrubber
US8790496B2 (en) 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
US8679291B2 (en) * 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US10005678B2 (en) 2007-03-13 2018-06-26 Heartland Technology Partners Llc Method of cleaning a compact wastewater concentrator
US8741100B2 (en) 2007-03-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
CN102356046A (zh) * 2009-02-12 2012-02-15 中心地带科技股份有限公司 利用废热的紧凑型废水浓缩器
US9429317B2 (en) * 2010-10-05 2016-08-30 Edward Stock Wastewater evaporation apparatus and method
JP5734637B2 (ja) * 2010-12-15 2015-06-17 株式会社ブリヂストン 混合液体の分離方法
US9975061B2 (en) 2011-01-05 2018-05-22 Aptim Intellectual Property Holdings, Llc Evaporative concentrator and associated methods
WO2012100074A2 (en) * 2011-01-21 2012-07-26 Heartland Technology Partners Llc Condensation plume mitigation system for exhaust stacks
US8690519B2 (en) * 2011-02-04 2014-04-08 General Electric Company Wet gas compressor systems
JP5798764B2 (ja) * 2011-03-07 2015-10-21 株式会社ブリヂストン 混合液体の分離装置
US9296624B2 (en) 2011-10-11 2016-03-29 Heartland Technology Partners Llc Portable compact wastewater concentrator
US9382920B2 (en) * 2011-11-14 2016-07-05 General Electric Company Wet gas compression systems with a thermoacoustic resonator
US8808497B2 (en) 2012-03-23 2014-08-19 Heartland Technology Partners Llc Fluid evaporator for an open fluid reservoir
US8741101B2 (en) 2012-07-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
EP2874949B1 (en) * 2012-07-20 2019-05-15 Heartland Technology Partners LLC Wastewater concentration system
US8623174B1 (en) * 2012-12-14 2014-01-07 Heartland Technology Partners Llc Liquid evaporation system with heated liquid
US8585869B1 (en) 2013-02-07 2013-11-19 Heartland Technology Partners Llc Multi-stage wastewater treatment system
US9199861B2 (en) * 2013-02-07 2015-12-01 Heartland Technology Partners Llc Wastewater processing systems for power plants and other industrial sources
WO2015069622A1 (en) * 2013-11-05 2015-05-14 Heartland Technology Partners Llc Method and device for concentrating dissolved solids in flowback and produced water from natural gas wells
US9783431B2 (en) * 2014-05-28 2017-10-10 Katz Water Tech, Llc Apparatus and method to remove contaminates from a fluid
CN104226204B (zh) * 2014-09-20 2016-06-22 中北大学 单反射-环式喷嘴撞击流结构以及旋转填料床装置
CA2963268A1 (en) * 2014-10-02 2016-04-07 Heartland Technology Partners Llc Wastewater processing systems for evaporating water with immerged flue gas inlet
WO2017011704A1 (en) * 2015-07-14 2017-01-19 Heartland Technology Partners Llc Compact wastewater concentrator utilizing a low temperature thermal energy source
US20190202713A1 (en) 2015-08-07 2019-07-04 Cleantek Industries Inc. Apparatus, systems and methods for management of raw water and emissions utilizing heat and/or pressure energy within combustion gas sources
US11485649B2 (en) 2015-09-03 2022-11-01 Questor Technology Inc. System for reducing produced water disposal volumes utilizing waste heat
WO2017079058A1 (en) * 2015-11-02 2017-05-11 Heartland Technology Partners Llc Apparatus for concentrating wastewater and for creating custom brines
JP6643637B2 (ja) * 2017-06-06 2020-02-12 パナソニックIpマネジメント株式会社 Voc精製装置
US10864482B2 (en) 2017-08-24 2020-12-15 Katz Water Tech, Llc Apparatus system and method to separate brine from water
US11034605B2 (en) 2018-03-29 2021-06-15 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US11713258B2 (en) 2017-08-24 2023-08-01 Katz Water Tech, Llc Apparatus system and method to extract minerals and metals from water
US11905189B2 (en) 2018-05-10 2024-02-20 Chad Daloia Method of refining and recovering barium sulfate from contaminated water sources
US11406910B2 (en) * 2018-05-24 2022-08-09 Padmini Vna Mechatronics Pvt. Ltd. Apparatus for maximizing effluent liquid evaporation
CN110550682B (zh) * 2018-05-30 2022-04-12 中国科学院广州能源研究所 一种小型废水浓缩系统
CN110787472B (zh) * 2018-08-01 2024-02-13 上海凯赛生物技术股份有限公司 戊二胺浓缩系统及浓缩方法
CN109091899B (zh) * 2018-08-28 2020-11-03 上海申亚动物保健品阜阳有限公司 一种中药加工用药液浓缩装置
CN110906555B (zh) * 2018-09-18 2023-11-24 芜湖美的厨卫电器制造有限公司 用于热水器的混水装置和热水器
US10711076B2 (en) * 2018-11-29 2020-07-14 GM Global Technology Operations LLC Mobile vacuum distillation unit for transport of articles containing releasable volatile organic compounds
WO2020243510A1 (en) * 2019-05-31 2020-12-03 Heartland Technology Partners Llc Harmful substance removal system and method
US11143335B2 (en) 2019-07-01 2021-10-12 The Boeing Company Flexible hose with helical stiffener
CN110508078A (zh) * 2019-08-05 2019-11-29 盐城工学院 一种热处理炉油烟气净化与余热利用系统
CN110482630B (zh) * 2019-09-25 2021-03-16 清华大学 利用烟气热量的直接接触蒸发处理设备及其方法
CN111994981A (zh) * 2020-08-25 2020-11-27 水木湛清(北京)环保科技有限公司 移动式浸没燃烧蒸发装置
CN112390430A (zh) * 2020-10-26 2021-02-23 延安大学 一种化工厂用化工污水净化装置
US11667544B2 (en) * 2021-01-06 2023-06-06 Effluent Free Desalination Corporation Sustainable and circular water demineralization with zero waste discharge
CN113250802B (zh) * 2021-07-15 2021-09-21 四川迅联达智能科技有限公司 控流散热组件、智能温度管理系统及其散热方法和发动机
CN115093044B (zh) * 2022-06-02 2023-10-31 北京水研环境科技股份有限公司 一种应用于工业废水处理的膜处理设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU71824A1 (ru) * 1947-05-27 1975-01-30 Г.М. Клюев Выпарной аппарат
SU808088A1 (ru) * 1978-04-03 1981-02-28 Ордена Трудового Красного Знамениинститут Тепло- И Массообмена Им.A.B.Лыкова Ah Белорусской Ccp Установка дл термической обра-бОТКи PACTBOPOB
SU1599031A1 (ru) * 1988-06-23 1990-10-15 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Выпарна установка
WO1992000128A1 (en) * 1990-06-27 1992-01-09 Cal Glass Environmental Systems, Inc. Waste materials concentrator
WO2008112793A1 (en) * 2007-03-13 2008-09-18 Gei Development Llc Wastewater concentrator

Family Cites Families (354)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE556455C (de) 1925-09-05 1932-08-10 Cecil Featherstone Hammond Verfahren und Vorrichtung zum Erhitzen von Stoffen
GB383570A (en) 1932-06-06 1932-11-17 Metallgesellschaft Ag Still for substances of high boiling point
NL49844C (ru) 1935-08-05
US2387818A (en) 1941-06-28 1945-10-30 Fuel Refining Corp Apparatus for the production of sulphate of ammonia
US2372846A (en) 1942-08-05 1945-04-03 Nettel Frederick Water distillation
US2468455A (en) 1945-02-19 1949-04-26 Blockson Chemical Co Production of disodium phosphate dihydrate
US2560226A (en) * 1945-10-25 1951-07-10 Cochrane Corp Heating, deaerating, and purifying water
US2658349A (en) 1949-01-21 1953-11-10 Tech Studien Ag Plant for the recovery of waste heat from combustible gases derived from chemical processes
US2651647A (en) * 1949-12-09 1953-09-08 Greenfield Charles Process of dehydration of fatty materials
US2658735A (en) 1950-08-10 1953-11-10 Ybarrondo Vincent C De Gas-liquid contact apparatus for removing contaminants from gases
US2619421A (en) 1950-11-22 1952-11-25 Greenfield Charles Method of separating the components of a mixture of fats and oils
US2867972A (en) 1951-12-05 1959-01-13 Anaconda Co Submerged flame evaporator
US2721065A (en) 1952-05-31 1955-10-18 Walter J Ingram Blast furnace pressure regulator
US2890166A (en) 1952-10-14 1959-06-09 Submerged Comb Company Of Amer Process and apparatus for utilizing submerged combustion
US2925223A (en) 1954-04-14 1960-02-16 Producers Creamery Company Inc Spray cleaning
US3113046A (en) 1954-04-14 1963-12-03 Producers Creamery Company Inc Spray cleaning
US2879838A (en) 1955-06-08 1959-03-31 Babcock & Wilcox Co By-product and heat recovery from residual liquor
US2790506A (en) 1955-06-20 1957-04-30 Nat Mine Service Co Exhaust gas conditioner
USRE25322E (en) * 1956-10-24 1963-01-15 Greenfield
US2911421A (en) 1957-02-14 1959-11-03 Greenfield Charles Grinding and rendering of fat containing tissue
US2911423A (en) 1957-10-01 1959-11-03 Greenfield Charles Recovery of stearic and oleic acids
US2981250A (en) 1958-02-07 1961-04-25 Richard M Stewart Submerged combustion heating apparatus
US3060921A (en) 1958-08-12 1962-10-30 Exxon Research Engineering Co Apparatus for heating liquids
US3076715A (en) * 1959-08-31 1963-02-05 Greenfield Charles Dehydration of fluid fatty mixtures above normal coagulation temperature
US3211538A (en) 1961-05-31 1965-10-12 Chemical Construction Corp Concentration of sulfuric acid pickle liquor
US3212235A (en) 1962-02-14 1965-10-19 Babcock & Wilcox Co Method of and apparatus for the recovery of heat and chemicals from hot dust laden gas
DE1173429B (de) 1962-06-06 1964-07-09 Bahco Ab Eindampfer
US3203875A (en) 1962-08-20 1965-08-31 Harold V Sturtevant Apparatus for distilling water with waste heat
US3284064A (en) 1963-03-28 1966-11-08 Babcock & Wilcox Co Apparatus for recovery of heat and chemicals
US3304991A (en) * 1963-09-26 1967-02-21 Greenfield Charles Apparatus and process for dehydrating waste solids concentrates
US3251398A (en) * 1963-09-26 1966-05-17 Greenfield Charles Process for dehydrating waste solids concentrates
US3268443A (en) 1965-05-05 1966-08-23 Everett D Cann Process for the treatment of waste liquors with flocculating agent recovery
US3306039A (en) 1965-08-02 1967-02-28 Adolphe C Peterson Heat regeneration system for gas turbines
US3299651A (en) 1965-10-24 1967-01-24 Carrier Corp System for providing air conditioning and producing fresh water
US3323575A (en) * 1966-04-05 1967-06-06 Greenfield Charles Apparatus and process for dehydrating waste solids concentrates
US3432399A (en) 1967-01-30 1969-03-11 Fluor Corp Still and column with submerged combustion burners in the still
US3405918A (en) 1967-03-03 1968-10-15 Airetron Engineering Corp Adjustable venturi for scrubbers
US3488686A (en) 1967-04-21 1970-01-06 Mississippi Chem Corp Concentration process
GB1217553A (en) 1968-03-21 1970-12-31 Airoil Burner Company Gb Ltd Improvements in gaseous sealing devices or gas traps for use with flare stacks
US3601374A (en) 1968-08-05 1971-08-24 Roger M Wheeler Apparatus for extracting solids from a gas stream
US3546851A (en) 1968-12-20 1970-12-15 Universal Oil Prod Co Gas scrubbing apparatus
US3539549A (en) 1969-02-27 1970-11-10 Charles Greenfield Recovery of protein from bone
US3756893A (en) 1969-04-03 1973-09-04 Owens Corning Fiberglass Corp Nonwoven structure and method and apparatus for producing it
US3704570A (en) * 1970-06-16 1972-12-05 Aronetics Inc Process and apparatus for cleaning and pumping contaminated industrial gases
US3716458A (en) * 1970-09-18 1973-02-13 Carver Greenfield Corp Process and apparatus for recovering clean water from dilute solutions of waste solids
US3762893A (en) 1971-04-19 1973-10-02 Chicago Bridge & Iron Co Submerged direct contact vaporization process
US3730673A (en) 1971-05-12 1973-05-01 Combustion Unltd Inc Vent seal
US3743483A (en) 1971-05-28 1973-07-03 Chemical Construction Corp Crystallization of nacl from mgcl2 solution
US3789902A (en) 1971-06-18 1974-02-05 Chemical Construction Corp Method for concentrating dilute acidic solutions
US3947327A (en) * 1971-07-22 1976-03-30 Hanover Research Corporation Process and apparatus for recovering clean water from aqueous wastes
US4007094A (en) * 1971-07-22 1977-02-08 Hanover Research Corporation Process and apparatus for recovering clean water from aqueous wastes
US3898134A (en) * 1971-07-22 1975-08-05 Hanover Res Corp Process and apparatus for recovering clean water and solids from dilute, aqueous, solids containing solutions or dispersions
US3754869A (en) 1971-08-19 1973-08-28 Mahon Ind Corp Fume incinerator
US3782300A (en) 1971-09-30 1974-01-01 Mobile Systems Int Inc Human waste incinerator
US3713786A (en) 1971-12-06 1973-01-30 New Jersey Zinc Co Evaporative sulfuric acid recovery from sulfuric acids containing sulfates
US3756580A (en) 1972-01-31 1973-09-04 Peabody Engineering Corp Gas washing apparatus
US3840002A (en) 1972-05-15 1974-10-08 C Douglas Methods and apparatus for submerged combustion (with air pollution control)
US3838974A (en) 1972-07-24 1974-10-01 Midland Ross Corp Rich fume incinerator
US4079585A (en) 1972-08-09 1978-03-21 Donald Edmund Helleur Method and apparatus for removing volatile fluids
US3826096A (en) 1972-09-12 1974-07-30 L Hrusch Fluid power drive system
US3950230A (en) * 1972-12-26 1976-04-13 Hanover Research Corporation Process and apparatus for recovering residual oil from solids dehydrated in an oil medium and grossly deoiled
US3855079A (en) 1972-12-26 1974-12-17 Hanover Res Corp Process and apparatus for recovering residual oil from solids dehydrated in an oil medium and grossly deoiled
US3870585A (en) 1973-02-15 1975-03-11 Pureco Systems Inc Apparatus and method for evaporative concentration of aqueous solutions and slurries
US3880756A (en) 1973-05-01 1975-04-29 Carrier Corp Method and apparatus for concentrating sludge
US3838975A (en) 1973-05-18 1974-10-01 Universal Oil Prod Co Thermal incinerator with heat recuperation
US3876490A (en) 1973-06-18 1975-04-08 Nittetsu Kakoki Kk Apparatus for heat-transfer between hot gas and aqueous solution
US3925148A (en) 1973-09-28 1975-12-09 Austral Erwin Engineering Co Heat exchangers & evaporators
US3917508A (en) 1973-10-15 1975-11-04 Hanover Res Corp Process and apparatus for recovering clean water and solids from dilute aqueous solids
US4026682A (en) 1973-11-08 1977-05-31 General Resource Corporation Method of changing the length of a Venturi throat
US4070423A (en) 1974-08-05 1978-01-24 Pierce Roger C Apparatus for diffusion in bodies of liquid
US3901643A (en) 1974-08-30 1975-08-26 Zink Co John Temperature-pressure activated purge gas flow system for flares
US3915620A (en) 1974-09-09 1975-10-28 Zink Co John Flare system vapor recovery
US3944215A (en) 1974-11-18 1976-03-16 Pitney-Bowes, Inc. Sheet feeding apparatus
US3947215A (en) 1975-01-07 1976-03-30 Aluminum Company Of America Fume flare
US3945331A (en) 1975-01-23 1976-03-23 Enertherm, Inc. Thermal recovery system
US4013516A (en) * 1975-03-13 1977-03-22 Hanover Research Corporation Apparatus and process for the pyrolysis of waste solids concentrates
US3994671A (en) 1975-03-14 1976-11-30 Combustion Unlimited Incorporated Flare gas burner
US4012191A (en) 1975-06-18 1977-03-15 Foster Wheeler Energy Corporation System for recovering heat from the exhaust gases of a heat generator
JPS5272365A (en) 1975-12-15 1977-06-16 Nittetsu Kakoki Kk Method of treating fermentation waste water
US4001077A (en) 1976-02-27 1977-01-04 Orville Kemper Evaporation accelerator
US4036576A (en) * 1976-08-11 1977-07-19 The Trane Company Incineration system for the disposal of a waste gas and method of operation
US4336101A (en) * 1976-09-01 1982-06-22 Hanover Research Corporation Process and apparatus for recovering clean water and solids from aqueous solids
US4270974A (en) * 1976-09-01 1981-06-02 Hanover Research Corporation Process and apparatus for recovering clean water and solids from aqueous solids
US4080883A (en) 1976-09-30 1978-03-28 John Zink Company Airrester
US4140471A (en) 1977-05-09 1979-02-20 National Airoil Burner Company, Inc. Ground flare stack
US4092908A (en) 1977-07-15 1978-06-06 Combustion Unlimited Incorporated Fluidic seal
US4157239A (en) 1977-07-21 1979-06-05 John Zink Company Molecular seal improvement action
US4118173A (en) 1977-08-08 1978-10-03 Samuel Lebidine Unidirectional seal for flow passages
US4154570A (en) 1977-09-12 1979-05-15 John Zink Company Gaseous molecular seal for flare stack
DE2750894A1 (de) 1977-09-14 1979-03-15 Elmapa Nv Einrichtung zur erzeugung von waermeenergie und elektrischer energie
US4273658A (en) 1977-10-19 1981-06-16 Exxon Production Research Company Thickener control process
JPS6018966B2 (ja) * 1977-11-16 1985-05-14 オリンパス光学工業株式会社 内視鏡用写真接眼レンズ
US4198198A (en) 1977-12-22 1980-04-15 Combustion Unlimited Incorporated Flares for waste gas disposal
US4185685A (en) 1978-01-03 1980-01-29 Giberson Elwood C Waste heat recovery system and method
US4181173A (en) 1978-02-24 1980-01-01 United States Steel Corporation Heat exchanger assembly
US4259185A (en) 1978-07-31 1981-03-31 Mixon James A Sludge thickening apparatus
US4257746A (en) * 1978-10-02 1981-03-24 E. I. Du Pont De Nemours And Company Dosimeter having a low air flow rate
DE2850104A1 (de) 1978-11-18 1980-05-22 Goldschmidt Ag Th Verfahren zur direkten erwaermung eines fluessigen mediums unter ausnutzung der kondensationswaerme sowie vorrichtung zur durchfuehrung des verfahrens
US4230536A (en) 1979-02-05 1980-10-28 Sech Charles E Method for the distillation purification of organic heat transfer fluids
US4227897A (en) 1979-03-05 1980-10-14 John Zink Company Apparatus for recovery of flared condensible vapors
DE2920902A1 (de) 1979-05-23 1981-04-09 Loi Industrieofenanlagen Gmbh, 4300 Essen Vorrichtung zum beheizen eines industrieofens
USRE31185E (en) * 1979-11-21 1983-03-22 Hanover Research Corporation Process and apparatus for dehydrating waste solids concentrates
US4276115A (en) * 1979-11-21 1981-06-30 Hanover Research Corporation Process and apparatus for dehydrating waste solids concentrates
US4300924A (en) 1980-03-24 1981-11-17 Paccar Inc. Exhaust gas scrubber for internal combustion engines
US4445464A (en) 1980-05-14 1984-05-01 Advanced Mechanical Technology, Inc. High efficiency water heating system
US4430046A (en) 1980-06-18 1984-02-07 Ctp Partners Method and apparatus for total energy systems
EP0047044A1 (de) 1980-09-03 1982-03-10 Chemap AG Verfahren zur Entfärbung von Abwässern
US4346660A (en) 1980-10-08 1982-08-31 Mcgill Incorporated Self-supporting incinerator and expandable shield therefor
JPS6053810B2 (ja) 1981-01-10 1985-11-27 日揮株式会社 グラウンドフレア−スタツク
NL8100182A (nl) 1981-01-16 1982-08-16 Neom Bv Complementeringsinrichting voor een verwarmingsinstallatie.
US4445842A (en) 1981-11-05 1984-05-01 Thermal Systems Engineering, Inc. Recuperative burner with exhaust gas recirculation means
US4485746A (en) 1981-12-07 1984-12-04 Kelley Company, Inc. Energy recovery system for an incinerator
US4538982A (en) 1982-04-05 1985-09-03 Mcgill Incorporated Flare gas combustion apparatus
US4432914A (en) 1982-06-23 1984-02-21 Kenneth C. Schifftner, Inc. Mass transfer contact apparatus
US4518458A (en) * 1982-09-17 1985-05-21 Hanover Research Corporation Process for removing light oil from solids
US4608120A (en) * 1982-09-17 1986-08-26 Hanover Research Corporation Apparatus for removing light oil from solids
US4440098A (en) * 1982-12-10 1984-04-03 Energy Recovery Group, Inc. Waste material incineration system and method
FI67031C (fi) 1983-02-24 1985-01-10 Outokumpu Oy Saett att oxidera slam innehaollande rikligt med fast materialoch en motstroemsbubbelreaktor foer utfoerande av saettet
US4496314A (en) 1983-02-28 1985-01-29 Beresford N Clarke Recuperator
US4583936A (en) 1983-06-24 1986-04-22 Gas Research Institute Frequency modulated burner system
US4474477A (en) 1983-06-24 1984-10-02 Barrett, Haentjens & Co. Mixing apparatus
FR2558747B1 (fr) 1984-01-27 1986-07-25 Innus Ind Nuclear Service Procede de nettoyage sous haute pression d'un evaporateur et installation utilisee dans ce but
JPS60257801A (ja) 1984-06-02 1985-12-19 Tadashi Haishi 稀薄溶液の蒸発濃縮方法
GB2168904B (en) 1984-11-30 1988-01-27 Ceskoslovenska Akademie Ved Method of circulation of liquid phase through a solid phase particularly for biocatalytical reactions and a device for realization thereof
US4642919A (en) 1985-03-01 1987-02-17 Barrett, Haentjens & Co. Submersible sludge removing apparatus
US4693304A (en) 1985-08-19 1987-09-15 Volland Craig S Submerged rotating heat exchanger-reactor
US5132090A (en) 1985-08-19 1992-07-21 Volland Craig S Submerged rotating heat exchanger-reactor
US4613409A (en) 1985-08-19 1986-09-23 Volland Craig S High rate solar still and process
US4689156A (en) 1985-11-12 1987-08-25 Amax Inc. Removal of ammonia from wastewater
US5045202A (en) 1985-11-18 1991-09-03 Stearns Donald M Centrifugal oxygenator for treatment of waste water and system
US4658736A (en) 1986-03-27 1987-04-21 Walter Herman K Incineration of combustible waste materials
US4877532A (en) 1986-09-04 1989-10-31 Barrett, Haentjens & Company Centrifugal oxygenator and method for treatment of waste water
US4952137A (en) 1986-09-08 1990-08-28 John Zink Company Flare gas burner
JPS62121687A (ja) 1986-11-14 1987-06-02 Chiyoda Chem Eng & Constr Co Ltd 石膏を副生する湿式排煙脱硫装置からの排水処理装置
JPH0677728B2 (ja) 1987-03-11 1994-10-05 株式会社日立製作所 廃液濃縮器および廃液処理装置
US5314622A (en) 1987-04-20 1994-05-24 Hazleton Environmental Dual purpose oxygenator
SE457350B (sv) 1987-05-26 1988-12-19 Ragn Sellsfoeretagen Ab Saett att styra utvinning av deponigas ur avfallsupplag samt anordning foer att utfoera saettet
US4882009A (en) 1987-07-13 1989-11-21 Four Nines, Inc. Apparatus for concentrating brine waters or dewatering brines generated in well drilling operation
US4761077A (en) 1987-09-28 1988-08-02 Barrett, Haentjens & Co. Mixing apparatus
WO1989003364A1 (en) 1987-10-07 1989-04-20 Grott Gerald J Method of reforming soluble salts to effect purification and increase crystal size thereof
US5009511A (en) 1987-10-20 1991-04-23 Inorganic Recycling Incorporated Inorganic recycling process
US5043104A (en) 1987-11-04 1991-08-27 Barrett Haentjens & Co. Apparatus for gas absorption in a liquid
US5085809A (en) 1987-11-04 1992-02-04 Barrett, Haentjens & Co. Apparatus for gas absorption in a liquid
US4971214A (en) 1987-11-23 1990-11-20 Baker-Hughes, Inc. Double shell thickener
US4818392A (en) 1987-11-30 1989-04-04 Hazleton Environmental Products Inc. Liquid waste treatment system
US4771708A (en) 1988-01-11 1988-09-20 Douglass Jr Edward T Incinerator and heat recovery system for drying wood poles
US5227017A (en) 1988-01-29 1993-07-13 Ohkawara Kakohki Co., Ltd. Spray drying apparatus equipped with a spray nozzle unit
DE3810337A1 (de) 1988-03-26 1989-10-05 Metallgesellschaft Ag Verfahren zur reinigung von rauchgasen
US4838184A (en) 1988-05-23 1989-06-13 John Zink Company Method and apparatus for disposing of landfill produced pollutants
US5032230A (en) 1988-08-22 1991-07-16 Deep Woods, Inc. Vacuum draft submerged combustion separation system
US5154898A (en) 1988-08-24 1992-10-13 Exxon Research And Engineering Company High interfacial area multiphase reactor
US5004484A (en) 1988-08-31 1991-04-02 Barrett, Haentjens & Co. Air stripping of liquids using high intensity turbulent mixer
US4938899A (en) 1988-09-30 1990-07-03 Oros Leo J Gas diffusion system
US4863644A (en) 1988-11-04 1989-09-05 Enviroquip, Inc. Gas diffuser
US5092909A (en) 1988-11-21 1992-03-03 Barrett Haentjens & Co. Biodesulphurization process utilizing bacteria
US5279356A (en) 1988-12-21 1994-01-18 American Hydrotherm Corporation Waste heat recovery system
US4909730A (en) 1989-01-23 1990-03-20 Westech Industrial Ltd. Flame arrester having detonation-attenuating means
US4961703A (en) 1989-01-19 1990-10-09 Phillips Petroleum Company Load sharing for parallel flares
US4917577A (en) 1989-01-25 1990-04-17 Barrett, Haentjens & Co. High speed centrifugal oxygenator
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US4954147A (en) 1989-06-15 1990-09-04 Hazleton Environmental Products, Inc. Water conditioning apparatus and method
JPH0338300A (ja) 1989-07-03 1991-02-19 Norihito Tanpo スラリー状汚泥の濃縮および脱水方法
US5102503A (en) 1989-08-04 1992-04-07 Environmental Technology Group Corporation Mobile self-contained system for on-site recovery of solvents
US5520818A (en) 1989-12-06 1996-05-28 The University Of Toronto Innovations Foundation Method for effecting gas-liquid contact
US5068092A (en) 1990-05-21 1991-11-26 Akzo N.V. Crystallizer, process and apparatus for producing sodium chloride crystals
US5076895A (en) 1990-06-21 1991-12-31 Hanover Research Corporation Process and apparatus for recovering clean water and solids from aqueous solids using mechanical vapor recompression evaporators
US5131757A (en) 1991-03-07 1992-07-21 Hazleton Environmental Products Inc. Mixing apparatus and system
US5695614A (en) 1991-03-21 1997-12-09 Winter Umwelttechinik Gmbh Method for processing waste liquids in particular industrial waste water having a high solids content
US5183563A (en) 1991-04-18 1993-02-02 Shell Oil Company System for removal and disposal of minor amounts of organics from contaminated water
US5176798A (en) 1991-05-17 1993-01-05 Shell Oil Company System for removal and disposal of minor amounts of organics from contaminated water
US5230167A (en) 1991-10-30 1993-07-27 Westinghouse Electric Corp. Removal or organics and volatile metals from soils using thermal desorption
USD350838S (en) 1992-02-21 1994-09-20 Howard Johnson Oil fire extinguishing cone
US5342482A (en) 1992-06-12 1994-08-30 Duesel Jr Bernard F Leachate evaporation system
US5279646A (en) 1992-06-25 1994-01-18 Process And Control Technology Corporation Venturi scrubber and process
US5512085A (en) 1992-06-25 1996-04-30 Envirocare International, Inc. Venturi scrubber and method with optimized remote spray
US5484471A (en) 1992-06-25 1996-01-16 Envirocare International, Inc. Venturi scrubber and method of using the same
NZ254000A (en) 1992-07-24 1996-12-20 Tajer Ardebili Davoud Water cooler arrangement with vacuum arranged for increased efficiency
US5238580A (en) * 1992-09-18 1993-08-24 Green Environmental Services, Inc. Method for treating landfill leachate
JPH06142448A (ja) 1992-11-12 1994-05-24 Babcock Hitachi Kk 湿式排煙脱硫方法および装置
US5347958A (en) 1992-12-31 1994-09-20 Gordon Jr Merrill K Heat recovery apparatus and an improved heat recovery method
US5403475A (en) 1993-01-22 1995-04-04 Allen; Judith L. Liquid decontamination method
US5336284A (en) 1993-03-29 1994-08-09 Compliance Systems International, Inc. Multiple throat, narrow gap venturi scrubber and method of using same
US5648048A (en) 1993-04-09 1997-07-15 Babcock-Hitachi Kabushiki Kaisha Wet-type flue gas desulfurization plant
US5527984A (en) 1993-04-29 1996-06-18 The Dow Chemical Company Waste gas incineration
US5695643A (en) 1993-04-30 1997-12-09 Aquatech Services, Inc. Process for brine disposal
US5925223A (en) 1993-11-05 1999-07-20 Simpson; Gary D. Process for improving thermal efficiency while producing power and desalinating water
US5636623A (en) 1994-03-22 1997-06-10 Inproheat Industries Ltd. Method and apparatus for minimizing turbulence in a submerged combustion system
US5587081A (en) 1994-04-26 1996-12-24 Jet-Tech, Inc. Thermophilic aerobic waste treatment process
US5460511A (en) 1994-05-04 1995-10-24 Grahn; Dennis Energy efficient afterburner
US5662802A (en) 1994-07-07 1997-09-02 Ionics, Incorporated Solvent extraction process using water absorbing solvent at preselected temperature
NO180276C (no) 1994-10-03 1997-03-19 Harald Hystad Anordning for avbrenning av gass i oljeproduksjon
FI98626C (sv) 1994-10-04 1997-07-25 Eka Nobel Ab Förfarande för rening av avloppsvatten
JPH10508683A (ja) 1994-10-27 1998-08-25 アイセントロピック・システムズ・リミテッド 燃料ガスの燃焼および利用における改善
SE9502198L (sv) 1995-06-16 1996-12-17 Eka Chemicals Ab Upplösning av inkruster vid indunstning av surt och alkaliskt avloppsvatten
US5632864A (en) 1995-07-06 1997-05-27 Kuss Corporation Splash shield for distillation unit
RU2090512C1 (ru) 1995-12-21 1997-09-20 Борис Алексеевич Зимин Установка для перегонки жидкостей и выпаривания растворов
US5772843A (en) 1996-06-06 1998-06-30 Rhodes; Laurence Mark Evaporator
DE19642328A1 (de) 1996-10-14 1998-04-16 Bayer Ag Verfahren zur Aufkonzentrierung von gebrauchten Schwefelsäuren
US5749719A (en) 1996-10-25 1998-05-12 Rajewski; Robert Karl Velocity sealed flare tip
US5968320A (en) 1997-02-07 1999-10-19 Stelco, Inc. Non-recovery coke oven gas combustion system
EP0985637B1 (en) 1997-02-18 2008-10-29 Masakatsu Takayasu Method and apparatus for desalinating sea water, natural salt and fresh water
US5934207A (en) 1997-03-06 1999-08-10 Echols; Richard L. Method and apparatus for disposing of leachate
US5735680A (en) 1997-03-13 1998-04-07 Applied Web Systems, Inc. Fume incineration
US5879562A (en) * 1997-04-15 1999-03-09 Marathon Oil Company Water treatment process for reducing the hardness of an oilfield produced water
US6071116A (en) 1997-04-15 2000-06-06 American Air Liquide, Inc. Heat recovery apparatus and methods of use
US6085911A (en) 1997-08-07 2000-07-11 Greenleigh; Stephen H. Method and apparatus for extracting metallic contaminants from substrates
CA2306265C (en) 1997-10-08 2008-12-02 Gordon S. Trivett Gas scrubber
US5951743A (en) 1997-12-05 1999-09-14 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for feeding exhaust gases to a wet scrubber
US5865618A (en) * 1997-12-10 1999-02-02 Hiebert; Jacob F. Self-regulating forced air heater
US6007055A (en) 1997-12-29 1999-12-28 Schifftner; Kenneth C. Gas and liquid contact apparatus
US5958110A (en) 1997-12-29 1999-09-28 Harris; James Jeffrey Evaporative process for the regeneration of aqueous glycol solutions
US6391149B1 (en) * 1998-06-04 2002-05-21 Advanced Cardiovascular Systems, Inc. Method and apparatus for concentrating a solute in solution with a solvent
US7717173B2 (en) 1998-07-06 2010-05-18 Ecycling, LLC Methods of improving oil or gas production with recycled, increased sodium water
DE19832174C1 (de) 1998-07-17 2000-02-03 Bayer Ag Verfahren und Vorrichtung zur Reinigung von Rohgas
CN1205984A (zh) * 1998-08-08 1999-01-27 张新年 废水无垢蒸发浓缩工艺
US5968352A (en) 1998-10-09 1999-10-19 Novazone Gas contact tank
US6149137A (en) 1998-11-02 2000-11-21 Callidus Technologies, Inc. Method and apparatus for quenching hot flue gases
US6231334B1 (en) 1998-11-24 2001-05-15 John Zink Company Biogas flaring unit
US6119458A (en) 1998-12-29 2000-09-19 Harris; James Jeffrey Immiscible, direct contact, floating bed enhanced, liquid/liquid heat transfer process
CN1123538C (zh) 1999-01-26 2003-10-08 三菱重工业株式会社 脱硫废水的处理方法
US7077201B2 (en) 1999-05-07 2006-07-18 Ge Ionics, Inc. Water treatment method for heavy oil production
US7438129B2 (en) 1999-05-07 2008-10-21 Ge Ionics, Inc. Water treatment method for heavy oil production using calcium sulfate seed slurry evaporation
US7150320B2 (en) 1999-05-07 2006-12-19 Ge Ionics, Inc. Water treatment method for heavy oil production
US7428926B2 (en) 1999-05-07 2008-09-30 Ge Ionics, Inc. Water treatment method for heavy oil production
US7681643B2 (en) 1999-05-07 2010-03-23 Ge Ionics, Inc. Treatment of brines for deep well injection
CA2307819C (en) 1999-05-07 2005-04-19 Ionics, Incorporated Water treatment method for heavy oil production
IL130357A0 (en) 1999-06-08 2000-06-01 Kedem Avraham Evaporation device
US6357725B2 (en) 1999-07-30 2002-03-19 Shinnosuke Nomura Gas/liquid mixing device
US6293277B1 (en) 1999-09-30 2001-09-25 Inproheat Industries Ltd. Sludge treatment system using two-stage heat recovery submerged combustion
JP2003511217A (ja) 1999-10-07 2003-03-25 ペレテックス インコーポレイテッド 水性の泡を含む空気流を濾過するための方法および装置
US6276872B1 (en) 1999-10-22 2001-08-21 Envirosolve Corporation Low temperature heat-assisted evaporation impoundment
US6468389B1 (en) 1999-11-09 2002-10-22 James Jeffrey Harris Undulating membrane surface for evaporative processes
US6585899B1 (en) 1999-11-10 2003-07-01 Microseptec, Inc. Mobile waste treatment system
AUPQ540200A0 (en) 2000-02-02 2000-02-24 Aquadyne Incorporated Water distillation systems
DE60144142D1 (de) 2000-03-02 2011-04-14 Microchips Inc Mikromechanische geräte und verfahren zur speicherung und zur selektiven exposition von chemikalien
NL1014938C2 (nl) * 2000-04-13 2001-10-16 Schulze Gisela Filterinstallatie en filtereenheid voor afgassen.
KR200195548Y1 (ko) 2000-04-24 2000-09-01 이창규 유기성 폐기물의 안정화장치
US6435860B1 (en) 2000-04-28 2002-08-20 Lfg & E International Landfill condensate injection system
US6383260B1 (en) 2000-05-22 2002-05-07 Envirocare International, Inc. Venturi scrubber with optimized counterflow spray
DE10047264B4 (de) 2000-09-23 2006-05-04 G.A.S. Energietechnologie Gmbh Verfahren zur Nutzung von methanhaltigem Biogas
FI109364B (fi) * 2000-12-20 2002-07-15 Outokumpu Oy Menetelmä pesuhapon väkevöimiseksi
US7144555B1 (en) 2001-06-20 2006-12-05 Well To Wire Emissions Control Inc. Method and apparatus for hydrogen sulphide removal
JP2003021471A (ja) 2001-07-04 2003-01-24 Nkk Corp 加熱炉レキュペレーターを有する排ガス顕熱回収設備の操業方法
US6391100B1 (en) 2001-07-06 2002-05-21 J. S. Hogan Method and apparatus for cleaning a gas
NL1018672C2 (nl) 2001-07-31 2003-02-06 Stichting Energie Stelsel voor het strippen en rectificeren van een fluïdummengsel.
US6669547B2 (en) * 2001-08-28 2003-12-30 Board Of Regents Of University Of Nebraska Multi-stack exhaust system
JP4185289B2 (ja) 2002-02-08 2008-11-26 出光興産株式会社 産業用燃焼設備を利用した廃液の焼却処理方法および混合液体
US6752920B2 (en) 2002-03-21 2004-06-22 James Jeffrey Harris Integral valved filter
US6892745B2 (en) 2002-04-10 2005-05-17 Honeywell International Inc. Flow control valve with integral sensor and controller and related method
US7332010B2 (en) 2002-04-16 2008-02-19 Tm Industrial Supply, Inc. High pressure filter/separator and locking mechanism
AU2003234207A1 (en) 2002-04-24 2003-11-10 Randal C. Liprie Cogeneration wasteheat evaporation system and method for wastewater treatment utilizing wasteheat recovery
US7074339B1 (en) 2002-04-29 2006-07-11 Settled Solids Management, Inc Apparatus for separating solids from a liquid
DE20207514U1 (de) 2002-05-13 2002-08-14 Brennecke Peer Vorrichtung zum Auffangen von salzhaltigem Schmutzwasser
US6938562B2 (en) 2002-05-17 2005-09-06 Senreq, Llc Apparatus for waste gasification
US20040000515A1 (en) 2002-06-26 2004-01-01 Harris James Jeffrey Filter back-flushing reaction chamber apparatus
NL1021116C2 (nl) 2002-07-19 2004-01-20 Stichting Energie Werkwijze voor het verwijderen van NOx en katalysator daarvoor.
US7214290B2 (en) * 2002-09-04 2007-05-08 Shaw Liquid Solutions Llc. Treatment of spent caustic refinery effluents
JP2004097866A (ja) * 2002-09-05 2004-04-02 Mitsubishi Heavy Ind Ltd 蒸発濃縮装置
US6913671B2 (en) 2002-09-06 2005-07-05 Danny R. Bolton Compact evaporation apparatus
US6742337B1 (en) 2002-10-22 2004-06-01 Energent Corporation Waste heat recovery system
US20040079491A1 (en) 2002-10-28 2004-04-29 Harris James Jeffrey Evaporative process for the reconstitution of glycol bearing deicing fluids
US6919000B2 (en) 2002-12-17 2005-07-19 University Of Florida Diffusion driven desalination apparatus and process
US7225620B2 (en) 2002-12-17 2007-06-05 University Of Florida Research Foundation, Inc. Diffusion driven water purification apparatus and process
CA2414949C (en) 2002-12-20 2010-04-13 Imperial Oil Resources Limited Integrated water treatment and flue gas desulfurization process
US7069991B2 (en) * 2003-01-09 2006-07-04 Weatherford/Lamb, Inc. Method and apparatus for surge pressure reduction in a tool with fluid motivator
JP2004249226A (ja) 2003-02-20 2004-09-09 Sasakura Engineering Co Ltd ごみ埋立地における浸出水の処理方法及びその装置
US7073337B2 (en) 2003-05-30 2006-07-11 General Electric Company Combined power generation and desalinization apparatus and related method
US20050049449A1 (en) 2003-08-25 2005-03-03 Forrester Keith Edward Method for chemiophysical stabilization of waste
US7142298B2 (en) 2003-09-29 2006-11-28 Shaw Intellectual Property Holdings, Inc. Particulate monitor
US20050074712A1 (en) 2003-10-01 2005-04-07 Brookshire Ronald L. Landfill gas extraction flare
CA2547503C (en) 2003-11-26 2012-03-13 Aquatech International Corporation Method for production of high pressure steam from produced water
US20050242036A1 (en) 2004-04-29 2005-11-03 Harris James J Chemical and sludge free water treatment process
GB2413974B (en) 2004-05-12 2008-02-13 Dyson Ltd Cyclonic separating apparatus
US20050274669A1 (en) 2004-06-04 2005-12-15 Wastech International, Inc. Wastewater treatment system
JP2005349299A (ja) * 2004-06-10 2005-12-22 Mitsubishi Heavy Ind Ltd 淡水製造装置
US7611890B2 (en) 2004-06-25 2009-11-03 Samuel Frisch System and method for separating biomass from media in a fluidized bed reactor
US7156985B1 (en) 2004-07-16 2007-01-02 Shaw Intellectual Property Holdings, Inc. Bioreactor system having improved temperature control
US7416177B2 (en) 2004-09-16 2008-08-26 Ricoh Company, Ltd. Sheet folding apparatus, sheet processing apparatus and image forming apparatus
US7402247B2 (en) 2004-12-14 2008-07-22 Shaw Intellectual Property Holdings, Inc. System for wastewater treatment and digestion having aerobic and anaerobic treatment zones
US7288186B2 (en) 2004-12-30 2007-10-30 James Jeffrey Harris Filtrate immersed activation assembly for disk filters
GB0503533D0 (en) 2005-02-21 2005-03-30 Forstmanis Talivaldis Evaporate for dilute aqueous solutions
US20090294074A1 (en) 2005-02-21 2009-12-03 Talivaldis Forstmanis Wastewater evaporation system
WO2006094669A1 (en) 2005-03-04 2006-09-14 Services Petroliers Schlumberger Method and apparatus for measuring the flow rates of the individual phases of a multiphase fluid mixture
US7396453B1 (en) 2005-04-19 2008-07-08 Procorp Enterprises, Llc Hydraulically integrated solids/liquid separation system for wastewater treatment
US8459984B2 (en) * 2005-04-26 2013-06-11 Heartland Technology Partners Llc Waste heat recovery system
US7442035B2 (en) 2005-04-26 2008-10-28 Gei Development, Llc Gas induction bustle for use with a flare or exhaust stack
US7416172B2 (en) 2005-07-21 2008-08-26 Liquid Solutions Llc Submerged gas evaporators and reactors
US7357849B2 (en) 2005-09-01 2008-04-15 Watervap, Llc Method and system for separating solids from liquids
US7578930B2 (en) 2005-10-18 2009-08-25 Aquashield, Inc. Mobile water treatment system
JP4503523B2 (ja) 2005-10-27 2010-07-14 荏原エンジニアリングサービス株式会社 晶析対象成分を含む排水の処理方法並びに装置。
US7424999B2 (en) 2005-12-16 2008-09-16 Uop Llc Co-current vapor-liquid contacting apparatus
US7614367B1 (en) 2006-05-15 2009-11-10 F. Alan Frick Method and apparatus for heating, concentrating and evaporating fluid
US8216468B2 (en) 2006-04-25 2012-07-10 Jc Environmental Inc. Water treatment apparatus and method
US8105488B2 (en) 2006-09-01 2012-01-31 Anticline Disposal, Llc Waste water treatment method
US7845314B2 (en) * 2006-11-13 2010-12-07 Smith David G Submerged combustion disposal of produced water
US8425665B2 (en) 2007-01-19 2013-04-23 Heartland Technology Partners, Llc Fluid scrubber
US7832714B2 (en) 2007-01-19 2010-11-16 Heartland Technology Partners Llc Desalination system
US8136797B2 (en) 2007-01-19 2012-03-20 Heartland Technology Partners, Llc Cooling tower
US8382075B2 (en) 2007-01-19 2013-02-26 Heartland Technology Partners, Llc Air stripper
US8801897B2 (en) 2007-03-13 2014-08-12 Heartland Technology Partners Llc Compact wastewater concentrator and contaminant scrubber
US8741100B2 (en) 2007-03-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8790496B2 (en) * 2007-03-13 2014-07-29 Heartland Technology Partners Llc Compact wastewater concentrator and pollutant scrubber
FR2914919B1 (fr) 2007-04-13 2011-09-16 Orege Procede et dispositif d'epuration d'effluents liquides.
US8114287B2 (en) 2007-05-04 2012-02-14 Layne Christensen Company Surface purveyed filtration device
US20080277262A1 (en) 2007-05-11 2008-11-13 Intevras Technologies, Llc. System and method for wastewater reduction and freshwater generation
US20090020481A1 (en) 2007-07-20 2009-01-22 Bailie Robert E Method and system for treating feedwater
US7955419B2 (en) 2007-07-25 2011-06-07 Casella Waste Systems, Inc. System and method for treating landfill gas using landfill leachate
US20090255678A1 (en) 2007-09-05 2009-10-15 Randy Rosine Water Treatment by Chemical-Mechanical Process
FR2921057B1 (fr) 2007-09-17 2011-06-10 Orege Procede et dispositif de traitement des eaux residuaires
US8052763B2 (en) 2008-05-29 2011-11-08 Hpd, Llc Method for removing dissolved solids from aqueous waste streams
US20100095763A1 (en) 2008-09-15 2010-04-22 Intevras Technologies, Llc Temperature compensated density sensing process and device
US8834726B2 (en) 2008-11-19 2014-09-16 Prochemtech International, Inc. Treatment of gas well hydrofracture wastewaters
EP2192391A1 (en) 2008-12-01 2010-06-02 Services Pétroliers Schlumberger Apparatus and a method of measuring the flow of a fluid
CN101445290A (zh) 2008-12-09 2009-06-03 武汉科梦科技发展有限公司 一种环保、高效的废水除氨工艺及其设备
US8535538B1 (en) 2009-01-27 2013-09-17 Fairmount Brine Processing, LLC Brine water recycle process
US20100224561A1 (en) 2009-02-10 2010-09-09 Marcin Mark A Process for minimizing produced water brines using forward osmosis
CN102356046A (zh) * 2009-02-12 2012-02-15 中心地带科技股份有限公司 利用废热的紧凑型废水浓缩器
FR2942220B1 (fr) 2009-02-16 2011-04-08 Orege Procede et dispositif d'epuration d'effluents liquides
US8016977B2 (en) 2009-03-13 2011-09-13 Reform Water, LLC Dry pond water evaporation system and method of evaporating water
JP4994418B2 (ja) 2009-04-20 2012-08-08 東洋エンジニアリング株式会社 油水分離方法、それを用いた水再利用方法、およびそのシステム
EP2445601B1 (en) 2009-06-25 2014-09-03 FracPure Holdings LLC Method of making pure salt from frac-water/wastewater
CA2709152C (en) 2009-07-08 2018-04-03 Chad Allen Randal Recycling and treatment process for produced and used flowback fracturing water
US8518257B2 (en) 2009-08-11 2013-08-27 Kinder Morgan Operating L.P. “C” Bio-denitrification apparatus and method for making and using same
WO2011032275A1 (en) 2009-09-18 2011-03-24 Horizon Oilfield Solutions Inc. Systems and methods for concentrating waste water fluids
US20110081277A1 (en) 2009-10-05 2011-04-07 Balon Jr Thomas Hamilton Regenerative thermal oxidiser
GB2487892A (en) 2009-10-23 2012-08-08 Altela Inc Leverage of waste product to provide clean water
WO2011053916A1 (en) 2009-10-30 2011-05-05 Neohydro Corporation Water purification systems and methods
US8545681B2 (en) 2009-12-23 2013-10-01 General Electric Company Waste heat driven desalination process
US20110168646A1 (en) 2010-01-12 2011-07-14 James Tafoya Land Based and Pontoon Based Forced Air Thermal Evaporator
US20110180470A1 (en) 2010-01-27 2011-07-28 James Jeffrey Harris Aqueous iron removal process and apparatus
CN102753484A (zh) 2010-02-10 2012-10-24 巴斯夫欧洲公司 水处理方法
US20110240540A1 (en) 2010-03-30 2011-10-06 James Jeffrey Harris Aqueous iron removal process and apparatus
US8211296B2 (en) 2010-04-09 2012-07-03 Nch Ecoservices, Llc Portable water treatment system and apparatus
US8226832B2 (en) 2010-04-09 2012-07-24 Nch Ecoservices, Llc Portable water treatment method
US9428403B2 (en) * 2010-10-11 2016-08-30 H2O Global Llc Large scale insulated desalination system
US20120012309A1 (en) 2010-11-23 2012-01-19 Express Energy Services Operating Lp Flow Back Recovery System
WO2012100074A2 (en) 2011-01-21 2012-07-26 Heartland Technology Partners Llc Condensation plume mitigation system for exhaust stacks
US8936773B2 (en) 2011-04-28 2015-01-20 Calera Corporation Methods and compositions using calcium carbonate and stabilizer
WO2012151233A1 (en) 2011-05-02 2012-11-08 Lake Country Fracwater Specialists, Llc Method and apparatus for treating natural gas and oil well drilling waste water
WO2013028747A2 (en) 2011-08-22 2013-02-28 Ecologix Environmental Systems Llc Systems and methods for mobile fracking water treatment
US8877690B2 (en) 2011-08-31 2014-11-04 Prochemtech International, Inc. Treatment of gas well production wastewaters
US9296624B2 (en) * 2011-10-11 2016-03-29 Heartland Technology Partners Llc Portable compact wastewater concentrator
CA2859033A1 (en) 2011-12-15 2013-06-20 Schlumberger Canada Limited Method and apparatus for characterizing interfacial tension between two immiscible or partially miscible fluids
US9738553B2 (en) 2012-03-16 2017-08-22 Aquatech International, Llc Process for purification of produced water
US8741101B2 (en) * 2012-07-13 2014-06-03 Heartland Technology Partners Llc Liquid concentrator
EP2874949B1 (en) 2012-07-20 2019-05-15 Heartland Technology Partners LLC Wastewater concentration system
US8623174B1 (en) 2012-12-14 2014-01-07 Heartland Technology Partners Llc Liquid evaporation system with heated liquid
US9199861B2 (en) 2013-02-07 2015-12-01 Heartland Technology Partners Llc Wastewater processing systems for power plants and other industrial sources
WO2015069622A1 (en) * 2013-11-05 2015-05-14 Heartland Technology Partners Llc Method and device for concentrating dissolved solids in flowback and produced water from natural gas wells
US8882967B1 (en) 2014-05-14 2014-11-11 The Southern Company Systems and methods for purifying process water
US20160341585A1 (en) 2015-05-19 2016-11-24 Medeng Research Institute Ltd. Multiphase Flow Meter
WO2017079058A1 (en) * 2015-11-02 2017-05-11 Heartland Technology Partners Llc Apparatus for concentrating wastewater and for creating custom brines
US20170191863A1 (en) 2016-01-06 2017-07-06 Hamilton Sundstrand Corporation Economical environmental control system (ecs) smart venturi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU71824A1 (ru) * 1947-05-27 1975-01-30 Г.М. Клюев Выпарной аппарат
SU808088A1 (ru) * 1978-04-03 1981-02-28 Ордена Трудового Красного Знамениинститут Тепло- И Массообмена Им.A.B.Лыкова Ah Белорусской Ccp Установка дл термической обра-бОТКи PACTBOPOB
SU1599031A1 (ru) * 1988-06-23 1990-10-15 Киевский Политехнический Институт Им.50-Летия Великой Октябрьской Социалистической Революции Выпарна установка
WO1992000128A1 (en) * 1990-06-27 1992-01-09 Cal Glass Environmental Systems, Inc. Waste materials concentrator
WO2008112793A1 (en) * 2007-03-13 2008-09-18 Gei Development Llc Wastewater concentrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11654391B2 (en) 2018-08-10 2023-05-23 Starklab Device for bringing a gas stream and a liquid stream into contact
RU2800557C2 (ru) * 2018-08-10 2023-07-24 Старклаб Устройство для приведения потока газа и потока жидкости в контакт

Also Published As

Publication number Publication date
RU2014129305A (ru) 2016-02-10
US20190143241A1 (en) 2019-05-16
JP5903272B2 (ja) 2016-04-13
WO2010093958A3 (en) 2010-12-09
AU2010213608A1 (en) 2011-09-01
US10179297B2 (en) 2019-01-15
US20140041811A1 (en) 2014-02-13
AU2017202980A1 (en) 2017-05-25
CN102356046A (zh) 2012-02-15
EP2396279A2 (en) 2011-12-21
JP2012517348A (ja) 2012-08-02
AU2015203153B2 (en) 2017-02-16
BRPI1008631B1 (pt) 2019-10-08
MX2011008547A (es) 2012-01-25
US10946301B2 (en) 2021-03-16
US8568557B2 (en) 2013-10-29
EP2396279A4 (en) 2013-03-06
AU2010213608B2 (en) 2015-03-12
CA2751720C (en) 2018-04-10
AU2015203153A1 (en) 2015-07-09
CA2751720A1 (en) 2010-08-19
US20200222826A1 (en) 2020-07-16
RU2011137006A (ru) 2013-03-20
US20100236724A1 (en) 2010-09-23
WO2010093958A2 (en) 2010-08-19
BRPI1008631A2 (pt) 2016-03-01
US20170266581A1 (en) 2017-09-21
US10596481B2 (en) 2020-03-24
US20210197097A1 (en) 2021-07-01
US9808738B2 (en) 2017-11-07
MX360400B (es) 2018-10-31
US11376520B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
RU2530045C2 (ru) Компактный концентратор сточных вод, работающий на отбросном тепле
US8741100B2 (en) Liquid concentrator
US9617168B2 (en) Compact wastewater concentrator using waste heat
RU2551494C2 (ru) Компактный концентратор сточных вод, работающий на отбросном тепле
US9926215B2 (en) Compact wastewater concentrator and pollutant scrubber
US10005678B2 (en) Method of cleaning a compact wastewater concentrator
AU2014253544B2 (en) Compact wastewater concentrator using waste heat
UA108068C2 (uk) Компактний концентратор стічних вод, працюючий на відкидному теплі

Legal Events

Date Code Title Description
HE9A Changing address for correspondence with an applicant
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200213