RU2502157C2 - Процесс формирования прокладки для перевернутых сид - Google Patents

Процесс формирования прокладки для перевернутых сид Download PDF

Info

Publication number
RU2502157C2
RU2502157C2 RU2010142267/28A RU2010142267A RU2502157C2 RU 2502157 C2 RU2502157 C2 RU 2502157C2 RU 2010142267/28 A RU2010142267/28 A RU 2010142267/28A RU 2010142267 A RU2010142267 A RU 2010142267A RU 2502157 C2 RU2502157 C2 RU 2502157C2
Authority
RU
Russia
Prior art keywords
led
led crystal
support
gasket material
gasket
Prior art date
Application number
RU2010142267/28A
Other languages
English (en)
Other versions
RU2010142267A (ru
Inventor
Григорий БАСИН
Фредерик ДИАНА
Пол С. МАРТИН
Дима САЙМОНИАН
Original Assignee
Кониклейке Филипс Электроникс Н.В.
ФИЛИПС ЛЬЮМИЛДЗ ЛАЙТИНГ КОМПАНИ, ЭлЭлСи
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=40677561&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2502157(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Кониклейке Филипс Электроникс Н.В., ФИЛИПС ЛЬЮМИЛДЗ ЛАЙТИНГ КОМПАНИ, ЭлЭлСи filed Critical Кониклейке Филипс Электроникс Н.В.
Publication of RU2010142267A publication Critical patent/RU2010142267A/ru
Application granted granted Critical
Publication of RU2502157C2 publication Critical patent/RU2502157C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

Способ изготовления светоизлучающего устройства согласно изобретению содержит следующие этапы: обеспечение кристалла светоизлучающего диода (СИД) на опоре (22), причем между кристаллом СИД и опорой существует зазор, причем кристалл СИД имеет нижнюю поверхность, обращенную к опоре, и верхнюю поверхность, противоположную нижней поверхности, формование материала (54) прокладки поверх кристалла СИД так, что материал прокладки запечатывает кристалл СИД и, по существу, полностью заполняет зазор между кристаллом СИД и опорой, и удаление материала (54) прокладки, но меньшей мере, с верхней поверхности кристалла СИД, причем кристалл СИД содержит эпитаксиальные слои (10), выращенные на ростовой подложке, причем поверхность ростовой подложки является верхней поверхностью кристалла СИД, при этом способ дополнительно содержит этап удаления ростовой подложки с эпитаксиальных слоев после формования материала (54) прокладки поверх кристалла СИД. Также предложены промежуточный способ изготовления светоизлучающего устройства, светоизлучающее устройство до сингуляции, светоизлучающее устройство, содержащее именно перевернутый кристалл. Таким образом использованная в изобретении обработка на уровне пластины одновременно многих СИД значительно сокращает время изготовления и позволяет использовать для прокладки широкий диапазон материалов, поскольку допускает широкий диапазон вязкости. 4 н. и 11 з.п. ф-лы, 7 ил.

Description

Область техники, к которой относится изобретение
Это изобретение относится к перевернутым светоизлучающим диодам (СИД) и, в частности, к процессу подачи диэлектрического материала прокладки в зазор между чипом СИД и его опорой.
Уровень техники
Фиг.1, уровня техники, демонстрирует традиционный СИД 10, установленный методом перевернутого кристалла на участке опорной пластины 22. Согласно методу перевернутого кристалла, и N- и P-контакты сформированы на одной и той же стороне кристалл СИД, противоположной стороне ростовой подложки 12.
Согласно фиг.1, СИД 10 сформирован из полупроводниковых эпитаксиальных слоев, включающий в себя n-слой, активный слой, и P-слой, выращенные на ростовой подложке 12, такой как, сапфировая подложка. В одном примере, эпитаксиальные слои имеют в своей основе нитрида галлия, и активный слой излучает синий свет. Любой другой тип СИД, смонтированный методом перевернутого кристалла применим к настоящему изобретению.
На СИД 10 сформированы металлические электроды 14, которые электрически контактируют с p-слоем, и на СИД 10 сформированы металлические электроды 16, которые электрически контактируют с n-слоем. В одном примере, электроды представляют собой золотые выступы, приваренные ультразвуковой сваркой к металлическим площадкам 18 и 20 анода и катода на керамической опорной пластине 22. Опорная пластина 22 имеет проводящие каналы 24, ведущие к нижним металлическим площадкам 26 и 28 для крепления к печатной плате. Многие СИД устанавливаются на опорной пластине 22 и затем сингулируются чтобы формировать отдельные СИД/опоры.
Дополнительные детали по СИД можно найти в патентах США №№6,649,440 и 6,274,399, и в патентных заявках США №№2006/0281203 A1 и 2005/0269582 A1, которые все включены путем ссылки.
Затем материал 30 прокладки инжектируется под и вокруг СИД 10 для заполнения воздушных зазоров между СИД 10 и опорной пластиной 22. Материалом 30 прокладки обычно является жидкая эпоксидная смола, которая затем отверждается до твердого состояния. Отвержденная прокладка обеспечивает структурную поддержку и защищает кристалл от загрязнений. Материал 30 прокладки инжектируется посредством форсунки 32, которая перемещается вокруг СИД 10, во время, инжектирования материала 30 прокладки под относительно высоким давлением для заполнения узкого зазора между СИД 10 и опорной пластиной 22 в фактических устройствах, прокладка может дополнительно расширяться в поперечном направлении в большей степени, чем показано на фигурах.
Любой избыточный материал 30 прокладки (например, эпоксидная смола) поверх и вокруг СИД 10/подложки 12 может быть удален путем обдувки микрошариками.
После отверждения и обдувки микрошариками материала 30 прокладки, ростовая подложка 12 удаляется с использованием лазерного отделения (не показан). Энергия фотонов лазера (например, эксимерного лазера) выбирается так, чтобы она превышала энергетическую щель материала СИД и была ниже границы поглощения сапфировой подложки (например, от 3.44 эВ до 6 эВ). Импульсы лазера, проходящие через сапфир, преобразуются в тепловую энергию на протяжении первых 100 нм материала СИД. Генерируемая температура превосходит 1000°C, диссоциирует галлий и азот. Образующийся при этом газ высокого давления отталкивает подложку от эпитаксиальных слоев для освобождения подложки от слоев, после чего отделенная подложка просто удаляется из структуры СИД. Прокладка помогает предотвратить растрескивание тонких слоев СИД под высоким давлением.
Альтернативно, ростовая подложка 12 может быть удалена методом травления, например, реактивного ионного травления (РИТ), или шлифовки. Можно использовать и другие технологии в зависимости от типа СИД и подложки. В одном примере, подложка выполнена на основе Si, и изолирующий материал между подложкой и слоями СИД вытравливается методом влажного травления чтобы удалить подложку.
После любых других процессов на уровне пластины, опорная пластина 22 распиливается или размечается и разбивается для сингулирования СИД/опор. Затем опоры могут быть припаяны к печатной плате.
Технология формирования прокладки из уровня техники включает в себя следующие проблемы.
Обеспечение точного количества материала прокладки для заполнения только под тонкими слоям СИД и вокруг них затруднительно и требует много времени. Процесс формирования прокладки последовательно выполняется на массиве СИД, установленных на опорной пластине, до сингуляции СИД. На одной опорной пластине может быть установлено 500-4000 СИД, в зависимости от размера каждого СИД и плотности. Инжектирование материала прокладки под каждый СИД в матрице с использованием одной движущейся форсунки может занимать 10-40 минут, в зависимости от количества СИД.
Другая проблема состоит в том, что нужно тщательно выбирать свойства материала прокладки, для сохранения надлежащей вязкости, теплового расширения, надежности в течение длительного срока службы СИД, диэлектрические свойства, теплопроводность, защиту от загрязнения и другие параметры. Если вязкость слишком высока, то давление, необходимое для инжекции прокладки под СИД для заполнения всех пустот, может повредить СИД. Пустоты необходимо исключить, поскольку любой воздух будет расширяться при нагревании СИД/опоры и отталкивать СИД от опоры. Кроме того, поскольку пустая область не поддерживает СИД в ходе процесса лазерного отделения, давление, направленное вниз, приложенное к СИД в ходе процесса лазерного отделения, может привести к растрескиванию СИД.
Тепловое расширение прокладки чрезвычайно важно, поскольку СИД подвергаются процессу пайки оплавлением припоя при припаивании сингулированной пары СИД/опора к печатной плате. Температура при этом может составлять 265°C. Температура оплавления припоя выше обычной температуры стеклования 185°C для эпоксидной смолы, которая обычно является материалом прокладки. Что касается эпоксидной смолы, температура (Tg) стеклования это температура, при которой эпоксидная смола становится мягкой. Выше температуры стеклования, тепловое расширение эпоксидной смолы значительно возрастает, вызывая направленное вверх давление, на СИД, что приводит к растрескиванию или отделению СИД.
Необходим усовершенствованный метод формирования прокладки под СИД, который позволяет избежать вышеупомянутых проблем и обойти ограничения по материалам.
Раскрытие изобретения
Описан метод формирования прокладки для СИД, где используется формование под давлением. Процесс осуществляется до любого процесса отделения подложки. СИД, установленные на опорной пластине, помещаются в форму. Форма запечатывается, по меньшей мере, по периметру опорной пластины, и в форме создается вакуум. Форма может быть выполнена из алюминия с раздельными полостями, выровненными с каждым СИД на опорной пластине. В одном варианте осуществления, имеются каналы потока, соединяющие каждую полость с источником вакуума и с, по меньшей мере, одним впускным каналом для жидкого материала.
Затем любой подходящий материал прокладки, такой как, жидкий полиимид подается в впускной канал формы под давлением, и сочетание вакуума и давления жидкого материала заставляет материал полностью заполнять полости в форме, где находятся СИД. Пустот не остается, поскольку материал заполняет форму.
Размеры каждой полости формы позволяют жидкому материалу полностью запечатывать каждый СИД, вместе с его ростовой подложкой.
Затем жидкий материал отверждается нагревом или УФ светом чтобы материала прокладки затвердел, и форма отделяется от опорной пластины. После отделения формы, может быть выполнено отверждение при более высокой температуре.
В другом варианте осуществления, жидкий материал прокладки может сначала заполнять форму, имеющую приподнятое уплотнение по периметру, после чего опорная пластина помещается поверх формы, так, что СИД погружаются в материал прокладки. Под давлением, жидкий материал заполняет все пустоты под каждым СИД. Воздух выталкивается через уплотнения вместе с некоторым количеством материала прокладки. Затем материал отверждается, и форма отделяется от опорной пластины. Поскольку такой процесс формования не основан на инжекции жидкого материала под давлением через впускной канал формы, вероятность повреждения хрупких СИД мала.
В другом варианте осуществления, материал прокладки, используемый для заполнения формы, является не жидкостью, а порошком или небольшими таблетками. Затем твердый материал нагревается в форме для расплавления или размягчения, что позволяет ему соответствовать форме и запечатывать СИД. Сжатие используется для того, чтобы формовать размягченный материал и заставлять его втекать в пустоты под каждым СИД. Работа с твердым материалом прокладки имеет ряд преимуществ. Такое формование под давлением с использованием первоначально твердого материала прокладки значительно расширяет диапазон выбора материалов прокладки. Одним из материалов, которые могут использоваться для этого процесса, является порошок эпоксидной формовочной массы.
После того, как опорной пластины удалена из формы, опорная пластина целиком подвергается процессу обдувки микрошариками для вытравления материала прокладки, пока вся ростовая подложка не будет обнажена. Затем подложка удаляется с использованием процесса лазерного отделения или другого подходящего процесса. Прокладка поддерживает тонкий СИД в течение этого процесса.
После того, как ростовой подложки удалена, толщина СИД может быть уменьшена для повышения выделения светоотдачи. Затем поверхность СИД может делаться шероховатой, чтобы дополнительно повысить светоотдачи за счет уменьшения числа внутренних отражений.
Затем могут быть сформованы линзы поверх СИД и/или могут быть осуществлены другие методы обработки на уровне пластины.
Затем СИД/опоры сингулируются с использованием распиливания, разметки и разбивания или любым другим методом.
Благодаря применению вышеописанного способа, гораздо более широкий диапазон материалов может быть использован для прокладки, поскольку допустим гораздо более широкий диапазон вязкости. При использовании струйной форсунки, из уровня техники, материал может иметь узкий диапазона вязкостей. Предпочтительным материалом прокладки, который может быть использован в настоящем процессе, является полиимид, который имеет температуру стеклования вблизи или выше температуры оплавления припоя, так, что тепловое расширение полиимида в самых неблагоприятных условиях очень мало.
Кроме того, поскольку все СИД на опорной пластине (например, 500-4000 СИД) снабжаются прокладками одновременно, время формирования прокладки может быть сокращено до нескольких минут.
Краткое описание чертежей
Фиг.1 - вид в поперечном разрезе перевернутого СИД, из уровня техники, установленного на опоре, где материал прокладки СИД подается под давлением посредством небольшой форсунки у основания СИД.
Фиг.2 - упрощенная схема участка опорной пластины, заполненной массивом СИД, например 500-4000 СИД.
Фиг.3A - процесс инжекционного формования на уровне пластины, используемый для запечатывания всех СИД на опорной пластине с помощью материала прокладки.
Фиг.3B - альтернативный тип процесса формования на уровне пластины, без использования инжекции, используемый для запечатывания всех СИД на опорной пластине с помощью материала прокладки.
Фиг.4 - СИД на пластине после удаления из формы, показанной на фиг.3A или фиг.3B.
Фиг.5 - верхняя часть материала прокладки, показанного на фиг.4, удаляемая путем обдувки микрошариками.
Фиг.6 - метод лазерного отделения для удаления ростовых подложек с СИД.
Фиг.7 - вид в поперечном разрезе единичного СИД, установленного на опоре, после уменьшения толщины СИД и после сингуляции СИД/опор. Опора показана припаянной к печатной плате.
Идентичные или эквивалентные элементы обозначены одинаково.
Осуществление изобретения
Прежде всего, традиционный СИД формируется на ростовой подложке. В используемом примере, СИД представляет собой СИД на основе GaN, такой, как СИД на основе AlInGaN или InGaN, для обеспечения синего света. Обычно относительно толстый слой GaN n-типа выращивается на сапфировой ростовой подложке с использованием традиционных методов. Относительно толстый слой GaN обычно включает в себя слой низкотемпературного зародышеобразования и один или более дополнительных слоев для того, чтобы обеспечить низкодефектную кристаллическую решетку для плакирующего слоя n-типа и активного слоя. Затем, поверх толстого слоя n-типа, формируются один или более плакирующих слоев n-типа, затем активный слой, один или несколько плакирующих слоев p-типа и контактный слой p-типа (для металлизации).
Согласно методу перевернутого кристалла, участки p-слоев и активного слоя вытравливаются для обнажения n-слоя для металлизации. Таким образом, p-контакт и n-контакт находятся на одной и той же стороне кристалла и могут непосредственно быть электрически соединены с контактными площадками опоры. Ток из контакта n-металл первоначально течет в поперечном направлении через n-слой.
Другие типы СИД, которые можно использовать в настоящем изобретении, включают в себя СИД AlInGaP, которые могут излучать свет в диапазоне от красного до желтого.
Перевернутый СИД используемый в качестве примера в настоящем изобретении, имеет структуру СИД, показанную на фиг.1, содержащую полупроводниковый СИД 10, его ростовую подложку 12 и его электроды 14/16, где СИД установлен на опорной пластине 22.
На фиг.2 показана упрощенная схема опорной пластины 22, на которой установлен массив СИД. На одной опорной пластине 22 может находиться 500-4000 СИД. СИД также именуется здесь кристаллом СИД.
Вместо размещения форсунки у основания каждого СИД для инжектирования материала прокладки под каждый СИД в матрице, осуществляется процесс формования на уровне пластины.
На фиг.3A показан один тип подходящего процесса инжекционного формования для создания прокладки для каждого СИД. Форма 36 имеет полости 38, которые задают форму затвердевшего материала прокладки после процесса формования. Форма 36 может быть выполнена из алюминия. Форма 36 имеет уплотнение 37 по периметру, которое образует плотный контакт с опорной пластиной 22, когда форма 36 выравнивается с пластиной 22 и прижимается к пластине 22.
Форма 36 имеет, по меньшей мере, один впускной канал 40 для инжектирования жидкого материала 41 прокладки (например, полиимида) и, по меньшей мере, один выпускной канал 42, соединенный с источником вакуума. Когда форма 36 образует герметичный контакт с пластиной 22, в форме 36 создается вакуум, и материал 41 прокладки инжектируется через впускной канал 40. Материал 41 прокладки втекает во все полости 38 по каналам 44 между полостями, при помощи вакуума и давления инжекции материала 41. Вакуум удаляет почти весь воздух из формы 36. В конце концов, вся форма 36 заполняется материалом 41 прокладки, включая все пустоты под СИД.
Затем форма 36 нагревается для отверждения жидкого материала прокладки. Температура формы 36 в ходе отверждения составляет около 150°C. Альтернативно, может быть использована прозрачная форма, и материал прокладки можно отверждать УФ светом.
На фиг.3B показан альтернативный процесс формования на уровне пластины, в котором не используется инжекция материала прокладки под давлением. По фиг.3B, форма 48 имеет полости 50, которые сначала заполняются жидким материалом 41 прокладки под атмосферным давлением. Опорная пластина 22 приводится в контакт с формой 48, так, что СИД погружаются в материал прокладки в каждой полости 50. Пластина 22 и форма 48 прижимаются друг к другу, что заставляет материал прокладки заполнять все пустоты. Уплотнение 53 по периметру позволяет сохранять высокое давление, в то же время, позволяя всему воздуху выходить, когда материал прокладки заполняет пустоты. Между пластиной 22 и формой 48 также можно создавать вакуум с использованием источника вакуума вокруг уплотнения 53.
Затем форма 48 нагревается для отверждения жидкого материала прокладки. Альтернативно, может быть использована прозрачная форма, и материал прокладки можно отверждать УФ светом.
Затем форма, по фиг.3A или 3B, удаляется с пластины 22, в результате чего образуется структура, по фиг.4, имеющая избыток затвердевшего материала 54 прокладки запечатывает каждый СИД. Также на поверхности пластины 22 между каждым СИД, в зависимости от формы, может быть тонкий слой затвердевшего материала прокладки.
Затем пластина 22 может подвергаться пост-отверждению при температуре около 250°C для придания материалу прокладки дополнительной твердости. Для эпоксидной формовочной смеси или полиимидной прокладки, температура (Tg) стеклования равна 260-300°C, поэтому температура пост-отверждения, меньшая Tg, предпочтительна для ограничения любого теплового расширения прокладки.
В другом варианте осуществления, материал прокладки, используемый для заполнения формы, является не жидкостью, а порошком или небольшими таблетками. Затем твердый материал нагревается в форме, по фиг.3A или фиг.3B для его плавления или размягчения. Сжатие используется для того, чтобы заставить размягченный материал принимать форму формы и для заполнять пустоты под СИД с одновременным запечатыванием СИД. Расплавленный или размягченный материал затем отверждается или охлаждается, если необходимо, вновь стать твердым. Некоторые материалы отвердевают автоматически после процесса нагрева и сжатия. Работа с твердым материалом прокладки имеет ряд преимуществ. Кроме того, некоторые подходящие материалы, которые могут быть использованы для прокладки, не являются жидкими при комнатной температуре до отверждения, поэтому нагрев твердого материала в форме с последующим сжатием значительно увеличивает количество возможных материалов, которые можно использовать в качестве прокладки. Один подходящий твердый полимер, который можно использовать, это эпоксидная формовочная смесь в виде порошка.
Для осуществления процесса лазерного отделения для удаления ростовых подложек 12, сначала нужно удалить материал 54 прокладки в пределах ростовой подложки 12. Если ростовая подложка 12 будет удаляться путем шлифовки или другого процесса механического травления, такая шлифовка может использоваться для одновременного удаления избыточного материала 54 прокладки.
На фиг.5 показано удаление избыточного материала 54 прокладки путем обдува всей поверхности пластины 22 высокоскоростными микрошариками 58. В одном варианте осуществления, микрошарики 58 имеют диаметр от 1 до 20 микрон и сформированы из NaHCO3. Микрошарики 58 ускоряются воздухом, текущим через форсунку под давлением около 100 фунтов на квадратный дюйм или менее. Форсунка может быть большой для травления материала 54 прокладки со всей или большей части пластины 22 без перемещения форсунки, или можно использовать форсунку меньшего размера для вытравления материала 54 прокладки лишь с нескольких СИД за раз с последующим перемещением форсунки в следующую позицию по пластине 22. Удаление избыточного материала любого рода с использованием микрошариков является известным процессом. Материал 54 прокладки вытравливается таким образом, чтобы его верхняя поверхность пересекала край полупроводниковых слоев СИД, гарантируя, что весь СИД поддерживается прокладкой в ходе процесса лазерного отделения подложки.
На фиг.6 показан вышеописанный процесс лазерного отделения. Лазерные импульсы представлены стрелками 60. В ходе лазерного отделения, поверхность GaN поглощает тепло, приводящее к разложению поверхностного слоя на Ga и N2. Давление N2 отталкивает сапфировую подложку от СИД. После отделения ростовых подложек 12 от полупроводниковых слоев СИД в течение процесса отделения, они удаляются с, например, помощью адгезионного листа или какого-либо другого подходящего процесса.
Затем уменьшается толщина обнаженных слоев СИД посредством, например, реактивного ионного травления (РИТ) или механического травления, поскольку обнаженный верхний слой является относительно толстым n-слоем, и поверхность была повреждена процессом лазерного отделения. Полученная в результате верхняя поверхность затем может быть сделана шершавой для повышения эффективности светоотдачи.
Другие процессы на уровне пластины также могут быть выполнены на массиве СИД, установленном на опорной пластине 22. Один такой процесс может состоять в формовании линзы поверх каждого СИД в процессе единичного формования, аналогичном показанному на фиг.3A или 3B. Детали процесса формования линзы на уровне пластины, описаны в патентной заявке США №2006/0105485 озаглавленной Overmolded Lens Over LED Die, Grigoriy Basin и др., присвоенной настоящему правообладателю и включенной сюда в качестве ссылки.
Затем опорная пластина 22 сингулируется для формирования отдельных СИД/опор. На фиг.7 изображена отдельная пара СИД/опора, припаянная к площадкам на печатной плате 64.
Поскольку существует широкий диапазон вязкости жидкого материала прокладки, пригодного при использовании описанного здесь процесса формования прокладки, материал прокладки можно выбирать, по существу, независимо от его вязкости. Диэлектрический материал прокладки можно выбирать, в основном, на основании его коэффициента теплового расширения, простоты использования и надежности при всех температурах, которым подвергается СИД. Полиимид является предпочтительным материалом прокладки, поскольку он обладает значительно более высокими показателями, чем эпоксидная смола.
Хотя выше были показаны и описаны конкретные варианты осуществления настоящего изобретения, специалисты в данной области техники могут предложить изменения и модификации, не отклоняющиеся от этого изобретения в его более широких аспектах, и поэтому формула изобретения охватывает в своем объеме все эти изменения и модификации, если они отвечают сущности и объему изобретения.

Claims (15)

1. Способ изготовления светоизлучающего устройства, содержащий этапы: обеспечения кристалла светоизлучающего диода (СИД) на опоре (22), причем между кристаллом СИД и опорой существует зазор, причем кристалл СИД имеет нижнюю поверхность, обращенную к опоре, и верхнюю поверхность, противоположную нижней поверхности,
формование материала (41, 54) прокладки поверх кристалла СИД так, что материал прокладки запечатывает кристалл СИД и, по существу, полностью заполняет зазор между кристаллом СИД и опорой, и
удаление материала (54) прокладки, по меньшей мере, с верхней поверхности кристалла СИД, причем кристалл СИД содержит эпитаксиальные слои (10), выращенные на ростовой подложке (12), причем поверхность ростовой подложки является верхней поверхностью кристалла СИД, при этом способ дополнительно содержит этап удаления ростовой подложки с эпитаксиальных слоев после формования материала (41, 54) прокладки поверх кристалла СИД.
2. Способ по п.1, в котором подложка (12) удалятся с эпитаксиальных слоев методом (60) лазерного отделения после этапа удаления материала (54) прокладки.
3. Способ по п.1, в котором этап удаления материала прокладки (54) содержит удаление материала прокладки путем обдувки микрошариками (58).
4. Способ по п.1, в котором этап удаления материала прокладки (54) содержит удаление материала прокладки путем травления.
5. Способ по п.1, в котором этап формования материала (41, 54) прокладки поверх кристалла СИД содержит этапы:
обеспечения твердого материала прокладки в форме (48),
нагревание формы для плавления или размягчения материала прокладки, размещение кристалла СИД на опоре (22) по отношению к форме, чтобы сжать расплавленный или размягченный материал прокладки и запечатать кристалл СИД, и
охлаждение материала прокладки.
6. Способ по п.1, в котором этап формования материала (41, 54) прокладки поверх кристалла СИД содержит этапы:
размещения кристалла СИД на опоре (22) по отношению к форме (36),
создание существенного вакуума между опорой (22) и полостью (38) формы,
заполнение полости формы под давлением жидким материалом (41) прокладки чтобы запечатать кристалл СИД, и
отверждение материала прокладки.
7. Способ по п.1, в котором этап формования материала (41, 54) прокладки поверх кристалла СИД содержит этапы:
заполнения полости (50) формы размягченным материалом (41) прокладки, погружение кристалла СИД в размягченный материал прокладки, и
отверждение материала прокладки.
8. Способ по п.1, в котором этап обеспечения кристалла СИД на опоре (22) содержит обеспечение множества кристаллов СИД на опорной пластине (22), причем опорная пластина имеет электроды (18, 20), связанные с соответствующими электродами (14, 16) множества кристаллов СИД, причем каждый кристалл СИД имеет зазор между кристаллом СИД и опорной пластиной, и при этом этап формования материала (41, 54) прокладки осуществляется одновременно на всех кристаллах СИД.
9. Способ по п.8, дополнительно содержащий этап сингуляции опорной пластины (22) для разделения кристаллов СИД, установленных в соответствующих позициях на опоре, после этапа удаления материала (54) прокладки.
10. Способ по п.1, в котором материалом (41, 54) прокладки является полимер.
11. Способ по п.1, в котором материалом (41, 54) прокладки является эпоксидная формовочная смесь.
12. Способ изготовления светоизлучающего устройства, содержащий этапы:
обеспечения кристалла светоизлучающего диода (СИД) на опоре (22), причем между кристаллом СИД и опорой существует зазор, причем кристалл СИД имеет нижнюю поверхность, обращенную к опоре, и верхнюю поверхность, противоположную нижней поверхности,
формование материала (41, 54) прокладки поверх кристалла СИД так, что материал прокладки запечатывает кристалл СИД и, по существу, полностью заполняет зазор между кристаллом СИД и опорой, и
удаление (58) материала (54) прокладки, по меньшей мере, с верхней поверхности кристалла СИД,
причем кристалл СИД содержит эпитаксиальные слои (10), выращенные на ростовой подложке (12), причем поверхность ростовой подложки является верхней поверхностью кристалла СИД, при этом этап удаления материала (54) прокладки содержит удаление материала прокладки для полного обнажения всех боковых поверхностей ростовой подложки.
13. Промежуточное светоизлучающее устройство до сингуляции, содержащее:
матрицу кристаллов СИД, установленных на опорной пластине (22), причем опорная пластина (22) припаяна припоем к печатной плате (64), причем опорная пластина имеющая электроды (18, 20), связанные с соответствующими электродами (14, 16) кристаллов СИД, причем каждый кристалл СИД имеет зазор между кристаллом СИД и опорной пластиной, и материал (41, 54) прокладки, одновременно сформованный поверх всех кристаллов СИД и полностью запечатывающий все кристаллы СИД, причем материал прокладки, по существу, полностью заполняет зазор между каждым кристаллом СИД и опорной пластиной, причем материал (41, 54) прокладки имеет температуру (Tg) стеклования вблизи или выше температуры оплавления припоя.
14. Светоизлучающее устройство, содержащее:
перевернутый кристалл
светодиода (СИД),
опору (22), на которой установлен кристалл СИД, причем между кристаллом СИД и опорой существует зазор,
печатную плату (64), на которой опора (22) припаяна припоем, и
сформованную прокладку (54) между кристаллом СИД и опорой, причем сформованная прокладка (54) имеет температуру (Tg) стеклования вблизи или выше температуры оплавления припоя.
15. Светоизлучающее устройство по п.14, в котором сформованная прокладка (54) содержит полиимид, имеющий температуру (Tg) стеклования 260-300°C.
RU2010142267/28A 2008-03-17 2009-03-13 Процесс формирования прокладки для перевернутых сид RU2502157C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/050,082 2008-03-17
US12/050,082 US20090230409A1 (en) 2008-03-17 2008-03-17 Underfill process for flip-chip leds
PCT/IB2009/051055 WO2009115968A1 (en) 2008-03-17 2009-03-13 Underfill process for flip-chip leds

Publications (2)

Publication Number Publication Date
RU2010142267A RU2010142267A (ru) 2012-04-27
RU2502157C2 true RU2502157C2 (ru) 2013-12-20

Family

ID=40677561

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010142267/28A RU2502157C2 (ru) 2008-03-17 2009-03-13 Процесс формирования прокладки для перевернутых сид

Country Status (9)

Country Link
US (2) US20090230409A1 (ru)
EP (1) EP2266149B1 (ru)
JP (1) JP5372133B2 (ru)
KR (1) KR101524004B1 (ru)
CN (1) CN102084505B (ru)
BR (1) BRPI0909788B1 (ru)
RU (1) RU2502157C2 (ru)
TW (1) TWI463701B (ru)
WO (1) WO2009115968A1 (ru)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405228B2 (en) * 2009-03-25 2013-03-26 Stats Chippac Ltd. Integrated circuit packaging system with package underfill and method of manufacture thereof
US8471280B2 (en) * 2009-11-06 2013-06-25 Koninklijke Philips Electronics N.V. Silicone based reflective underfill and thermal coupler
JP2012019062A (ja) * 2010-07-08 2012-01-26 Shin Etsu Chem Co Ltd 発光半導体装置、実装基板及びそれらの製造方法
US8796075B2 (en) 2011-01-11 2014-08-05 Nordson Corporation Methods for vacuum assisted underfilling
CN102610703A (zh) * 2011-01-20 2012-07-25 陈惠美 光电元件的封装方法
US8952402B2 (en) * 2011-08-26 2015-02-10 Micron Technology, Inc. Solid-state radiation transducer devices having flip-chip mounted solid-state radiation transducers and associated systems and methods
US10043960B2 (en) * 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
CN102593317B (zh) * 2011-12-20 2014-12-24 西安炬光科技有限公司 一种高功率高亮度led光源封装结构及其封装方法
EP2831930B1 (en) 2012-03-30 2018-09-19 Lumileds Holding B.V. Sealed semiconductor light emitting device and method of forming thereof
JP5962285B2 (ja) 2012-07-19 2016-08-03 日亜化学工業株式会社 発光装置およびその製造方法
JP2014179569A (ja) * 2013-03-15 2014-09-25 Nichia Chem Ind Ltd 発光装置およびその製造方法
US9022607B2 (en) 2012-10-18 2015-05-05 Avago Technologies General Ip (Singapore) Pte. Ltd. Leadframe-based surface mount technology segmented display design and method of manufacture
WO2015038064A2 (en) * 2013-09-10 2015-03-19 Heptagon Micro Optics Pte. Ltd. Compact opto-electronic modules and fabrication methods for such modules
CN104600186A (zh) * 2013-10-31 2015-05-06 展晶科技(深圳)有限公司 发光二极管封装体的制造方法
US9653443B2 (en) * 2014-02-14 2017-05-16 Taiwan Semiconductor Manufacturing Company, Ltd. Thermal performance structure for semiconductor packages and method of forming same
US10056267B2 (en) 2014-02-14 2018-08-21 Taiwan Semiconductor Manufacturing Company, Ltd. Substrate design for semiconductor packages and method of forming same
JP2015220342A (ja) * 2014-05-19 2015-12-07 住友電気工業株式会社 光半導体装置の製造方法及び光半導体装置の製造装置
JP7071118B2 (ja) * 2014-08-19 2022-05-18 ルミレッズ ホールディング ベーフェー ダイレベルのレーザリフトオフ中の機械的損傷を減少させるサファイアコレクタ
JP6807334B2 (ja) * 2015-05-13 2021-01-06 ルミレッズ ホールディング ベーフェー ダイレベルのリフトオフの最中におけるメカニカルダメージを低減するためのサファイアコレクタ
US9831104B1 (en) * 2015-11-06 2017-11-28 Xilinx, Inc. Techniques for molded underfill for integrated circuit dies
US10170671B2 (en) * 2016-05-25 2019-01-01 Chen-Fu Chu Methods of filling a flowable material in a gap of an assembly module
DE102017104851A1 (de) * 2017-03-08 2018-09-13 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von zumindest einem optoelektronischen Bauelement und optoelektronisches Bauelement
CN108630645A (zh) * 2017-03-17 2018-10-09 永道无线射频标签(扬州)有限公司 一种芯片和天线基材的接合结构及其制备方法
CN109496351B (zh) * 2017-06-09 2022-09-09 歌尔股份有限公司 微发光二极管阵列转移方法、制造方法以及显示装置
US10672957B2 (en) 2017-07-19 2020-06-02 Cree, Inc. LED apparatuses and methods for high lumen output density
CN107424964A (zh) * 2017-07-27 2017-12-01 武汉市三选科技有限公司 底部填充组成物及使用其之底部填充方法与电子组装组件
JP7266178B2 (ja) * 2017-11-24 2023-04-28 日亜化学工業株式会社 半導体装置の製造方法
KR20190084807A (ko) * 2018-01-09 2019-07-17 서울바이오시스 주식회사 발광 장치
JP7236807B2 (ja) * 2018-01-25 2023-03-10 浜松ホトニクス株式会社 半導体装置、及び半導体装置の製造方法
US10453827B1 (en) 2018-05-30 2019-10-22 Cree, Inc. LED apparatuses and methods
US11101410B2 (en) 2018-05-30 2021-08-24 Creeled, Inc. LED systems, apparatuses, and methods
US20210399041A1 (en) * 2020-06-18 2021-12-23 Seoul Semiconductor Co., Ltd. Light emitting module having a plurality of unit pixels, method of fabricating the same, and displaying apparatus having the same
US20220149246A1 (en) * 2020-11-12 2022-05-12 Seoul Semiconductor Co., Ltd. Light emitting module and method of manufacturing the same and display apparatus having the same
CN113524473B (zh) * 2021-07-09 2023-10-20 苏州晶方半导体科技股份有限公司 光学基板的切割方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450417A1 (en) * 2003-02-19 2004-08-25 LumiLeds Lighting U.S., LLC High-powered light emitting device with improved thermal properties
RU2267188C2 (ru) * 2003-06-23 2005-12-27 Федорова Галина Владимировна Светодиодное полупроводниковое устройство в корпусе для поверхностного монтажа
WO2006131843A2 (en) * 2005-06-09 2006-12-14 Koninklijke Philips Electronics N.V. Method of removing the growth substrate of a semiconductor light-emitting device
EP1858086A1 (en) * 2005-03-09 2007-11-21 Asahi Kasei EMD Corporation Optical device and optical device manufacturing method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6194742B1 (en) * 1998-06-05 2001-02-27 Lumileds Lighting, U.S., Llc Strain engineered and impurity controlled III-V nitride semiconductor films and optoelectronic devices
US6133589A (en) * 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
US6506681B2 (en) * 2000-12-06 2003-01-14 Micron Technology, Inc. Thin flip—chip method
JP2003197680A (ja) * 2001-12-25 2003-07-11 Matsushita Electric Works Ltd 半導体装置の製造方法
US7138293B2 (en) * 2002-10-04 2006-11-21 Dalsa Semiconductor Inc. Wafer level packaging technique for microdevices
JP3876250B2 (ja) * 2003-06-24 2007-01-31 スタンレー電気株式会社 表面実装型半導体電子部品および製造方法
US7361938B2 (en) * 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
JP4608966B2 (ja) * 2004-06-29 2011-01-12 日亜化学工業株式会社 発光装置の製造方法
US7344902B2 (en) * 2004-11-15 2008-03-18 Philips Lumileds Lighting Company, Llc Overmolded lens over LED die
US7125734B2 (en) * 2005-03-09 2006-10-24 Gelcore, Llc Increased light extraction from a nitride LED
DE112006001835T5 (de) * 2005-07-11 2008-05-15 GELcore, LLC (n.d.Ges.d. Staates Delaware), Valley View Laserabgehobene LED mit verbesserter Lichtausbeute
US7718449B2 (en) * 2005-10-28 2010-05-18 Lumination Llc Wafer level package for very small footprint and low profile white LED devices
JP5192646B2 (ja) * 2006-01-16 2013-05-08 Towa株式会社 光素子の樹脂封止方法、その樹脂封止装置、および、その製造方法
US7867793B2 (en) * 2007-07-09 2011-01-11 Koninklijke Philips Electronics N.V. Substrate removal during LED formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1450417A1 (en) * 2003-02-19 2004-08-25 LumiLeds Lighting U.S., LLC High-powered light emitting device with improved thermal properties
RU2267188C2 (ru) * 2003-06-23 2005-12-27 Федорова Галина Владимировна Светодиодное полупроводниковое устройство в корпусе для поверхностного монтажа
EP1858086A1 (en) * 2005-03-09 2007-11-21 Asahi Kasei EMD Corporation Optical device and optical device manufacturing method
WO2006131843A2 (en) * 2005-06-09 2006-12-14 Koninklijke Philips Electronics N.V. Method of removing the growth substrate of a semiconductor light-emitting device

Also Published As

Publication number Publication date
CN102084505B (zh) 2013-05-01
US20090230409A1 (en) 2009-09-17
KR20100129771A (ko) 2010-12-09
JP2011514688A (ja) 2011-05-06
CN102084505A (zh) 2011-06-01
EP2266149A1 (en) 2010-12-29
BRPI0909788B1 (pt) 2019-11-05
JP5372133B2 (ja) 2013-12-18
TWI463701B (zh) 2014-12-01
US8273587B2 (en) 2012-09-25
TW200950158A (en) 2009-12-01
US20110223696A1 (en) 2011-09-15
BRPI0909788A2 (pt) 2015-10-06
WO2009115968A1 (en) 2009-09-24
EP2266149B1 (en) 2017-08-23
RU2010142267A (ru) 2012-04-27
KR101524004B1 (ko) 2015-05-29

Similar Documents

Publication Publication Date Title
RU2502157C2 (ru) Процесс формирования прокладки для перевернутых сид
US8431423B2 (en) Reflective substrate for LEDS
TWI437724B (zh) 基板剝離之強健發光二極體結構
US9368702B2 (en) Molded lens forming a chip scale LED package and method of manufacturing the same
US20110049545A1 (en) Led package with phosphor plate and reflective substrate
JP2019110338A (ja) 光学エレメントとリフレクタを用いた発光デバイス
US9444024B2 (en) Methods of forming optical conversion material caps
KR20090015712A (ko) 수직구조 발광다이오드 소자의 제조방법
KR100820822B1 (ko) 수직형 발광 소자 및 그 패키지 제조방법

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20190111

PD4A Correction of name of patent owner