RU2499596C2 - Композиции производных флавоноидных полифенолов и их применение для борьбы с патологиями и со старением живых организмов - Google Patents

Композиции производных флавоноидных полифенолов и их применение для борьбы с патологиями и со старением живых организмов Download PDF

Info

Publication number
RU2499596C2
RU2499596C2 RU2010123791/15A RU2010123791A RU2499596C2 RU 2499596 C2 RU2499596 C2 RU 2499596C2 RU 2010123791/15 A RU2010123791/15 A RU 2010123791/15A RU 2010123791 A RU2010123791 A RU 2010123791A RU 2499596 C2 RU2499596 C2 RU 2499596C2
Authority
RU
Russia
Prior art keywords
composition according
radical
derivatives
carbon
units
Prior art date
Application number
RU2010123791/15A
Other languages
English (en)
Other versions
RU2010123791A (ru
Inventor
Жозеф ВЕРКОТЕРЕН
Original Assignee
Кодали
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Кодали filed Critical Кодали
Publication of RU2010123791A publication Critical patent/RU2010123791A/ru
Application granted granted Critical
Publication of RU2499596C2 publication Critical patent/RU2499596C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/4973Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom
    • A61K8/498Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with oxygen as the only hetero atom having 6-membered rings or their condensed derivatives, e.g. coumarin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/347Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9755Gymnosperms [Coniferophyta]
    • A61K8/9767Pinaceae [Pine family], e.g. pine or cedar
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9783Angiosperms [Magnoliophyta]
    • A61K8/9789Magnoliopsida [dicotyledons]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Birds (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Emergency Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Cosmetics (AREA)
  • Pyrane Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Изобретение относится к композиции производных полифенолов и используется в косметике, диетологии и терапии. Композиция производных полифенолов, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс. Способ получения композиции. Косметическая композиция, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс. Применение композиции в диетологии. Композиция для применения в качестве лекарственных средств, обладающих антиоксидантной и антирадикальной активностью и оказывающих эффект на карбонильный стресс. Фармацевтическая композиция, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс. Вышеописанная композиция эффективно оказывает эффект на карбонильный стресс. 6 н. и 17 з.п. ф-лы, 11 ил., 5 пр.

Description

Изобретение относится к композициям производных флавоноидных полифенолов для предупреждения и борьбы с многочисленными патологиями и старением тканей и живых организмов. Оно относится также к способу получения указанных композиций, а также к их применению, в частности, в области косметики, диетологии и терапии.
Более полувека назад была разработана гипотеза, согласно которой старение организма человека является результатом накопления многочисленных повреждений, причиненных тканям радикалсодержащими соединениями или соединениями с реакционной способностью к химическому окислению.
К середине 50-х годов после нескольких работ с каучуком химик Гарман обнаружил, что, препятствуя образованию свободных радикалов, получают наиболее надежное средство для борьбы с деструкцией и растрескиванием каучука. По аналогии он предполагает, что старение тканей у человека (например, появление на коже морщин), по-видимому обусловлено «аномальным» образованием внутри клеток очень реакционноспособных химических соединений, в частности свободных радикалов, и реакциями, инициированными этими соединениями.
Реактивные формы кислорода (EOR) образуются на уровне митохондрий путем бесконтрольного «переноса» электрона(ов) к кислороду (EOR: супероксидный анион-радикал, пероксиды, пероксинитриты, свободные радикалы,…).
Эти реактивные формы кислорода (EOR) распространяются и в других клеточных компартментах или в цитоплазме в зависимости от их водо/жирорастворимости и наносят им значительный ущерб.
В контексте изложенного за последние десятилетия были проведены исследования активных веществ для использования в борьбе со старением, благодаря их способности прерывать окислительные реакции цепи, т.е. предотвращать окислительный стресс. Действительно, любое вещество, способное взаимодействовать с EOR и уменьшать их разрушительное действие в течение продолжительного срока, способно оказывать позитивное действие на состояние здоровья и по этим же причинам замедляет старение как причину развития основных патологий. Речь идет о ловушках свободных радикалов (способность отдавать сразу единственный электрон) и/или об антиоксидантах (одновременный перенос двух электронов), таких как витамины (Е и С) и полифенолы.
Однако разрушения, которые связаны со старением организма или сопровождают основные патологии, не являются, по-видимому, следствием только плохого контроля потока электронов, вызванного «утечками» электронов в процессе митохондриального метаболизма и во внутриклеточных EOR, в этих явлениях, очевидно, участвуют также другие источники потенциальных губительных эффектов, такие как «реакция Майярда» и карбонильный стресс.
При карбонильном стрессе карбонильная (альдегидная) группа глюкозы проявляет свои электрофильные свойства по отношению к нуклеофильным остаткам белков (аминным, тиольным,…); здесь находится отправная точка карбонильного стресса, который увеличивается при образовании агентов переноса.
Образовавшиеся химические вещества или продукты гликозилирования считаются конечными продуктами гликозилирования: это продукты AGE (“Advanced Glycated End-Products”), в которых глюкоза или ее фрагменты связаны с аминокислотными остатками обратимым образом.
Реакции Майярда, которые протекают при этом, увеличивают в то же время восстановительную способность сахаров и их производных. Образующиеся дикарбонильные соединения приобретают более сильную способность к окислению, чем их предшественники, и легко отдают свои электроны, например, кислороду. Начиная с первоначально образовавшегося супероксидного аниона последствия от EOR такие же, как и в случае внутриклеточного стресса. Таким образом, карбонильный стресс сопровождается вторым типом стресса - окислительным.
В отличие от механизмов, упомянутых выше, происходящих с EOR митохондриального происхождения, этот новый окислительный стресс происходит снаружи клеток, т.е. во внеклеточном матриксе. Он затрагивает аминокислоты или остатки белков этого матрикса, в частности волокон коллагена и эластина. Этот окислительный стресс особенно сильный в связи с тем, что ферментные системы защиты не являются такими же эффективными, как системы, находящиеся в клетке, и приводят к увеличению явлений алкилирования, продукты которых добавляются к продуктам гликозилирования и гликоокисления, полученным в результате карбонильного стресса.
Таким образом, карбонильный стресс, сопровождающийся внеклеточным окислительным стрессом, играет по меньшей мере такую же важную роль, как и внутриклеточный окислительный стресс в развитии старения и в появлении тканевых повреждений, присущих основным патологическим процессам.
Изучение авторами изобретения явлений, приводящих к старению тканей, заставило исследовать более широкий спектр биохимических механизмов, которые вовлечены в эти явления, что привело к разработке новых концепций для определения новых биологических мишеней, на которые можно дополнительно воздействовать для более эффективной борьбы с ними.
Исследования авторов изобретения привели к необходимости модифицировать структуру полифенолов, обладающих антиоксидантными свойствами и свойством улавливания свободных радикалов, таких как полифенолы, входящие в растительные экстракты, для того чтобы, дополнительно, придать им свойства улавливания карбонилсодержащих стресс-факторов.
Таким образом, задача изобретения заключается в том, чтобы предложить новые композиции производных полифенолов, состоящие из суперактивных полифенолов, которые способны действовать одновременно с большой эффективностью на множество биомишеней (окислительный и карбонильный стрессы) и являются стабилизированными.
Задача изобретения заключается также в том, чтобы предложить способ, позволяющий получить указанные производные полифенолов из полифенолов растительных экстрактов.
Согласно еще одному аспекту изобретение предназначено для использования свойств предлагаемых композиций полифенолов флавоноидного типа в косметологии, диетологии и терапии.
Композиции производных полифенолов согласно изобретению отличаются тем, что указанные полифенолы содержат мономеры, олигомеры или полимеры, состоящие из единиц, соответствующих формуле (I):
Figure 00000001
Эти единицы характеризуются одновременным наличием кольца флороглюцинольного типа (кольцо А) и кольца катехольного типа (кольцо В), соединенных друг с другом связью с тремя углеродами, такой как С.
Наиболее часто в этих единицах кольцо А сопряжено с дополнительным кислородсодержащим гетероциклом путем образования связи одного из его кислородов с углеродом b фрагмента С (в случае флаваноидного скелета) формулы (II):
Figure 00000002
Все тремя углерода фрагмента С могут быть sp2 гибридизированными (двойная связь между b и c и карбонильная группа в положении а), как в случае кверцетина формулы (III):
Figure 00000003
или содержат одну двойную связь между а и c и карбонильную группу в положении b, как в случае цианидола формулы (IV):
Figure 00000004
или только один его углерод а может быть sp3-гибридизированным, или же все три углерода могут быть sp3-гибридизированы, как в случае катехина формулы (V):
Figure 00000005
В этом случае углерод а фрагмента С наиболее часто служит местом присоединения с кольцами А других единиц для образования олигомеров или полимеров.
Указанные производные суперактивируют в отношении их нуклеофильной активности путем алкилирования по меньшей мере одной фенольной группы каждой единицы и стабилизируют путем этерификации всех остальных, оставшихся свободными, групп смесью жирных кислот, главным образом, ненасыщенных кислот (AGI).
Как правило, специфические замещения на производных, входящих в композиции согласно изобретению, позволяют моделировать их активность и делают их способными специфически ингибировать основные механизмы, задействованные в большинстве патологий и в процессах старения, упомянутых выше.
Преимущественно, число -О-алкильных групп на молекулу не равно числу гидроксильных групп, приходящихся, в среднем, на единицу, и составляет предпочтительно 1 или 2 группы, более конкретно 1 группу.
Алкильная или алкильные группы представляют собой, в частности, метильные, изопропильные или трет-бутильные группы.
Эффективная стабилизация достигается путем образования сложных эфиров AG между гидроксильными группами (спиртовыми и фенольными), оставшихся свободными после алкилирования (2-3, предпочтительно, 3 группы), и жирными кислотами, извлеченными из растительных масел, характеризующихся особенно большим содержанием жирных кислот, преимущественно, ненасыщенных (AGI). Масла выбирают по их благоприятному действию на здоровье. Преимущественно в полученных активных веществах содержатся ненасыщенные жирные кислоты в соотношениях, идентичных соотношениям этих кислот в маслах, из которых они извлечены.
Указанные сложные эфиры, предпочтительно, включают смеси ацильных радикалов R жирных кислот оливкового масла (Olea europea) или масла из виноградных косточек (Vitis vinifera).
Более конкретно, эти радикалы являются радикалами R насыщенных жирных кислот (AGS = стеариновая кислота; 7-8%), мононенасыщенных жирных кислот (AGMI = олеиновая кислота; 55-75%) и полиненасыщенных незаменимых жирных кислот (AGPI; 15-18%): диненасыщенных (линолевая кислота) и триненасыщенных (линоленовая кислота) групп ω-6 и ω-3, находящимися в производных согласно изобретению в соотношениях, идентичных соотношениям этих кислот в маслах, которые оказывают максимально благотворное влияние на здоровье, в соответствии с данными эпидемиологических служб.
Проведенная стабилизация позволяет, кроме того, защитить суперактивные флавоноидные полифенолы от определенной преждевременной деструкции (окисление на воздухе или на свету) и одновременно придать им липофильный характер с целью повышения их способности к ресорбции и взаимодействию.
Преимущественно эта стабилизация является временной и эффективность ее не должна далее проявляться, если производные оказываются в условиях, когда надо восстановить всю свою антиокислительную активность. Следовательно, стабилизация должна быть обратимой под действием биологических систем, которые воздействуют на стабилизирующие группы, в частности ферментов, таких как липазы, эстеразы или протеазы.
Более конкретно изобретение относится к композициям, отличающимся тем, что указанные выше производные состоят из единиц соответствующих формуле (VI):
Figure 00000006
где
- R1 обозначает водород или место присоединения такой же единицы по радикалу R7,
- R2 обозначает водород или О-ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным выше,
- R3 обозначает водород, карбонильную группу или место присоединения по радикалу R5 или R6 другой единицы,
- R4 обозначает алкильный радикал или ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным выше,
- R5 обозначает водород или место присоединения другой единицы по радикалу R3, непосредственно или через углеродную группу (метиленовую, метилметиновую,…)
- R6 обозначает водород или место присоединения другой единицы по радикалу R3, непосредственно или через углеродную группу (метиленовую, метилметиновую,…),
- R7 обозначает алкильный радикал или ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным выше, или место присоединения такой же единицы по радикалу R1,
и диастереоизомерам и региоизомерам этих единиц.
В качестве примера можно привести производные димера катехина (В3) и тримера эпикатехина (С2) формул (VII) и (VIII):
Figure 00000007
В соответствии с предпочтительным вариантом изобретения описанные выше производные соответствуют алкилированным, а затем стабилизированным производным растительных экстрактов. Следовательно, они имеют структуры полифенолов, которые находятся в этих растительных экстрактах в виде смеси.
Эти экстракты представляют собой, в частности, растительные экстракты винограда, зеленого чая или чая из ферментированных листьев, сырых и обжаренных бобов какао, или сосны.
Экстракты винограда получают из виноградных косточек или виноградных выжимок.
В соответствии с изобретением композиции производных полифенолов, описанные выше, получают путем взаимодействия соответствующих полифенольных композиций:
- на первой стадии, с алкилирующим агентом в условиях, приводящих к замещению водорода по меньшей мере 1 фенольной ОН-группы на мономерную единицу, составляющую каждую молекулу, предпочтительно, 1-2 групп, алкильной группой, и
- на второй стадии, с ацилирующим агентом, в частности с ангидридом или хлорангидридом кислоты, в условиях, приводящих к замещению водорода в группах -ОН, оставшихся свободными после алкилирования, смесью ацильных радикалов -COR, высвобождаемых агентом ацилирования, причем R имеет значения, указанные выше.
В реакции алкилирования используют реактивы, выпускаемые в продажу, такие как галогениды (иодиды, бромиды,…) или сложные сернистые эфиры, из расчета полтора химических эквивалента. Их медленно вводят в раствор полифенольного экстракта в апротонном растворителе (например, безводный ацетон) в присутствии минерального основания (карбонат калия,…) при кипении с обратным холодильником и при перемешивании в инертной атмосфере (идеально, азота, аргона).
Реакцию алкилирования останавливают после охлаждения путем добавления разбавленной кислоты (например, соляной) до получения кислого рН. Перемешивание продолжают дополнительно около 45 минут. Реакционную среду концентрирую под вакуумом (выпаривают растворитель). Водный слой экстрагируют равным объемом несмешивающегося растворителя (такого как этилацетат, дихлорметан,…), который сам промывается двумя эквивалентными объемами дистиллированной воды (до нейтральной реакции). Полученный органический слой высушивают над безводным сульфатом натрия, затем фильтруют и упаривают при пониженном давлении для выделения в виде остатка алкилированных полифенолов.
Ацилирующий агент получают из растительного масла в соответствии со следующей процедурой:
- омыление глицеридов растительного масла с последующим подкислением,
- активация путем дегидратации в случае, когда ацилирующим агентом является ангидрид кислоты, или путем хлорирования в случае, когда используют хлорангидрид кислоты, но пригодны для использования и другие производные, создающие тот же активирующий эффект (в зависимости от задачи: переэтерификация, ферментативное ацилирование).
Реакцию омыления осуществляют в водном слое в присутствии щелочного агента, такого как гидроксид калия, используемого по меньшей мере в стехиометрическом количестве, предпочтительно, при температуре кипения с обратным холодильником. Затем раствор доводят до кислого значения рН добавлением неорганической кислоты, и экстрагируют органическим растворителем для выделения смеси свободных кислот, образовавшихся в процессе реакции.
Реакцию дегидратации осуществляют с обратным холодильником в присутствии растворителя, способного образовывать азеотропную смесь с водой, которую удаляют по мере ее образования.
Используют, например, толуол, удаляя воду с помощью системы типа “Dean Stark”.
Реакцию хлорирования ведут в присутствии растворителя, способного растворять свободные жирные кислоты. Реакцию катализируют основанием Льюиса и ведут при медленном добавлении агента хлорирования и при контролируемой температуре около 0°С. Когда добавление закончено, перемешивание продолжают при комнатной температуре, затем реакционную среду концентрируют упариванием под вакуумом и полученные хлорангидриды очищают дистилляцией.
Преимущественно:
- в качестве растворителя реакции хлорирования используют, например, дихлорметан или хлороформ, при условии, что он не был стабилизирован спиртом,
- агентом хлорирования является, например, тионилхлорид или оксалилхлорид,
- катализатором может быть диметилформамид,
- очистку ацилхлоридов осуществляют отгонкой при глубоком вакууме в «шаровой печи» (Kugelrohr).
Реакцию ацилирования чаще всего осуществляют в присутствии растворителя, способного солюбилизировать, хотя бы частично, алкилированные полифенольные соединения, полученные в результате описанного выше алкилирования.
Подходящие растворители выбирают из галогенпроизводных, таких как дихлорметан, хлороформ или 1,2-дихлорэтан, или азотпроизводных, таких как пиридин, или даже гексан, в зависимости от алкилированных соединений, подлежащих растворению.
Алкилированные полифенольные производные, растворенные в выбранном реакционном растворителе, к которому, преимущественно, добавляют каталитический агент, имеющий основный характер (например, триэтиламин или пиридин), направляют для перемешивания в инертной атмосфере (аргон, азот).
В качестве агентов ацилирования берут четыре эквивалента ангидрида или хлорангидрида AG, полученных выше. Эти агенты, добавляемые по каплям, растворяют в реакционном растворителе, если этими агентами не является только пиридин. В случае, когда пиридин является одновременно растворителем и оснόвным катализатором, то осуществляют добавление в обратном порядке. Тогда раствор полифенольных производных добавляют по каплям к ацилпиридиниям, которые получают предварительно.
Можно воспользоваться вариантом осуществления, который заключается в добавлении при энергичном перемешивании щелочной водной фазы (Na3PO4, K2PO4) к органическому раствору (CHCl3, CH2Cl2) алкилированных полифенольных производных и агентов алкилирования, реализуя, таким образом, условия Шоттена-Баумана.
Независимо от принятой методики реакцию осуществляют, предпочтительно, при комнатной температуре в течение времени приблизительно от 7 до 8 часов.
Полученные этерифицированные производные очищают путем добавления подкисленной воды (HCl до кислого рН), затем осуществляют несколько промывок органического слоя дистиллированной водой. После высушивания над сульфатом натрия раствор фильтруют, выпаривают досуха и получают алкилированные и стабилизированные активные флавоноидные вещества.
Полученные активные соединения, обладающие двойной активностью согласно изобретению: улавливать активные формы кислорода (EOR) независимо от их внутриклеточного или внеклеточного происхождения и, одновременно, дикарбонильные соединения (антигликозилирование и анти-AGE), представляют огромный интерес как наиболее полные и наиболее эффективные средства на сегодняшний день для борьбы против старения кожи.
Композиции согласно изобретению особенно интересны для получения косметических препаратов.
В этих препаратах композиции соединяют с соответствующими носителями, пригодными для наружного применения. Преимущество их в том, что жирорастворимый характер этих композиций благоприятствует введению их в обычные галеновые формы, широко используемые в косметике.
Таким образом, изобретение относится к косметическим композициям, отличающимся тем, что они содержат одну или несколько композиций производных флавоноидных полифенолов, описанных выше, вместе с инертными носителями, подходящими для наружного нанесения, в количестве, эффективном для борьбы со старением кожи.
Эти композиции представлены в форме, подходящей для нанесения топическим путем, такой как крем, мазь, эмульсия, гель, липосомы, лосьон.
Композиции содержат 0,5-5% активного вещества, предпочтительно, 2-3%.
Изобретение относится также к способу предупреждения старения кожи, отличающемуся тем, что наносят на кожу или принимают внутрь одну или несколько косметических композиций, описанных выше.
Согласно другому аспекту, представляющему большой интерес, композиции согласно изобретению могут использоваться в диетологии. В частности, благодаря своей антирадикальной активности и способности улавливать карбонильные соединения, композиции обеспечивают наилучшую сохранность пищевых продуктов. Кроме того, композиции, как правило, представляют собой фактор обогащения витаминами. Поэтому их можно с успехом добавлять в напитки, например, во фруктовые соки, тонизирующие напитки, молочные продукты и продукты их переработки, такие как масло.
Композиции могут быть также использованы, как таковые, в жидкой форме или же в гранулированной, или аналогичной форме, в форме геля или пасты, и введены, например, в кондитерские изделия, такие как фруктовая паста, конфеты, жевательная резинка.
Свойства композиций согласно изобретению могут быть успешно выявлены при использовании композиций в качестве лекарственных средств.
Таким образом, изобретение относится также к фармацевтическим композициям, отличающимся тем, что они содержат терапевтически эффективное количество по меньшей мере одной композиции, описанной выше, вместе с фармацевтически приемлемым носителем.
Преимущественно, эти композиции находятся в форме, подходящей, в частности, для перорального, топического или парентерального введения.
Так, более конкретно, для перорального пути введения композиции имеют форму растворов, таблеток, желатиновых капсул или сиропов.
Для топического пути введения композиции имеют форму крема, мазей, гелей, лосьонов или пластырей.
Для парентерального пути введения композиции имеют форму стерильных или стерилизуемых растворов для инъекций.
Другие характеристики и преимущества изобретения раскрыты в качестве иллюстрации в примерах, описанных ниже, в которых дана отсылка на Фиг.1-11, которые показывают, соответственно:
- Фигура 1: хроматограмму CLHP-ESI-MS (TIC) О-метилированных катехинов,
- Фиг.2: спектр IR-FT, записанный по методу ATR, алкилированных (метилированных) флавонольных полифенолов из виноградных косточек,
- Фиг.3: спектр ЯМР 2D HMBC 1H-13C (500 МГц) флавонольных полифенолов из виноградных косточек, алкилированных диметилсульфатом,
- Фиг.4: спектр IR-FT, записанный по методу ATR, жирных кислот, полученных после омыления оливкового масла «вирджин»,
- Фиг.5: газовую хроматограмму, детектируемую масс-спектрометрией (GC-DSQ2) сложных метиловых эфиров, полученных из хлорангидридов AG оливкового масла,
- Фиг.6: спектр IR-FT хлорангидридов AG оливкового масла (метод ATR),
- Фиг.7: спектр ЯМР протона при 500 МГц (CDCl3) хлорангидридов AG оливкового масла,
- Фиг.8: спектр IR-FT флавонольных полифенолов из виноградных косточек, алкилированных и стабилизированных AG оливкового масла,
- Фиг.9: часть спектра ЯМР 1Н (500 МГц, CDCl3) в слабых полях флавонольных полифенолов из виноградных косточек, алкилированных и стабилизированных AG оливкового масла, и интегральные кривые,
- Фиг.10: часть спектра ЯМР 1Н (500 МГц, CDCl3) в сильных полях флавонольных полифенолов из виноградных косточек, алкилированных и стабилизированных AG оливкового масла, и интегральные кривые,
- Фиг.11: спектр ЯМР 2D HMBC 1H-13C (500 МГц, CDCl3) флавонольных полифенолов виноградных косточек, алкилированных и стабилизированных AG оливкового масла.
Пример 1: Стадия О-алкилирования катехина
В двугорлой колбе, снабженной холодильником, растворяют 50 мг (0,172 ммол) катехина в 5 мл безводного ацетона. При перемешивании в атмосфере аргона в присутствии 23,8 мг (0,172 ммол, 2 химических экв.) карбоната калия (К2СО3) прибавляют 8,3 мкл (0,086 ммол = 2 химических экв.) диметилсульфата (ДМС). Реакцию проводят с обратным холодильником в течение 27 часов.
Реакционную среду фильтруют на фриттированном стекле №4 для удаления К2СО3 и выпаривают ацетон. Остаток обрабатывают 20 мл этилацетата. Органический слой после промывки 2 раза 20 мл воды, сушки над сульфатом натрия, фильтрования и выпаривания досуха, дает остаток массой 48 мг (выход сырого продукта = 91,6%, включающего монометилированные производные, молекулярная масса = 304).
Полученную смесь анализируют путем высокоэффективной жидкостной хроматографии на «обратнофазной» колонке (С18) в сочетании с детектированием масс-спектрометрией при атмосферном давлении и ионизацией в электроспрее (CLHP-ESI-MS), представленной на Фиг.1. Наблюдаются потоки ионов, из которых наиболее интенсивные потоки ионов имеют массу ионов, характерную для монометилированных катехинов ([М+Н]+=305), время удержания (TR) = 15,79; 15,95; 17,75 и 17,84 минут, и наименее интенсивные потоки ионов имеют массу ([М+Н]+=319), время удержания (TR) = 21,66; 23,66; 24,67; 26,02 и 27,34 минут, соответствующую диметилированным производным катехина.
Пример 2: Стадия О-алкилирования флавоноидных полифенолов
31,18 г («108 ммол», выраженные в «катехиновых» звеньях) экстракта полифенолов из виноградных косточек растворяют в 120 мл апротонного растворителя (безводный ангидрид) в присутствии 6 химических эквивалентов карбоната калия (44,64 г = 646 ммол). В однолитровой трехгорлой колбе, снабженной холодильником, полученную суспензию нагревают с обратным холодильником при перемешивании в атмосфере аргона.
При помощи капельной воронки добавляют по каплям в течение 15 минут 7,65 мл донора метилов (диметилсульфат, 81,5 ммол; каждый моль ДМС высвобождает 2 моля «метилов» = 2×81,5 = 163 эквивалента, т.е. 1,5 химического эквивалента/масса используемого полифенольного экстракта) или изо-пропилов (2-иодопропан).
При расчете химических эквивалентов исходят из того, что «максимально» в среднем 4 гидроксильных фенольных группы способны алкилироваться на «флавонольной единице». Таким образом, считают, что каждая порция экстракта массой 290 г соответствует 1 молю катехина, который имеет 4 фенольные группы, из которых одна, даже две группы, должна(должны) быть превращена(ы) в группу(ы) метилового(вых) или изо-пропилового(ых) эфира(ов). Следовательно, химический эквивалент алкилирующего агента составляет четвертую часть от числа молей «катехина», находящихся в используемом экстракте.
После нагревания с обратным холодильником в течение восьми часов в атмосфере аргона реакционную среду охлаждают. После введения раствора десятикратно разбавленной соляной кислоты, для достижения кислого рН (540 мл), перемешивание продолжают в течение дополнительных 45 минут. Реакционную среду концентрируют под вакуумом (выпаривание ацетона). Остаточный водный слой экстрагируют равным объемом этилацетата и промывают дважды 400 мл дистиллированной воды (до нейтральной реакции промывочной воды). Эту органическую фазу сушат над безводным сульфатом натрия, фильтруют и выпаривают при пониженном давлении для получения в остатке алкилированных полифенолов (20,88 г; выход сырого продукта = 63,9%).
В предпочтительном случае, когда каждая молекула исходного экстракта подвергается только одному метилированию на флавонольную единицу («катехиновую»), получают смесь разных возможных регио- и стереоизомеров, таких как мономеры и димеры указанных ниже формул (IX)-(XXVI):
Figure 00000008
Как и в предыдущем примере, алкилированные (метилированные) структуры этих флавонольных соединений устанавливаются путем анализа различных спектров этих соединений:
- Наличие простого метилового эфира фенола отражено на IR-спектре (Фиг.2), в частности, появлением полос поглощения в диапазоне между 2974 и 2836 см-1, характерных для С-Н связей в метильной группе (элонгация) и полос поглощения в диапазоне между 1064 и 1035 см-1, характерных для С-О связей в эфирных группах (С-О).
- Спектр ЯМР 2D HMBC показывает корреляции между ароматическими углеродами, связанными с кислородом, (148-160 м.д.), и протонами простых метиловых эфиров при резонансе между 3,7-3,94 м.д. Эта зона в увеличенном масштабе включена в общий спектр, представленный на Фиг.3.
Пример 3: Получение ацилирующих агентов.
Стадия №1: омыление оливкового масла
К 50,46 г оливкового масла «вирджин» (57 ммол, = «171 экв.»), помещенного в колбу, снабженную холодильником, прибавляют 16,08 г гидроксида калия (285 ммол, 1,67 экв.), растворенного в 2,5 мл этанола и 50 мл воды. Реакцию проводят с обратным холодильником в течение 5 часов. Затем реакционную смесь перемешивают дополнительно в течение 14 часов при комнатной температуре.
После разбавления полученного раствора 300 мл воды прибавляют десятикратно разбавленную соляную кислоту (3,7%; масса/объем), для установления кислого рН водного слоя (около 250 мл). Содержимое колбы, которое включает на поверхности пастообразный «нерастворимый» продукт, переносят на делительную воронку и экстрагируют 700 мл гексана. Органический слой отделяют, затем промывают 2 раза 300 мл дистиллированной воды (до нейтрального рН этого водного слоя).
Органический слой высушивают над сульфатом натрия, фильтруют на фриттированном стекле №4, затем выпаривают с получением остатка массой 42,9 г (выход сырого продукта = 88,8%).
Инфракрасный спектр, записанный по методу ATR с Фурье-преобразованием (Фиг.4), показывает полосу, характерную для свободных органических кислот, при 1709 см-1 и в то же время исчезновение полос сложных эфиров исходного масла.
Стадия №2: Активация жирных кислот, полученных после омыления оливкового масла, посредством образования хлорангидридов:
В колбе, охлаждаемой ледяной баней, в атмосфере аргона перемешивают раствор 41,5 г свободных жирных кислот (147,1 ммол), полученных на стадии №1, в 232 мл хлороформа (стабилизированного амиленом). С помощью капельной воронки прикапывают 13,8 мл оксалилхлорида (162 мМ = 1,1 экв.) в течение 30 минут. Вводят 1 мл диметилформамида (ДМФ) и перемешивание продолжают на ледяной бане в течение 5 минут. После концентрирования при пониженном давлении реакционной смеси (хлороформ и избыток оксалилхлорида) получают 44,3 г маслянистого остатка, слегка окрашенного в желтый цвет (выход сырого продукта = 100%).
Путем отгонки в шаровой печи (kugelrhor) при значительном вакууме (2 мм рт.ст.) исчезает окрашивание полученного остатка (бесцветная жидкость), одновременно собирают фракции, отгоняемые при температуре 178-195°С.
Для проведения анализа состава полученной смеси хлорангидридов жирных кислот несколько микролитров дистиллята обрабатывают метанолом. Весь объем впрыскивают в газовый хроматограф, снабженный колонкой типа “FAME” (Fatty Acid Methyl Ester) и линейным детектором массы (DSQ-II). На хроматограмме, представленной на Фиг.5, пик со временем удержания 17,8 мин соответствует стеарату (М+. = 298), пик со временем удержания 18,07 мин соответствует олеату (М+. = 296), пик со временем удержания 18,08 мин соответствует линолеату (М+. = 294) и пик со временем удержания 19,38 мин соответствует линоленату (М+. = 292). Относительные интенсивности пиков этих компонентов хорошо указывают на их соответствующие соотношения.
Спектры IR-FT (Фиг.6) и ЯМР протона (Фиг.7) находятся в полном соответствии с образованием исключительно этих хлорангидридов:
Полоса при 1798 см-1 характерна для ацилхлоридов.
Протоны альфа-карбонильной группы (т, J=7,5 Гц) имеют химический сдвиг, равный 2,9 м.д., характерный для превращения карбоксильных групп в хлорангидриды кислоты.
Пример 4: Ацилирование экстракта алкилированных флавоноидов виноградных косточек
21,93 г (72 ммол = 288 химических экв.) экстракта флавоноидов виноградных косточек, алкилированных (метилированных) согласно примеру №2, помещают в атмосферу аргона и частично растворяют в 270 мл хлороформа (стабилизированного амиленом). К реакционной среде прибавляют агент основного характера, триэтиламин (40,56 мл = 29,45 г (d=0,726) = 291,5 ммол = 1 химический экв.) и «раствор» подвергают ультразвуковой обработке в течение 5 минут. При перемешивании магнитной мешалкой при комнатной температуре добавляют по каплям с помощью капельной воронки в течение 20 минут 87,55 г ацилирующих агентов, полученных в примере №3 (хлорангидриды AG оливкового масла = 288 ммол = 1 химический экв.), разведенные 60 мл хлороформа. Выделение газа происходит при падении каждой капли.
Реакцию ведут еще в течение семи часов с перемешиванием при комнатной температуре, затем помещают смесь в делительную воронку и промывают 190 мл десятикратно разбавленной соляной кислоты, 90 мл 10%-го (масса/объем) раствора NaHCO3 в воде и, наконец, дистиллированной водой до нейтральной реакции (три раза по 90 мл). Органическую фазу высушивают над сульфатом натрия, фильтруют, затем выпаривают досуха при пониженном давлении. Получают остаток массой 67,27 г алкилированных и стабилизированных активных флавоноидов виноградных косточек (= 49,68 ммол; выход сырого продукта = 69%, средняя молекулярная масса = 1354).
Чтобы идентифицировать полученные активные вещества, все продукты были максимально подвергнуты спектральным анализам:
- Инфракрасный спектр с Фурье-преобразованием, полученный по методу ATR (), показывает появление интенсивной полосы при 1764 см-1, характерной для карбоксилов фенольных сложных эфиров, сопровождающееся исчезновением широкой полосы с центром при 3350 см-1, которая соответствовала свободным гидроксилам фенолов.
- Спектр ЯМР протона (500 МГц, CDCl3) представлен своими интегральными кривыми в виде двух частей. В слабых полях (Фиг. 9) спектр позволяет «вычислить» долю ароматических протонов = 5,5 (область 7,95-5,90 м.д.) по отношению к олефиновым протонам: массив с центром при 5,35 м.д., откалиброванный на 8 протонов (в соответствии, в среднем, с четырьмя олефинами на катехиновую единицу). В сильных полях (Фиг. 10) можно наблюдать синглетные сигналы метоксилов ароматических простых эфиров (4,05-3,58 м.д.) и массив сигналов, характерных для метиленовых протонов альфа-карбоксилов ароматических сложных эфиров с центром при δ=2,49 м.д.
- Спектр ЯМР, двухмерный гетероциклический, 1Н-13С с наибольшей широтой спектра при 500 МГц (Фиг. 11), в режиме инверсии (HMBC), четко показывает корреляции, которые находятся в полном соответствии с разнообразными структурами флавонольных полифенолов алкилированных (простые метиловые эфиры с кислородом ароматического цикла) и этерифицированных (сложные эфиры жирных кислот, главным образом, ненасыщенных, в виде статистической смеси, получаемой из оливкового масла, используемого для получения агентов ацилирования, фенолов и алициклических спиртов).
В предпочтительных случаях, когда каждая молекула исходного экстракта подвергается только одному метилированию на флавонольную единицу («катехиновую») и когда все остаточные фенольные группы и флавонольные спиртовые группы ацилированы смесью AG оливкового масла, получают смесь разных возможных регио- и стереоизомерных мономеров и димеров, представленных ниже формулами (XXVII)-(XXXI):
Figure 00000009
Пример 5: Косметические композиции
Рецептура А
ФАЗЫ ИСХОДНЫЕ ВЕЩЕСТВА %
101 Вода 80,8000
102 EDTA тетранатриевый 0,0500
103 Глицерин 5,0000
104 Карбомер 0,3500
201 Цетеарилгликозиды пшеницы 0,7500
202 Цетеарилгликозиды ячменя 1,7500
203 Цетеариловый спирт 2,5000
204 Композиция согласно изобретению 0,05-1
205 Butyrospermum Parkii 2,5000
206 Токоферилацетат 0,5000
207 Масло виноградных косточек (Vitis Vinifera) 3,0000
208 Цетиловый спирт 1,0000
209 Цетилфосфат калия 1,0000
301 Консерванты 0,6000
401 Душистое вещество 0,2000
501 Гидроксид натрия до рН 6,00
Рецептура В
ФАЗЫ ИСХОДНЫЕ ВЕЩЕСТВА %
101 Вода 79,40000
102 EDTA тетранатриевый 0,05000
103 Лимонная кислота до конечного рН 5,5 0,15000
201 Ксантогеновая смола 0,30000
202 Бутиленгликоль 5,00000
301 Цетеарет-20 1,50000
302 Глицерилстеарат 2,00000
303 Композиция согласно изобретению 0,05-1
304 Масло Butyrospermum Parkii 1,00000
305 Гексиллаурат 4,00000
306 Диметикон 3,00000
307 Сквален 2,00000
308 Токоферилацетат 0,50000
401 Консерванты 0,60000
501 Душистое вещество 0,50000

Claims (23)

1. Композиция производных полифенолов, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс, отличающаяся тем, что указанные производные полифенолов происходят из мономеров, олигомеров или полимеров, состоящих из единиц, соответствующих формуле (I):
Figure 00000010

причем эти единицы характеризуются одновременным наличием кольца флороглюцинольного типа (кольцо А) и кольца катехольного типа (кольцо В), соединенных друг с другом фрагментом с 3 атомами углерода, таким как С,
причем в указанных единицах кольцо А полифенолов может быть сопряжено с дополнительным кислородсодержащим гетероциклом путем образования связи одного из его атомов кислорода с углеродом b фрагмента С, как в случае флавоноидного скелета формулы (II):
Figure 00000011

либо в указанных единицах все 3 углерода фрагмента С указанных полифенолов могут быть sp2-гибридизированы (двойная связь между b и с и карбонильная группа в положении а), как в случае кверцетина формулы (III):
Figure 00000012

или двойная связь образована между а и с и карбонильная группа находится в положении b, как в случае цианидола формулы (IV):
Figure 00000013

или только один углерод а sp3-гибридизирован, либо все 3 углерода sp3-гибридизированы, как в случае катехина формулы (V):
Figure 00000014

причем углерод а фрагмента С может служить точкой присоединения с кольцами А других единиц с образованием олигомеров или полимеров,
при этом указанные производные суперактивированы в отношении нуклеофильной активности путем алкилирования одной или двух фенольных групп каждой единицы и стабилизированы путем этерификации всех остальных гидроксильных групп (фенольных и спиртовых) смесями жирных кислот, главным образом, ненасыщенных (UFA).
2. Композиция по п.1, отличающаяся тем, что алкильная группа или алкильные группы являются метильными, изопропильными или трет-бутильными.
3. Композиция по п.1, отличающаяся тем, что указанные сложные эфиры являются сложными эфирами жирных кислот растительных масел.
4. Композиция по п.3, отличающаяся тем, что указанные сложные эфиры включают радикалы R, соответствующие насыщенным жирным кислотам, таким как стеариновая кислота, мононенасыщенным жирным кислотам, таким как олеиновая кислота, и незаменимым полиненасыщенным кислотам, таким как линолевая и линоленовая кислоты.
5. Композиция по п.3, отличающаяся тем, что растительные масла выбраны из оливкового масла или масла виноградных косточек.
6. Композиция по п.1, отличающаяся тем, что указанные производные состоят из единиц, соответствующих формуле (VI):
Figure 00000015

в которой
R1 обозначает водород или место присоединения такой же единицы по радикалу R7,
R2 обозначает водород или О-ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным выше,
R3 обозначает водород, карбонильную группу или место присоединения по радикалу R5 или R6 другой единицы,
R4 обозначает алкильный радикал или ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным выше,
R5 обозначает водород или место присоединения другой единицы по радикалу R3, непосредственно или через углеродную группу (метиленовую, метилметиновую),
R6 обозначает водород или место присоединения другой единицы по радикалу R3, непосредственно или через углеродную группу (метиленовую, метилметиновую),
R7 обозначает алкильный радикал или ацильный радикал жирной кислоты растительного масла, обозначаемый радикалом R, описанным в п.8, или место присоединения такой же единицы по радикалу R1,
и диастереоизомерам и региоизомерам этих единиц.
7. Композиция по п.6, отличающаяся тем, что указанные производные являются производными димера катехина (ВЗ) и тримера эпикатехина (С2) формул (VII) и (VIII):
Figure 00000016
8. Композиция по п.1, отличающаяся тем, что указанные производные соответствуют стабилизированным и алкилированным производным растительных экстрактов.
9. Композиция по п.8, отличающаяся тем, что указанные растительные экстракты представляют собой экстракты винограда, зеленого чая или чая из ферментированных листьев, сырых и обжаренных бобов какао, или сосны.
10. Композиция по п.9, отличающаяся тем, что указанные виноградные экстракты получены из виноградных косточек или виноградных выжимок.
11. Способ получения композиции по одному из пп.1-10, отличающийся тем, что он включает взаимодействие композиции полифенолов, образованных единицами, описанными в п.1:
на первой стадии, с алкилирующим агентом в условиях, приводящих к замещению водорода по меньшей мере 1 ОН-группы фенола на мономерную единицу, составляющую каждую молекулу, предпочтительно 1-2 групп, алкильной группой, и
на второй стадии, с ацилирующим агентом, в частности с ангидридом или хлорангидридом кислоты, в условиях, приводящих к замещению водорода в группах -ОН, оставшихся свободными после алкилирования, смесью ацильных радикалов -COR, высвобождаемых агентом ацилирования, причем R имеет значения, указанные в п.8.
12. Способ по п.11, отличающийся тем, что ацилирующий агент получают из растительного масла в соответствии со следующей процедурой:
омыление глицеридов растительного масла с последующим подкислением,
активация путем дегидратации в случае, когда ацилирующим агентом является ангидрид кислоты, или путем хлорирования в случае, когда используют хлорангидрид кислоты.
13. Косметическая композиция, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс, отличающаяся тем, что она содержит одну или несколько композиций производных полифенолов, по одному из пп.1-10, вместе с инертными носителями, подходящими для наружного нанесения, в количестве, эффективном для борьбы со старением кожи.
14. Композиция по п.13, отличающаяся тем, что она имеет форму, подходящую для введения топическим путем, такую как крем, мазь, эмульсия, гели, липосомы, лосьон.
15. Композиция по п.13 или 14, отличающаяся тем, что она содержит 0,5-5% активного вещества, предпочтительно 2-3%.
16. Применение композиции по одному из пп.1-10 в диетологии.
17. Применение по п.16, отличающееся тем, что указанную композицию добавляют в напитки, например во фруктовые соки, в тонизирующие напитки, молочные продукты и продукты их переработки, такие как масло, в жидкой форме или же в гранулированной или аналогичной форме, в виде гелей или паст, введенных, например, в кондитерские изделия, такие как фруктовые пасты, конфеты, жевательная резинка.
18. Композиция по одному из пп.1-10 для применения в качестве лекарственных средств, обладающих антиоксидантной и антирадикальной активностью и оказывающих эффект на карбонильный стресс.
19. Фармацевтическая композиция, обладающая антиоксидантной и антирадикальной активностью и оказывающая эффект на карбонильный стресс, отличающаяся тем, что она содержит терапевтически эффективное количество по меньшей мере одной композиции по одному из пп.1-10 вместе с фармацевтически приемлемым носителем.
20. Композиция по п.18 или 19, отличающаяся тем, что она имеет форму, подходящую, в частности, для введения пероральным, топическим или парентеральным путем.
21. Композиция по п.20, отличающаяся тем, что она имеет форму, подходящую для введения пероральным путем, такую как раствор, таблетка, желатиновая капсула или сироп.
22. Композиция по п.20, отличающаяся тем, что она имеет форму, подходящую для нанесения топическим путем, такую как крем, мазь, гели, лосьоны или пластырь.
23. Композиция по п.20, отличающаяся тем, что она имеет форму, подходящую для введения парентеральным путем, такую как стерильный или стерилизуемый раствор для инъекций.
RU2010123791/15A 2007-11-15 2008-11-17 Композиции производных флавоноидных полифенолов и их применение для борьбы с патологиями и со старением живых организмов RU2499596C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0708021 2007-11-15
FR0708021A FR2923718B1 (fr) 2007-11-15 2007-11-15 Compositions de derives polyphenoliques flavonoidiques et leurs applications pour lutter contre les pathologies et le vieillissement des organismes vivants
PCT/IB2008/054814 WO2009063439A1 (fr) 2007-11-15 2008-11-17 Compositions de dérivés polyphénoliques flavonoïdiques et leurs applications pour lutter contre les pathologies et le vieillissement des organismes vivants

Publications (2)

Publication Number Publication Date
RU2010123791A RU2010123791A (ru) 2011-12-20
RU2499596C2 true RU2499596C2 (ru) 2013-11-27

Family

ID=39472698

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010123791/15A RU2499596C2 (ru) 2007-11-15 2008-11-17 Композиции производных флавоноидных полифенолов и их применение для борьбы с патологиями и со старением живых организмов

Country Status (8)

Country Link
US (1) US20100266523A1 (ru)
EP (1) EP2219641A1 (ru)
JP (2) JP2011503171A (ru)
CN (1) CN101909618A (ru)
CA (1) CA2705838A1 (ru)
FR (1) FR2923718B1 (ru)
RU (1) RU2499596C2 (ru)
WO (1) WO2009063439A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112724114A (zh) * 2013-04-04 2021-04-30 斯法尔制药私人有限公司 表儿茶素及相关多酚
US10618933B2 (en) 2014-07-23 2020-04-14 Epirium Bio Inc. Hydroxysteroid compounds, their intermediates, process of preparation, composition and uses thereof
KR101722429B1 (ko) * 2015-04-27 2017-04-04 강원대학교산학협력단 메틸화카테킨을 유효성분으로 함유하는 항피부노화용 조성물
EP3472176B1 (en) 2016-06-21 2024-05-15 Sphaera Pharma Pvt. Ltd. Utility of (+) epicatechin and their analogs
CN108624308B (zh) * 2018-04-02 2019-02-26 中国石油大学(北京) 仿生润滑剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778663A1 (fr) * 1998-05-15 1999-11-19 Coletica Nouveaux esters de flavonoides,leur utilisation en cosmetique, dermopharmacie, en pharmacie et en agro-alimentaire
FR2893026A1 (fr) * 2005-11-08 2007-05-11 Polaris Soc Par Actions Simpli Nouveaux derives polyphenoliques liposolubles et leur utilisation comme antioxidants

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617304B2 (ja) * 1982-09-09 1994-03-09 理化学研究所 制癌剤
FR2543550B1 (fr) * 1983-04-01 1985-08-09 Cortial Nouveaux derives de la tetrahydroxy-3', 4',5,7 flavone, leur methode de preparation et leur emploi therapeutique
JPS6025923A (ja) * 1983-07-22 1985-02-08 Otsuka Pharmaceut Co Ltd 5−リポキシゲナ−ゼ阻害剤
JP3165279B2 (ja) * 1993-03-29 2001-05-14 三井農林株式会社 3−アシル化カテキンを含有する油溶性抗酸化剤
FR2706478B1 (fr) * 1993-06-14 1995-09-08 Ovi Sa Compositions de dérivés phénoliques, leur préparation et leurs applications comme anti-oxydants.
CA2175985A1 (en) * 1995-05-10 1996-11-11 Yoichi Kiyosuke Pharmaceutical composition containing substance inhibiting hsp47 production
US7015338B1 (en) * 1999-04-15 2006-03-21 Mars Incorporated Synthetic methods for preparing procyanidin oligomers
JP2004307362A (ja) * 2003-04-03 2004-11-04 Wakayama Prefecture 水不溶性タンニン誘導体およびその製造方法
EP1636204A1 (en) * 2003-06-20 2006-03-22 Cognis France, S.A.S. ESTERS OF FLAVONOIDS WITH w-SUBSTITUTED C6-C22 FATTY ACIDS
US20070128299A1 (en) * 2004-02-06 2007-06-07 Asahi Soft Drinks Co., Ltd. Functional beverage and composition
KR20070097121A (ko) * 2005-01-26 2007-10-02 산또리 가부시키가이샤 카테킨류의 에스테르화물, 그 제조 방법, 및 그에스테르화물을 함유하는 음식품 혹은 화장품
KR20130128017A (ko) * 2005-02-25 2013-11-25 고쿠리츠다이가쿠호진 나가사키다이가쿠 프로안토시아니딘 올리고머의 제조방법
JP2007070338A (ja) * 2005-08-12 2007-03-22 Kyushu Univ 血圧調整剤及びこの血圧調整剤を含有した医薬品
JP2007291040A (ja) * 2006-04-27 2007-11-08 Hamamatsu Kagaku Gijutsu Kenkyu Shinkokai 4位−カテコールエストロゲン生成阻害剤
US20090130128A1 (en) * 2007-08-17 2009-05-21 Alberte Randall S Antiinfective Proanthocyanidin Compounds and Methods of Use Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2778663A1 (fr) * 1998-05-15 1999-11-19 Coletica Nouveaux esters de flavonoides,leur utilisation en cosmetique, dermopharmacie, en pharmacie et en agro-alimentaire
FR2893026A1 (fr) * 2005-11-08 2007-05-11 Polaris Soc Par Actions Simpli Nouveaux derives polyphenoliques liposolubles et leur utilisation comme antioxidants

Also Published As

Publication number Publication date
JP2014141519A (ja) 2014-08-07
FR2923718B1 (fr) 2009-12-18
CA2705838A1 (fr) 2009-05-22
JP2011503171A (ja) 2011-01-27
US20100266523A1 (en) 2010-10-21
RU2010123791A (ru) 2011-12-20
CN101909618A (zh) 2010-12-08
FR2923718A1 (fr) 2009-05-22
WO2009063439A1 (fr) 2009-05-22
EP2219641A1 (fr) 2010-08-25

Similar Documents

Publication Publication Date Title
RU2491063C2 (ru) Композиции производных стильбеновых полифенолов и их применение для борьбы с патологиями и со старением живых организмов
DK1734949T3 (en) Remediation of ellagitannins
RU2499596C2 (ru) Композиции производных флавоноидных полифенолов и их применение для борьбы с патологиями и со старением живых организмов
JP2013528574A (ja) 安定化ポリフェノール誘導体、その生産方法、及びその使用
KR101460569B1 (ko) 진세노사이드 f2를 유효 성분으로 포함하는 주름개선, 피부미백 및 여드름 개선용 화장료 조성물
KR101220494B1 (ko) 맥문동 종자 추출물을 포함하는 미백용 화장료 조성물
KR20110019324A (ko) 복분자유 조성물, 이의 용도 및 제조방법
KR20170003828A (ko) 홍자단 추출물을 포함하는 항산화 또는 항염증 조성물
KR102000550B1 (ko) 신갈나무 화분으로부터 분리된 폴리아민계 화합물을 함유하는 미백용 조성물
JP2011503171A5 (ru)
WO2004103988A1 (ja) 含硫プロアントシアニジンオリゴマー組成物及びその製造方法
J Wille et al. Bioactives derived from ripe corn tassels: A possible new natural skin whitener, 4-hydroxy-1-oxindole-3-acetic acid
KR20160030658A (ko) 줄의관말 추출물을 유효성분으로 함유하는 자외선에 대한 피부세포 보호용 또는 치료용 조성물
KR101963841B1 (ko) 신갈나무 화분으로부터 분리된 폴리아민계 화합물을 함유하는 항산화용 조성물
KR100706282B1 (ko) 항산화 활성을 갖는 마름 추출물을 포함하는 조성물
US20080267894A1 (en) Acerola Fruit-Derived Pectin and Its Application
KR20200038114A (ko) 분갈 추출물 또는 이로부터 유래된 화합물을 포함하는 피부 개선용 조성물
KR101430350B1 (ko) 데카이스니아 인시그니스 추출물을 포함하는 항산화 또는 항염증 조성물
KR101309114B1 (ko) 콩버섯으로부터 분리한 아이소인돌리논 계열의 항산화 화합물 및 이의 분리방법
KR100262383B1 (ko) 베타그루코갈린 화합물의 항산화제로서의 용도 및 그의분리, 정제방법
KR20170045770A (ko) 오스만투스 마츠무라누스 추출물을 포함하는 항산화 또는 항염증 조성물
KR20090087208A (ko) 신규 크라이토싸이빈 유도체, 이의 제조방법 및 이를유효성분으로 함유하는 노화방지용 조성물
KR970010460B1 (ko) 5-(3-(2,4-디히드록시페닐)프로필)-3,4-비스(3-메틸-2-부테닐)-1,2-벤젠디올의 분리방법 및 그를 함유하는 조성물
KR20240013514A (ko) 바위수국 추출물을 이용한 피부 주름 개선 및 항산화용 조성물
KR101430353B1 (ko) 아르디시아 아르보레센스 추출물을 포함하는 항산화 또는 항염증 조성물

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151118