RU2491320C2 - Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со - Google Patents
Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со Download PDFInfo
- Publication number
- RU2491320C2 RU2491320C2 RU2006130871/04A RU2006130871A RU2491320C2 RU 2491320 C2 RU2491320 C2 RU 2491320C2 RU 2006130871/04 A RU2006130871/04 A RU 2006130871/04A RU 2006130871 A RU2006130871 A RU 2006130871A RU 2491320 C2 RU2491320 C2 RU 2491320C2
- Authority
- RU
- Russia
- Prior art keywords
- working
- microchannel
- catalyst
- product
- heat exchange
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 155
- 239000011541 reaction mixture Substances 0.000 title claims abstract description 70
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 50
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 16
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 173
- 239000000047 product Substances 0.000 claims abstract description 120
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 38
- 238000012546 transfer Methods 0.000 claims abstract description 38
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 13
- 150000001338 aliphatic hydrocarbons Chemical group 0.000 claims abstract description 10
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 4
- 229910052751 metal Inorganic materials 0.000 claims description 45
- 239000002184 metal Substances 0.000 claims description 45
- 239000000203 mixture Substances 0.000 claims description 44
- 239000000758 substrate Substances 0.000 claims description 33
- 229910052702 rhenium Inorganic materials 0.000 claims description 30
- 239000011148 porous material Substances 0.000 claims description 28
- 230000003197 catalytic effect Effects 0.000 claims description 27
- 239000012530 fluid Substances 0.000 claims description 24
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 23
- 229930195733 hydrocarbon Natural products 0.000 claims description 20
- 239000007788 liquid Substances 0.000 claims description 19
- 239000002826 coolant Substances 0.000 claims description 18
- 150000002430 hydrocarbons Chemical class 0.000 claims description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 15
- 229910052759 nickel Inorganic materials 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 13
- 229910052742 iron Inorganic materials 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 12
- 229910052707 ruthenium Inorganic materials 0.000 claims description 12
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 11
- 239000006260 foam Substances 0.000 claims description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000001354 calcination Methods 0.000 claims description 10
- 239000011651 chromium Substances 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 239000007787 solid Substances 0.000 claims description 10
- 239000010959 steel Substances 0.000 claims description 10
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 9
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 9
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 229910052727 yttrium Inorganic materials 0.000 claims description 8
- 239000004215 Carbon black (E152) Substances 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 7
- 239000010453 quartz Substances 0.000 claims description 7
- 230000001172 regenerating effect Effects 0.000 claims description 7
- 239000010703 silicon Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910001369 Brass Inorganic materials 0.000 claims description 6
- 229910000792 Monel Inorganic materials 0.000 claims description 6
- 239000010951 brass Substances 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 6
- 229910001026 inconel Inorganic materials 0.000 claims description 6
- 229910052700 potassium Inorganic materials 0.000 claims description 6
- 229910052708 sodium Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- 229920000742 Cotton Polymers 0.000 claims description 5
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052792 caesium Inorganic materials 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 238000004517 catalytic hydrocracking Methods 0.000 claims description 5
- 239000002283 diesel fuel Substances 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 claims description 5
- 239000000835 fiber Substances 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052749 magnesium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 229910052762 osmium Inorganic materials 0.000 claims description 5
- 229910052701 rubidium Inorganic materials 0.000 claims description 5
- 238000000629 steam reforming Methods 0.000 claims description 5
- 229910052712 strontium Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 239000003426 co-catalyst Substances 0.000 claims description 4
- 239000011152 fibreglass Substances 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- 229910052768 actinide Inorganic materials 0.000 claims description 3
- 150000001255 actinides Chemical class 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 3
- 150000002602 lanthanoids Chemical class 0.000 claims description 3
- 239000010687 lubricating oil Substances 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 2
- 229910000278 bentonite Inorganic materials 0.000 claims description 2
- 239000000440 bentonite Substances 0.000 claims description 2
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 2
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 2
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 2
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 2
- 238000011065 in-situ storage Methods 0.000 claims description 2
- 239000002808 molecular sieve Substances 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 2
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 claims description 2
- 239000013307 optical fiber Substances 0.000 claims 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 claims 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 claims 1
- 239000013067 intermediate product Substances 0.000 claims 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims 1
- 229910052814 silicon oxide Inorganic materials 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 85
- 239000000243 solution Substances 0.000 description 21
- 230000008569 process Effects 0.000 description 18
- 238000005470 impregnation Methods 0.000 description 17
- 229910052799 carbon Inorganic materials 0.000 description 15
- -1 C 3 hydrocarbons Chemical class 0.000 description 13
- 229910052738 indium Inorganic materials 0.000 description 11
- 238000001816 cooling Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- 239000013529 heat transfer fluid Substances 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 7
- 238000004438 BET method Methods 0.000 description 5
- 229910017052 cobalt Inorganic materials 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 5
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 5
- 238000005755 formation reaction Methods 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000001993 wax Substances 0.000 description 5
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 229910052776 Thorium Inorganic materials 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 239000012047 saturated solution Substances 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000002453 autothermal reforming Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000012876 carrier material Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000002309 gasification Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 239000006262 metallic foam Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- MHCVCKDNQYMGEX-UHFFFAOYSA-N 1,1'-biphenyl;phenoxybenzene Chemical compound C1=CC=CC=C1C1=CC=CC=C1.C=1C=CC=CC=1OC1=CC=CC=C1 MHCVCKDNQYMGEX-UHFFFAOYSA-N 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011551 heat transfer agent Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001960 metal nitrate Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/332—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0093—Microreactors, e.g. miniaturised or microfabricated reactors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/75—Cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8896—Rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/34—Apparatus, reactors
- C10G2/341—Apparatus, reactors with stationary catalyst bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00783—Laminate assemblies, i.e. the reactor comprising a stack of plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00822—Metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00824—Ceramic
- B01J2219/00826—Quartz
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00831—Glass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00835—Comprising catalytically active material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00819—Materials of construction
- B01J2219/00844—Comprising porous material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00851—Additional features
- B01J2219/00858—Aspects relating to the size of the reactor
- B01J2219/0086—Dimensions of the flow channels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00781—Aspects relating to microreactors
- B01J2219/00873—Heat exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/615—100-500 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/633—Pore volume less than 0.5 ml/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/63—Pore volume
- B01J35/635—0.5-1.0 ml/g
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4018—Spatial velocity, e.g. LHSV, WHSV
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/4025—Yield
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/10—Lubricating oil
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/582—Recycling of unreacted starting or intermediate materials
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
Abstract
Изобретение относится к способу осуществления синтеза Фишера-Тропша по превращению реакционной смеси, содержащей Hи CO, в продукт, содержащий по меньшей мере один алифатический углеводород, имеющий по меньшей мере 5 атомов углерода. Способ включает сначала пропускание реакционной смеси через микроканальный реактор с группой рабочих микроканалов, содержащих контактирующий катализатор Фишера-Тропша, который содержит Со, нанесенный на носитель, в количестве по меньшей мере 25 мас.%. Затем осуществление теплопереноса от рабочих микроканалов к теплообменнику, после чего отвод получаемого продукта от микроканального реактора, при этом обеспечивают объемную скорость потока реакционной смеси и продукта через рабочие микроканалы по меньшей мере 1000 чи в результате получают по меньшей мере 0,5 грамма алифатического углеводорода, имеющего по меньшей мере 5 атомов углерода, на грамм катализатора в час, с селективностью по метану в продукте менее чем приблизительно 25%. Использование предлагаемого способа позволяет получить высокие уровни конверсии CO и высокие уровни селективности по желаемому продукту. 78 з.п. ф-лы, 4 пр., 18 ил.
Description
Область изобретения
Данное изобретение относится к способу проведения синтеза Фишера-Тропша с использованием микроканальной технологии, новому катализатору и микроканальному реактору. Катализатор и реактор пригодны для осуществления синтеза Фишера-Тропша.
Уровень техники
Реакция Фишера-Тропша включает превращение реакционной смеси, состоящей из H2 и CO, в алифатические углеводороды в присутствие катализатора. Реакционная смесь может содержать поток продуктов из другого реакционного процесса, например, парового реформинга (поток продуктов H2/CO~3), парциального окисления (поток продуктов H2/CO~2), автотермического реформинга (поток продуктов H2/CO ~ 2.5), реформинга CO2 (поток продуктов H2/CO ~ 1), газификации угля (поток продуктов H2/CO ~ 1), или их сочетания. Алифатические углеводородные продукты могут варьироваться от метана до парафинов, имеющих до 100 атомов углерода или более.
В заявке WO 2002/064248 раскрывается составной реактор, который содержит по меньшей мере одну камеру для проведения экзотермической реакции и/или по меньшей мере одну камеру для проведения эндотермической реакции. Указанные камеры могут прилегать друг к другу, либо одна из указанных камер может включать в себя другую камеру. Авторы указанного изобретения предполагают решить проблемы с теплоотводом от камер реакторов.
В заявке US 2003/0116503 раскрывается использование углеродных нанотрубок в качестве подложки для катализатора. Указанные нанотрубки могут использоваться в различных химических процессах.
В патенте US 6,558,634 раскрывается использование кобальта в сочетании с рутением в качестве катализатора реакции Фишера-Тропша. Катализатора на основе кобальта используется не более 15 масс.%.
В заявке US 2003/0219903 раскрывается реактор, содержащий трапецевидные каналы. Данный реактор может содержать до 20 масс.% катализатора на основе кобальта. Низкое содержание кобальта не позволяет достичь высокой конверсии CO в реакции Фишера-Тропша.
В обычных реакторах, таких как трубчатые реакторы с неподвижным слоем и суспензионные реакторы, имеют место различные проблемы с тепло- и массопереносом, приводящие к ограничениям в выборе условий проведения реакций Фишера-Тропша. Участки перегрева в реакторах с неподвижным слоем значительно активизируют образование метана, уменьшают селективность по тяжелым углеводородам и деактивируют катализатор, С другой стороны, существенное сопротивление массопереносу, свойственное жидкостным системам с суспендированным катализатором, обычно снижает эффективную скорость реакции, а также вызывает сложности при отделении катализатора от продуктов. Настоящее изобретение предлагает решение этих проблем.
Данное изобретение относится к способу проведения синтеза Фишера-Тропша в мультиканальном реакторе, при котором увеличена конверсия CO за один проход в реакторе и снижена селективность по метану. С помощью изобретенного способа снижена тенденция к образованию мест перегрева в микроканальном реакторе. Это уменьшение тенденции к образованию мест перегрева, вероятно, хотя бы отчасти, обусловлено тем, что микроканальный реактор дает возможность улучшить параметры теплопереноса и более точно контролировать температуры и времена пребывания по сравнению с известными ранее способами без применения микроканальных реакторов. Данный способ позволяет получить высокие уровни конверсии CO и высокие уровни селективности по желаемому продукту (например, углеводороды из диапазона средних дистиллятов) по сравнению с известными ранее. Предложен новый катализатор, а также конструкция нового микроканального реактора.
Раскрытие изобретения
Настоящее изобретение относится к способу преобразования реакционной смеси, состоящей из H2 и CO, в продукт, содержащий по меньшей мере один алифатический углеводород, имеющий по меньшей мере 5 атомов углерода, причем способ включает: пропускание реакционной смеси через микроканальный реактор, при контакте с катализатором Фишера-Тропша с превращением реакционной смеси в продукт, причем микроканальный реактор состоит из группы рабочих микроканалов, содержащих катализатор; перенос тепла от рабочих микроканалов к теплообменнику; и отвод продукта от микроканального реактора; в результате способа получают по меньшей мере 0,5 грамма алифатического углеводорода, имеющего по меньшей мере 5 атомов углерода на грамм катализатора в час; селективность по метану в продукте составляет менее приблизительно 25%.
В одном варианте воплощения теплообменник содержит некоторое количество теплообменных каналов, смежных с рабочими микроканалами. В одном варианте воплощения теплообменные каналы являются микроканалами.
В одном варианте воплощения изобретение относится к катализатору, содержащему Co, нанесенный на оксид алюминия, причем содержание Co составляет, по меньшей мере, приблизительно 25 мас.%, с дисперсией Co по меньшей мере приблизительно 3%. Данный катализатор может также содержать Re, Ru или их смесь.
В одном варианте воплощения изобретение относится к катализатору, содержащему Co и носитель, катализатор приготовлен в результате осуществления следующих стадий: (А) пропитки носителя композицией, содержащей Co, для получения промежуточного каталитического продукта; (Б) обжига промежуточного каталитического продукта, полученного на стадии (А); (В) пропитки промежуточного каталитического продукта, полученного на стадии (Б) композицией содержащей Co, для получения другого промежуточного каталитического продукта; и (Г) обжига другого каталитического продукта, полученного на стадии (В), с образованием катализатора, содержащего по меньшей мере приблизительно 25 мас.% Co. Используемая на стадии (А) композиция, содержащая может быть той же самой или отличной от композиции, содержащей Co, используемой на стадии (В). Носитель может содержать оксид алюминия.
В одном варианте воплощения изобретение касается микроканального реактора, содержащего: по меньшей мере один рабочий микроканал, причем рабочий микроканал имеет вход и выход; и по меньшей мере одну теплообменную зону, смежную с рабочим микроканалом, причем теплообменная зона содержит группу теплообменных каналов, которые располагаются под прямым углом относительно продольного направления рабочего микроканала; теплообменная зона располагается продольно в том же направлении, что и рабочий микроканал, и находится рядом с входом в рабочий микроканал; длина теплообменной зоны меньше длины рабочего микроканала; ширина рабочего микроканала на выходе или вблизи выхода из рабочего микроканала больше, чем ширина рабочего микроканала на входе или вблизи входа в рабочий микроканал. В одном варианте воплощения, по меньшей мере одна теплообменная зона содержит первую теплообменную зону и вторую теплообменную зону, причем длина второй теплообменной зоны меньше длины первой теплообменной зоны.
Краткое описание чертежей
В приложенных чертежах одинаковые детали и элементы имеют одинаковые обозначения.
На Фиг.1 представлено схематическое изображение микроканала, который можно использовать в рамках изобретенного способа.
На Фиг.2 представлена схема, иллюстрирующая изобретенный способ проведения синтеза Фишера-Тропша определенным образом, при котором реакционная смесь, состоящая из CO и H2, проходит через микроканальный реактор, контактируя с катализатором, и реагирует с образованием продукта, содержащего по меньшей мере один алифатический углеводород.
На Фиг.3 представлено схематическое изображение слоя рабочих микроканалов и слоя теплообменных микроканалов, которые могут быть использованы в активной зоне микроканального реактора, изображенного на Фиг.2.
На Фиг.4 представлено схематическое изображение рабочего микроканала и смежной теплообменной зоны, которые могут быть использованы в активной зоне микроканального реактора, изображенного на Фиг.2, теплообменная зона содержит группу теплообменных каналов, расположенных параллельно друг другу под прямым углом к продольному направлению рабочего микроканала, причем поток теплообменной текучей среды через теплообменные каналы направлен перпендикулярно по отношению к потоку реакционной смеси и продукта в рабочем микроканале.
На Фиг.5 представлено схематическое изображение рабочего микроканала и смежного теплообменного канала, которые могут быть использованы в активной зоне микроканального реактора, изображенного на Фиг.2, причем поток теплообменной текучей среды в теплообменных каналах направлен в противоположную сторону по отношению к потоку реакционной смеси и продукта в рабочем микроканале.
На Фиг.6 представлено схематическое изображение рабочего микроканала и смежной теплообменной зоны, которые могут быть использованы в активной зоне микроканального реактора, изображенного на Фиг.2, причем теплообменная зона содержит некоторое количество теплообменных каналов, расположенных параллельно друг другу под прямым углом продольному направлению рабочего микроканала, теплообменная зона расположена в том же направлении по отношению к рабочему микроканалу и находится на входе или вблизи входа в рабочий микроканал, длина теплообменной зоны меньше длины рабочего микроканала.
На Фиг.7 представлено схематическое изображение рабочего микроканала и первой и второй смежных теплообменных зон, которые могут быть использованы в активной зоне микроканального реактора, изображенного на Фиг.2, причем каждая теплообменная зона содержит некоторое количество теплообменных каналов, расположенных параллельно друг другу под прямым углом к продольному направлению рабочего микроканала, теплообменная зона расположена в том же направлении по отношению к рабочему микроканалу и находится на входе или вблизи входа в рабочий микроканал, длина первой теплообменной зоны меньше длины рабочего микроканала, длина второй теплообменной зоны меньше длины первой теплообменной зоны.
На Фиг.8 представлено схематическое изображение рабочего микроканала, который можно использовать в рамках способа по изобретению, причем рабочий микроканал содержит катализатор, имеющий конфигурацию, не допускающую сквозное пропускание потока (обтекаемая конфигурация).
На Фиг.9 представлено схематическое изображение рабочего микроканала, который можно использовать в рамках изобретенного способа, причем рабочий микроканал содержит катализатор, имеющий конфигурацию, допускающую сквозное пропускание потока (проточная конфигурация).
На Фиг.10 представлено схематическое изображение рабочего микроканала, который можно использовать в рамках способа по изобретению, причем рабочий микроканал включает узел ребер, состоящий из группы ребер, а катализатор по настоящему изобретению нанесен на ребра.
На Фиг.11 изображен альтернативный вариант воплощения рабочего микроканала и узла ребер, изображенных на Фиг.10.
На Фиг.12 изображен другой альтернативный вариант воплощения рабочего микроканала и узла ребер, изображенных на Фиг.10.
На Фиг.13 представлен график зависимости объема пор и площади поверхности от содержания кобальта, полученный в Примере 1.
На Фиг.14-17 представлены графики, иллюстрирующие результаты синтезов Фишера-Тропша, проведенных в Примере 3.
На Фиг.18 представлен график, иллюстрирующий различие в активностях и селективностях Фишера-Тропша для катализаторов, полученных в Примере 4 с промежуточными обжигами и без.
Осуществление изобретения
Термин "микроканал" в данном описании и формуле изобретения означает канал, характеризующийся по меньшей мере одним внутренним размером - высотой или шириной, не превышающей приблизительно 10 мм, в одном варианте воплощения настоящего изобретения вплоть до приблизительно 5 мм, в еще одном варианте вплоть до приблизительно 2 мм и в другом варианте вплоть до приблизительно 1 мм. Протекание текучей среды через микроканал может проходить вдоль длины микроканала, перпендикулярно высоте или ширине микроканала. Пример микроканала, который возможно использовать в рамках изобретенного способа в качестве рабочего микроканала и/или теплообменного микроканала, представлен на Фиг.1. Микроканал 10, представленный на Фиг.1, характеризуется высотой (h), шириной (w) и длиной (l). Текучая среда протекает через микроканал 10 вдоль длины микроканала в направлениях, показанных стрелками 12 и 14. Высота (h) или ширина (w) микроканала может варьироваться от приблизительно 0,05 до приблизительно 10 мм, в еще одном варианте от приблизительно 0,05 до приблизительно 5 мм, в другом варианте от приблизительно 0,05 до приблизительно 2 мм, в еще одном варианте от приблизительно 0,05 до приблизительно 1,5 мм, в другом варианте от приблизительно 0,05 мм до приблизительно 1 мм, в другом варианте от приблизительно 0,05 до приблизительно 0,75 мм и в еще одном варианте от приблизительно 0,05 мм до приблизительно 0,5 мм. Другой размер, высота или ширина, может быть любым, например, до приблизительно 3 метров, и в одном варианте воплощения от приблизительно 0.01 до приблизительно 3 метров, и в одном варианте воплощения от приблизительно 0.1 до приблизительно 3 метров. Длина (l) микроканала может быть любой, например, до приблизительно 10 метров, и в одном варианте воплощения от приблизительно 0,2 до приблизительно 10 метров, и в одном варианте воплощения от приблизительно 0,2 до приблизительно 6 метров, и в одном варианте воплощения от приблизительно 0,2 до приблизительно 3 метров. Хотя сечение микроканала 10, изображенного на Фиг.1, прямоугольное, следует понимать, что микроканал может иметь сечение произвольной формы, например, квадратной, круглой, полукруглой, трапециевидной и т.д. Форма и размеры сечения микроканала могут изменяться по длине. Например, высота или ширина может сужаться вдоль длины микроканала от относительно большого размера до относительно маленького, или наоборот.
Термин "смежный", используемый при описании положения одного канала относительно другого, применяется по отношению к непосредственно прилегающим друг к другу каналам, разделенным стенкой. Такие стенки могут различаться по толщине. Однако, "смежные" каналы не разделяются промежуточным каналом для текучей среды, который будет влиять на теплообмен между каналами. В одном варианте воплощения один канал может быть смежным с другим каналом только на протяжении части размера другого канала. Например, рабочий микроканал может быть длиннее и продолжаться дальше за пределы одного или более теплообменных каналов.
Термин "текучая среда" означает газ, жидкость или газ или жидкость, содержащие диспергированные твердые частицы или капли жидкости.
Термин "время контактирования" означает объем реакционной зоны в микроканальном реакторе, деленный на объемную скорость потока композиции реагентов, при температуре 0°C и давлении 1 атм.
Термин "время обработки" означает внутренний объем пространства (например, реакционной зоны в микроканальном реакторе), который занимает текучая среда, проходящая через пространство, деленный на среднюю объемную скорость потока при использованных температуре и давлении.
Термин "реакционная зона" означает пространство внутри рабочего микроканала, в котором реагенты контактируют с катализатором.
Термин "конверсия CO" означает разность количества молей CO в реакционной смеси и продукте, деленную на количество молей CO в реакционной смеси.
Термин "селективность по метану" означает количество молей метана в продукте, деленное на количество молей метана плюс удвоенное количество молей C2 углеводородов у продукте, плюс утроенное количество молей C3 углеводородов в продукте, плюс учетверенное количество молей C4 углеводородов в продукте и т.д. до тех пор, пока все моли углеводородов в продукте не будут учтены.
Термин "конверсия CO за один проход" означает конверсию CO после одного прохода через микроканальный реактор, используемый в рамках способа по изобретению.
Термин "выход продукта" означает конверсию CO, умноженную на селективность по указанному продукту(-ам).
Термин "распределение металла" означает процент каталитически активных атомов металла и атомов промотора на поверхности катализатора по сравнению с общим количеством атомов металлов в катализаторе, полученный из измерений методом хемосорбции водорода, который описан в книге "Heterogeneous Catalysis in Industrial Practice," 2-е издание, Charles N. Satterfield, стр.139, McGraw Hill (1996), которая приведена в качестве ссылки.
В выражении "приблизительно 0,5 грамм алифатического углеводорода, имеющего по меньшей мере 5 атомов углерода, на грамм катализатора в час" вес или количество граммов катализатора означает общий вес катализатора, состоящего из каталитического металла (например, Co) или его оксида, возможно, со-катализатора (например, Re или Ru) и/или промотора (например, Na, K и т.п.), а также вес любого носителя (например, оксида алюминия). Однако, если катализатор нанесен на готовую структуру типа пены, войлока, ваты или ребра, вес таких готовых структур не учитывается при расчете веса или количества граммов катализатора. Аналогично, если катализатор нанесен на стенки микроканала, вес стенок микроканала не учитывается при расчете.
Термин "содержание Co" означает вес Co в катализаторе, деленный на общий вес катализатора, т.е. общий вес Co плюс любого со-катализатора или промотора, а также носителя. Если катализатор нанесен на готовую структуру типа пены, войлока, ваты или ребра, вес таких производственных структур не учитывается при расчете. Аналогично, если катализатор нанесен на стенки микроканала, вес стенок микроканала не учитывается при расчете.
В соответствие с Фиг.2, способ можно осуществить с использованием микроканального реактора 100, который содержит активную зону 102 микроканального реактора, входной коллектор 104 реагентов, выходной коллектор 106 продуктов, входной коллектор 108 теплоносителя, выходной коллектор 110 теплоносителя. Активная зона микроканального реактора 102 содержит узел рабочих микроканалов и узел теплообменных каналов, смежных с рабочими микроканалами. Теплообменные каналы могут являться микроканалами. Рабочие микроканалы и теплообменные каналы могут быть расположены слоями один над другим или в ряд параллельно друг другу. Катализатор Фишера-Тропша находится внутри рабочих микроканалов. Рабочий входной коллектор 104 позволяет текучей среде затекать в рабочие микроканалы с равномерным или в значительной степени равномерным распределением потока по рабочим микроканалам. Рабочий выходной коллектор 106 позволяет текучей среде вытекать из рабочих микроканалов с относительно высокой скоростью потока. Реакционная смесь протекает в микроканальный реактор 100 через реакционный входной коллектор 104, как обозначено указывающей направление стрелкой 112. Реакционная смесь может быть предварительно разогрета перед попаданием в реакционный входной коллектор 104. Реакционная смесь протекает через рабочие микроканалы в активной зоне 102 микроканального реактора, контактируя с катализатором, и реагирует с образованием желаемого продукта. В одном варианте воплощения протекание реакционной смеси и продукта через центр 102 реактора происходит в вертикальном направлении из верхней части центра 102 реактора к его дну. Продукт, и в одном варианте воплощения не прореагировавшие компоненты реакционной смеси, вытекают из активной зоны реактора 102 через выходной коллектор 106 продуктов в направлении, указанном стрелкой 114. Хотя преимуществом изобретенного способа является возможность достичь высокого уровня конверсии CO за один проход через рабочие микроканалы, в одном варианте воплощения не прореагировавшие компоненты реакционной смеси или их часть можно рециклировать повторно через рабочие микроканалы в контакте с катализатором. Не прореагировавшие компоненты реакционной смеси, рециклируемые через рабочие микроканалы, можно рециклировать любое число раз, например, один, два, три, четыре раза и т.д. Поток теплоносителя поступает во входной коллектор 108 теплоносителя в направлении, указанном стрелкой 116, и от входного коллектора 108 теплоносителя поступает через теплообменные каналы в активной зоне 102 микроканального реактора к выходному коллектору 110 теплоносителя и из выходного коллектора 110 теплоносителя в направлении, указанном стрелкой 118. Микроканальный реактор 100 применяется в сочетании с емкостями для хранения, насосами, кранами, приборами для контроля потока и подобными элементами, которые не показаны на чертежах, но очевидны для специалистов в данной области техники.
В одном варианте воплощения активная зона 102 микроканального реактора может содержать слои рабочих микроканалов и теплообменных микроканалов, размещенных в ряд параллельно друг другу. Пример таких слоев микроканалов представлен на Фиг.3. В соответствии с Фиг.3, слои 130 рабочих микроканалов и слои 150 теплообменных микроканалов сложены параллельно друг другу, образуя блок 170 в виде повторяющихся элементов. Слой микроканалов 130 обеспечивает протекание реагентов и продукта. Слой микроканалов 150 обеспечивает протекание теплообменной текучей среды.
Слой 130 микроканалов состоит из группы микроканалов 132, размещенных параллельно друг другу, причем каждый рабочий микроканал 132 расположен вертикально вдоль длины слоя 130 микроканалов от края 134 до края 136, и рабочие микроканалы 132 расположены вдоль ширины слоя 130 микроканалов от края 138 до края 140. Скрепляющие планки 142 и 144 расположены на краях 138 и 140, соответственно, слоя 130 микроканалов для скрепления слоя 130 микроканалов со следующим смежным слоем 150 микроканалов. Катализатор находится внутри рабочих микроканалов 132. Протекание реагентов и продукта через рабочие микроканалы 132 возможно в направлении, обозначенном стрелками 146 и 148. Сечение каждого из рабочих микроканалов 132 может быть произвольной формы, например, квадратной, прямоугольной, круглой, полукруглой и т.д. Внутренней высотой каждого рабочего микроканала 132 можно считать вертикальное или горизонтальное расстояние или промежуток между слоем 130 микроканалов и следующим смежным теплообменным слоем 150. Внутренняя высота каждого рабочего микроканала 132 может достигать приблизительно 10 мм, и в одном варианте воплощения приблизительно 6 мм, в другом варианте воплощения приблизительно 4 мм, в другом варианте воплощения приблизительно 2 мм. В одном варианте воплощения высота может находиться в интервале от приблизительно 0,05 до приблизительно 10 мм, в одном варианте воплощения от приблизительно 0,05 до приблизительно 6 мм, в одном варианте воплощения от приблизительно 0,05 до приблизительно 4 мм, в одном варианте воплощения от приблизительно 0,05 до приблизительно 2 мм. Ширина каждого из рабочих микроканалов может быть любого размера, например до приблизительно 3 метров, и в одном варианте воплощения от приблизительно 0,01 до приблизительно 3 метров, и в одном варианте воплощения от приблизительно 0,1 до приблизительно 3 метров. Длина каждого из рабочих микроканалов 132 может быть любой величины, например, до приблизительно 10 метров, в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 10 метров, в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 6 метров, и в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 3 метров.
Слой 150 микроканалов содержит группу теплообменных микроканалов 152, размещенных параллельно друг другу, причем каждый из теплообменных микроканалов 152 расположен горизонтально вдоль ширины слоя 150 микроканалов от края 154 до края 156, теплообменные микроканалы 152 расположены вдоль длины слоя микроканалов 150 от края 158 до края 160 слоя микроканалов 150. Скрепляющие планки 162 и 164 расположены на краях 154 и 156, соответственно, слоя 150 микроканалов для скрепления слоя 150 микроканалов со следующим смежным слоем 130 микроканалов. Теплообменная текучая среда может протекать через теплообменные микроканалы 152 в направлении, указанном стрелками 166 и 168. Поток теплообменной текучей среды в направлении, указанном стрелками 166 и 168, перпендикулярен потоку реагентов и продукта, протекающему через рабочие микроканалы 132, как обозначено стрелками 146 и 148. В качестве альтернативы, теплообменные микроканалы 152 могут быть ориентированы таким образом, чтобы теплообменная текучая среда протекала вдоль ширины слоя микроканалов 150 от края 158 до края 160 или от края 160 до края 158. Это приведет к тому, что теплообменная текучая среда будет протекать в направлении вдоль или против потока реагентов и продукта через рабочие микроканалы 132. Сечение каждого из теплообменных микроканалов 152 может быть любой формы, например, квадратной, прямоугольной, круглой, полукруглой и т.д. Внутренней высотой каждого из теплообменных микроканалов 152 можно считать вертикальное или горизонтальное расстояние или промежуток между слоем 150 теплообменных микроканалов и следующим смежным слоем 130 микроканалов. Высота каждого из теплообменных микроканалов 152 может достигать приблизительно 2 мм, и в одном варианте воплощения в интервале от приблизительно 0,05 мм до приблизительно 2 мм, и в одном варианте воплощения от приблизительно 0,05 мм до приблизительно 1,5 мм. Ширина каждого из этих микроканалов может быть любой величины, например, до приблизительно 3 метров, в еще одном варианте воплощения от приблизительно 0,01 до приблизительно 3 метров, в еще одном варианте воплощения от приблизительно 0,1 до приблизительно 3 метров. Длина каждого из теплообменных микроканалов 152 может быть любой величины, например, до приблизительно 10 метров, в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 10 метров, в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 6 метров, и в еще одном варианте воплощения от приблизительно 0,2 до приблизительно 3 метров.
В качестве альтернативы, рабочие микроканалы и теплообменные микроканалы могут быть расположены, как предусмотрено в повторяющемся элементе 170a. Повторяющийся элемент 170a представлен на Фиг.4. В соответствие с Фиг.4, рабочий микроканал 132 расположен смежно со слоем микроканалов 150, содержащим теплообменные микроканалы 152. Общая стенка 171 отделяет рабочий микроканал 132 от слоя теплообменных микроканалов 150. Катализатор 172 наполняет рабочий микроканал 132. Реакционная смесь поступает в слой катализатора 172 и проходит через него в рабочем микроканале 132 в направлении, указанном стрелкой 146, контактирует с катализатором 172 и вступает в реакцию с образованием желаемого продукта. Продукт, и в одном варианте воплощения не прореагировавшие компоненты реакционной смеси, выходят из рабочего микроканала 132, в направлении, указанном стрелкой 148. Теплоноситель проходит через теплообменные микроканалы 152 в направлении, перпендикулярном потоку реакционной смеси и продукта через рабочий микроканал 132.
В качестве альтернативы, рабочие микроканалы и теплообменные микроканалы могут быть расположены так, как предусмотрено в повторяющемся элементе 170b. Повторяющийся элемент 170b, представленный на Фиг.5, идентичен повторяющемуся элементу 170а, изображенному на Фиг.4, с тем отличием, что слой микроканалов 150 развернут на 90°, а теплоноситель протекает через теплообменный микроканал 152 в направлении, обозначенном стрелками 166a и 168a, направленными против потока реакционной смеси и продукта через рабочий микроканал 132. В качестве альтернативы, теплообменная текучая среда может протекать в направлении, обратном обозначенному стрелками 166a и 168a, таким образом, в этом случае поток теплоносителя в теплообменном микроканале 152 протекает в том же направлении, что и поток реакционной смеси и продукта через рабочий микроканал 132.
В качестве альтернативы, рабочие микроканалы и теплообменные микроканалы могут быть расположены так, как предусмотрено в повторяющемся элементе 170c. Повторяющийся элемент 170c представлен на Фиг.6. В соответствие с Фиг.6, рабочий микроканал 132а расположен смежно с теплообменной зоной 151. Теплообменная зона 151 содержит группу параллельных теплообменных микроканалов 152, размещенных параллельно друг другу, причем каждый из теплообменных микроканалов 152 расположен под прямым углом по отношению к направлению длины рабочего микроканала 132a. Теплообменная зона 151 по длине короче рабочего микроканала 132a. Теплообменная зона 151 расположена в продольном направлении от входа 134а в рабочий микроканал 132a или вблизи него до точки на рабочем микроканал 132a, расположенной до выхода 136а из рабочего микроканала 132a. В одном варианте воплощения, длина теплообменной зоны 151 достигает приблизительно 100% длины рабочего микроканала 132a, в еще одном варианте воплощения длина теплообменной зоны 151 составляет от приблизительно 5 до приблизительно 100% от длины рабочего микроканала 132a, в еще одном варианте воплощения длина теплообменной зоны 151 составляет от приблизительно 5 до приблизительно 50% от длины рабочего микроканала 132a, и в еще одном варианте воплощения длина теплообменной зоны составляет от приблизительно 50 до приблизительно 100% от длины рабочего микроканала 132а. Ширина рабочего микроканала 132a увеличивается в области ниже по ходу потока от края 153 теплообменной зоны 151. Такое расположение обеспечивает преимущественный теплообмен (т.е. охлаждение) на входе 134а в рабочий микроканал 132а или вблизи него, а также в областях рабочего микроканала ниже по ходу потока относительно входа. Катализатор 172 наполняет рабочий микроканал 132a. Реакционная смесь протекает через плотный слой катализатора 172 в рабочем микроканале 132a в направлении, обозначенном стрелкой 146, контактирует с катализатором 172 и вступает в реакцию с образованием желаемого продукта. Продукт, и в одном варианте воплощения не прореагировавшие компоненты реакционной смеси, выходит из рабочего микроканала 132a, в направлении, указанном стрелкой 148. Теплоноситель протекает через теплообменный микроканал 152 в направлении, перпендикулярном потоку реакционной смеси и продукта, через рабочий микроканал 132a.
В качестве альтернативы, рабочие микроканалы и теплообменные микроканалы могут быть расположены так, как предусмотрено в повторяющемся элементе 170d. Повторяющийся элемент 170d, изображенный на Фиг.7, идентичен повторяющемуся элементу 170c, изображенному на Фиг.6, с тем отличием, что повторяющийся элемент 170d содержит теплообменную зону 151а, смежную с рабочим микроканалом 132a на противоположной стороне рабочего микроканала 132a по отношению к теплообменной зоне 151. Теплообменная зона 151a содержит группу параллельных теплообменных микроканалов 152а, идентичных или аналогичных по размерам и конфигурации теплообменным микроканалам 152, описанным выше. Теплообменная зона 151a расположена в продольном направлении от входа 134a в рабочий микроканал 132a или вблизи него до точки на рабочем микроканале 132а, расположенной до края 153 теплообменной зоны 151. Теплообменная зона 151а по длине может быть короче теплообменной зоны 151. В одном варианте воплощения, длина теплообменной зоны 151а достигает приблизительно 100% длины рабочего микроканала 132a, в еще одном варианте воплощения длина теплообменной зоны 151a составляет от приблизительно 5 до приблизительно 100% от длины рабочего микроканала 132a, в еще одном варианте воплощения длина теплообменной зоны 151 составляет от приблизительно 5% до приблизительно 50% от длины рабочего микроканала 132а, и в еще одном варианте воплощения длина теплообменной зоны составляет от приблизительно 50% до приблизительно 100% от длины рабочего микроканала 132а. Ширина рабочего микроканала 132а увеличивается в области ниже по ходу потока от краев 153 и 153a теплообменных зон 151 и 151a, соответственно. Такое расположение обеспечивает преимущественный теплообмен (т.е. охлаждение) на входе 134а или вблизи него в рабочий микроканал 132a, а также в областях рабочего микроканала ниже по направлению потока от входа 134a. Использование двух теплообменных зон 151 и 151a позволяет достичь достаточно высокого уровня теплообмена в областях рабочего микроканала 132a вблизи входа, и относительно небольшого уровня теплообмена в рабочем микроканале 132а ниже по ходу потока от края 153a. Катализатор 172 размещен в рабочем микроканале 132a. Реакционная смесь протекает через слой катализатора 172 в рабочем микроканале 132a в направлении, обозначенном стрелкой 146, контактирует с катализатором 172 и вступает в реакцию с образованием желаемого продукта. Продукт, и в одном варианте воплощения не прореагировавшие компоненты реакционной смеси, выходят из рабочего микроканала 132a, как обозначено указывающей направление стрелкой 148. Теплоноситель протекает через теплообменный микроканалы 151 и 151a в направлении, перпендикулярном потоку реакционной смеси и продукта через рабочий микроканал 132a.
Слой катализатора может образовывать отдельные реакционные зоны в рабочих микроканалах в направлении потока через рабочие микроканалы. В каждой реакционной зоне длина одной или более смежных теплообменных зон может быть различной в различных направлениях. Например, в одном варианте воплощения длина одной или более теплообменных зон может быть менее приблизительно 50% от длины каждой реакционной зоны. В качестве альтернативы, одна или более теплообменных зон могут иметь длины более 50% от длины каждой реакционной зоны до приблизительно 100% длины каждой реакционной зоны.
Количество микроканалов в каждом слое микроканалов 130 и 150 может быть любым необходимым числом, например, один, два, три, четыре, пять, шесть, восемь, десять, сотни, тысячи, десятки тысяч, сотни тысяч, миллионы и т.д. Аналогично, число повторяющихся элементов 170 (или от 170a до 170d) слоев микроканалов в активной зоне микроканального реактора 102 может быть любым желаемым числом, например, один, два, три, четыре, шесть, восемь, десять, сотни, тысячи и т.д.
Микроканальный реактор 100, содержащий активную зону 102 микроканального реактора, можно изготовить из любого материала, обеспечивающего достаточную прочность, пространственную жесткость и характеристики теплопереноса для осуществления изобретенного способа. Примерами подходящих материалов служат сталь (например, нержавеющая сталь, карбонизированная сталь, и подобные), алюминий, титан, никель и сплавы из любых из упомянутых металлов, пластмассы (например, эпоксидные смолы, УФ-отверждаемые смолы, термореактивные смолы и подобные), монель, инконель, керамика, стекло, композиты, кварц, кремний или сочетание из двух или более из них. Микроканальный реактор может быть изготовлен с использованием известных технологий, а именно: обработка электрическим разрядом, обычная механическая обработка, лазерная резка, фотохимическая обработка, электрохимическая обработка, литье, обработка водометом, штамповка, травление (например, химическое, фотохимическое или плазменное травление) и их сочетания. Микроканальный реактор может быть изготовлен составлением слоев или пластов с удалением части из них для обеспечения возможности прохождения потока. Стопка пластов может быть собрана посредством диффузионного соединения, лазерной сварки, диффузионной пайки и подобных методов для получения единого устройства. Микроканальный реактор содержит необходимые коллекторы, краны, линии трубопроводов и т.д. для контроля потока реакционной смеси и продукта и потока теплообменной текучей среды. Они не показаны на чертежах, но легко могут быть предусмотрены специалистами в данной области техники.
Реакционная смесь состоит из смеси H2 и CO. Эту смесь называют синтез, газ или сингаз. Молярное отношение H2 к CO может составлять величину в интервале от приблизительно 0,8 до приблизительно 10, в одном варианте воплощения от приблизительно 0,8 до приблизительно 5, в одном варианте воплощения от приблизительно 1 до приблизительно 3, в одном варианте воплощения от приблизительно 1,5 до приблизительно 3, в одном варианте воплощения от приблизительно 1,8 до приблизительно 2,5, в одном варианте воплощения от приблизительно 1,9 до приблизительно 2,2, в одном варианте воплощения от приблизительно 2,05 до приблизительно 2,10, Реакционная смесь может также содержать CO2 и/или H2O, а также легкие углеводороды, содержащие от 1 до приблизительно 4 атомов углерода, и в одном варианте воплощения от 1 до приблизительно 2 атомов углерода. Реакционная смесь может содержать от приблизительно 5 до приблизительно 45 об.% CO, и в одном варианте воплощения от приблизительно 5 до приблизительно 20 об.% CO, и от приблизительно 55 до приблизительно 95 об.% H2, в еще одном варианте воплощения от приблизительно 80 до приблизительно 95 об.% Н2. Концентрация CO2 в реакционной смеси может быть до приблизительно 60 об.%, в еще одном варианте воплощения от приблизительно 5 до приблизительно 60 об.%, в еще одном варианте воплощения от приблизительно 5 до приблизительно 40 об.%. Концентрация Н2О в реакционной смеси может быть до приблизительно 80 об.%, в еще одном варианте воплощения от приблизительно 5 до приблизительно 80 об.%, в еще одном варианте воплощения от приблизительно 5 до приблизительно 50 об.%. Концентрация легких углеводородов в реакционной смеси может быть до приблизительно 80 об.%, в еще одном варианте воплощения от приблизительно 1 до приблизительно 80 об.%, в еще одном варианте воплощения от приблизительно 1 до приблизительно 50 об.%. Реакционная смесь может представлять собой поток (например, поток газа), поступающий из другого процесса, например, процесса парового реформинга (поток продуктов H2/CO с молярным отношением приблизительно 3), процесса частичного окисления (поток продуктов H2/CO с молярным отношением приблизительно 2), процесса автотермического реформинга (поток продуктов H2/CO с молярным отношением приблизительно 2,5), процесса реформинга CO2 (поток продуктов H2/CO с молярным отношением приблизительно 1), процесса газификации угля (поток продуктов H2/CO с молярным отношением приблизительно 1) и их сочетания.
Присутствие загрязняющих веществ, таких как сера, азот, галогены, селен, фосфор, мышьяк и подобные, в реакционной смеси могут быть нежелательным. Таким образом, в одном из вариантов воплощения данного изобретения, упомянутые загрязняющие вещества можно удалить из реакционной смеси или уменьшить их концентрации перед осуществлением способа по изобретению. Техники удаления этих загрязняющих веществ хорошо известны специалистам в данной области. Например, для удаления примесей серы можно использовать защитный слой из ZnO. В одном варианте воплощения уровень загрязняющих веществ в реакционной смеси может быть до приблизительно 5 об.%, в еще одном варианте воплощения до приблизительно 1 об.%, в еще одном варианте воплощения до приблизительно 0,1 об.%, в еще одном варианте воплощения до приблизительно 0,05 об.%.
Теплоносителем может быть любая текучая среда, включая воздух, пар, жидкую воду, газообразный азот, другие газы, включая инертные газы, монооксид углерода, расплавленные соли, масла, например, минеральные масла, и теплообменные текучие среды, такие как, Dowtherm А и Therminol, поставляемые фирмой Dow Union Carbide.
Теплоноситель может содержать поток реакционной смеси. За счет этого можно осуществить предварительный разогрев и повысить общую термическую эффективность процесса.
В одном варианте воплощения изобретения теплообменные каналы содержат рабочие каналы, где осуществляется эндотермический процесс. Эти теплообменные рабочие каналы могут быть микроканалами. Примерами эндотермических процессов, которые можно осуществить в теплообменных каналах, служат паровой реформинг и реакции дегидрирования. Паровой реформинг спирта, происходящий в интервале температур отприблизительно 200°C до приблизительно 300°C является еще одним примером эндотермического процесса. Использование одновременной эндотермической реакции для достижения большего оттока тепла создает тепловой поток приблизительно на порядок больше, чем конвективный охлаждающий тепловой поток. Использование одновременных экзотермической и эндотермической реакций для теплообмена в микроканальном реакторе опубликовано в Заявке на Патент США №10/222,196, поданной 15 Августа 2002 года, приведенной в данном описании в качестве ссылки.
В одном варианте воплощения теплоноситель претерпевает полное или частичное фазовое превращение при протекании через теплообменные каналы. Такое фазовое превращение обеспечивает дополнительный отвод тепла от рабочих микроканалов помимо такового, достигаемого посредством конвективного охлаждения. При испарении жидкой теплообменной текучей среды дополнительное тепло, переносимое от рабочих микроканалов, будет скрытой теплотой испарения, необходимой для теплоносителя. Примером такого фазового превращения может служить кипение масла или воды. В одном варианте воплощения испаряется приблизительно 50 мас.% теплоносителя.
Тепловой поток для конвективного обмена в микроканальном реакторе может быть в интервале от приблизительно 1 до приблизительно 25 ватт на квадратный сантиметр площади поверхности рабочих микроканалов (Вт/см2) в микроканальном реакторе, и в одном варианте воплощения от приблизительно 1 до приблизительно 10 Вт/см2. Тепловой поток при фазовом превращении или одновременной эндотермической реакции может быть в интервале от приблизительно 1 до приблизительно 250 Вт/см2, в еще одном варианте воплощения от приблизительно 1 до приблизительно 100 Вт/см2, в еще одном варианте воплощения от приблизительно 1 до приблизительно 50 Вт/см2, в еще одном варианте воплощения от приблизительно 1 до приблизительно 25 Вт/см2, и еще в одном варианте воплощения от приблизительно 1 до приблизительно 10 Вт/см2.
Охлаждение рабочих микроканалов в рамках способа по изобретению в одном из вариантов воплощения является предпочтительным для осуществления контроля селективности в отношении главного или желаемого продукта, вследствие того, что добавочное охлаждение уменьшает или исключает образование нежелательных побочных продуктов от нежелательных параллельных реакций с более высокими энергиями активации. В результате такого охлаждения в одном из вариантов воплощения температура реакционной смеси на входе в рабочие микроканалы может находиться в пределах приблизительно 200°C, в другом варианте воплощения в пределах приблизительно 150°C, в другом варианте воплощения в пределах приблизительно 100°C, в другом варианте воплощения в пределах приблизительно 50°C, в другом варианте воплощения в пределах приблизительно 25°C, в другом варианте воплощения в пределах приблизительно 10°C от температуры продукта (или смеси продукта и не прореагировавших реагентов) на выходе из рабочих микроканалов.
Катализатором может являться любой катализатор Фишера-Тропша. Катализатор содержит, по меньшей мере, один каталитически активный металл или его оксид. В одном варианте воплощения катализатор также содержит носитель катализатора. В одном варианте воплощения катализатор содержит по меньшей мере один промотор. Каталитически активным металлом может служить Co, Fe, Ni, Ru, Re, Os или сочетание двух или более из них. Материалом носителя может служить оксид алюминия, оксид циркония, оксид кремния, фторид алюминия, фторированный оксид алюминия, бентонит, оксид церия, оксид цинка, алюмосиликат, карбид кремния, молекулярное сито, или сочетание двух или более из них. Материалом носителя может служить огнеупорный оксид. Промотор может содержать металл IA, IIA, IIIB или IVB групп или оксид одного из них, металлический лантанид или его оксид, металлический актинид или его оксид. В одном варианте воплощения промотором служит Li, В, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce или Th или оксид одного из них или смесь из двух или более из них. Примерами возможных катализаторов являются описанные в патентах США 4,585,978; 5,036,032; 5,733,839; 6,075,062; 6,136,868; 6,262,131 B1; 6,353,035 B2; 6,368,997 B2; 6,451,864 B1; 6,490,880 B1; 6,537,945 B2; 6,558,634 B1; и в патентной публикации США 2002/0028853 A1; 2002/0188031 A1; и 2003/0105171 A1; эти патенты и патентные публикации включены в настоящее описание в качестве ссылки, поскольку в них описаны катализаторы Фишера-Тропша и методы изготовления таких катализаторов.
В одном варианте воплощения катализатор содержит Co и, возможно, сокатализатор и/или промотор, нанесенный на носитель, где содержание Co составляет по меньшей мере 5 мас.%, в еще одном варианте воплощения по меньшей мере приблизительно 10 мас.%, в еще одном варианте воплощения по меньшей мере приблизительно 15 мас.%, в еще одном варианте воплощения по меньшей мере приблизительно 20 мас.%, в еще одном варианте воплощения, по меньшей мере, приблизительно 25 мас.%, в еще одном варианте воплощения, по меньшей мере, приблизительно 28 мас.%, и в одном варианте воплощения, по меньшей мере, приблизительно 30 мас.%, и в одном варианте воплощения, по меньшей мере, приблизительно 32 мас.%, и в одном варианте воплощения, по меньшей мере, приблизительно 35 мас.%, и в одном варианте воплощения, по меньшей мере, приблизительно 40 мас.%. В одном варианте воплощения содержание Co может быть от приблизительно 5 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 10 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 15 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 20 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 25 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 28 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 30 до приблизительно 50 мас.%, и в одном варианте воплощения от приблизительно 32 до приблизительно 50 мас.%. Дисперсия каталитически активного металла (т.е. Co, и, возможно, сокатализатора и/или промотора) в катализаторе может варьироваться от приблизительно 1 до приблизительно 30%, и в одном варианте воплощения от приблизительно 2 до приблизительно 20%, и в одном варианте воплощения от приблизительно 3 до приблизительно 20%. Сокатализатором может служить Fe, Ni, Ru, Re, Os или оксид одного из них или смесь двух или более из них. Промотором может служить металл IA, IIA, IIIB или IVB групп или оксид одного из них, металлический лантанид или его оксид, металлический актинид или его оксид. В одном варианте воплощения промотором является Li, B, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce или Th или оксид одного из них или смесь двух или более из них. Сокатализатор можно вводить в концентрации до приблизительно 10 мас.% от общей массы катализатора (т.е. массы катализатора, сокатализатора, промотора и носителя), и в одном варианте воплощения от приблизительно 0,1 до приблизительно 5 мас.%. Промотор можно вводить в концентрации до приблизительно 10 мас.% от общей массы катализатора, и в одном варианте воплощения от приблизительно 0,1 до приблизительно 5 мас.%.
В одном варианте воплощения катализатор может состоять из Co, нанесенного на оксид алюминия; причем содержание Co составляет по меньшей мере приблизительно 25 мас.%, в еще одном варианте воплощения, по меньшей мере, 28 мас.%, в еще одном варианте воплощения, по меньшей мере, 30 мас.%, в еще одном варианте воплощения, по меньшей мере, 32 мас.%; а распределение Co составляет, по меньшей мере, приблизительно 3%, в еще одном варианте воплощения, по меньшей мере, приблизительно 5%, в еще одном варианте воплощения, по меньшей мере, приблизительно 7%.
В одном из вариантов воплощения катализатор может содержать соединение, представленное формулой:
CoM1 aM2 bOx
где, М1 означает Fe, Ni, Ru, Re, Os или их смесь, в еще одном варианте воплощения M1 означает Ru или Re или их смесь; M2 означает Li, В, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce или Th или смесь из двух или более из них; a означает число в интервале от нуля до приблизительно 0,5, и в другом варианте воплощения от нуля до приблизительно 0,2; b означает число в интервале от нуля до приблизительно 0,5, и в другом варианте воплощения от нуля до приблизительно 0,1; a x означает количество атомов кислорода, необходимое для соблюдения электронейтральности, учитывая валентности указанных элементов.
В одном варианте воплощения катализатор, используемый в рамках способа по изобретению, может быть изготовлен посредством нескольких стадий пропитки, а стадии промежуточного обжига проводятся перед каждой стадией пропитки. Применение такой методики по меньшей мере в одном из вариантов воплощения позволяет получить катализатор с величиной содержания каталитического металла (например, Co) и, возможно, промотора выше, чем при использовании методик без применения промежуточных стадий обжига. В одном варианте воплощения каталитический металл (например, Co) и, возможно, сокатализатор (например, Re или Ru) и/или промотор помещены на носитель (например, Al2O3) при помощи следующей последовательности стадий: (А) пропитка носителя составом, содержащим каталитический металл и, возможно, сокатализатор и/или промотор, для получения промежуточного каталитического продукта; (Б) обжиг промежуточного каталитического продукта, полученного на стадии (А); (В) пропитка обожженного промежуточного продукта, полученного на стадии (Б) другим составом, содержащим каталитический металл и, возможно, сокатализатор и/или промотор, с получением другого промежуточного каталитического продукта; и (Г) обжиг другого промежуточного каталитического продукта, полученного на стадии (В), до получения желаемого каталитического продукта. Пропитку каталитическим металлом и, возможно, сокатализатором и/или промотором можно осуществить способом влажной пропитки. Стадии (В) и (Г) можно дополнительно повторять один и более раз до достижения желаемого значения содержания каталитического металла и, возможно, сокатализатора и/или промотора. Составом, содержащим каталитический металл, может быть раствор нитрата металла, например, раствор нитрата кобальта. Процесс можно продолжать до тех пор, пока содержание каталитического металла (например, Co) не достигнет приблизительно 20 мас.% или более, в другом варианте воплощения приблизительно 25 мас.% или более, в другом варианте воплощения приблизительно 28 мас.% или более, в другом варианте воплощения приблизительно 30 мас.% или более, в другом варианте воплощения приблизительно 32 мас.% или более, в другом варианте воплощения приблизительно 35 мас.% или более, в другом варианте воплощения приблизительно 37 мас.% или более, в другом варианте воплощения приблизительно 40 мас.% или более. Каждая из стадий обжига может включать нагревание катализатора до температуры в интервале от приблизительно 100°С до приблизительно 500°C, в еще одном варианте воплощения от приблизительно 100°C до приблизительно 400°C, в еще одном варианте воплощения от приблизительно 250°C до приблизительно 350°C в течение от приблизительно 0,5 до приблизительно 100 часов, в еще одном варианте воплощения от приблизительно 0,5 до приблизительно 24 часов, в еще одном варианте воплощения от приблизительно 2 до 3 часов. Увеличение температуры до температуры обжига может происходить со скоростью приблизительно 1-20°С/мин. Стадии обжига могут предварять стадии сушки, во время которых катализатор высушивают при температуре от приблизительно 75°C до приблизительно 200°C, в еще одном варианте воплощения от приблизительно 75°C до приблизительно 150°C в течение от приблизительно 0,5 до приблизительно 100 часов, в еще одном варианте воплощения от приблизительно 0,5 до приблизительно 24 часа. В одном из вариантов воплощения катализатор можно высушивать в течение приблизительно 12 часов при приблизительно 90°C и затем при приблизительно 110-120°C в течение 1-1,5 часов, при этом температура от 90°C до 110-120°C повышается со скоростью приблизительно 0,5-1°C/мин.
Катализатор, используемый в микроканальном реакторе, может быть любого размера и геометрической конфигурации, соответствующей рабочему микроканалу. Катализатор может быть в форме твердых частиц (например, таблеток, порошка, волокон и т.п.) со средним диаметром частиц от приблизительно 1 до приблизительно 1000 мкм, в еще одном варианте воплощения от приблизительно 10 до приблизительно 500 мкм, в еще одном варианте воплощения от приблизительно 25 до приблизительно 250 мкм. В одном варианте воплощения катализатор присутствует в виде неподвижного слоя твердых частиц.
В одном варианте воплощения катализатор присутствует в виде неподвижного слоя твердых частиц, средний диаметр твердых частиц катализатора относительно мал, а длина каждого рабочего микроканала относительно коротка. Средний диаметр частиц может быть в интервале от приблизительно 1 до приблизительно 1000 мкм, в другом варианте воплощения - от приблизительно 10 до приблизительно 500 мкм, а длина каждого рабочего микроканала может быть в интервале до приблизительно 500 см, в еще одном варианте воплощения от приблизительно 10 до приблизительно 500 см, в еще одном варианте воплощения от приблизительно 50 до приблизительно 300 см.
Катализатор может быть нанесен на носитель с пористой структурой, например, на пену, войлок, вату или их сочетание. Термин "пена" здесь используется для обозначения структуры с продолжающимися стенками, ограничивающими поры во всей структуре. Термин "войлок" здесь используется для обозначения структуры из волокон с щелеобразными промежутками между ними. Термин "вата" здесь используется для обозначения структуры из переплетенных нитей, например, стальная вата. Катализатор может быть нанесен на ячеистую структуру-подложку.
Катализатор может быть нанесен на носитель обтекаемой (потоком) структуры со смежным промежутком, например, войлок или пена, или в форме конструкции узла ребер с зазорами, или покрытием с увеличенной площадью активной поверхности (которое в современной технике называется "Вошкоут" (washcoat), далее покрытие Вошкоут), нанесенным на вставную подложку или металлическую сетку, расположенную параллельно направлению потока с соответствующим зазором для прохождения потока. Пример обтекаемой структуры представлен на Фиг.8. Как показано на Фиг.8, рабочий микроканал 302 содержит катализатор 300. Открытый проход 304 позволяет пропускать поток текучей среды через рабочий микроканал 302, при контактировании с катализатором 300, как показано стрелками 306 и 308.
Катализатор также может быть нанесен на носитель с проточной структурой, например, пену, вату, гранулы, порошок или металлическую сетку. Пример проточной структуры (структуры с проходящим потоком) изображен на Фиг.9. Как показано на Фиг.9, проточный катализатор 310 расположен внутри рабочего микроканала 312, и поток текучей среды проходит непосредственно через катализатор 310, как показано стрелками 314 и 316.
Носитель для проточного катализатора может быть получен из материала, состоящего из силикагеля, вспененной меди, спеченных волокон нержавеющей стали, стальной пряжи, оксида алюминия, полиметилметакрилата, полисульфоната, политетрафторэтилена, железа, никелевой губки, нейлона, поливинилидин дифторида, полипропилена, полиэтилена, полиэтиленэтилкетона, поливинилового спирта, поливиниацетата, полиакрилата, полиметилметакрилата, полистирла, полифенилен сульфида, полисульфона, полибутилена или сочетания двух или более из них. В одном варианте воплощения носитель может быть изготовлен из теплопроводящего материала, например, металла, для улучшения отвода тепла от катализатора.
Катализатор может быть непосредственно нанесен в виде покрытия Вошкоут на внутренние стенки рабочих микроканалов из раствора или in situ на реберную конструкцию. Катализатор может быть использован в форме цельной структуры из пористого материала или в форме множества контактирующих частиц. В одном варианте воплощения настоящего изобретения катализатор состоит из контактирующего материала и содержит смежные поры, через которые молекулы диффундируют через катализатор. В этом варианте потоки текучей среды скорее проходят через катализатор, а не обтекают его. В одном варианте воплощения площадь сечения катализатора составляет от приблизительно 1 до приблизительно 99%, в еще одном варианте воплощения от приблизительно 10 до приблизительно 95% площади сечения рабочего микроканала. Площадь поверхности катализатора, измеренная методом БЭТ (BET), может составлять более, чем приблизительно 0,5 м2/г, а в еще одном варианте воплощения более приблизительно 2 м2/г.
Катализатор может включать пористую подложку, промежуточный слой на пористой подложке, и каталитический материал на промежуточном слое. Промежуточный слой наносят на подложку из раствора или его наносят методом химического или физического осаждения из паровой фазы. В одном варианте воплощения настоящего изобретения катализатор содержит пористую подложку, буферный слой, промежуточный слой и каталитический материал. Любой из вышеупомянутых слоев является сплошным или прерывистым, в форме отдельных пятен или точек, или в форме слоя с зазорами или лунками.
Пористость пористой подложки составляет по меньшей мере приблизительно 5%, по данным ртутной порометрии, а средний размер пор (сумма диаметров пор, деленная на число пор) составляет величину от приблизительно 1 до приблизительно 1000 мкм. Пористая подложка может быть выполнена из пористой керамической или металлической пены. Могут быть использованы и другие пористые подложки, включая карбиды, нитриды и композиционные материалы. В одном варианте воплощения пористость подложки составляет величину от приблизительно 30% до приблизительно 99%, в еще одном варианте от приблизительно 60% до приблизительно 98%. Используют также пористую подложку в форме пены, войлока, пробки или их комбинации. Число открытых ячеек в металлической пене изменяется в интервале от приблизительно 20 пор на дюйм (п/д) до приблизительно 3000 п/д, в одном варианте от приблизительно 20 до приблизительно 1000 п/д, в еще одном варианте от приблизительно 40 до приблизительно 120 п/д. Термин "п/д" означает максимальное число пор на одном дюйме (в случае изотропных материалов направление измерения не существенно; в случае анизотропных материалов измерения проводят в направлении максимального числа пор).
Буферный слой, при его наличии, может характеризоваться различными составом и/или плотностью по сравнению с пористой подложкой и промежуточным слоем, в одном варианте он характеризуется промежуточным коэффициентом термического расширения по сравнению с коэффициентами термического расширения пористой подложки и промежуточного слоя. Буферным слоем может быть представлен оксидом металла или карбидом металла. Буферный слой может также включать Al2O3, Al2O32, Al2O3, ZrO2 или их комбинации. Al2O3 используют в форме α-Al2O3, α-Al2O3 или их сочетания. Преимущество α-Al2O3 заключается в чрезвычайной устойчивости к диффузии кислорода. Буферный слой, в частности, формируют в форме двух или более подслоев с различными составами. Например, при использовании металлической пористой подложки, например, пены из нержавеющей стали, буферный слой формируют из двух подслоев с различным составом. Первый подслой (контактирующий с пористой подложкой) состоит из TiO2. Второй подслой состоит из α-Al2O3, который формируют на слое из TiO2. В одном варианте воплощения подслой из α-Al2O3 является плотным слоем, обеспечивающим защиту расположенной под ним металлической поверхности. Менее плотный промежуточный слой с чрезвычайно высокой площадью поверхности, такой как слой из оксида алюминия, затем наносят в качестве подложки для каталитически активного слоя.
Коэффициент термического расширения пористой подложки может отличаться от коэффициента термического расширения промежуточного слоя. В таком случае необходимо использовать буферный слой для перехода от одного коэффициента термического расширения до другого. Коэффициент термического расширения буферного слоя подбирают по его составу, чтобы его коэффициент термического расширения был совместим с коэффициентами термического расширения пористой подложки и промежуточного слоя. Отсутствие в буферном слое отверстий и микроотверстий обеспечивает высокую степень защиты расположенной под буферным слоем подложки. Буферный слой является непористым. Толщина буферного слоя составляет менее половины среднего размера пор пористой подложки. Толщина буферного слоя составляет величину от приблизительно 0,05 до приблизительно 10 мкм, в одном варианте от приблизительно 0,05 до приблизительно 5 мкм.
Соответствующую адгезию и химическую стабильность можно получить и в отсутствии буферного слоя. В соответствующем варианте воплощения настоящего изобретения буферный слой отсутствует.
Промежуточный слой может включать нитриды, карбиды, сульфиды, галогениды, оксиды металлов, уголь или их комбинацию. Промежуточный слой обеспечивает чрезвычайно высокую площадь поверхности и/или обеспечивает требуемое взаимодействие катализатора с подложкой в случае использования катализатора на подложке. Промежуточный слой может состоять из любого стандартного материала, используемого в качестве подложки катализатора. В частности, промежуточный слой можно изготовить из оксида металла. Примеры используемых оксидов металлов включают γ-Al2O3, SiO2, ZrO2, TiO2, оксид вольфрама, оксид магния, оксид ванадия, оксид хрома, оксид марганца, оксид железа, оксид никеля, оксид кобальта, оксид меди, оксид цинка, оксид молибдена, оксид олова, оксид кальция, оксид алюминия, оксид(ы) элементов лантана, цеолит(ы) и их комбинацию. Промежуточный слой может служить в качестве каталитически активного слоя, т.е. без последующего нанесения на него любого дополнительного каталитически активного материала. Однако обычно промежуточный слой используют в комбинации с каталитически активным слоем. Может быть также использован промежуточный слой, состоящий из двух или более подслоев с различным составом. Толщина промежуточного слоя может составлять менее половины среднего размера пор пористой подложки. В частности, толщина промежуточного слоя составляет величину в интервале от приблизительно 0,5 до приблизительно 100 мкм, в одном варианте от приблизительно 1 до приблизительно 50 мкм. Используют также кристаллический или аморфный промежуточный слой. Промежуточный слой характеризуется величиной площади поверхности по меньшей мере приблизительно 1 м2/г (BET).
Катализатор может быть нанесен на промежуточный слой. В другом варианте, каталитический материал наносят одновременно с промежуточным слоем. Каталитический слой тщательно диспергируют в промежуточном слое. Термин "диспергированный" или "нанесенный на промежуточный слой катализатор" означает микроскопические частицы катализатора, диспергированные в слое-подложке (т.е. в промежуточном слое), в полостях подложки, а также в открытых порах подложки.
Катализатор может также наноситься на узел, включающий одно или более ребер, который вставляют в каждый рабочий микроканал. Примеры представлены на Фиг.10-12. Как показано на Фиг.10, узел ребер 320 содержит ребра 322, которые установлены на опоре 324 ребер, расположенной сверху стенки 326 основания рабочего микроканала 328. Ребра 322 направлены от опоры ребер 324 внутрь рабочего микроканала 328. Ребра 322 направлены к внутренней поверхности верхней стенки 330 рабочего микроканала 328 и контактируют с ней. Каналы 332 расположенные между ребрами 322 образуют проходы для потока текучей среды через рабочий микроканал 328 вдоль его длины. Каждое из ребер 322 имеет внешнюю поверхность на каждой из его сторон, которые являются основанием-подложкой для катализатора. Согласно способу по настоящему изобретению поток композиции реагентов пропускают через каналы 332, образованные ребрами, где он контактирует с катализатором, нанесенным на внешнюю поверхность ребер 322, и вступает в реакцию с образованием продукта. Узел 320а ребер, показанный на Фиг.11, аналогичен узлу 320 ребер, показанному на Фиг.10, за исключением того, что ребра 322а не достигают внутренней поверхности верхней стенки 330 микроканала 328. Узел 320b ребер, показанный на Фиг.12, аналогичен узлу 320 ребер, показанному на Фиг.10, за исключением того, что ребра 322b в узле 320b ребер имеют трапециевидное поперечное сечение. Высота каждого ребра составляет величину в интервале от приблизительно 0,02 мм до высоты рабочего микроканала 328, в одном варианте от приблизительно 0,02 мм до приблизительно 5 мм, в еще одном варианте от приблизительно 0,02 мм до приблизительно 2 мм. Ширина каждого ребра составляет величину в интервале от приблизительно 0,02 мм до приблизительно 5 мм, в одном варианте от приблизительно 0,02 мм до приблизительно 2 мм, в еще одном варианте от приблизительно 0,02 мм до приблизительно 1 мм. Длина каждого ребра составляет любое приемлемое значение вплоть до длины рабочего микроканала 328, в одном варианте до приблизительно 10 м, в еще одном варианте от приблизительно 0,5 до приблизительно 10 м, в еще одном варианте воплощения от приблизительно 0,5 до приблизительно 6 м, в еще одном варианте воплощения от приблизительно 0,5 до приблизительно 3 м. Каждый зазор между ребрами составляет любую приемлемую величину в интервале от приблизительно 0,02 мм до приблизительно 5 мм, в еще одном варианте от приблизительно 0,02 мм до приблизительно 2 мм, в еще одном варианте от приблизительно 0,02 мм до приблизительно 1 мм. Число ребер в рабочем микроканале 328 может варьироваться от приблизительно 1 до приблизительно 50 ребер на сантиметр ширины рабочего микроканала 328, в еще одном варианте от приблизительно 1 до приблизительно 30 ребер на сантиметр, в еще одном варианте от приблизительно 1 до приблизительно 10 ребер на сантиметр, в еще одном варианте от приблизительно 1 до приблизительно 5 ребер на сантиметр, в еще одном варианте от приблизительно 1 до приблизительно 3 ребер на сантиметр. Каждое ребро характеризуется поперечным сечением в форме прямоугольника или квадрата, как показано на Фиг.10 или 11, или трапеции, как показано на Фиг.12. В продольной проекции каждое ребро характеризуется прямой, клиновидной или змеевидной конфигурацией. Ребра можно изготовить из любого материала, обеспечивающего достаточную прочность, стабильность размеров и характеристики теплообмена, необходимые для проведения процесса, для которого предназначен каждый рабочий микроканал. Такие материалы включают сталь (например, нержавеющую сталь, углеродистую сталь и т.п.), монель, инконель, алюминий, титан, никель, платину, родий, медь, хром, латунь, сплав любого из перечисленных выше металлов, полимеры (например, термореактивные смолы), керамику, стекло, композиты, включающие один или более полимеров (например, термореактивные смолы) и стекловолокна, кварц, кремний или комбинацию двух или более указанных выше материалов. Ребро можно изготовить из материала, образующего Al2O3, такого, как сплав, содержащий Fe, Cr, Al и Y, или из материала, образующего Cr2O3, такого, как сплав Ni, Cr и Fe.
В одном варианте воплощения катализатор можно регенерировать. Это можно осуществить, пропуская регенерирующую текучую среду через рабочие микроканалы в контакте с катализатором. Регенерирующая текучая среда может состоять из водорода или представлять собой поток с растворенным водородом. Растворителем может служить азот, аргон, гелий, метан, диоксид углерода, пар или смесь двух или более из них. Регенерирующая текучая среда может протекать через входной коллектор 104 сквозь рабочие микроканалы и к выходному коллектору 106, или в обратном направлении от выходного коллектора 106 через рабочие микроканалы к входному коллектору 104. Температура регенерирующей текучей среды может быть от приблизительно 50 до приблизительно 400°C, в еще одном варианте от приблизительно 200 до приблизительно 350°C. Давление в рабочих микроканалах на стадии регенерации может варьироваться от приблизительно 1 до приблизительно 40 атм., в еще одном варианте от приблизительно 1 до приблизительно 20 атм., в еще одном варианте от приблизительно 1 до приблизительно 5 атм. Время обработки (удержания) регенерирующей текучей среды в рабочих микроканалах может варьироваться от приблизительно 0,01 до приблизительно 1000 секунд, и в одном варианте воплощения от приблизительно 0,1 до приблизительно 100 секунд.
В одном из вариантов воплощения рабочие микроканалы могут быть охарактеризованы величиной "проход объемного потока". Термин "проход объемного потока" ("bulk flow path") означает открытый проход потока (проход непрерывного объемного потока) в пределах рабочих микроканалов. Проход объемного потока позволяет увеличить скорость текучей среды через микроканалы без увеличения падения давления. В одном варианте воплощения настоящего изобретения поток текучей среды в проходе объемного потока является ламинарным. Площадь сечения прохода объемного потока в пределах каждого рабочего микроканала составляют от приблизительно 0,05 до приблизительно 10000 мм2, в еще одном варианте от приблизительно 0,1 до приблизительно 2500 мм2. Зоны усредненного потока составляют от приблизительно 5% до приблизительно 95%, в другом варианте от приблизительно 30% до приблизительно 80% площади поперечного сечения рабочих микроканалов.
Время контакта реагентов с катализатором внутри рабочих микроканалов может достигать приблизительно 2000 миллисекунд (мс), и в одном варианте воплощения от приблизительно 10 мс до приблизительно 1000 мс, и в одном варианте воплощения от приблизительно 20 мс до приблизительно 500 мс. В одном варианте воплощения время контакта может достигать приблизительно 300 мс, в еще одном варианте от приблизительно 20 до приблизительно 300 мс, в еще одном варианте от приблизительно 50 до приблизительно 150 мс, в еще одном варианте от приблизительно 75 до приблизительно 125 мс, в еще одном варианте приблизительно 100 мс.
Объемная скорость (или среднечасовая объемная скорость подачи газа (ССПГ) потока реакционной смеси и продукта через рабочие микроканалы может составлять, по меньшей мере, приблизительно 1000 ч-1 (стандартных литров поданной реакционной смеси/час/литров объема внутри рабочих микроканалов) или, по меньшей мере приблизительно 800 мл поданной реакционной смеси/(г катализатора)(ч). Объемная скорость может варьироваться от приблизительно 1000 до приблизительно 1000000 ч-1, или от приблизительно 800 до приблизительно 800000 мл поданной реакционной смеси/(г катализатора)(ч). Водном варианте воплощения объемная скорость может варьироваться от приблизительно 10,000 до приблизительно 100000 ч-1, или от приблизительно 8000 до приблизительно 80000 мл поданной реакционной смеси/(г катализатора)(ч).
Температура реакционной смеси, поступающей в рабочие микроканалы, может варьироваться от приблизительно 150°C до приблизительно 270°C, в еще одном варианте от приблизительно 180°C до приблизительно 250°C, и в еще одном варианте от приблизительно 180°C до приблизительно 220°C.
Температура реакционной смеси и продукта внутри рабочих микроканалов может варьироваться от приблизительно 200°C до приблизительно 300°C, в еще одном варианте от приблизительно 220°C до приблизительно 270°C, в еще одном варианте от приблизительно 220°C до приблизительно 250°C.
Температура продукта, выходящего из рабочих микроканалов, может варьироваться от приблизительно 200°C до приблизительно 300°C, в еще одном варианте от приблизительно 220°C до приблизительно 270°C, в еще одном варианте от приблизительно 220°C до приблизительно 250°C.
Давление внутри рабочих микроканалов может составлять по меньшей мере 5 атм., в другом варианте по меньшей мере 10 атм., в другом варианте по меньшей мере 15 атм., в другом варианте по меньшей мере 20 атм., в другом варианте по меньшей мере 25 атм., и в еще одном варианте по меньшей мере 30 атмосфер. В одном варианте воплощения давление может варьироваться от приблизительно 5 до приблизительно 50 атм., в еще одном варианте от приблизительно 10 до приблизительно 50 атм., в еще одном варианте от приблизительно 10 до приблизительно 30 атм., в еще одном варианте от приблизительно 10 до приблизительно 25 атм., в еще одном варианте от приблизительно 15 до приблизительно 25 атм.
Падение давления реагентов и/или продуктов при протекании через рабочие микроканалы может достигать приблизительно 10 атм. на метр длины рабочего микроканала (атм/м), в еще одном варианте приблизительно 5 атм/м, и в еще одном варианте приблизительно 3 атм/м.
Реакционная смесь, поступающая в рабочие микроканалы, обычно присутствует в виде пара, а продукт, выходящий из рабочих микроканалов, может находиться в виде пара, жидкости или смеси пара и жидкости. Число Рейнольдса для потока пара через рабочие микроканалы может варьироваться от приблизительно 10 до приблизительно 4000, в другом варианте от приблизительно 100 до приблизительно 2000. Число Рейнольдса для потока жидкости через теплообменные каналы может быть от приблизительно 10 до приблизительно 4000, и в одном варианте воплощения от приблизительно 100 до приблизительно 2000,
Температура текучего теплоносителя, поступающего в теплообменные каналы, может составлять от приблизительно 150°C до приблизительно 300°С, в еще одном варианте от приблизительно 150°C до приблизительно 270°С. Температура теплоносителя, выходящего из теплообменных каналов, может составлять от приблизительно 220°C до приблизительно 270°С, в еще одном варианте от приблизительно 230°C до приблизительно 250°С. продолжительность циркуляции теплоносителя в теплообменных каналах может варьироваться от приблизительно 50 до приблизительно 5000 мс, в еще одном варианте от приблизительно 100 до приблизительно 1000 мс. Падение давления теплоносителя при протекании через теплообменные каналы может достигать 10 атм/м, в еще одном варианте воплощения от приблизительно 1 до приблизительно 10 атм/м, в еще одном варианте от приблизительно 2 до приблизительно 5 атм/м. Теплоноситель может присутствовать в виде пара, жидкости или смеси пара и жидкости. Число Рейнольдса для потока пара через теплообменные каналы может варьироваться от приблизительно 10 до приблизительно 4000, и в одном варианте воплощения от приблизительно 100 до приблизительно 2000, число Рейнольдса для потока жидкости через теплообменные каналы может быть от приблизительно 10 до приблизительно 4000, и в одном варианте воплощения от приблизительно 100 до приблизительно 2000.
Конверсия CO может составлять приблизительно 40% или выше на один цикл, в еще одном варианте приблизительно 50% или выше, в еще одном варианте приблизительно 55% или выше, в еще одном варианте приблизительно 60% или выше, в еще одном варианте 65% или выше, и в еще в одном варианте 70% или выше. Термин "цикл" здесь используется для обозначения одного прохода реагентов через рабочие микроканалы.
Селективность по метану в продукте может составлять приблизительно 25% или ниже, в еще одном варианте приблизительно 20% или ниже, в еще одном варианте 15% или ниже, в еще одном варианте 12% или ниже, в еще одном варианте 10% или ниже.
Выход продукта может составлять приблизительно 25% или выше за цикл, в еще одном варианте приблизительно 30% или выше, в другом варианте 40% или выше за цикл.
В одном варианте воплощения, конверсия СО составляет, по меньшей мере, 50%, селективность по метану приблизительно 15% или ниже, а выход продукта по меньшей мере 35% за цикл.
Продукт, образовавшийся в рамках способа по изобретению, может содержать газообразную фракцию продукта и жидкую фракцию продукта. Газообразная фракция продукта может содержать углеводороды, кипящие ниже приблизительно 350°C при атмосферном давлении (например, остаточные газы до средних дистиллятов). Жидкая фракция продукта (конденсированная фракция) может содержать углеводороды, кипящие выше приблизительно 350°C (например, вакуумный газойль до тяжелых парафинов).
Фракция продукта, кипящая ниже 350°C, может быть разделена на фракцию остаточного газа и конденсированную фракцию, например, нормальные парафины с количеством атомов углерода от приблизительно 5 до приблизительно 20 и кипящие при более высоких температурах, можно отделить, используя, например, газо-жидкостный сепаратор высокого давления и/или низкой температуры, или сепаратор низкого давления, или сочетание сепараторов. Фракция, кипящая выше приблизительно 350°C (конденсированная фракция) может быть разделена на фракцию восков, кипящую в интервале от приблизительно 350°C до приблизительно 650°C после удаления одной или более фракций, кипящих выше 650°C. Фракция восков может содержать линейные парафины с количеством атомов углерода от приблизительно 20 до приблизительно 50, и относительно небольшие количества высококипящих разветвленных парафинов. Разделение можно осуществить при помощи фракционной дистилляции.
Продукт, полученный способом по изобретению, может содержать метан, воск и другие тяжелые высокомолекулярные продукты. Продукт может содержать олефины, такие как этилен, нормальные и изо-парафины и их сочетания. Они могут содержать углеводороды из ряда дистиллятного топлива, включая ряд реактивного или дизельного топлива.
Разветвление может быть предпочтительно для ряда способов практического применения, в частности, когда требуется повысить октановые числа или понизить точки застывания. Степень изомеризации может быть выше приблизительно 1 моля изопарафина на моль n-парафина, и в другом варианте воплощения приблизительно 3 моль изопарафина на моль n-парафина. При использовании в составе дизельного топлива, продукт может состоять из смеси углеводородов с цетановым числом, по меньшей мере, приблизительно 60.
При промышленном применении, продукты с высокой молекулярной массой, например воски, можно либо отделить и использовать напрямую, либо подвергнуть реакциям для получения продуктов с меньшей молекулярной массой. Например, продукты с высокой молекулярной массой можно подвергнуть гидрокрекингу для получения продуктов с меньшей молекулярной массой, увеличивая выход жидких горючих топлив. Гидрокрекинг означает каталитический процесс, обычно осуществляемый в присутствие свободного водорода, в котором расщепление больших молекул углеводородов является основной целью процесса. Катализаторы, используемые для проведения процесса гидрокрекинга хорошо известны в данной области техники; см., например, патенты США 4,347,121 и 4,810,357, которые приведены в данном контексте в качестве ссылки, поскольку в них описаны процессы гидрирования и гидрокрекинга и катализаторы, применяемые в каждом из этих процессов. Продукт, полученный способом по изобретению, может быть в дальнейшем переработан для получения смазочного масла или дизельного топлива. Например, продукт, полученный способом по изобретению, может быть подвергнут гидрокрекингу, а затем дистилляции и/или каталитической изомеризации для получения смазочного масла, дизельного топлива и подобных веществ.
Углеводородные продукты, полученные способом по изобретению, можно гидроизомеризовать способами, раскрытыми в патентах США 6,103,099 или 6,180,575; подвергнуть гидрокрекингу или гидроизомеризации способами, описанными в патентах США 4,943,672 или 6,096,940; или депарафинизировать способами, описанными в патентах США 6,013,171, 6,080,301 или 6,165,949. Эти патенты приведены в данном описании в качестве ссылки, поскольку они содержат описания способов обработки углеводородов, полученных в синтезе Фишера-Тропша, и конечных продуктов, полученных этими способами.
Пример 1
Для получения Co/Re катализатора, нанесенного на Al2O3, применяется способ многократной пропитки. Для каждой пропитки используются отдельная порция пропитывающих растворов (с различными концентрациями). Состав каждого пропитывающего раствора следующий: пропитывающий раствор A содержит 31,0 мас.% нитрата кобальта и 2,8 мас.% рениевой кислоты. Пропитывающий раствор B содержит 29,8 мас.% нитрата кобальта и 2,7 мас.% рениевой кислоты. Пропитывающий раствор C содержит 38,7 мас.% нитрата кобальта и 3,5 мас.% рениевой кислоты. Пропитывающий раствор D содержит 40,7 мас.% нитрата кобальта и 3,6 мас.% рениевой кислоты. Используется следующая последовательность стадий.
(1) Носитель из Al2O3 (1,0 грамм) обжигают при 650°C в течение 1 часа. Площадь поверхности носителя по методу Брунауэра-Эммета-Тэллера (БЭТ) составляет 200 м2/г, и объем пор по методу Баррета-Джойнера-Халенда (БДХ) составляет 0,69 см3/г.
(2) Первую пропитку проводят, используя 0,7 мл пропитывающего раствора A, для достижения общего содержания Co 7,9 мас.% и Re 1,2 мас.%.
(3) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°C в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(4) Площадь поверхности катализатора, полученного на стадии (3), по методу БЭТ составляет 183 м2/г, а объем пор по методу БДХ 0,57 см3/г.
(5) Вторую пропитку проводят, используя 0,57 мл пропитывающего раствора B, для достижения общего содержания Co 13 мас.% и Re 2,0 мас.%.
(6) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°С в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(7) Площадь поверхности катализатора, полученного на стадии (6), по методу БЭТ составляет 162 м2/г, а объем пор по методу БДХ 0,48 см3/г.
(8) Третью пропитку проводят, используя 0,48 мл пропитывающего раствора C, для достижения общего содержания Co 19 мас.% и Re 2,9 мас.%.
(9) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°C в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(10) Площадь поверхности катализатора, полученного на стадии (9), по методу БЭТ составляет 144 м2/г, а объем пор по методу БДХ 0,41 см3/г.
(11) Четвертую пропитку проводят, используя 0,41 мл пропитывающего раствора D, для достижения общего содержания Co 25 мас.% и Re 3,6 мас.%.
(12) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°С в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(13) Дисперсия Co, определенная из эксперимента по хемосорбции, составляет 6,2%.
Данные по объему пор и площади поверхности, полученные в описанном выше синтезе, представлены на Фиг.13.
Пример 2
Для последующих пропиток используют одну порцию пропитывающего раствора. Пропитывающий раствор содержит насыщенный раствор нитрата кобальта, к которому добавлена рениевая кислота. Используют следующую методику.
(1) Носитель из Al2O3 (1,0 грамм) отжигают при 650°C в течение 1 часа. Площадь поверхности носителя по методу БЭТ составляет 200 м2/г, и объем пор по методу БДХ составляет 0,69 см3/г.
(2) Первую пропитку проводят, используя 0,69 мл пропитывающего раствора, для достижения общего содержания Co 11,0 мас.% и Re 1,7 мас.%.
(3) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°C в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(4) Объем пор предполагается равным 0,52 см3/г.
(5) Вторую пропитку проводят, используя 0,66 мл пропитывающего раствора, для достижения общего содержания Co 18 мас.% и Re 2,8 мас.%.
(6) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°C в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(7) Объем пор предполагается равным 0,435 см3/г.
(8) Третью пропитку проводят, используя 0,63 мл пропитывающего раствора, для достижения общего содержания Co 24 мас.% и Re 3,6 мас.%.
(9) Катализатор высушивают при 90°C в течение 12 часов, а затем обжигают, увеличивая температуру до 250°C со скоростью 5°C в минуту и затем выдерживая при температуре 250°C в течение 2 часов.
(10) Объем пор предполагается равным 0,39 см3/г.
(11) Четвертую пропитку проводят, используя 0,61 мл пропитывающего раствора, для достижения общего содержания Co 28 мас.% и Re 4,2 мас.%.
(12) Катализатор высушивают при 90°С в течение 12 часов, а затем обжигают, увеличивая температуру до 250°С со скоростью 5°С в минуту и затем выдерживая при температуре 250°С в течение 2 часов.
(13) Распределение Co, определенное из эксперимента по хемосорбции, составляет 6,3%. Площадь поверхности катализатора по методу БЭТ составляет 107 м2/г и объем пор по методу БДХ 0,28 см3/г.
Части образца, полученного описанным выше методом синтеза, используют для увеличения содержания Co до 35% и 40% при помощи описанного выше метода.
Пример 3
Реакцию Фишера-Тропша проводят в микроканальном реакторе. Микроканальный реактор состоит из одного рабочего микроканала. Высота рабочего микроканала составляет 0,51 мм, ширина 0,7 см, а длина 5,1 см. рабочий микроканал содержит 0,3 грамма Co/Re катализатора, нанесенного на Al2O3. Мольное отношение Co/Re составляет 21. Катализатор приготовлен с использованием метода многократной пропитки для достижения содержания Co 30 мас.% и Re 4,5%. Дисперсия металла в катализаторе составляет 5,4%. Катализатор представляет собой твердые частицы с размером в диапазоне 177-250 мкм. Твердые частицы наполняют рабочий микроканал. Рабочий микроканал охлаждается смежным теплообменником до такой степени, что градиент температур в пределах катализатора составляет менее 5°C.
Реактор эксплуатируют при 20 атмосферах с ССПГ 12520 ч-1, что соответствует времени контакта 0,26 секунд. При 224°C конверсия CO составляет 50%, а селективность по метану 10%. При увеличении давления до 35 атмосфер исходная конверсия CO увеличивается до 65%, а селективность по метану уменьшается до 6,8%. Эти результаты представлены на Фиг.14. Анализ образца жидкость/воск из продукта свидетельствует, что вероятность роста цепи равна 0,93.
Способ осуществляют при различных рабочих давлениях в пределах от 10 до 40 атм., но при одной и той же температуре (225°С) и времени контакта (0,26 секунд). Результаты представлены на Фиг.15. Результаты свидетельствуют, что селективность по метану уменьшена с 12% до 6,5% при увеличении давления в системе от 10 атм. до 40 атм.
Способ осуществляют при 250°C с результатом, представленным на Фиг.16. Как показано на Фиг.16, в способе достигается значение конверсии CO 70%, селективности по метану 10%.
Способ повторяют с временем контакта, уменьшенным до 0,1 секунды (ССПГ=33,180 ч-1) при давлении 35 атм. и температуре 226°C. Результаты представлены на Фиг.17, на которой показано, что конверсия CO составляет 63%, а селективность по метану 10,5%.
Пример 4
В синтезе по реакции Фишера-Тропша протестированы два катализатора 30% Co - 4,5% Re/Al2O3. Один из катализаторов изготовлен с применением стадий промежуточного обжига. Второй катализатор изготовлен без применения стадий промежуточного обжига. Катализатор, изготовленный с применением стадий промежуточного обжига, получают по следующей методике. Носитель пропитывают насыщенным раствором нитрата кобальта и рениевой кислоты в воде в количестве, достаточном для заполнения его пор. Пропитанный носитель затем нагревают до 90°C и выдерживают при этой температуре в течение 14 часов, затем нагревают до 300°C со скоростью 5°C/мин и выдерживают при 300°C в течение трех часов для обжига перед охлаждением до комнатной температуры. Эту схему повторяют четыре раза до достижения желаемого содержания Co и Re.
Катализатор, изготовленный без применения стадий промежуточного обжига, получают по следующей методике. Носитель пропитывают насыщенным раствором нитрата кобальта и рениевой кислоты в воде в количестве, достаточном для заполнения его пор. Пропитанный носитель затем нагревают до 90°C и выдерживают при 90°C в течение 14 часов перед охлаждением до комнатной температуры. Эту схему повторяют четыре раза до достижения желаемого содержания Co и Re. После последней стадии пропитки катализатор нагревают до 350°С со скоростью 10°C в минуту и выдерживают при 350°C в течение трех часов перед охлаждением до комнатной температуры.
Реакцию Фишера-Тропша проводят в микроканальном реакторе, содержащем 5 рабочих микроканалов. Размеры рабочих микроканалов составляют 1,5 мм высота, 0,635 см ширина и 2,54 см длина. Каждый рабочий микроканал содержит 0,12 грамм катализатора. Размер частиц катализатора находится в диапазоне от 150 до 250 мкм. Рабочие микроканалы охлаждают с помощью смежного теплообменника. Реакцию проводят с использованием реакционной смеси, содержащей 63,89 мольных % водорода, 32,1 мольных % монооксида углерода и 4,01 мольных % азота. Измеренное на входе давление составляет 20,4 атмосферы. Реактор эксплуатируют в изотермическом режиме при температуре, указанной на Фиг.18. Весовая часовая объемная скорость монооксида углерода (масса поданного монооксида углерода на единицу массы катализатора в час) составляет 4,9. Результаты представлены на Фиг.18.
Несмотря на то, что изобретение описано в отношении нескольких конкретных примеров, следует понимать, что их различные модификации будут очевидны для специалистов в данной области техники при прочтении настоящего описания. Таким образом, следует понимать, что описанное изобретение охватывает подобные модификации, попадающие в рамки приложенной формулы изобретения.
Claims (79)
1. Способ осуществления синтеза Фишера-Тропша по превращению реакционной смеси, содержащей H2 и CO, в продукт, содержащий по меньшей мере один алифатический углеводород, имеющий по меньшей мере 5 атомов углерода, включающий сначала пропускание реакционной смеси через микроканальный реактор с группой рабочих микроканалов, содержащих контактирующий катализатор Фишера-Тропша, который содержит Co, нанесенный на носитель, в количестве по меньшей мере 25 мас.%, затем осуществление теплопереноса от рабочих микроканалов к теплообменнику, после чего отвод получаемого продукта от микроканального реактора, при этом обеспечивают объемную скорость потока реакционной смеси и продукта через рабочие микроканалы по меньшей мере 1000 ч-1 и в результате получают по меньшей мере 0,5 г алифатического углеводорода, имеющего по меньшей мере 5 атомов углерода, на грамм катализатора в час, с селективностью по метану в продукте менее чем приблизительно 25%.
2. Способ по п.1, в котором в микроканальном реакторе используют все рабочие микроканалы с внутренними размерами по ширине или высоте не более чем приблизительно 10 мм.
3. Способ по п.1, в котором рабочие микроканалы выполняют из материала, выбранного из группы, включающей сталь, монель, инконель, алюминий, титан, никель, медь, латунь, сплав любого из упомянутых выше металлов, полимер, керамику, стекло, композит, содержащий полимер и стекловолокно, кварц, кремний, и комбинацию двух или более из указанных компонентов.
4. Способ по п.1, в котором в качестве средства теплопереноса используют теплообменник, содержащий теплообменные каналы, смежные с рабочими микроканалами.
5. Способ по п.4, в котором теплообменные каналы являются микроканалами.
6. Способ по п.5, в котором используют все теплообменные каналы с внутренними размерами по ширине или высоте не более чем приблизительно 10 мм.
7. Способ по п.1, в котором по меньшей мере один рабочий микроканал соприкасается с теплообменным каналом, имеющим такую же длину.
8. Способ по п.1, в котором в теплообменнике используют теплообменную зону, которую размещают смежно с по меньшей мере одним рабочим микроканалом и составляют из группы теплообменных каналов, продольное направление которых перпендикулярно продольному направлению рабочего микроканала, при этом теплообменную зону располагают продольно в том же направлении, что и рабочий микроканал, а длину теплообменной зоны задают меньше длины рабочих микроканалов, имеющих вход и выход, при этом теплообменную зону располагают на входе в рабочие микроканалы или в зоне этого входа.
9. Способ по п.1, в котором в теплообменнике используют две теплообменные зоны, которые размещают смежно с по меньшей мере одним рабочим микроканалом, имеющим вход и выход, и составляют каждую из группы теплообменных каналов, продольное направление которых перпендикулярно продольному направлению рабочего микроканала, при этом теплообменные зоны располагают продольно в том же направлении, что и рабочий микроканал, а длину теплообменных зон задают меньше длины рабочего микроканала, причем длину одной теплообменной зоны берут меньше длины другой теплообменной зоны, при этом теплообменные зоны располагают на входе в рабочий микроканал или в зоне этого входа.
10. Способ по п.4, в котором теплообменные каналы выполняют из материала, выбранного из группы, включающей сталь, монель, инконель, алюминий, титан, никель, медь, латунь, сплав любого из упомянутых выше металлов, полимер, керамику, стекло, композит, содержащий полимер и стекловолокно, кварц, кремний, и комбинацию двух или более из указанных компонентов.
11. Способ по п.1, в котором используют микроканальный реактор, в котором каждый рабочий микроканал имеет вход и выход, причем через выход осуществляют отвод из микроканального реактора продукта и непрореагировавших компонентов реакционной смеси, а по меньшей мере часть непрореагировавших компонентов рециклируют ко входу в микроканальный реактор.
12. Способ по п.1, в котором в рабочие микроканалы направляют реакционную смесь, на выходе получают продукт, причем разницу температур реакционной смеси и продукта поддерживают на уровне приблизительно 200°C.
13. Способ по п.1, в котором используют исходную реакционную смесь с мольным отношением H2 к CO в интервале от приблизительно 0,8 до приблизительно 10.
14. Способ по п.1, в котором используют исходную реакционную смесь, дополнительно содержащую H2O, CO2, углеводород, имеющий от 1 до 4 атомов углерода, или смесь двух или более из них.
15. Способ по п.4, в котором осуществляют теплообмен между рабочими микроканалами и теплоносителем, проходящим через теплообменные каналы.
16. Способ по п.15, в котором при прохождении теплоносителя через теплообменные каналы обеспечивают изменение его фазового состояния.
17. Способ по п.4, в котором в теплообменных каналах проводят эндотермическую химическую реакцию.
18. Способ по п.17, в котором в качестве эндотермической химической реакции проводят паровой реформинг или реакцию дегидрирования.
19. Способ по п.4, в котором реакционную смесь и продукт пропускают через рабочие микроканалы в первом направлении, а поток теплоносителя пропускают через теплообменные каналы во втором направлении, перпендикулярном направлению первого потока.
20. Способ по п.4, в котором реакционную смесь и продукт пропускают через рабочие микроканалы в первом направлении, а поток теплоносителя пропускают через теплообменные каналы во втором направлении, совпадающем с направлением первого потока.
21. Способ по п.4, в котором реакционную смесь и продукт пропускают через рабочие микроканалы в первом направлении, а поток теплоносителя пропускают через теплообменные каналы во втором направлении, параллельном направлению первого потока и направленном в противоположную сторону.
22. Способ по п.4, в котором через теплообменные каналы пропускают теплоноситель, выбранный из группы, включающей воздух, пар, воду, диоксид углерода, газообразный азот, жидкий азот, газообразный углеводород или жидкий углеводород.
23. Способ по п.1, в котором в состав катализатора включают Fe, Ni, Ru, Re, Os или оксид одного из них, или комбинации по меньшей мере двух указанных компонентов.
24. Способ по п.1, в котором в состав катализатора включают промотор, выбранный из группы, включающей металлы IA, IIA, IIIB, или IIВ групп или оксид одного из них, металлический лантанид или оксид, металлический актинид или оксид, или комбинации по меньшей мере двух указанных компонентов.
25. Способ по п.1, в котором в состав катализатора включают промотор, выбранный из группы, включающей Li, B, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce, или Th, или оксид одного из них, или комбинации по меньшей мере двух указанных компонентов.
26. Способ по п.1, в котором в качестве носителя катализатора используют носитель, выбранный из группы, включающей оксид алюминия, оксид циркония, оксид кремния, фторид алюминия, фторированный оксид алюминия, бентонит, оксид церия, оксид цинка, алюмосиликат, карбид кремния, молекулярные сита или комбинации по меньшей мере двух указанных компонентов.
27. Способ по п.1, в котором в качестве носителя катализатора используют подложку из тугоплавкого оксида.
28. Способ по п.1, в котором катализатор используют в виде композиции, представленной следующей формулой:
,
где M1 означает Fe, Ni, Ru, Re, Os или смесь по меньшей мере двух указанных металлов;
M2 означает Li, В, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce, или Th, или смесь по меньшей мере двух указанных металлов;
a означает число в интервале от нуля до приблизительно 0,5;
b означает число в интервале от нуля до приблизительно 0,5;
x означает количество атомов кислорода, необходимое для соблюдения электронейтральности, учитывая валентности указанных элементов.
где M1 означает Fe, Ni, Ru, Re, Os или смесь по меньшей мере двух указанных металлов;
M2 означает Li, В, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Sc, Y, La, Ac, Ti, Zr, Ce, или Th, или смесь по меньшей мере двух указанных металлов;
a означает число в интервале от нуля до приблизительно 0,5;
b означает число в интервале от нуля до приблизительно 0,5;
x означает количество атомов кислорода, необходимое для соблюдения электронейтральности, учитывая валентности указанных элементов.
29. Способ по п.1, в котором используют катализатор, содержащий Со, нанесенный на оксид алюминия, причем содержание Со составляет по меньшей мере 28 мас.%.
30. Способ по п.29, в котором состав катализатор включает Re, Ru или их смесь.
31. Способ по п.1, в котором в состав катализатора включают каталитический металл и носитель, причем катализатор изготовлен посредством пропитки носителя композицией, содержащей каталитический металл для получения промежуточного каталитического продукта, обжига полученного промежуточного продукта, пропитки обожженного промежуточного другой композицией, содержащей каталитический металл, с получением второго промежуточного каталитического продукта, и обжига второго промежуточного каталитического продукта с получением катализатора.
32. Способ по п.31, в котором указанная композиция, содержащая каталитический металл, представляет собой раствор нитрата кобальта, а указанный носитель представляет собой оксид алюминия.
33. Способ по п.1, в котором катализатор используют в форме твердых частиц.
34. Способ по п.1, в котором катализатор наносят на внутренние стенки рабочих микроканалов, осаждают на внутренние стенки рабочих микроканалов из раствора или наносят in situ на структуру ребер.
35. Способ по п.1, в котором катализатор наносят на подложку, изготовленную из материала, представляющего собой сплав, содержащий Ni, Cr и Fe, или сплав, содержащий Fe, Cr, Al и Y.
36. Способ по п.1, в котором катализатор наносят на подложку, имеющую обтекаемую, проточную или змеевидную конфигурацию.
37. Способ по п.1, в котором катализатор наносят на подложку, выполненную из пены, войлока, ваты, или в виде ребра, или комбинации по меньшей мере двух указанных компонентов.
38. Способ по п.1, в котором катализатор наносят на подложку в форме обтекаемой структуры с прилегающим проходом, такой как войлок или пена; в форме узла ребер, расположенных с зазорами; в форме покрытия с увеличенной площадью активной поверхности, нанесенного на подложку; или в форме металлической сетки, размещенной с соответствующим зазором.
39. Способ по п.1, в котором катализатор наносят на подложку, выполненную в форме узла ребер, содержащего по меньшей мере одно ребро.
40. Способ по п.39, в котором в узел ребер включают группу параллельных разнесенных ребер.
41. Способ по п.39, в котором ребро имеет внешнюю поверхность, по меньшей мере часть которой покрывают пористым материалом, а катализатор наносят на этот пористый материал.
42. Способ по п.41, в котором пористый материал представляет собой покрытие, волокна, пену или войлок.
43. Способ по п.39, в котором ребро имеет внешнюю поверхность и группу волокон или элементов, выступающих по меньшей мере из части этой поверхности, при этом катализатор наносят на выступающие элементы.
44. Способ по п.39, в котором ребро имеет внешнюю поверхность, на по меньшей мере часть которой наносят катализатор в виде покрытия с увеличенной площадью активной поверхности или посредством выделения из раствора, или осаждения из паровой фазы.
45. Способ по п.39, в котором используют узел ребер, включающий группу параллельных разнесенных ребер, по меньшей мере одно из которых имеет отличающуюся длину по сравнению с остальными ребрами.
46. Способ по п.39, в котором используют узел ребер, включающий группу параллельных разнесенных ребер, по меньшей мере одно из которых имеет отличающуюся высоту по сравнению с остальными ребрами.
47. Способ по п.39, в котором ребро выполняют с поперечным сечением в форме квадрата, прямоугольника или трапеции.
48. Способ по п.40, в котором ребро выполняют из материала, выбранного из группы, включающей сталь, алюминий, титан, железо, никель, платину, родий, медь, хром, латунь, сплав любого из выше упомянутых металлов, полимер, керамику, стекло, композиционный полимер и стекловолокно; кварц, кремний, и комбинацию по меньшей мере двух указанных компонентов.
49. Способ по п.39, в котором ребро выполняют из материала, представляющего собой сплав, содержащий Ni, Cr и Fe, или сплав, содержащий Fe, Cr, Al и Y.
50. Способ по п.39, в котором ребро выполняют из материала, образующего Al2O3, или материала, образующего Cr2O3.
51. Способ по п.1, в котором используют рабочие микроканалы, характеризующиеся величиной зоны объемного потока, составляющей от приблизительно 5% до приблизительно 95% сечения этих рабочих микроканалов.
52. Способ по п.1, в котором обеспечивают время контактирования реакционной смеси и/или продукта с катализатором, не превышающее приблизительно 2000 мс.
53. Способ по п.1, в котором обеспечивают температуру реакционной смеси на входе рабочего микроканала в интервале от приблизительно 150°C до приблизительно 270°C.
54. Способ по п.1, в котором обеспечивают давление внутри рабочих микроканалов по меньшей мере 5 атм.
55. Способ по п.1, в котором поток реакционной смеси и продукта пропускают через рабочие микроканалы с объемной скоростью от приблизительно 1000 ч-1 до приблизительно 1000000 ч-1.
56. Способ по п.1, в котором при прохождении через рабочий микроканал потока реакционной смеси и продукта обеспечивают падение давления потока не более приблизительно 10 атм на метр длины рабочего микроканала.
57. Способ по п.4, в котором через теплообменные каналы пропускают теплоноситель, причем падение давления в потоке теплоносителя не превышает приблизительно 10 атм на метр длины теплообменных каналов.
58. Способ по п.1, в котором обеспечивают конверсию CO в результате одного цикла по меньшей мере 40%.
59. Способ по п.1, в котором обеспечивают выход продукта после осуществления одного цикла по меньшей мере приблизительно 25%.
60. Способ по п.1, в котором в процессе осуществления одного цикла конверсии обеспечивают степень конверсии СО по меньшей мере приблизительно 50%, селективность по метану в продукте не более 15%, а выход продукта по меньшей мере 35%.
61. Способ по п.1, в котором используют катализатор в форме твердых частиц, средний диаметр которых находится в интервале от приблизительно 1 до приблизительно 1000 мкм, а длина каждого рабочего микроканала составляет до приблизительно 500 см.
62. Способ по п.1, в котором в результате осуществления способа получают продукт, представляющий собой углеводороды, кипящие при атмосферном давлении при температуре не менее чем приблизительно 350°C.
63. Способ по п.1, в котором получают продукт, представляющий собой углеводороды, кипящие при атмосферном давлении при температуре не более чем приблизительно 350°C.
64. Способ по п.1, в котором получают продукт, представляющий собой средний дистиллят.
65. Способ по п.1, в котором получают продукт, представляющий собой по меньшей мере один олефин.
66. Способ по п.1, в котором получают продукт, представляющий собой нормальный парафин, изопарафин или их смесь.
67. Способ по п.1, в котором полученный продукт дополнительно обрабатывают посредством гидрокрекинга, гидроизомеризации или депарафинизиции.
68. Способ по п.1, в котором полученный продукт дополнительно обрабатывают с получением смазочного масла или дизельного топлива.
69. Способ по п.1, в котором реакционную смесь и продукт пропускают сверху вниз через рабочие микроканалы, ориентированные вертикально.
70. Способ по п.1, в котором после удаления продукта из микроканального реактора через рабочие микроканалы пропускают регенерирующую текучую среду, которая контактирует с катализатором, причем обеспечивают время выдерживания регенерирующей текучей среды в рабочих микроканалах от приблизительно 0,01 до приблизительно 1000 с.
71. Способ по п.1, в котором используют катализатор Co, нанесенный на оксид алюминия с дисперсией Со по меньшей мере приблизительно 3%.
72. Способ по п.71, который дополнительно содержит Re, Ru или их смесь.
73. Способ по п.1, в котором используют микроканальный реактор, содержащий по меньшей мере один рабочий микроканал, имеющий вход и выход, и по меньшей мере одну теплообменную зону, смежную с рабочим микроканалом, причем теплообменная зона включает в себя группу теплообменных каналов, продольное направление которых перпендикулярно продольному направлению рабочего микроканала, и расположена продольно в том же направлении, что и рабочий микроканал, на входе в микроканальный реактор или в зоне этого входа, при этом длина теплообменной зоны меньше длины рабочего микроканала, а ширина рабочего микроканала на выходе из рабочего микроканала или в зоне этого выхода больше ширины рабочего микроканала на входе в рабочий микроканал или в зоне этого входа.
74. Способ по п.73, в котором указанная по меньшей мере одна теплообменная зона состоит из двух частей, одна из которых длиннее другой.
75. Способ по п.73, в котором используют рабочий микроканал с внутренним размером по большей мере приблизительно 10 мм.
76. Способ по п.73, в котором рабочий микроканал выполняют из материала, выбранного из группы, включающей сталь, монель, инконель, алюминий, титан, никель, медь, латунь, сплав любых вышеупомянутых металлов, полимер, керамику, стекло композит, содержащий полимер и оптоволокно, кварц, кремний, или комбинацию двух или более из указанных компонентов.
77. Способ по п.73, в котором указанные теплообменные каналы являются микроканалами.
78. Способ по п.73, в котором используют теплообменные каналы с внутренним размером по большей мере приблизительно 10 мм.
79. Способ по п.74, в котором теплообменные каналы выполняют из материала, выбранного из группы, включающей сталь, монель, инконель, алюминий, титан, никель, медь, латунь, сплав любых вышеупомянутых металлов, полимер, керамику, стекло, композит, содержащий полимер и оптоволокно, кварц, кремний или комбинацию по меньшей мере двух указанных компонентов.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/766,297 US7084180B2 (en) | 2004-01-28 | 2004-01-28 | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US10/766,297 | 2004-01-28 | ||
PCT/US2004/042065 WO2005075606A1 (en) | 2004-01-28 | 2004-12-15 | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006130871A RU2006130871A (ru) | 2008-03-10 |
RU2491320C2 true RU2491320C2 (ru) | 2013-08-27 |
Family
ID=34795632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006130871/04A RU2491320C2 (ru) | 2004-01-28 | 2004-12-15 | Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со |
Country Status (10)
Country | Link |
---|---|
US (3) | US7084180B2 (ru) |
EP (4) | EP1713883B1 (ru) |
JP (4) | JP5530053B2 (ru) |
CN (1) | CN100529020C (ru) |
AU (2) | AU2004315214B2 (ru) |
BR (1) | BRPI0418465A (ru) |
CA (1) | CA2552283C (ru) |
ES (1) | ES2718319T3 (ru) |
RU (1) | RU2491320C2 (ru) |
WO (1) | WO2005075606A1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108654654A (zh) * | 2017-04-01 | 2018-10-16 | 神华集团有限责任公司 | 沉淀铁费托催化剂及其制备方法和应用 |
RU2674161C1 (ru) * | 2018-05-24 | 2018-12-05 | федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" | Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU778040B2 (en) * | 1999-08-17 | 2004-11-11 | Battelle Memorial Institute | Catalyst structure and method of fischer-tropsch synthesis |
US6488838B1 (en) * | 1999-08-17 | 2002-12-03 | Battelle Memorial Institute | Chemical reactor and method for gas phase reactant catalytic reactions |
WO2003078052A1 (en) * | 2002-03-11 | 2003-09-25 | Battelle Memorial Institute | Microchannel reactors with temperature control |
GB0314790D0 (en) * | 2003-06-25 | 2003-07-30 | Accentus Plc | Catalytic reactor and process |
US8580211B2 (en) * | 2003-05-16 | 2013-11-12 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
US7084180B2 (en) * | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US9023900B2 (en) * | 2004-01-28 | 2015-05-05 | Velocys, Inc. | Fischer-Tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
US7846977B2 (en) * | 2004-04-30 | 2010-12-07 | Basf Corporation | Processes using a supported catalyst |
CA2575165C (en) * | 2004-08-12 | 2014-03-18 | Velocys Inc. | Process for converting ethylene to ethylene oxide using microchannel process technology |
US7622509B2 (en) * | 2004-10-01 | 2009-11-24 | Velocys, Inc. | Multiphase mixing process using microchannel process technology |
US9150494B2 (en) * | 2004-11-12 | 2015-10-06 | Velocys, Inc. | Process using microchannel technology for conducting alkylation or acylation reaction |
KR20100038476A (ko) | 2004-11-16 | 2010-04-14 | 벨로시스, 인코포레이티드 | 마이크로채널 기술을 사용하는 다중상 반응 과정 |
WO2006057895A2 (en) * | 2004-11-17 | 2006-06-01 | Velocys Inc. | Process for making or treating an emulsion using microchannel technology |
DE102005004075B4 (de) * | 2005-01-28 | 2008-04-03 | Umicore Ag & Co. Kg | Keramischer Mikroreaktor |
US7507274B2 (en) * | 2005-03-02 | 2009-03-24 | Velocys, Inc. | Separation process using microchannel technology |
EP1890802A2 (en) * | 2005-05-25 | 2008-02-27 | Velocys, Inc. | Support for use in microchannel processing |
US20070004810A1 (en) * | 2005-06-30 | 2007-01-04 | Yong Wang | Novel catalyst and fischer-tropsch synthesis process using same |
EP2543434B1 (en) * | 2005-07-08 | 2022-06-15 | Velocys Inc. | Catalytic reaction process using microchannel technology |
CN101426752B (zh) * | 2006-03-23 | 2014-08-13 | 万罗赛斯公司 | 利用微通道工艺技术制造苯乙烯的工艺 |
JP5362552B2 (ja) | 2006-04-20 | 2013-12-11 | ヴェロシス,インク. | マイクロチャネルプロセス技術を用いて非ニュートン流体を処理し、および/または形成させるためのプロセス |
US8497308B2 (en) | 2006-09-05 | 2013-07-30 | Velocys, Inc. | Integrated microchannel synthesis and separation |
US7820725B2 (en) * | 2006-09-05 | 2010-10-26 | Velocys, Inc. | Integrated microchannel synthesis and separation |
WO2008089376A2 (en) * | 2007-01-19 | 2008-07-24 | Velocys Inc. | Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology |
US7923592B2 (en) | 2007-02-02 | 2011-04-12 | Velocys, Inc. | Process for making unsaturated hydrocarbons using microchannel process technology |
US10031113B2 (en) * | 2007-02-28 | 2018-07-24 | Waters Technologies Corporation | Liquid-chromatography apparatus having diffusion-bonded titanium components |
US20080260631A1 (en) | 2007-04-18 | 2008-10-23 | H2Gen Innovations, Inc. | Hydrogen production process |
WO2009126765A2 (en) * | 2008-04-09 | 2009-10-15 | Velocys Inc. | Process for converting a carbonaceous material to methane, methanol and/or dimethyl ether using microchannel process technology |
CN102083526A (zh) * | 2008-04-09 | 2011-06-01 | 万罗赛斯公司 | 使用微通道工艺技术升级碳质材料的方法 |
US8100996B2 (en) * | 2008-04-09 | 2012-01-24 | Velocys, Inc. | Process for upgrading a carbonaceous material using microchannel process technology |
KR100933062B1 (ko) | 2008-06-20 | 2009-12-21 | 한국화학연구원 | 합성가스로부터 경질올레핀을 직접 생산하기 위한 촉매와이의 제조방법 |
EP2300447A1 (en) * | 2008-07-14 | 2011-03-30 | Basf Se | Process for making ethylene oxide |
FR2934174B1 (fr) * | 2008-07-25 | 2010-09-17 | Total Sa | Procede de synthese fischer-tropsch sur plaques catalytiques comprenant un support de mousse de sic |
AU2009302276B2 (en) | 2008-10-10 | 2015-12-03 | Velocys Inc. | Process and apparatus employing microchannel process technology |
DE102008064282A1 (de) | 2008-12-20 | 2010-06-24 | Bayer Technology Services Gmbh | Vielstufig adiabates Verfahren zur Durchführung der Fischer-Tropsch-Synthese |
US8278363B2 (en) * | 2009-03-23 | 2012-10-02 | Thomas Charles Holcombe | Fischer-tropsch reactions using heat transfer tubes with a catalyst layer on the outside surfaces |
US8524927B2 (en) * | 2009-07-13 | 2013-09-03 | Velocys, Inc. | Process for making ethylene oxide using microchannel process technology |
EP2486107A1 (en) * | 2009-10-09 | 2012-08-15 | Velocys Inc. | Process for treating heavy oil |
US8420023B2 (en) * | 2009-11-06 | 2013-04-16 | Auburn University | Microfibrous media and packing method for optimizing and controlling highly exothermic and highly endothermic reactions/processes |
US8168687B2 (en) | 2009-11-30 | 2012-05-01 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch synthesis reactions in a syngas treatment unit |
US8163809B2 (en) * | 2009-11-30 | 2012-04-24 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit |
KR101094077B1 (ko) * | 2010-02-16 | 2011-12-15 | 한국에너지기술연구원 | 금속 폼 표면에 코발트 촉매 분말이 코팅된 코발트 금속 폼 촉매의 제조방법 및 그 코발트 금속 폼 촉매, 이 코발트 금속 폼 촉매를 이용한 열매체 순환 열교환형 반응기 및 이 열매체 순환 열교환형 반응기를 이용한 피셔-트롭쉬 합성 반응에 의한 액체 연료의 생산 방법 |
US8202914B2 (en) * | 2010-02-22 | 2012-06-19 | L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Process for decreasing or eliminating unwanted hydrocarbon and oxygenate products caused by Fisher Tropsch Synthesis reactions in a syngas treatment unit |
KR101238630B1 (ko) * | 2010-07-30 | 2013-02-28 | 한국에너지기술연구원 | 합성천연가스 제조용 미세유로 반응기 |
FR2965191A1 (fr) * | 2010-09-23 | 2012-03-30 | Centre Nat Rech Scient | Reacteur a plaques pour la synthese fischer-tropsch |
US9417013B2 (en) | 2010-11-12 | 2016-08-16 | Toyota Motor Engineering & Manufacturing North America, Inc. | Heat transfer systems including heat conducting composite materials |
US8168686B2 (en) | 2010-12-22 | 2012-05-01 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
US8093306B2 (en) * | 2010-12-22 | 2012-01-10 | Rentech, Inc. | Integrated biorefinery for production of liquid fuels |
GB201201619D0 (en) | 2012-01-30 | 2012-03-14 | Oxford Catalysts Ltd | Treating of catalyst support |
DE112012000702T5 (de) | 2011-02-07 | 2013-11-14 | Oxford Catalysts Limited | Katalysatoren |
US9127220B2 (en) | 2011-05-19 | 2015-09-08 | Res Usa, Llc | Biomass high efficiency hydrothermal reformer |
US8367741B2 (en) | 2011-05-19 | 2013-02-05 | Rentech, Inc. | Biomass high efficiency hydrothermal reformer |
EP2710090A2 (en) | 2011-05-20 | 2014-03-26 | Turlapati, Raghavendra Rao | Catalysts for production of combustible fuel and fixed carbons from homogeneous and heterogeneous waste |
RU2473382C1 (ru) * | 2011-07-07 | 2013-01-27 | Общество с ограниченной ответственностью "СинТоп" | Микроканальный реактор для синтеза жидких углеводородов по методу фишера-тропша |
CN102553657B (zh) * | 2012-01-06 | 2013-11-20 | 神华集团有限责任公司 | 费托催化剂的还原方法 |
WO2013123239A1 (en) | 2012-02-17 | 2013-08-22 | Ceramatec, Inc. | Advanced fischer tropsch system |
EP2817389A4 (en) * | 2012-02-21 | 2016-01-20 | Ceramatec Inc | COMPACT FT, COMBINED WITH A MICROFIBROUS CARRIERED NANOCATALYZER |
CA2864514C (en) | 2012-02-21 | 2020-01-07 | Ceramatec, Inc. | Compact fischer tropsch system with integrated primary and secondary bed temperature control |
GB201214122D0 (en) * | 2012-08-07 | 2012-09-19 | Oxford Catalysts Ltd | Treating of catalyst support |
US10393409B2 (en) * | 2012-10-01 | 2019-08-27 | Forced Physics, Llc | Device and method for temperature control |
CN108753342B (zh) * | 2012-10-22 | 2021-05-18 | 万罗赛斯公司 | 微通道反应器中的费托方法 |
CA2904242C (en) | 2013-03-08 | 2017-12-05 | Greyrock Energy, Inc. | Catalyst and process for the production of diesel fuel from natural gas, natural gas liquids, or other gaseous feedstocks |
JP6314556B2 (ja) * | 2013-03-14 | 2018-04-25 | 新日鐵住金株式会社 | 合成ガスから軽質炭化水素を製造する触媒、その触媒の製造方法、及び合成ガスから軽質炭化水素を製造する方法 |
US9676623B2 (en) | 2013-03-14 | 2017-06-13 | Velocys, Inc. | Process and apparatus for conducting simultaneous endothermic and exothermic reactions |
WO2014145169A2 (en) * | 2013-03-15 | 2014-09-18 | Gi-Gasification International (Luxembourg), S.A. | Systems, methods and apparatuses for a compact reactor with finned panels |
US9206091B2 (en) * | 2013-05-14 | 2015-12-08 | Chevron U.S.A. Inc. | Processes and systems for synthesis gas conversion using a hybrid fischer-tropsch catalyst in a compact heat exchange reactor |
CA2936903C (en) | 2013-07-22 | 2018-03-06 | Greyrock Energy, Inc. | Process and catalyst system for the production of high quality syngas from light hydrocarbons and carbon dioxide |
KR102160389B1 (ko) | 2013-08-05 | 2020-09-28 | 트위스트 바이오사이언스 코포레이션 | 드 노보 합성된 유전자 라이브러리 |
US9180436B1 (en) | 2013-11-19 | 2015-11-10 | Emerging Fuels Technology, Inc. | Optimized fischer-tropsch catalyst |
US9358526B2 (en) | 2013-11-19 | 2016-06-07 | Emerging Fuels Technology, Inc. | Optimized fischer-tropsch catalyst |
CN103801245B (zh) * | 2014-01-27 | 2015-06-03 | 石祖嘉 | 列管式双环形通道双面换热大通量微通道反应器 |
CN104028185B (zh) * | 2014-06-13 | 2015-11-04 | 华东理工大学 | 一种适用于高压高温反应条件的微通道反应器的制备方法 |
CA2961390C (en) * | 2014-09-15 | 2024-02-20 | Velocys Technologies, Ltd. | Methods of making purified water from the fischer-tropsch process |
US10710043B2 (en) | 2014-09-24 | 2020-07-14 | Raven Sr, Llc | Compact and maintainable waste reformation apparatus |
US11426717B2 (en) | 2014-11-17 | 2022-08-30 | The Regents Of The University Of Colorado, A Body Corporate | Catalyst, structures, reactors, and methods of forming same |
US11691127B2 (en) | 2014-12-19 | 2023-07-04 | Bp P.L.C. | Process for preparation of a supported cobalt-containing Fishcer-Tropsch synthesis |
WO2016126882A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Methods and devices for de novo oligonucleic acid assembly |
WO2016126987A1 (en) | 2015-02-04 | 2016-08-11 | Twist Bioscience Corporation | Compositions and methods for synthetic gene assembly |
US9981239B2 (en) | 2015-04-21 | 2018-05-29 | Twist Bioscience Corporation | Devices and methods for oligonucleic acid library synthesis |
GB2554618B (en) | 2015-06-12 | 2021-11-10 | Velocys Inc | Synthesis gas conversion process |
DE102015111614A1 (de) | 2015-07-17 | 2017-01-19 | Karlsruher Institut für Technologie | Mikrostrukturreaktor zur Durchführung exothermer, heterogen katalysierter Reaktionen mit effizienter Verdampfungskühlung |
EP3350314A4 (en) | 2015-09-18 | 2019-02-06 | Twist Bioscience Corporation | BANKS OF OLIGONUCLEIC ACID VARIANTS AND SYNTHESIS THEREOF |
KR20180058772A (ko) | 2015-09-22 | 2018-06-01 | 트위스트 바이오사이언스 코포레이션 | 핵산 합성을 위한 가요성 기판 |
CN115920796A (zh) | 2015-12-01 | 2023-04-07 | 特韦斯特生物科学公司 | 功能化表面及其制备 |
CN105749821B (zh) * | 2016-03-28 | 2018-04-20 | 太原科技大学 | 一种公转自转超重力旋转填充床 |
WO2017180957A1 (en) * | 2016-04-15 | 2017-10-19 | Velocys Technologies, Ltd. | Process for operating a radial reactor |
CA3034769A1 (en) | 2016-08-22 | 2018-03-01 | Twist Bioscience Corporation | De novo synthesized nucleic acid libraries |
US10417457B2 (en) | 2016-09-21 | 2019-09-17 | Twist Bioscience Corporation | Nucleic acid based data storage |
CN108003940B (zh) * | 2016-10-28 | 2020-10-27 | 中国石油化工股份有限公司 | 一种将生物质原料转化为清洁柴油的系统及方法 |
CN107999016A (zh) * | 2016-10-28 | 2018-05-08 | 中国石油化工股份有限公司 | 一种具有三维通道结构的反应器及其应用 |
CN108003938B (zh) * | 2016-10-28 | 2020-10-27 | 中国石油化工股份有限公司 | 一种将生物质原料转化为润滑油基础油的系统及方法 |
US11702599B2 (en) | 2016-11-10 | 2023-07-18 | Greyrock Technology, Llc | Processes for the production of liquid fuels from carbon containing feedstocks, related systems and catalysts |
GB2573069A (en) | 2016-12-16 | 2019-10-23 | Twist Bioscience Corp | Variant libraries of the immunological synapse and synthesis thereof |
CA3054303A1 (en) | 2017-02-22 | 2018-08-30 | Twist Bioscience Corporation | Nucleic acid based data storage |
CN106867561A (zh) * | 2017-03-07 | 2017-06-20 | 北京神雾环境能源科技集团股份有限公司 | 费托合成柴油馏分的方法 |
US10894959B2 (en) | 2017-03-15 | 2021-01-19 | Twist Bioscience Corporation | Variant libraries of the immunological synapse and synthesis thereof |
US10543470B2 (en) | 2017-04-28 | 2020-01-28 | Intramicron, Inc. | Reactors and methods for processes involving partial oxidation reactions |
WO2018231864A1 (en) | 2017-06-12 | 2018-12-20 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
AU2018284227B2 (en) | 2017-06-12 | 2024-05-02 | Twist Bioscience Corporation | Methods for seamless nucleic acid assembly |
US10472577B2 (en) | 2017-06-22 | 2019-11-12 | Uop Llc | Composition for opening polycyclic rings in hydrocracking |
US10040057B1 (en) * | 2017-07-06 | 2018-08-07 | Uchicago Argonne, Llc | Catalytic nanosheets to lower soot light off temperatures, method for making nanosheets to lower soot light off temperatures |
WO2019028256A1 (en) * | 2017-08-04 | 2019-02-07 | Bloom Energy Corporation | CERIUM OXIDE TREATMENT OF FUEL CELL COMPONENTS |
CN111566125A (zh) | 2017-09-11 | 2020-08-21 | 特韦斯特生物科学公司 | Gpcr结合蛋白及其合成 |
GB2583590A (en) | 2017-10-20 | 2020-11-04 | Twist Bioscience Corp | Heated nanowells for polynucleotide synthesis |
AU2019205269A1 (en) | 2018-01-04 | 2020-07-30 | Twist Bioscience Corporation | DNA-based digital information storage |
CN111867725A (zh) | 2018-03-20 | 2020-10-30 | 国际壳牌研究有限公司 | 含钴催化剂的制备 |
US10544371B2 (en) | 2018-05-11 | 2020-01-28 | Intramicron, Inc. | Channel reactors |
CN112639130B (zh) | 2018-05-18 | 2024-08-09 | 特韦斯特生物科学公司 | 用于核酸杂交的多核苷酸、试剂和方法 |
BR102018068334B1 (pt) * | 2018-09-11 | 2021-12-07 | Petróleo Brasileiro S.A. - Petrobras | Processo para a preparação de hidrocarbonetos líquidos por processo de fischer- tropsch integrado a unidades de refino |
JP2022522668A (ja) | 2019-02-26 | 2022-04-20 | ツイスト バイオサイエンス コーポレーション | 抗体を最適化するための変異体核酸ライブラリ |
WO2020176678A1 (en) | 2019-02-26 | 2020-09-03 | Twist Bioscience Corporation | Variant nucleic acid libraries for glp1 receptor |
CA3144644A1 (en) | 2019-06-21 | 2020-12-24 | Twist Bioscience Corporation | Barcode-based nucleic acid sequence assembly |
AU2020356471A1 (en) | 2019-09-23 | 2022-04-21 | Twist Bioscience Corporation | Variant nucleic acid libraries for CRTH2 |
WO2021126437A1 (en) * | 2019-12-19 | 2021-06-24 | Exxonmobil Chemical Patents Inc. | Aikyl-demethylation processes and catalyst compositions therefor |
CN113522191B (zh) * | 2020-04-20 | 2022-11-15 | 中国石油化工股份有限公司 | 制备聚α-烯烃的装置和方法 |
US11560343B2 (en) | 2020-05-04 | 2023-01-24 | Infinium Technology, Llc | Process for capture of carbon dioxide from air and the direct conversion of carbon dioxide into fuels and chemicals |
KR20230004843A (ko) | 2020-05-04 | 2023-01-06 | 인피니움 테크놀로지, 엘엘씨 | 역수성 가스 전이 촉매 반응기 시스템 |
CA3204926A1 (en) | 2020-05-04 | 2021-11-11 | Infinium Technology, Llc | Process for conversion of carbon dioxide and power into fuels and chemicals |
US11498886B2 (en) | 2020-05-04 | 2022-11-15 | Infinium Technology, Llc | Catalysts and processes for the direct production of liquid fuels from carbon dioxide and hydrogen |
CN111704157A (zh) * | 2020-05-30 | 2020-09-25 | 上海应用技术大学 | 一种纳米氧化锌的微通道制备方法 |
KR102454095B1 (ko) * | 2020-10-30 | 2022-10-14 | 한국과학기술연구원 | 액상유기물수소운반체를 이용한 연속식 수소저장장치 |
US12104125B2 (en) | 2021-02-05 | 2024-10-01 | Infinium Technology, Llc | Efficient 2-step process for the direct production of liquid fuels from carbon dioxide and hydrogen |
US12098328B2 (en) | 2021-10-15 | 2024-09-24 | DG Fuels, LLC | Processes and systems for producing hydrocarbon fuels having high carbon conversion efficiency |
CN115245790A (zh) * | 2022-05-31 | 2022-10-28 | 太原科技大学 | 一种与催化剂一体化的微反应器及其费托合成应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002064248A2 (en) * | 2001-02-16 | 2002-08-22 | Battelle Memorial Institute | Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions |
US6558634B1 (en) * | 1999-08-17 | 2003-05-06 | Battelle Memorial Institute | Catalyst structure and method of fischer-tropsch synthesis |
RU2002106591A (ru) * | 2001-03-08 | 2003-12-20 | Эни С.П.А. | Катализатор на основе кобальта и его использование в реакции Фишера-Тропша |
Family Cites Families (149)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1311341A (en) * | 1919-07-29 | Planookaph co | ||
US1362634A (en) * | 1920-02-21 | 1920-12-21 | Anton J Markel | Gate-hinge |
GB1397959A (en) | 1971-09-24 | 1975-06-18 | Standard Oil Co | Catalyst and process for hydrotreating petroleum hydrocarbons |
US3972837A (en) | 1973-07-03 | 1976-08-03 | Johnson Matthey & Co., Limited | Catalyst for purifying automotive exhaust gases |
US4089810A (en) | 1973-08-20 | 1978-05-16 | Johnson, Matthey & Co., Limited | Catalyst |
GB1531134A (en) | 1975-08-20 | 1978-11-01 | Atomic Energy Authority Uk | Methods of fabricating bodies and to bodies so fabricated |
GB1568391A (en) | 1976-04-14 | 1980-05-29 | Atomic Energy Authority Uk | Catalysts having metallic substrates |
US4289652A (en) | 1978-02-10 | 1981-09-15 | Johnson Matthey Inc. | Catalyst comprising a metal substrate |
US4392362A (en) * | 1979-03-23 | 1983-07-12 | The Board Of Trustees Of The Leland Stanford Junior University | Micro miniature refrigerators |
US4388277A (en) | 1980-06-06 | 1983-06-14 | United Kingdom Atomic Energy Authority | Catalyst device and method |
US4347121A (en) | 1980-10-09 | 1982-08-31 | Chevron Research Company | Production of lubricating oils |
US4585798A (en) * | 1981-10-13 | 1986-04-29 | Gulf Research & Development Company | Synthesis gas conversion using ruthenium-promoted cobalt catalyst |
US4516632A (en) * | 1982-08-31 | 1985-05-14 | The United States Of America As Represented By The United States Deparment Of Energy | Microchannel crossflow fluid heat exchanger and method for its fabrication |
DE3587895T2 (de) | 1984-05-03 | 1994-12-01 | Mobil Oil Corp | Katalytische Entwachsung von leichten und schweren Ölen in zwei Parallelreaktoren. |
AU592057B2 (en) | 1984-07-30 | 1990-01-04 | Shell Internationale Research Maatschappij B.V. | Converions of synthesis gas to diesel fuel in controlled particle size fluid system |
DD246257A1 (de) | 1986-01-21 | 1987-06-03 | Akad Wissenschaften Ddr | Verfahrenstechnische mikroapparaturen und verfahren zu ihrer herstellung |
US4738948A (en) * | 1986-07-02 | 1988-04-19 | Exxon Research And Engineering Company | Cobalt-ruthenium catalysts for Fischer-Tropsch synthesis and process for their preparation |
US4943672A (en) | 1987-12-18 | 1990-07-24 | Exxon Research And Engineering Company | Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403) |
US5036032A (en) * | 1988-03-25 | 1991-07-30 | Exxon Research And Engineering Company | Selective catalysts and their preparation for catalytic hydrocarbon synthesis |
DE3926466C2 (de) | 1989-08-10 | 1996-12-19 | Christoph Dipl Ing Caesar | Mikroreaktor zur Durchführung chemischer Reaktionen von zwei chemischen Stoffen mit starker Wärmetönung |
US5248251A (en) | 1990-11-26 | 1993-09-28 | Catalytica, Inc. | Graded palladium-containing partial combustion catalyst and a process for using it |
GB9117216D0 (en) | 1991-08-09 | 1991-09-25 | British Petroleum Co Plc | Process for the production of mono-olefins |
US5317805A (en) * | 1992-04-28 | 1994-06-07 | Minnesota Mining And Manufacturing Company | Method of making microchanneled heat exchangers utilizing sacrificial cores |
US5569455A (en) | 1992-06-10 | 1996-10-29 | Shimadzu Corporation | Exhaust gas catalytic purifier construction |
US5309637A (en) * | 1992-10-13 | 1994-05-10 | Rockwell International Corporation | Method of manufacturing a micro-passage plate fin heat exchanger |
JP3512186B2 (ja) | 1993-03-19 | 2004-03-29 | イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー | 化学処理及び製造のための一体構造及び方法、並びにその使用方法及び製造方法 |
US5534328A (en) * | 1993-12-02 | 1996-07-09 | E. I. Du Pont De Nemours And Company | Integrated chemical processing apparatus and processes for the preparation thereof |
US5727618A (en) * | 1993-08-23 | 1998-03-17 | Sdl Inc | Modular microchannel heat exchanger |
GB9324786D0 (en) * | 1993-12-02 | 1994-01-19 | Davy Mckee London | Process |
US6040266A (en) | 1994-02-22 | 2000-03-21 | Ultramet | Foam catalyst support for exhaust purification |
US5611214A (en) * | 1994-07-29 | 1997-03-18 | Battelle Memorial Institute | Microcomponent sheet architecture |
US5811062A (en) * | 1994-07-29 | 1998-09-22 | Battelle Memorial Institute | Microcomponent chemical process sheet architecture |
US6126723A (en) * | 1994-07-29 | 2000-10-03 | Battelle Memorial Institute | Microcomponent assembly for efficient contacting of fluid |
US6129973A (en) * | 1994-07-29 | 2000-10-10 | Battelle Memorial Institute | Microchannel laminated mass exchanger and method of making |
US5817589A (en) * | 1996-04-02 | 1998-10-06 | Intevep, S.A. | Regeneration of catalyst comprising flushing with inert gas followed by flushing with hydrogen |
DZ2013A1 (fr) * | 1995-04-07 | 2002-10-23 | Sastech Ltd | Catalyseurs. |
CA2237068C (en) | 1995-12-08 | 2005-07-26 | Exxon Research And Engineering Company | Biodegradable high performance hydrocarbon base oils |
DE19608824A1 (de) | 1996-03-07 | 1997-09-18 | Inst Mikrotechnik Mainz Gmbh | Verfahren zur Herstellung von Mikrowärmetauschern |
US5858314A (en) * | 1996-04-12 | 1999-01-12 | Ztek Corporation | Thermally enhanced compact reformer |
IT1289579B1 (it) | 1997-01-30 | 1998-10-15 | Agip Petroli | Composizione catalitica utile nella reazione di fischer tropsch |
GB2322633A (en) * | 1997-02-28 | 1998-09-02 | Norske Stats Oljeselskap | Fischer-Tropsch reactor |
US5856261A (en) * | 1997-04-22 | 1999-01-05 | Exxon Research And Engineering Company | Preparation of high activity catalysts; the catalysts and their use |
US6090742A (en) * | 1997-04-22 | 2000-07-18 | Exxon Research And Engineering Company | Process for the preparation of high activity hydrocarbon synthesis catalysts; and catalyst compositions |
US5863856A (en) | 1997-04-22 | 1999-01-26 | Exxon Research And Engineering Company | Preparation of high activity catalysts the catalysts and their use |
US5817701A (en) * | 1997-05-02 | 1998-10-06 | Exxon Research And Engineering Company | Slurry hydrocarbon synthesis with cyclic CO purge and catalyst rejuvenation |
US5882505A (en) | 1997-06-03 | 1999-03-16 | Exxon Research And Engineering Company | Conversion of fisher-tropsch waxes to lubricants by countercurrent processing |
EP0996847B1 (en) | 1997-06-03 | 2003-02-19 | Chart Heat Exchangers Limited | Heat exchanger and/or fluid mixing means |
JP4220584B2 (ja) | 1997-06-06 | 2009-02-04 | 三菱重工業株式会社 | ハニカム型触媒の製造方法 |
US6200536B1 (en) * | 1997-06-26 | 2001-03-13 | Battelle Memorial Institute | Active microchannel heat exchanger |
IT1292462B1 (it) * | 1997-07-03 | 1999-02-08 | Agip Petroli | Composizione catalitica utile nel processo di fischer-tropsch |
US6907921B2 (en) * | 1998-06-18 | 2005-06-21 | 3M Innovative Properties Company | Microchanneled active fluid heat exchanger |
GB9723260D0 (en) * | 1997-11-05 | 1998-01-07 | British Nuclear Fuels Plc | A method of performing a chemical reaction |
US6127571A (en) * | 1997-11-11 | 2000-10-03 | Uop Llc | Controlled reactant injection with permeable plates |
DE19801374C1 (de) * | 1998-01-16 | 1999-03-11 | Dbb Fuel Cell Engines Gmbh | Verfahren zum Löten von metallischen mikrostrukturierten Blechen |
US6013171A (en) | 1998-02-03 | 2000-01-11 | Exxon Research And Engineering Co. | Catalytic dewaxing with trivalent rare earth metal ion exchanged ferrierite |
US6368997B2 (en) * | 1998-05-22 | 2002-04-09 | Conoco Inc. | Fischer-Tropsch processes and catalysts using fluorided supports |
JP3394449B2 (ja) * | 1998-06-18 | 2003-04-07 | 日本碍子株式会社 | 薄壁ハニカム構造体およびその補強方法 |
US6479428B1 (en) | 1998-07-27 | 2002-11-12 | Battelle Memorial Institute | Long life hydrocarbon conversion catalyst and method of making |
US6440895B1 (en) | 1998-07-27 | 2002-08-27 | Battelle Memorial Institute | Catalyst, method of making, and reactions using the catalyst |
US6540975B2 (en) | 1998-07-27 | 2003-04-01 | Battelle Memorial Institute | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions |
US6616909B1 (en) | 1998-07-27 | 2003-09-09 | Battelle Memorial Institute | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions |
US6180575B1 (en) | 1998-08-04 | 2001-01-30 | Mobil Oil Corporation | High performance lubricating oils |
US6319872B1 (en) * | 1998-08-20 | 2001-11-20 | Conoco Inc | Fischer-Tropsch processes using catalysts on mesoporous supports |
US6235677B1 (en) * | 1998-08-20 | 2001-05-22 | Conoco Inc. | Fischer-Tropsch processes using xerogel and aerogel catalysts by destabilizing aqueous colloids |
US6103099A (en) | 1998-09-04 | 2000-08-15 | Exxon Research And Engineering Company | Production of synthetic lubricant and lubricant base stock without dewaxing |
US6080301A (en) | 1998-09-04 | 2000-06-27 | Exxonmobil Research And Engineering Company | Premium synthetic lubricant base stock having at least 95% non-cyclic isoparaffins |
US6165949A (en) | 1998-09-04 | 2000-12-26 | Exxon Research And Engineering Company | Premium wear resistant lubricant |
US6100436A (en) * | 1998-09-08 | 2000-08-08 | Uop Llc | Process and apparatus for controlling reaction temperatures with heating arrangement in series flow |
US6262131B1 (en) * | 1998-12-07 | 2001-07-17 | Syntroleum Corporation | Structured fischer-tropsch catalyst system and method |
US6749814B1 (en) * | 1999-03-03 | 2004-06-15 | Symyx Technologies, Inc. | Chemical processing microsystems comprising parallel flow microreactors and methods for using same |
US6192596B1 (en) * | 1999-03-08 | 2001-02-27 | Battelle Memorial Institute | Active microchannel fluid processing unit and method of making |
US6675875B1 (en) | 1999-08-06 | 2004-01-13 | The Ohio State University | Multi-layered micro-channel heat sink, devices and systems incorporating same |
GB9918586D0 (en) | 1999-08-07 | 1999-10-06 | British Gas Plc | Compact reactor |
US6746651B1 (en) | 1999-08-10 | 2004-06-08 | Aerojet-General Corporation | Axial flow catalyst pack |
EP1206316B1 (en) | 1999-08-17 | 2005-06-29 | Battelle Memorial Institute | Chemical reactor and method for catalytic gas phase reactions |
US6488838B1 (en) * | 1999-08-17 | 2002-12-03 | Battelle Memorial Institute | Chemical reactor and method for gas phase reactant catalytic reactions |
AU6643600A (en) | 1999-08-17 | 2001-03-13 | Battelle Memorial Institute | Catalyst structure and method of fischer-tropsch synthesis |
AU778040B2 (en) * | 1999-08-17 | 2004-11-11 | Battelle Memorial Institute | Catalyst structure and method of fischer-tropsch synthesis |
US6216343B1 (en) * | 1999-09-02 | 2001-04-17 | The United States Of America As Represented By The Secretary Of The Air Force | Method of making micro channel heat pipe having corrugated fin elements |
US6313393B1 (en) * | 1999-10-21 | 2001-11-06 | Battelle Memorial Institute | Heat transfer and electric-power-generating component containing a thermoelectric device |
US6486220B1 (en) * | 1999-11-17 | 2002-11-26 | Conoco Inc. | Regeneration procedure for Fischer-Tropsch catalyst |
DE19955969A1 (de) * | 1999-11-19 | 2001-05-31 | Inst Mikrotechnik Mainz Gmbh | Verwendung von Polyimid für Haftschichten und lithographisches Verfahren zur Herstellung von Mikrobauteilen |
US6770245B2 (en) * | 1999-12-15 | 2004-08-03 | Uop Llc | Multiple parallel processing assembly |
US6415860B1 (en) * | 2000-02-09 | 2002-07-09 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Crossflow micro heat exchanger |
US6255358B1 (en) * | 2000-03-17 | 2001-07-03 | Energy International Corporation | Highly active Fischer-Tropsch synthesis using doped, thermally stable catalyst support |
US6561208B1 (en) * | 2000-04-14 | 2003-05-13 | Nanostream, Inc. | Fluidic impedances in microfluidic system |
CA2408318A1 (en) * | 2000-05-09 | 2001-11-15 | Stephan Schwarz | Process for the preparation of hydrocarbons |
DE50103636D1 (de) * | 2000-06-05 | 2004-10-21 | Siemens Ag | Vorrichtung zum ansteuern eines aktiven elements eines insassenrückhaltesystems eines fahrzeugs |
US7125540B1 (en) | 2000-06-06 | 2006-10-24 | Battelle Memorial Institute | Microsystem process networks |
WO2001096017A2 (en) | 2000-06-12 | 2001-12-20 | Sasol Technology (Proprietary) Limited | Cobalt catalysts |
US6472441B1 (en) * | 2000-07-24 | 2002-10-29 | Chevron U.S.A. Inc. | Methods for optimizing Fischer-Tropsch synthesis of hydrocarbons in the distillate fuel and/or lube base oil ranges |
DE10036602A1 (de) * | 2000-07-27 | 2002-02-14 | Cpc Cellular Process Chemistry | Mikroreaktor für Reaktionen zwischen Gasen und Flüssigkeiten |
DE10040209A1 (de) * | 2000-08-17 | 2002-02-28 | Linde Ag | Reaktor zur Durchführung einer stark wärmegetönten katalytischen Reaktion |
DE10041823C2 (de) | 2000-08-25 | 2002-12-19 | Inst Mikrotechnik Mainz Gmbh | Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide |
AU2001296994A1 (en) * | 2000-10-06 | 2002-04-15 | Regents Of The University Of California | Nmda receptor channel blocker with neuroprotective activity |
US6490880B1 (en) | 2000-10-26 | 2002-12-10 | Islet Technology Inc. | Regulated organ containment shipping system using dual-layer preservation liquid |
SE0004297D0 (sv) * | 2000-11-23 | 2000-11-23 | Gyros Ab | Device for thermal cycling |
US6994794B2 (en) * | 2000-11-27 | 2006-02-07 | Kinetico Incorporated | Media with germicidal properties |
US6773684B2 (en) * | 2001-01-26 | 2004-08-10 | Utc Fuel Cells, Llc | Compact fuel gas reformer assemblage |
US6681788B2 (en) * | 2001-01-29 | 2004-01-27 | Caliper Technologies Corp. | Non-mechanical valves for fluidic systems |
EP1362634B1 (en) | 2001-02-23 | 2006-05-31 | Japan Science and Technology Agency | Process for producing emulsion and apparatus therefor |
DE10108716A1 (de) * | 2001-02-23 | 2002-09-19 | Clariant Gmbh | Verfahren und Vorrichtung zur kontinuierlichen Redox-Regelung bei Azokupplungen |
WO2002083291A1 (de) | 2001-04-12 | 2002-10-24 | Mir-Chem Gmbh | Vorrichtung und verfahren zum katalytischen reformieren von kohlenwasserstoffen oder alkoholen |
DE10123093A1 (de) * | 2001-05-07 | 2002-11-21 | Inst Mikrotechnik Mainz Gmbh | Verfahren und statischer Mikrovermischer zum Mischen mindestens zweier Fluide |
US6756515B2 (en) * | 2001-06-22 | 2004-06-29 | Uop Llc | Dehydrogenation process using layered catalyst composition |
GB0116894D0 (en) | 2001-07-11 | 2001-09-05 | Accentus Plc | Catalytic reactor |
DE10146545A1 (de) | 2001-09-21 | 2003-04-10 | Merck Patent Gmbh | Mikrokomponente |
FR2830206B1 (fr) * | 2001-09-28 | 2004-07-23 | Corning Inc | Dispositif microfluidique et sa fabrication |
AU2002363534A1 (en) * | 2001-11-08 | 2003-05-19 | Conoco Inc. | Modified zirconia support for catalyst for fischer-tropsch process |
US6713519B2 (en) * | 2001-12-21 | 2004-03-30 | Battelle Memorial Institute | Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts |
US6753286B2 (en) * | 2002-01-29 | 2004-06-22 | Exxonmobil Research And Engineering Company | Supported catalyst regeneration |
WO2003078052A1 (en) | 2002-03-11 | 2003-09-25 | Battelle Memorial Institute | Microchannel reactors with temperature control |
US6756340B2 (en) * | 2002-04-08 | 2004-06-29 | Uop Llc | Dehydrogenation catalyst composition |
US8206666B2 (en) * | 2002-05-21 | 2012-06-26 | Battelle Memorial Institute | Reactors having varying cross-section, methods of making same, and methods of conducting reactions with varying local contact time |
US7402719B2 (en) | 2002-06-13 | 2008-07-22 | Velocys | Catalytic oxidative dehydrogenation, and microchannel reactors for catalytic oxidative dehydrogenation |
AU2003302308A1 (en) | 2002-07-30 | 2004-06-30 | Suheil F. Abdo | Feedforward control processes for variable output hydrogen generators |
US20040130057A1 (en) * | 2002-08-02 | 2004-07-08 | Reza Mehrabi | Process and apparatus for microreplication |
US7014835B2 (en) * | 2002-08-15 | 2006-03-21 | Velocys, Inc. | Multi-stream microchannel device |
US20040054696A1 (en) * | 2002-09-13 | 2004-03-18 | Sheinis Joseph Igor | System and method for using proxies |
US7171116B2 (en) * | 2002-09-17 | 2007-01-30 | Lucent Technologies Inc. | Provisionable keep-alive signal for physical-layer protection of an optical network |
US20040052530A1 (en) * | 2002-09-17 | 2004-03-18 | Cechan Tian | Optical network with distributed sub-band rejections |
US7074425B2 (en) * | 2002-09-26 | 2006-07-11 | Bonewax, Llc | Hemostatic compositions and methods |
CA2500549A1 (en) * | 2002-10-16 | 2004-04-29 | Conocophillips Company | High hydrothermal stability catalyst support |
US7404936B2 (en) * | 2002-10-22 | 2008-07-29 | Velocys | Catalysts, in microchannel apparatus, and reactions using same |
EP1415706B1 (en) * | 2002-10-29 | 2017-07-12 | Corning Incorporated | Coated microstructure and method of manufacture |
AU2003284197A1 (en) * | 2002-10-31 | 2004-06-07 | Georgia Tech Research Corporation | Microstructures and methods of fabrication thereof |
US6986382B2 (en) * | 2002-11-01 | 2006-01-17 | Cooligy Inc. | Interwoven manifolds for pressure drop reduction in microchannel heat exchangers |
AU2003297257A1 (en) | 2002-11-11 | 2004-06-03 | Conocophillips Company | Improved supports for high surface area catalysts |
DE10253519A1 (de) | 2002-11-16 | 2004-06-03 | Ehrfeld Mikrotechnik Ag | Verfahren zur Ermittlung optimaler Reaktionswege und Prozessbedingungen zur Synthese chemischer Verbindungen in Mikroreaktionssystemen und zur Durchführung der Synthese |
JP4446388B2 (ja) | 2002-12-02 | 2010-04-07 | コンパクトジーティーエル パブリック リミテッド カンパニー | 触媒反応器及び方法 |
US7141217B2 (en) | 2002-12-05 | 2006-11-28 | Uop Llc | Elevated pressure apparatus and method for generating a plurality of isolated effluents |
US6802889B2 (en) * | 2002-12-05 | 2004-10-12 | Air Products And Chemicals, Inc. | Pressure swing adsorption system for gas separation |
JP4527384B2 (ja) | 2002-12-06 | 2010-08-18 | 綜研化学株式会社 | マイクロチャンネルを用いた着色球状粒子の製造方法、およびその製造方法に用いるマイクロチャンネル式製造装置 |
DE20218972U1 (de) | 2002-12-07 | 2003-02-13 | Ehrfeld Mikrotechnik AG, 55234 Wendelsheim | Statischer Laminationsmikrovermischer |
GB0229348D0 (en) | 2002-12-17 | 2003-01-22 | Glaxo Group Ltd | A mixing apparatus and method |
US20040131517A1 (en) | 2003-01-03 | 2004-07-08 | Akporiaye Duncan E. | Material heat treatment system and method |
US20040132209A1 (en) | 2003-01-03 | 2004-07-08 | Alexanian Ara J. | Multi-chamber treatment apparatus and method |
US7267987B2 (en) | 2003-01-06 | 2007-09-11 | Uop Llc | Process and assembly for simultaneously evaluating a plurality of catalysts |
DE10301874A1 (de) * | 2003-01-17 | 2004-07-29 | Celanese Emulsions Gmbh | Verfahren und Vorrichtung zur Herstellung von Emulsionspolymerisaten |
WO2004067708A2 (en) | 2003-01-17 | 2004-08-12 | Sri International Et Al. | Device and method for fragmenting material by hydrodynamic shear |
US20040141893A1 (en) * | 2003-01-21 | 2004-07-22 | Martin Jerry L. | Chemical reactor with enhanced heat exchange |
DE10303581A1 (de) | 2003-01-30 | 2004-08-12 | Clariant Gmbh | Acetoacetylierung von Alkoholen, Thiolen und Aminen im Mikroreaktor |
JP4519124B2 (ja) | 2003-01-30 | 2010-08-04 | ユィロス・パテント・アクチボラグ | 微小流動性デバイスの内部の壁 |
US7405338B2 (en) * | 2003-04-07 | 2008-07-29 | Velocys | Dehydrogenation reactions in narrow reaction chambers and integrated reactors |
US7220390B2 (en) * | 2003-05-16 | 2007-05-22 | Velocys, Inc. | Microchannel with internal fin support for catalyst or sorption medium |
US7470408B2 (en) * | 2003-12-18 | 2008-12-30 | Velocys | In situ mixing in microchannels |
US7084180B2 (en) * | 2004-01-28 | 2006-08-01 | Velocys, Inc. | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
GB0413400D0 (en) * | 2004-06-16 | 2004-07-21 | Accentus Plc | Catalytic plant and process |
WO2008089376A2 (en) * | 2007-01-19 | 2008-07-24 | Velocys Inc. | Process and apparatus for converting natural gas to higher molecular weight hydrocarbons using microchannel process technology |
-
2004
- 2004-01-28 US US10/766,297 patent/US7084180B2/en not_active Expired - Lifetime
- 2004-12-15 EP EP04814270.7A patent/EP1713883B1/en active Active
- 2004-12-15 EP EP15170565.4A patent/EP2955215B1/en active Active
- 2004-12-15 EP EP13160227.8A patent/EP2607456B1/en active Active
- 2004-12-15 JP JP2006551076A patent/JP5530053B2/ja active Active
- 2004-12-15 RU RU2006130871/04A patent/RU2491320C2/ru not_active IP Right Cessation
- 2004-12-15 CA CA2552283A patent/CA2552283C/en active Active
- 2004-12-15 ES ES04814270T patent/ES2718319T3/es active Active
- 2004-12-15 EP EP13160226.0A patent/EP2607455B1/en active Active
- 2004-12-15 AU AU2004315214A patent/AU2004315214B2/en not_active Ceased
- 2004-12-15 BR BRPI0418465-3A patent/BRPI0418465A/pt not_active IP Right Cessation
- 2004-12-15 WO PCT/US2004/042065 patent/WO2005075606A1/en active Application Filing
- 2004-12-15 CN CNB2004800410829A patent/CN100529020C/zh not_active Expired - Fee Related
-
2006
- 2006-07-11 US US11/484,069 patent/US7722833B2/en active Active
-
2010
- 2010-03-05 US US12/718,356 patent/US8188153B2/en not_active Expired - Fee Related
- 2010-06-17 AU AU2010202533A patent/AU2010202533B2/en not_active Ceased
-
2014
- 2014-03-06 JP JP2014043377A patent/JP6122395B2/ja not_active Expired - Fee Related
-
2015
- 2015-04-08 JP JP2015078996A patent/JP6122460B2/ja not_active Expired - Fee Related
-
2016
- 2016-03-24 JP JP2016059515A patent/JP6175532B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6558634B1 (en) * | 1999-08-17 | 2003-05-06 | Battelle Memorial Institute | Catalyst structure and method of fischer-tropsch synthesis |
WO2002064248A2 (en) * | 2001-02-16 | 2002-08-22 | Battelle Memorial Institute | Integrated reactors, methods of making same, and methods of conducting simultaneous exothermic and endothermic reactions |
RU2002106591A (ru) * | 2001-03-08 | 2003-12-20 | Эни С.П.А. | Катализатор на основе кобальта и его использование в реакции Фишера-Тропша |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108654654A (zh) * | 2017-04-01 | 2018-10-16 | 神华集团有限责任公司 | 沉淀铁费托催化剂及其制备方法和应用 |
CN108654654B (zh) * | 2017-04-01 | 2021-09-03 | 国家能源投资集团有限责任公司 | 沉淀铁费托催化剂及其制备方法和应用 |
RU2674161C1 (ru) * | 2018-05-24 | 2018-12-05 | федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" | Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2491320C2 (ru) | Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со | |
US9453165B2 (en) | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor | |
JP5022710B2 (ja) | マイクロチャネル技術を用いて過酸化水素を製造するためのプロセス | |
JP4621213B2 (ja) | マイクロチャネル技術を用いて平衡支配化学反応を実行するためのプロセス | |
RU2461603C2 (ru) | Способ, установка и композиция для превращения природного газа в высокомолекулярные углеводороды посредством микроканальной технологии | |
US6616909B1 (en) | Method and apparatus for obtaining enhanced production rate of thermal chemical reactions | |
US20070004810A1 (en) | Novel catalyst and fischer-tropsch synthesis process using same | |
ZA200605939B (en) | Fischer-tropsch synthesis using microchannel technology and novel catalyst and microchannel reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20100601 |
|
FZ9A | Application not withdrawn (correction of the notice of withdrawal) |
Effective date: 20110407 |
|
FA92 | Acknowledgement of application withdrawn (lack of supplementary materials submitted) |
Effective date: 20120621 |
|
FZ9A | Application not withdrawn (correction of the notice of withdrawal) |
Effective date: 20121228 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181216 |