CN115245790A - 一种与催化剂一体化的微反应器及其费托合成应用 - Google Patents

一种与催化剂一体化的微反应器及其费托合成应用 Download PDF

Info

Publication number
CN115245790A
CN115245790A CN202210603903.3A CN202210603903A CN115245790A CN 115245790 A CN115245790 A CN 115245790A CN 202210603903 A CN202210603903 A CN 202210603903A CN 115245790 A CN115245790 A CN 115245790A
Authority
CN
China
Prior art keywords
catalyst
fischer
short steel
microreactor
steel tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210603903.3A
Other languages
English (en)
Inventor
王远洋
王彦谦
任世杰
刘建红
吕存琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN202210603903.3A priority Critical patent/CN115245790A/zh
Publication of CN115245790A publication Critical patent/CN115245790A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/341Apparatus, reactors with stationary catalyst bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/333Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the platinum-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种与催化剂一体化的微反应器及其费托合成应用,首先加工制作常规固定床反应器,将钢管截成恒温区长度的短管,经强碱性物质焙烧、在蒸馏水和乙醇中超声清洗、在前驱体溶液中浸渍后焙烧,最后将制备的短钢管填装进常规固定床中构建费托合成的微反应器。本发明避免了机械加工、酸蚀、激光刻蚀或喷砂等繁琐处理工艺,具有制作工艺简单的独特优势;构建的微反应器具有体积较小、结构紧凑,物料、温度和压力等流场分布均匀的特点,通过强化反应和换热过程,容易实现费托合成反应的稳定安全运行;且投资低廉,可在分散的小合成气气源地使用,技术经济性能高。

Description

一种与催化剂一体化的微反应器及其费托合成应用
技术领域
本发明涉及一种与催化剂一体化微反应器及其费托合成应用,更具体地说,涉及一种与催化剂一体化的微反应器的构建方法,并将之应用于费托合成反应。
背景技术
费托合成(Fischer-Tropsch synthesis)作为非常重要的能源替代技术,是以合成气(CO和H2)为原料在催化剂和适当条件下转化为烃类的工艺过程,1923年,由德国化学家Franz Fischer和Hans Tropsch开发,并以其名字命名。费托合成通常采用固定床、浆态床和流化床三类反应器,合成气进入反应器与其中的催化剂固体颗粒接触进行反应。固定床的优点是催化剂和产物容易分离,缺点是催化剂床层可能出现局部飞温,严重时导致催化剂烧结,反应受传热和传质影响很大;浆态床的优点是传热传质性好,催化剂床层压降小,缺点是催化剂与重质烃类分离困难;流化床的优点是产能大、热效率高、催化剂可及时再生,缺点是价格昂贵、催化剂损失量大且易堵塞旋风分离器,因常用于高温费托合成还极易导致积炭和催化剂烧结。显然,这三类反应器均无法同时解决费托合成中传热传质问题和催化剂与反应物/产物分离问题,且规模很大,投资很高,仅适合于大处理量和高产量情形。
为此一些专利公开了体积较小的微反应器以适应合成气量较小且气源分散的情形。如公开发明专利200680010313.9发明了一种采用机械加工成由波面或褶状的蝶形和平片交替堆积的多条钢合金通道的费托合成紧凑型反应器,并在无孔金属的通道基体上涂覆掺入催化材料涂层;公开发明专利202010293615.3在微反应器的金属基底上刻蚀微通道反应区域及微流体输入和输出通道,再通过酸碱处理建立活化金属表面,然后浸入含有有机配体与金属盐的溶液进行催化剂原位制备;公开发明专利201510726326.7、201510726328.6、201510726867.X和201510726870.1及实用新型专利201620580665.9采用酸蚀、激光刻蚀等方法制作平行线型结构和/或网状交叉结构的费托合成反应微通道,分流构件为矩形或菱形,微通道表面则涂覆铁、钴、镍和钌一种或几种的催化剂层,或将这些纳米金属掺入液相介质中;公开发明专利201280014772.X则涉及在微反应器内填装催化剂颗粒进行费托合成反应。
发明内容
上述公开专利的费托合成微反应器及其制作方法均较复杂,为此本发明的目的是提供一种无需繁琐工艺的简单微反应器。
为实现此目的,本发明采取的技术方案为:在常规固定床反应器中填装具有微结构的钢管构筑微反应器,该微结构钢管同时作为Fe系催化剂的基体,将其表面腐蚀处理后负载其它组份以制备费托合成催化剂,从而将与催化剂一体化的微反应器应用于费托合成反应。
具体步骤如下:一种与催化剂一体化的微反应器及其费托合成应用,其特征在于包括以下内容:
(1)加工制作直径5 ~100 mm、恒温区长20 ~ 400 mm的常规固定床反应器;
(2)将直径0.5 ~ 5 mm的钢管截成恒温区长度的短管;
(3)将短钢管放入坩埚中,加入淹没短钢管的强碱性物质,确保短钢管相互不接触,移至马弗炉中焙烧,然后于室温冷却;
(4)将焙烧的短钢管放入烧杯中,加入超过短钢管的蒸馏水,超声处理至烧杯底部无沉淀;倒掉蒸馏水,再加入超过短钢管的乙醇,超声清洗后倒掉乙醇,于室温将短钢管晾干;
(5)称取共活性组份的前驱体放入烧杯中,加入蒸馏水并搅拌至充分溶解;
(6)将清洗的短钢管放入盛有前驱体溶液的表面皿中进行浸渍,然后于室温晾干;
(7)将浸渍的短钢管移至烘箱中于90 ℃干燥2.0 h,再移至马弗炉中焙烧,然后于室温冷却;
(8)将制备的短钢管装入(1)的常规固定床中构建费托合成的微反应器。
所述步骤(2)中的钢管材质为不锈钢、碳钢或热镀合金钢,优选为碳钢。
所述步骤(3)中的强碱性物质为NaOH、KOH、Mg(OH)2或Ca(OH)2固体,由于K为费托合成催化剂常见的电子助剂,因而稍加清洗并保留K更有助于提高催化性能,为此优选为KOH固体。
所述步骤(3)中的焙烧温度为300 ~ 700 ℃,焙烧时间为2.0 ~ 6.0 h,优选为500℃、4.0 h。
所述步骤(5)中的共活性组份前驱体为VIII族Co、Ni、Ru和Pd,IVA至VIIA族Ti、V、Cr、Mn和Zr,或镧系稀土La和Ce的硝酸盐、醋酸盐或碳酸盐,优选为Co、Mn和Ce的硝酸盐,再优选为Mn的硝酸盐;溶液浓度为1.0 ~ 3.0 M,优选为2.0 M。
所述步骤(6)中的浸渍时间为1.0 ~ 3.0 h,优选为2.0 h。
所述步骤(7)中的马弗炉焙烧温度为300 ~ 700 ℃、焙烧时间为2.0 ~ 6.0 h,优选为500 ℃、4.0 h。
将制备的短钢管填装进步骤(1)的常规固定床中构建应用于费托合成的与催化剂一体化的微反应器。
将上述与催化剂一体化的微反应器应用于费托合成,以气相色谱仪分析进料和产物组成,并计算CO转化率:X = [(C1-C2)/C1]×100%,其中C1和C2分别为进料和出料中CO的体积分数;CH4、C2-4和C5+产物的选择性:Si = Ci/(C1-C2),其中Ci分别为出料中各产物的体积分数;及各产物的时空收率:Yi = Ci×Mi×V/22.4/W,其中Mi、V和W分别为各产物的摩尔质量、空速和短钢管质量。
本发明的有益效果为:采用在常规固定床中恒温区填装微结构的短钢管构建微反应器,避免了机械加工、酸蚀、激光刻蚀或喷砂等繁琐处理工艺,具有制作工艺简单的独特优势;由于微反应器体积较小、结构紧凑,物料、温度和压力等流场分布均匀,通过强化反应和换热过程,容易实现费托合成反应的稳定安全运行;投资低廉,可在分散的小合成气气源地使用,技术经济性能很高;费托合成的CO转化率不低于85.0 %,CH4的选择性不高于10.0%,C5+的时空收率不低于0.50 kg/(h·kg)。
附图说明
图1为与催化剂一体化的微反应器的结构示意图。
具体实施方案
下面通过具体实施例对本发明做进一步说明,但本发明的保护范围不限于此。如图1所示为与催化剂一体化的微反应器的结构示意图,常规固定床反应器的直径为5 ~ 100mm、恒温区长20 ~ 400 mm,填装进的钢管直径为0.5 ~ 5 mm、长度与固定床的恒温区相等。
实施例1
应用于费托合成的与催化剂一体化的微反应器的构建步骤,具体如下所示:
(1)加工制作直径5 mm、恒温区长20 mm的常规固定床反应器;
(2)将直径2 mm的碳钢管截成20 mm的短管;
(3)将短钢管放入坩埚中,加入淹没短钢管的KOH固体,确保短钢管相互不接触,移至马弗炉中于500 ℃焙烧4.0 h,然后于室温冷却;
(4)将焙烧的短钢管放入烧杯中,加入超过短钢管的蒸馏水,超声处理至烧杯底部无沉淀;倒掉蒸馏水,再加入超过短钢管的乙醇,超声清洗后倒掉乙醇,于室温将短钢管晾干;
(5)称取硝酸锰前驱体放入烧杯中,加入蒸馏水配制成2.0 M浓度的溶液,并搅拌至充分溶解;
(6)将清洗的短钢管放入盛有硝酸锰溶液的表面皿中浸渍2.0 h,然后于室温晾干;
(7)将浸渍的短钢管移至烘箱中于90 ℃干燥2.0 h,再移至马弗炉中于500 ℃焙烧4.0 h,然后于室温冷却;
(8)将制备的短钢管填装进步骤(1)的常规固定床中构建费托合成的微反应器。
在进料比H2/CO = 3/2、反应温度250 ℃、反应压力2.0 Mpa和空速4000 h-1条件下进行费托合成催化性能评价,以气相色谱仪分析进料和产物组成,计算得CO转化率为91.2%,CH4选择性为9.3 %,C5+时空收率为0.61 kg/(h·kg)。
实施例2
应用于费托合成的与催化剂一体化的微反应器的构建步骤基本同实施例1,不同之处在于:步骤(1)中常规固定床的直径为20 mm、恒温区长为80 mm,步骤(2)中将直径1 mm的不锈钢管截成80 mm的短管,步骤(5)中的前驱体为1.0 M浓度的硝酸铈溶液,步骤(6)中的浸渍时间为1.0 h。费托合成催化性能评价的CO转化率为90.6 %,CH4选择性为9.6 %,C5+时空收率为0.55 kg/(h·kg)。
实施例3
应用于费托合成的与催化剂一体化的微反应器的构建步骤基本同实施例1,不同之处在于:步骤(1)中固定床的直径为100 mm、恒温区长为400 mm,步骤(2)中将直径3 mm的镀锌合金钢管截成400 mm的短管,步骤(5)中的前驱体为1.0 M浓度的硝酸钴溶液,步骤(6)中的浸渍时间为3.0 h。费托合成催化性能评价的CO转化率为85.2 %,CH4选择性为9.8 %,C5+时空收率为0.50 kg/(h·kg)。
实施例4
应用于费托合成的与催化剂一体化的微反应器的构建步骤基本同实施例1,不同之处在于:步骤(1)中固定床的直径为10 mm、恒温区长为40 mm,步骤(2)中将直径0.5 mm的碳钢管截成40 mm的短管,步骤(5)中的前驱体为3.0 M浓度的硝酸铈溶液,步骤(6)中的浸渍时间为1.0 h。费托合成催化性能评价的CO转化率为95.6 %,CH4选择性为9.5 %,C5+时空收率为0.60 kg/(h·kg)。
实施例5
应用于费托合成的与催化剂一体化的微反应器的构建步骤基本同实施例1,不同之处在于:步骤(1)中固定床的直径为30 mm、恒温区长为120 mm,步骤(2)中将直径4 mm的镀铝合金钢管截成120 mm的短管,步骤(5)中的前驱体为2.0 M浓度的硝酸锰溶液,步骤(6)中的浸渍时间为3.0 h。费托合成催化性能评价的CO转化率为88.4 %,CH4选择性为9.7 %,C5+时空收率为0.54 kg/(h·kg)。
实施例6
应用于费托合成的与催化剂一体化的微反应器的构建步骤基本同实施例1,不同之处在于:步骤(1)中固定床的直径为70 mm、恒温区长为280 mm,步骤(2)中将直径5 mm的不锈钢管截成280 mm的短管,步骤(5)中的前驱体为3.0 M浓度的硝酸钴溶液,步骤(6)中的浸渍时间为2.0 h。费托合成催化性能评价的CO转化率为86.3 %,CH4选择性为9.9 %,C5+时空收率为0.53 kg/(h·kg)。
综上所述,本发明所提供的微反应器体积较小、结构紧凑,物料、温度和压力等流场分布均匀,通过强化反应和换热过程,容易实现费托合成反应的稳定安全运行;投资低廉,可在合成气量较小的分散气源地使用,技术经济性能很高。

Claims (8)

1.一种与催化剂一体化的微反应器,其特征在于:以常规固定床反应器为基础,内置有紧密排布的钢管,所述钢管经强碱性物质焙烧、在蒸馏水和乙醇中超声清洗、在前驱体溶液中浸渍后焙烧;
所述微反应器的具体处理过程如下:
(1)加工制作直径5 ~100 mm、恒温区长20 ~ 400 mm的常规固定床反应器;
(2)将直径0.5 ~ 5 mm的钢管截成恒温区长度的短管;
(3)将短钢管放入坩埚中,加入淹没短钢管的强碱性物质,确保短钢管相互不接触,移至马弗炉中焙烧,然后于室温冷却;
(4)将焙烧的短钢管放入烧杯中,加入超过短钢管的蒸馏水,超声处理至烧杯底部无沉淀;倒掉蒸馏水,再加入超过短钢管的乙醇,超声清洗后倒掉乙醇,于室温将短钢管晾干;
(5)称取共活性组份的前驱体放入烧杯中,加入蒸馏水并搅拌至充分溶解;
(6)将清洗的短钢管放入盛有前驱体溶液的表面皿中进行浸渍,然后于室温晾干;
(7)将浸渍的短钢管移至烘箱中于90 ℃干燥2.0 h,再移至马弗炉中焙烧,然后于室温冷却;
(8)将制备的短钢管紧密排列,装入(1)的常规固定床中构建费托合成的微反应器。
2.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(2)中的钢管材质为不锈钢、碳钢或热镀合金钢,优选为碳钢。
3.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(3)中的强碱性物质为NaOH、KOH、Mg(OH)2或Ca(OH)2固体,优选为KOH固体。
4.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(3)中的焙烧温度为300 ~ 700 ℃,焙烧时间为2.0 ~ 6.0 h,优选为500 ℃、4.0 h。
5.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(5)中的共活性组份前驱体为VIII族Co、Ni、Ru和Pd,IVA至VIIA族Ti、V、Cr、Mn和Zr,或镧系稀土La和Ce的硝酸盐、醋酸盐或碳酸盐,优选为Co、Mn和Ce的硝酸盐,再优选为Mn的硝酸盐;溶液浓度为1.0 ~ 3.0 M,优选为2.0 M。
6.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(6)中的浸渍时间为1.0 ~ 3.0 h,优选为2.0 h。
7.根据权利要求1所述的一种与催化剂一体化的微反应器,其特征在于:所述步骤(7)中的马弗炉焙烧温度为300 ~ 700 ℃、焙烧时间为2.0 ~ 6.0 h,优选为500 ℃、4.0 h。
8.采用权利要求1-7任一所述的一种与催化剂一体化的微反应器,其特征在于:将之应用于费托合成反应,CO转化率不低于85.0 %,CH4的选择性不高于10.0 %,C5+的时空收率不低于0.50 kg/(h·kg)。
CN202210603903.3A 2022-05-31 2022-05-31 一种与催化剂一体化的微反应器及其费托合成应用 Pending CN115245790A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210603903.3A CN115245790A (zh) 2022-05-31 2022-05-31 一种与催化剂一体化的微反应器及其费托合成应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210603903.3A CN115245790A (zh) 2022-05-31 2022-05-31 一种与催化剂一体化的微反应器及其费托合成应用

Publications (1)

Publication Number Publication Date
CN115245790A true CN115245790A (zh) 2022-10-28

Family

ID=83698481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210603903.3A Pending CN115245790A (zh) 2022-05-31 2022-05-31 一种与催化剂一体化的微反应器及其费托合成应用

Country Status (1)

Country Link
CN (1) CN115245790A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822895A (zh) * 2003-07-14 2006-08-23 三菱丽阳株式会社 固定床多管式反应器
CN1906271A (zh) * 2004-01-28 2007-01-31 万罗赛斯公司 采用微通道技术的费-托合成以及新型催化剂和微通道反应器
CN103212450A (zh) * 2013-04-19 2013-07-24 华东理工大学 一种在不锈钢基体上制备氧化铝催化剂载体的方法
CN105597641A (zh) * 2016-01-14 2016-05-25 重庆大学 微通道反应器内催化剂层的制备方法
CN106622057A (zh) * 2015-10-30 2017-05-10 中国石油化工股份有限公司 一种费托合成微反应器和费托合成方法
CN111266068A (zh) * 2020-03-04 2020-06-12 大连理工大学 一种接枝负载催化剂的纳米结构微通道基底的微反应器及其制备方法
CN112675796A (zh) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 一种微通道反应器及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822895A (zh) * 2003-07-14 2006-08-23 三菱丽阳株式会社 固定床多管式反应器
CN1906271A (zh) * 2004-01-28 2007-01-31 万罗赛斯公司 采用微通道技术的费-托合成以及新型催化剂和微通道反应器
CN103212450A (zh) * 2013-04-19 2013-07-24 华东理工大学 一种在不锈钢基体上制备氧化铝催化剂载体的方法
CN106622057A (zh) * 2015-10-30 2017-05-10 中国石油化工股份有限公司 一种费托合成微反应器和费托合成方法
CN105597641A (zh) * 2016-01-14 2016-05-25 重庆大学 微通道反应器内催化剂层的制备方法
CN112675796A (zh) * 2019-10-17 2021-04-20 中国石油化工股份有限公司 一种微通道反应器及其制备方法和应用
CN111266068A (zh) * 2020-03-04 2020-06-12 大连理工大学 一种接枝负载催化剂的纳米结构微通道基底的微反应器及其制备方法

Similar Documents

Publication Publication Date Title
CN101052463B (zh) 有直接应用于氧化铝的催化剂的微通道反应器,使用该反应器方法和氧化脱氢
EP1251949B1 (en) Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
EP0416710B1 (en) Catalytic reactor for performing a chemical reaction
CA2347443C (en) Retrofit reactor including gas/liquid ejector and monolith catalyst
JP5890380B2 (ja) フィッシャー・トロプシュ合成の触媒構造物及び方法
JP5111419B2 (ja) 熱化学反応の反応速度を高める方法及び装置
EP3634628B1 (en) A method of activating a metal monolith for reforming a hydrocarbon and a method for reforming using the activated monolith
US20030100448A1 (en) Thermally conductive honeycombs for chemical reactors
JP7479149B2 (ja) 金属発泡体を含む固定触媒床
JP2007534457A (ja) 触媒または吸着媒体用内部フィン支持体を備えるマイクロチャネル
CN101224432A (zh) 整体式负载型碳分子筛催化剂及其制备方法和应用
Laguna et al. Catalysts on metallic surfaces: Monoliths and microreactors
EP1991350A2 (en) Method for enhancing catalyst selectivity
JP5443173B2 (ja) 円筒式水蒸気改質器
EP0087771A1 (en) Improved methanation process and Raney catalyst therefor
AU2012248972A1 (en) Catalyst for Fischer-Tropsch synthesis having excellent heat transfer capability
RU2292237C1 (ru) Катализатор, способ его приготовления и способ получения синтез-газа
CN104045569B (zh) 通过二硝基甲苯低压加氢合成甲苯二胺的工艺及催化剂和催化剂的制法
KR100719484B1 (ko) 금속모노리스 촉매를 이용한 컴팩트형 수증기개질구조촉매 및 이를 이용한 수소의 제조방법
CN115245790A (zh) 一种与催化剂一体化的微反应器及其费托合成应用
CN107570146A (zh) 一种在金属填料上直接负载活性金属的催化剂
US4451580A (en) Method of preparing a supported catalyst
CN104557817B (zh) 一种正丁烷制备顺酐的方法
CN104058971B (zh) 二硝基甲苯低压加氢合成甲苯二胺的连续生产工艺及催化剂和催化剂的制法
CN1065852C (zh) 钯/陶瓷复合膜反应器中的气相催化脱氢和加氢耦合反应

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination