RU2674161C1 - Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления - Google Patents

Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления Download PDF

Info

Publication number
RU2674161C1
RU2674161C1 RU2018119247A RU2018119247A RU2674161C1 RU 2674161 C1 RU2674161 C1 RU 2674161C1 RU 2018119247 A RU2018119247 A RU 2018119247A RU 2018119247 A RU2018119247 A RU 2018119247A RU 2674161 C1 RU2674161 C1 RU 2674161C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
hydrocarbons
cobalt
hours
Prior art date
Application number
RU2018119247A
Other languages
English (en)
Inventor
Вера Григорьевна Бакун
Роман Евгеньевич Яковенко
Сергей Иванович Сулима
Иван Николаевич Зубков
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова"
Priority to RU2018119247A priority Critical patent/RU2674161C1/ru
Application granted granted Critical
Publication of RU2674161C1 publication Critical patent/RU2674161C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Catalysts (AREA)

Abstract

Предложен катализатор синтеза углеводородов из СО и Н2, селективный в отношении образования углеводородов C5+, включающий кобальт и силикагелевый носитель. Содержит 20,6-22,2% масс. кобальта и 0,8-1,2% масс. добавки марганца. Также изобретение содержит способ получение катализатора, описанного выше. Технический результат – создание кобальтмарганецсиликагелевого катализатора синтеза углеводородов из CO и Н2 по методу Фишера-Тропша с улучшенными каталитическими свойствами, а также обеспечение высокого качества синтезируемого продукта и возможности его использования без изменения состава полученных углеводородов. 2 н. ф-лы, 6 ил., 10 пр.

Description

Изобретение относится к химической промышленности, в том числе, нефтехимии и газохимии, и может быть использовано для приготовления катализаторов процесса получения синтетических углеводородов из СО и Н2 методом Фишера-Тропша.
Известно, что каталитические свойства кобальтовых катализаторов Фишера-Тропша определяются химическим составом и структурой активной поверхности катализаторов, а традиционным приемом регулирования их активности и селективности является промотирование путем введения добавок металлов. Для получения углеводородов С5+ в качестве промоторов каталитических систем, в том числе на основе диоксида кремния, как правило, используют добавки рения, рутения, палладия, платины, циркония и т.д., однако крайне редко применяют марганец.
Так, известен кобальтовый катализатор, полученный методом пропитки пористого носителя, в том числе диоксида кремния, предшественник которого может содержать: от 5-70, преимущественно 20-50, лучше 25-40 г кобальта на 100 г носителя; дополнительно - добавку палладия, платины, рутения или их смеси при массовом отношении к металлическому кобальту от 0,01:100 до 0,3:100 (Патент RU №2252072 С2, B01J 23/75, B01J 3704, 20.05.2005, Бюл. №14).
Недостатками катализатора являются: получение предшественника с высоким содержанием кобальта - дорогостоящего активного компонента катализатора; целесообразность использования легирующих добавок -палладия, платины, рутения или их смесей - дорогостоящих и дефицитных металлов.
Известен нанесенный катализатор процесса получения синтетических углеводородов в виде частиц, и/или фиксированных структур, и/или организованных упаковок, различного размера и формы, предпочтительно в виде катализатора, состоящего из инертного ядра с углеродным, керамическим или металлическим носителем, предпочтительно с носителем в виде тугоплавкого оксида - алюминия, железа, меди, титана, или смеси металлов, включающей один или несколько компонентов, предпочтительно алюминий в количестве не менее 80-90% вес., который может включать 0,01-5% вес. примесей магния, кремния, меди, марганца, циркония, хрома и титана, или смесей, содержащих алюминий; и внешней поверхности в виде катализатора, содержащего металл VIII группы Периодической системы элементов, предпочтительно кобальта (частично в металлическом состоянии), количество которого, если металл распределен равномерно, или относительно внешнего слоя частиц катализатора, находится в интервале 1-50% вес., предпочтительно 3-40% вес., в частности 5-30% вес.; на основе тугоплавкого оксида - кремния, алюминия, титана, циркония, смешанных оксидов или физических смесей оксидов этих металлов, предпочтительно титана и циркония или их смеси, и дополнительно до 50% вес. другого оксида, предпочтительно кремния или алюминия в количестве до 20% вес., предпочтительно до 10% вес.; и дополнительный металл для повышения активности и селективности в отношении образования углеводородов - марганец, ванадий, цирконий и рений, предпочтительно марганец и ванадий, особенно марганец, и атомное соотношение металла VIII группы и дополнительного металла обычно составляет по меньшей мере 5:1 и типично не превышает 200:1 (Патент RU №2273515 С2, B01J 23/75, B01J 3704, 10.04.2006, Бюл. №10).
Недостатками катализатора являются: необходимость использования, в том числе, дорогостоящих и дефицитных тугоплавких оксидов и их высокое содержание в составе оксидного ядра катализатора - алюминия, железа, меди, титана, или смеси металлов, включающей один или несколько компонентов, предпочтительно металлический алюминий; сравнительно высокое содержание металла VIII группы Периодической системы элементов, предпочтительно кобальта - дорогостоящего и дефицитного металла, в составе катализатора на внешней поверхности ядра катализатора; целесообразность использования, как компонента основы катализатора на внешней поверхности ядра катализатора металла, предпочтительно титана и циркония или их смеси - дорогостоящих и дефицитных металлов; необходимость использования для повышения активности и селективности в отношении образования углеводородов, как дополнительного металла катализатора, обычно значительных количеств марганца, ванадия, циркония и рения, ряд из которых являются дорогостоящими и дефицитными.
Наиболее близким аналогом (прототип) является катализатор для синтеза углеводородов из СО и Н2, селективный в отношении образования углеводородов С5+, полученный методом пропитки, включающий кобальт, добавку алюминия и силикагелевый носитель, состава, % масс.: кобальт - 16,1-19,0, добавка алюминия - 0,8-1,0, силикагелевый носитель - остальное (Патент RU №2586069 C1, B01J 23/75, B01J 21/04, B01J 21/08, B01J 37/02, B01J 37/08, B01J 37/18, C07C 1/04, C07C 9/00, 10.06.2016, Бюл. №16).
Недостатками катализатора являются: невысокая активность и селективность в процессе синтеза углеводородов С5+; невысокая активность и селективность в процессе синтеза углеводородов С1118, в том числе парафинов нормального и изостроения C11-C18.
Известен способ приготовления кобальтового катализатора методом пропитки пористого носителя, в том числе SiO2, включающий: получение предшественника катализатора в виде оксида кобальта определенной блочной структуры, методом пропитки порошкового носителя солью кобальта, сушки, прокаливания в псевдоожиженном слое, восстановления; приготовление кобальтового катализатора в ходе последующей обработки предшественника катализатора путем повторения перечисленных операций (Патент RU №2252072 С2, B01J 23/75, B01J 3704, 20.05.2005, Бюл. №14).
Недостатками способа являются: необходимость получения предшественника катализатора методом пропитки, сушки, прокаливания и восстановления; приготовление катализатора в ходе последующей обработки предшественника катализатора путем повторения перечисленных операций.
Известен способ приготовления нанесенного катализатора в виде частиц, и/или фиксированных структур, и/или организованных упаковок, различного размера и формы, предпочтительно в виде катализатора, состоящего из инертного ядра и внешней поверхности в виде катализатора, включающий: механическую - для придания оптимальных размера и формы, и химическую подготовку инертного ядра катализатора; получение суспензии компонентов катализатора внешней поверхности при смешении и измельчении; распыление суспензии на поверхность ядра; сушку, прокаливание и активацию катализатора; формирование уплотненного слоя катализатора с определенными - слоем пустот и удельной поверхностью (Патент RU №2273515 С2, B01J 23/75, B01J 3704, 10.04.2006, Бюл. №10).
Недостатками способа являются: необходимость проведения механической и химической подготовки инертного ядра катализатора, получения и нанесения на ядро суспензии компонентов внешней поверхности катализатора, прокаливания катализатора при высокой температуре; а затем формирования уплотненного слоя катализатора определенного строения.
Наиболее близким аналогом (прототип) является способ получения катализатора, включающий предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта, термообработку и активацию катализатора, при этом предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С, активацию катализатора проводят водородом в течение 0,75-1 ч при температуре 380-400°С (Патент RU №2586069 C1, B01J 23/75, B01J 21/04, B01J 21/08, B01J 37/02, B01J 37/08, B01J 37/18, С07С 1/04, С07С 9/00, 10.06.2016, Бюл. №16).
Недостатками способа получения катализатора являются: невозможность достижения при приготовлении катализатора известным способом высокой активности и селективности в процессе синтеза углеводородов С5+; высокой активности и селективности в процессе синтеза углеводородов С11-C18, в том числе парафинов нормального и изостроения С11-C18.
Задачей настоящего изобретения при изменении состава и способа приготовления является создание кобальтмарганецсиликагелевого катализатора синтеза углеводородов из СО и Н2 по методу Фишера-Тропша с повышенными каталитическими свойствами, обеспечивающего: получение экономического эффекта от использования катализатора за счет проведения синтеза с высокой производительностью в отношении образования углеводородов C5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции; высокое качество синтезируемого продукта и возможность его использования без изменения состава полученных углеводородов.
Поставленная задача, согласно предлагаемому изобретению, в части состава кобальтмарганецсиликагелевого катализатора, решается тем, что используется катализатор синтеза углеводородов из СО и Н2 с высокой активностью и селективностью в процессе синтеза углеводородов С5+; высокой активностью и селективностью в процессе синтеза углеводородов С11-C18, в том числе парафинов нормального и изостроения С11-C18, включающий кобальт и силикагелевый носитель, причем катализатор содержит 20,6-22,2% масс. кобальта и 0,8-1,2% масс. добавки марганца.
Поставленная задача, согласно предлагаемому изобретению, в части способа получения кобальтмарганецсиликагелевого катализатора, решается тем, что используется способ, обеспечивающий получение катализатора с высокой активностью и селективностью в процессе синтеза углеводородов С5+; высокой активностью и селективностью в процессе синтеза углеводородов С1118, в том числе парафинов нормального и изостроения С1118, содержащего активный компонент - кобальт, и силикагелевый носитель, включающий предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта, термообработку и активацию катализатора, причем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 50-55% масс. вводят добавку марганца в виде ацетата марганца при массовом соотношении Со:Mn в пропиточном растворе от 100:3,75 до 100:5,65, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, прокаливание 4-6 ч при температуре 250-300°С, активацию катализатора проводят водородом в течение 0,75-1 ч при температуре 380-400°С.
Предлагаемый состав кобальтмарганецсиликагелевого катализатора с повышенными каталитическими свойствами в процессе синтеза углеводородов из СО и Н2, прежде всего, с высокой активностью и селективностью в отношении образования углеводородов С5+, с высокой активностью и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118, характеризуется: получением экономического эффекта за счет возможности проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции; высоким качеством синтезируемого продукта при проведении процесса с высокой активностью и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118.
Предлагаемый способ приготовления кобальтмарганецсиликагелевого катализатора с повышенными каталитическими свойствами, прежде всего, с высокой активностью и селективностью в отношении образования углеводородов С5+, с высокой активностью и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118, благодаря выбранному способу приготовления, характеризуется: получением экономического эффекта за счет возможности проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции; высоким качеством синтезируемого продукта при проведении процесса с высокой активностью и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118.
Полученный технический результат - создание катализатора с повышенными каталитическими свойствами, обеспечивается тем, что промотирование катализатора введением марганца предложенным способом способствует формированию оптимального состава и изменению свойств активного компонента, а в процессе приготовления катализатора создаются условия для образования такого активного компонента, что, в свою очередь, определяет высокие - активность и селективность катализатора, и подтверждается большими, чем в известном способе, производительностью в отношении образования углеводородов С5+ в режиме интенсивного ведения синтеза при температуре 200°С, конверсией синтез-газа в продукты реакции и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118, что определяет высокое качество продукта синтеза и особенно важно для процесса Фишера-Тропша.
Исследование свойств катализаторов в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша проводили в трубчатом реакторе со стационарным слоем катализатора при давлении 0,1 МПа в интервале температур 160-220°С. Мольное соотношение СО:Н2 в синтез-газе составляло 1:2.
Обобщенные сравнительные данные по оценке активности и селективности известного и предлагаемого катализаторов, полученные в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, приведены на фиг. 1 в таблице 1, о фракционном составе полученных углеводородов для катализаторов в соответствии с примерами 2 и 3-7 - на фиг. 2 в таблице 2. На фиг. 3-6 для катализаторов в соответствии с примерами 2 и 3, 5, 7 представлены дополнительные данные о составе продуктов синтеза в виде молекулярно - массового распределения углеводородов.
Об активности катализаторов судили по конверсии СО, селективности и производительности в отношении образования углеводородов С5+ в расчете кг/нм3⋅ч газовой смеси.
Изобретение осуществляется следующим способом.
Расчетное количество нитрата кобальта при температуре 70-80°С, перемешивая, растворяют в дистиллированной воде, после чего в пропиточный раствор вводят добавку марганца, в виде ацетата марганца, расчетное количество которого определяют, исходя из массового соотношения Со:Mn в пропиточном растворе от 100:3,75 до 100:5,65. В пропиточный раствор погружают 50 см3 носителя с температурой 60-80°С, высушенного 2-4 ч при температуре 140-160°С. Пропитывание ведут 0,5 ч при температуре 70-80°С, перемешивая. Влажный катализатор сушат 2-4 ч при температуре 80-100°С, до устранения слипания гранул; термообрабатывают - сначала 2-4 ч при температуре 100-150°С, затем 4-6 ч при температуре 250-350°С; активацию (восстановление) проводят водородом при температуре 380-400°С в течение 0,75-1,0 ч при объемной скорости водорода 1000 ч-1.
Для осуществления способа в качестве носителя катализатора используют силикагель с размером гранул 2-3 мм. В частности, крупнопористый, гранулированный марки КСКГ в соответствии с ГОСТ 3956-76.
Синтез углеводородов из СО и Н2 по методу Фишера-Тропша проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 0,1 МПа в интервале температур 160-220°С. Мольное соотношение СО:Н2 в синтез-газе составляло 1:2.
Пример 1.
160,75 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 59,00 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 12,87 г нитрата алюминия - Al(NO3)3⋅9H2O, при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 125°С, затем 6 ч при температуре 300°С; активацию (восстановление) проводят водородом при температуре 400°С в течение 0,75 ч при объемной скорости водорода 1000 ч-1.
Катализатор содержит 19,0% масс. кобальта и 0,8% масс. алюминия. Степень восстановленности катализатора 55%.
Пример 2.
208,25 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 16,66 г нитрата алюминия - Al(NO3)3⋅9H2O, при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 125°С, затем 6 ч при температуре 300°С; активацию (восстановление) проводят водородом при температуре 380°С в течение 0,83 ч при объемной скорости водорода 1000 ч-1.
Катализатор содержит 21,3% масс. кобальта и 1,0% масс. алюминия. Степень восстановленности катализатора 54%.
Пример 3.
208,25 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 4,42 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:2,35 и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 125°С, затем 6 ч при температуре 300°С; активацию (восстановление) проводят водородом при температуре 380°С в течение 0,83 ч при объемной скорости водорода 1000 ч-1.
Катализатор содержит 21,3% масс. и 0,5% масс. марганца. Степень восстановленности катализатора 51%.
Пример 4.
208,25 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 7,05 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:3,75, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат, термообрабатывают, активируют (восстанавливают) водородом, как указано в примере 3.
Катализатор содержит 21,3% масс. кобальта и 0,8% масс. марганца. Степень восстановленности катализатора 54%.
Пример 5.
208,25 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 8,84 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:4,70, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат, термообрабатывают, активируют (восстанавливают) водородом, как указано в примере 3.
Катализатор содержит 21,3% масс. кобальта и 1,0% масс. марганца. Степень восстановленности катализатора 53%.
Пример 6.
208,25 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 10,62 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:5,65, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат, термообрабатывают, активируют (восстанавливают) водородом, как указано в примере 3.
Катализатор содержит 21,3% масс. кобальта и 1,2% масс. марганца. Степень восстановленности катализатора 52%.
Пример 7.
208,25 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 43,60 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 17,68 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:9,40, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 125°С, затем 6 ч при температуре 300°С; активацию (восстановление) проводят водородом при температуре 380°С в течение 1,0 ч при объемной скорости водорода 1000 ч-1.
Катализатор содержит 21,3% масс. кобальта и 2,0% масс. марганца. Степень восстановленности катализатора 50%.
Пример 8.
229,56 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 32,94 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 9,33 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:4,50, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат, термообрабатывают, активируют (восстанавливают) водородом, как указано в примере 7.
Катализатор содержит 22,2% масс. кобальта и 1,0% масс. марганца. Степень восстановленности катализатора 53%.
Пример 9.
194,50 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 50,15 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 8,52 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:4,85, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 125°С, затем 6 ч при температуре 300°С; активацию (восстановление) проводят водородом при температуре 400°С в течение 1,0 ч при объемной скорости водорода 1000 ч-1.
Катализатор содержит 20,6% масс. кобальта и 1,0% масс. марганца. Степень восстановленности катализатора 56%.
Пример 10.
176,76 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 54,84 г дистиллированной воды, после чего в пропиточный раствор вводят добавку марганца в виде 8,06 г ацетата марганца - Mn(СН3СОО)2⋅4H2O, при массовом соотношении Со:Mn в пропиточном растворе от 100:5,05, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат, термообрабатывают, активируют (восстанавливают) водородом как указано в примере 1.
Катализатор содержит 19,8% масс. кобальта и 1,0% масс. марганца. Степень восстановленности катализатора 55%.
Обобщенные сравнительные данные по оценке каталитических свойств, полученных с использованием известного и предлагаемого катализаторов в процессе синтеза углеводородов из СО и Н2, приведены на фиг. 1 в таблице 1.
Приведенные результаты показывают, что предложенные состав и способ приготовления, позволяют вести процесс синтеза углеводородов из СО и Н2 при повышенной температуре (на 20°С, в сравнении с известным катализатором) и получить катализатор, характеризующийся высокой селективностью и производительностью в отношении образования углеводородов С5+ и пониженной селективностью в отношении образования побочного продукта - метана.
Обобщенные сравнительные данные по оценке качественного и количественного состава углеводородов, полученных с использованием известного и предлагаемого катализаторов, приведены на фиг. 2 в таблице 2 и фиг. 3-6.
Приведенные результаты показывают, что предложенные состав и способ приготовления, позволяют эффективно вести процесс синтеза углеводородов из СО и Н2 и получить катализатор, характеризующийся высокой активностью и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118, тем самым обеспечить высокое качество синтезируемого продукта и возможность его использования без изменения состава полученных углеводородов.
Оптимальное содержание кобальта в катализаторе и добавки марганца составляет соответственно, % масс.: кобальта - 20,6-22,2; марганца - 0,8-1,2.
Введение кобальта и добавки марганца в меньшем количестве является недостаточным для улучшения свойств катализатора. Увеличение содержания кобальта и добавки марганца не обеспечивает улучшения показателей активности и селективности катализатора в процессе синтеза углеводородов. Кроме того, увеличение содержания кобальта потребует повторения цикла пропитки и термообработки катализатора, что в данном случае технологически и экономически нецелесообразно.
Изобретение позволяет: вести процесс синтеза в интенсивном режиме превращения исходного сырья с повышенной - производительностью в отношении образования углеводородов С5+ и селективностью в отношении образования углеводородов С1118, в том числе парафинов нормального и изостроения С1118, что определяет высокое качество готового продукта.

Claims (2)

1. Катализатор синтеза углеводородов из СО и Н2, селективный в отношении образования углеводородов C5+, включающий кобальт и силикагелевый носитель, отличающийся тем, что содержит 20,6-22,2% масс. кобальта и 0,8-1,2% масс. добавки марганца.
2. Способ получения катализатора, селективного в отношении образования углеводородов С5+, содержащий активный компонент - кобальт, и силикагелевый носитель, включающий предварительную подготовку носителя, пропитку носителя водным раствором нитрата кобальта, термообработку и активацию катализатора, при этом предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта вводят добавку металла, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С, активацию катализатора проводят водородом в течение 0,75-1 ч при температуре 380-400°С, отличающийся тем, что используют водный раствор нитрата кобальта концентрацией 50-55% масс., а в качестве добавки металла марганец, который вводят в виде ацетата марганца при массовом соотношении Со : Mn в пропиточном растворе от 100:3,75 до 100:5,65.
RU2018119247A 2018-05-24 2018-05-24 Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления RU2674161C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018119247A RU2674161C1 (ru) 2018-05-24 2018-05-24 Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018119247A RU2674161C1 (ru) 2018-05-24 2018-05-24 Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2674161C1 true RU2674161C1 (ru) 2018-12-05

Family

ID=64603640

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018119247A RU2674161C1 (ru) 2018-05-24 2018-05-24 Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2674161C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732328C1 (ru) * 2020-03-02 2020-09-15 Роман Евгеньевич Яковенко Способ получения углеводородов с5-с18 из монооксида углерода и водорода
RU2823566C1 (ru) * 2023-12-28 2024-07-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" (RU) Способ получения церезина

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053196A1 (en) * 2000-01-21 2001-07-26 Conoco Inc. Thermal shock resistant catalysts for synthesis gas production
RU2491320C2 (ru) * 2004-01-28 2013-08-27 Вилосис Инк. Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со
US20150210606A1 (en) * 2012-08-07 2015-07-30 Velocys, Inc. Fischer-tropsch process
US9180435B2 (en) * 2012-05-30 2015-11-10 Eni S.P.A. Process for the preparation of a catalyst using a rapid drying stage and use thereof for Fischer-Tropsch synthesis
RU2586069C1 (ru) * 2015-06-15 2016-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов из co и н2 и способ его получения
RU2639155C1 (ru) * 2016-12-20 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001053196A1 (en) * 2000-01-21 2001-07-26 Conoco Inc. Thermal shock resistant catalysts for synthesis gas production
RU2491320C2 (ru) * 2004-01-28 2013-08-27 Вилосис Инк. Способ осуществления синтеза фишера-тропша по превращению реакционной смеси, содержащей h2 и со
US9180435B2 (en) * 2012-05-30 2015-11-10 Eni S.P.A. Process for the preparation of a catalyst using a rapid drying stage and use thereof for Fischer-Tropsch synthesis
US20150210606A1 (en) * 2012-08-07 2015-07-30 Velocys, Inc. Fischer-tropsch process
RU2586069C1 (ru) * 2015-06-15 2016-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов из co и н2 и способ его получения
RU2639155C1 (ru) * 2016-12-20 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732328C1 (ru) * 2020-03-02 2020-09-15 Роман Евгеньевич Яковенко Способ получения углеводородов с5-с18 из монооксида углерода и водорода
RU2823566C1 (ru) * 2023-12-28 2024-07-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" (RU) Способ получения церезина

Similar Documents

Publication Publication Date Title
AU2001281920B2 (en) Catalyst and process for the preparation of hydrocarbons
EP0216967B1 (en) Improved cobalt catalysts, useful for the preparation of hydrocarbons from synthesis gas or methanol, and processes using the catalysts
CA2274688C (en) Process for the preparation of hydrocarbons
JPH11507866A (ja) 炭化水素の製造用触媒及び方法
AU2015268204B2 (en) Method for preparing Fischer-Tropsch catalyst having improved activity and lifespan properties
CA3028590C (en) A cobalt-containing catalyst composition
WO2009000494A2 (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
AU2001281920A1 (en) Catalyst and process for the preparation of hydrocarbons
SG173637A1 (en) Process for the preparation of fischer - tropsch catalysts and their use
EP2318131B1 (en) Catalyst for direct production of light olefins and preparation method thereof
KR20150137733A (ko) 고활성 피셔-트롭쉬 촉매의 제조방법
KR100933062B1 (ko) 합성가스로부터 경질올레핀을 직접 생산하기 위한 촉매와이의 제조방법
JP4140075B2 (ja) 触媒組成物
AU2002216754B2 (en) Fischer-tropsch processes and catalysts using aluminum borate supports
RU2674161C1 (ru) Катализатор для получения синтетических углеводородов из СО и Н2 и способ его приготовления
RU2586069C1 (ru) Катализатор для синтеза углеводородов из co и н2 и способ его получения
KR101445241B1 (ko) 아이소부틸렌의 제조 방법
CA2977175C (en) A hydrocarbon synthesis process
JP6446033B2 (ja) 不飽和炭化水素の製造方法
CN107406775B (zh) 使用还原活化的钴催化剂的费-托方法
US6096790A (en) Process for the preparation of a catalyst based on cobalt and scandium
JPS61111139A (ja) 触媒の製造法
JP4911974B2 (ja) フィッシャー・トロプシュ合成用触媒および炭化水素の製造法
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法
CN111565843B (zh) 铁氧体类涂布催化剂的制备方法以及使用其制备丁二烯的方法

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20191206

Effective date: 20191206