RU2447081C2 - Способ получения агониста a2a-аденозинового рецептора и его полиморфов - Google Patents

Способ получения агониста a2a-аденозинового рецептора и его полиморфов Download PDF

Info

Publication number
RU2447081C2
RU2447081C2 RU2008131956/04A RU2008131956A RU2447081C2 RU 2447081 C2 RU2447081 C2 RU 2447081C2 RU 2008131956/04 A RU2008131956/04 A RU 2008131956/04A RU 2008131956 A RU2008131956 A RU 2008131956A RU 2447081 C2 RU2447081 C2 RU 2447081C2
Authority
RU
Russia
Prior art keywords
formula
oxolan
hydroxymethyl
dihydroxy
monohydrate
Prior art date
Application number
RU2008131956/04A
Other languages
English (en)
Other versions
RU2008131956A (ru
Inventor
Джефф ЗАБЛОЦКИ (US)
Джефф ЗАБЛОЦКИ
Элфатих ЭЛЗЕИН (US)
Элфатих ЭЛЗЕИН
Original Assignee
Си Ви Терапьютикс, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38120353&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2447081(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Си Ви Терапьютикс, Инк. filed Critical Си Ви Терапьютикс, Инк.
Publication of RU2008131956A publication Critical patent/RU2008131956A/ru
Application granted granted Critical
Publication of RU2447081C2 publication Critical patent/RU2447081C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/167Purine radicals with ribosyl as the saccharide radical

Abstract

Настоящее изобретение относится к способам широкомасштабного получения агониста А2A-аденозинового рецептора, в частности моногидрата (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида

Description

Данная заявка испрашивает приоритет по предварительной патентной заявке США серии № 60/801857, поданной 18 мая 2006 года, и по предварительной патентной заявке США серии № 60/765114, поданной 3 февраля 2006 года, полное содержание которых включено тем самым в качестве ссылки.
Область изобретения
Настоящее изобретение относится к способу широкомасштабного получения агониста A2A-аденозинового рецептора, и также относится к полиморфам данного соединения и способам выделения определенного полиморфа.
Уровень техники
Аденозин является встречающимся в природе нуклеозидом, который проявляет свои биологические свойства посредством взаимодействия с семейством аденозиновых рецепторов, известных как A1, A2A, A2B и A3, которые регулируют важные физиологические процессы. Одним из биологических эффектов аденозина является действие в качестве коронарного вазодилятатора; данный эффект является следствием взаимодействия с A2A-аденозиновым рецептором. Показано, что данное свойство аденозина применимо в качестве вспомогательного средства для рентгено- и томографии сердца, когда коронарные артерии расширяют перед введением контрастного вещества (например, талий 201), и таким образом, при просмотре снимков, полученных таким способом, можно определить наличие или отсутствие заболевания коронарных артерий. Преимущество данной технологии заключается в том, что она позволяет избежать наболее традиционного способа индуцирования коронарного расширения сосудов посредством физической нагрузки на беговой дорожке, что является крайне нежелательным для пациента с коронарным заболеванием.
Однако введение аденозина имеет несколько недостатков. Аденозин имеет очень короткий период полураспада в организме человека (менее чем 10 секунд), и также обладает всеми эффектами, связанными с агонистами A1, A2A, A2B, и A3 рецепторов. Таким образом, применение избирательного агониста A2A-аденозинового рецептора могло бы обеспечить лучший способ продуцирования коронарной вазодилятации, в частности агониста с более длинным периодом полураспада и меньшим количеством побочных эффектов или их отсутствием.
Класс соединений, обладающих данными необходимыми свойствами, был описан в патенте США № 6403567, полное описание которого, таким образом, включено в качестве ссылки. В частности, показано, что соединение, описанное в данном патенте, (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамид, является высокоизбирательным агонистом A2A-аденозинового рецептора, и в настоящий момент проходит клинические испытания, как коронарный вазодилятатор, применяемый в сердечной графии.
Принимая во внимание повышенный интерес в данном и похожих соединениях, необходим поиск новых способов синтеза, которые обеспечивают удобный способ получения больших количеств вещества с хорошим выходом и высокой степенью очистки. Патент, который описывает интересующее соединение (патент США № 6403567) предусматривает несколько способов получения данного соединения. Однако, хотя данные способы подходят для синтеза малых количеств, все синтетические способы, описанные в патенте, используют защитные группы, которые нежелательны для широкомасштабного синтеза.
Дополнительно, было открыто, что получаемый продукт, который является (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамидом) существует, по крайней мере, в трех различных кристаллических формах, наиболее устойчивая из которых является моногидратом. Данный полиморф стабилен при стрессовых условиях относительной влажности, вплоть до его температуры плавления. Таким образом, желательно, чтобы конечный продукт, создаваемый посредством нового синтеза, получали в качестве стабильного моногидрата.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Таким образом, задачей данного изобретения является создание подходящего способа широкомасштабного получения
(l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида и его полиморфов, предпочтительно в виде его моногидрата. Таким образом, в первом аспекте, изобретение относится к получению соединения формулы I
Figure 00000001
Формула I,
включающего
взаимодействие соединения формулы (3)
Figure 00000002
с метиламином.
В одном из вариантов осуществления способа химическую реакцию осуществляют в водном растворе метиламина, первоначально при температуре приблизительно 0-5°C, с последующим нагреванием до приблизительно 50-70°C. Альтернативно, химическую реакцию осуществляют как указано выше, но в герметичном реакционном реакторе под давлением.
Во втором варианте осуществления способа продукт выделяют в виде чистого моногидрата посредством растворения продукта в растворителе, например в диметилсульфоксиде, с добавлением чистой воды, фильтрованием суспензии, таким образом образованную, промывкой содержимого фильтра водой, затем этанолом, и высушивании твердого осадка, который остается, в вакууме при температуре, не превышающей 40°C.
Во втором аспекте изобретение относится к получению соединения формулы (3)
Figure 00000003
включающего
взаимодействие соединения формулы (2)
Figure 00000004
с этил-2-формил-3-оксопропионатом.
В одном из вариантов осуществления способа реакцию осуществляют в этаноле, при температуре приблизительно 80°C, с приблизительно 1,1 молярными эквивалентами этилового эфира 2-формил-3-оксопропионовой кислоты.
В третьем аспекте изобретение относится к получению соединения формулы (2)
Figure 00000005
включающего
взаимодействие соединения формулы (1)
Figure 00000006
с гидразином.
Вышеописанный синтез пригоден для широкомасштабного синтеза необходимого продукта, который обеспечивает хороший выход, хотя в конечном продукте видна одна небольшая примесь. Показано, что данная примесь является неизменным промежуточным соединением формулы (2); которое представлено следующей структурной формулой:
Figure 00000007
Хотя данную примесь можно удалить из конечного продукта путем кристаллизации, было решено продолжить поиск альтернативного синтеза, который имел бы все преимущества выше описанного синтеза, но не образовывал соединения формулы (2) в виде примеси в конечном продукте.
Таким образом, в четвертом аспекте изобретение относится к способу получение (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида посредством взаимодействия соединения формулы (4)
Figure 00000008
с метиламином.
В одном из вариантов осуществления способа химическую реакцию осуществляют в водном растворе метиламина, первоначально при температуре приблизительно 0-5°C, за которой следует нагревание приблизительно до 50-70°C. Альтернативно, химическую реакцию осуществляют как указано выше, но в герметичном реакторе под давлением.
Во втором варианте осуществления продукт выделяют в виде чистого моногидрата посредством растворения продукта в растворителе, например в диметилсульфоксиде, с добавлением чистой воды, фильтрованием суспензии, таким образом образованную, промывкой содержимого фильтра водой, затем этанолом, и высушиванием твердого осадка, который остается, в вакууме при температуре, не превышающей 40°C.
В пятом аспекте изобретение относится к способу получения соединения формулы (4)
Figure 00000009
включающего взаимодействие соединения формулы (2)
Figure 00000010
с избытком этилового эфира 2-формил-3-оксопропионовой кислоты, предпочтительно приблизительно с 2-10 кратном избытком, более предпочтительно с 5-10 кратном избытком.
В одном из вариантов осуществления реакцию осуществляют в этаноле, при температуре приблизительно 80°C. Этиловый эфир 2-формил-3-оксопропионовой кислоты присутствует в 5-10 кратном избытке.
Определения и общие параметры
Фиг.1 является 1H ЯМР спектром моногидрата (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}-пиразол-4-ил)-N-метилкарбоксамида (Форма A).
Фиг.2 изображает термический анализ моногидрата (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}-пиразол-4-ил)-N-метилкарбоксамида.
Фи.3 показывает дифракционную рентгенограмму моногидрата (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}-пиразол-4-ил)-N-метилкарбоксамида.
Фиг.4 показывает дифракционную рентгенограмму моногидрата (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}-пиразол-4-ил)-N-метилкарбоксамида формы B.
Фиг.5 показывает дифракционную рентгенограмму моногидрата (l-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}-пиразол-4-ил)-N-метилкарбоксамида формы C по сравнению с формой A.
Применяемые в настоящем описании следующие слова и фразы, как правило, имеют значения, которые объяснены ниже, за исключением ситуаций, если в контексте, в котором они употреблены, указано иначе.
"Необязательный" или "необязательно" означает, что дальнейшее описанное событие или обстоятельство может происходить или не происходить, и, что описание включает в себя примеры, где указанное событие или обстоятельство происходит и примеры, где оно не происходит.
Термин "терапевтически эффективное количество" относится к количеству соединения формулы I, которое достаточно для эффективного воздействия, как определено ниже, когда осуществляют введение млекопитающему, которому необходимо данное воздействие. Терапевтически эффективное количество в значительной степени зависит от субъекта и состояния заболевания, которое лечат, массы и возраста субъекта, тяжести состояния заболевания, способа введения и т.п., и может быть легко определено специалистом в данной области.
Термин "терапия" или "терапевтический" означает любое лечение заболевания у млекопитающих, включающее в себя:
(i) предотвращение заболевания, которое обеспечивает неразвитие клинических симптомов заболевания;
(ii) ингибирование заболевания, которое обеспечивает задержку развития клинических симптомов; и/или
(iii) излечивание заболевания, которое обеспечивает регрессию клинических симптомов.
Как применяют в настоящем документе, "фармацевтически пригодный носитель" включает в себя все без исключения растворители, диспергенты, покрытия, антибактериальные и антигрибковые вещества, изотонические вещества и вещества, препятствующие абсорбции и т.п. Применение подобных сред и веществ в фармацевтически активных субстанциях хорошо известно в данной области. За исключением случаев, если какое-либо подходящее вещество или среда несовместимы с активным ингредиентом, предполагается их применение в терапевтических композициях. Дополнительные активные ингредиенты также могут быть включены в композиции.
Подразумевают, что термин "полиморф" включает в себя некристаллические формы и сольваты (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида.
Было установлено, что данное соединение устойчиво при существовании, по крайней мере, в трех различных кристаллических формах, упомянутые в настоящем документе как Форма A, Форма B, Форма C и в аморфном состоянии.
Форма A: Данный полиморф можно получить посредством кристаллизации (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида из протонных растворителей, например этанола или смеси этанол/вода, или из полярного растворителя, например диметилсульфоксид/вода. Показано, что Форма A является моногидратом и наиболее устойчива из различных полиморфов при температуре окружающей среды. Она устойчива в стрессовых условиях относительной влажности вплоть до ее температуры плавления.
Форма B: Данный полиморф получают посредством испарения в вакууме раствора (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида в трифторэтаноле при температуре окружающей среды. Рентгеновский анализ данных кристаллов отчетливо различался от любых других полиморфов (см. фиг.4), но было трудно определить его строение, т.к. рентгеновский анализ давал неупорядоченные размытые пики, и полиморф содержал различное количество воды. Было установлено, что получение данного полиморфа достоверно трудно воспроизводимо.
Форма C: Данный полиморф получают посредством суспендирования (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида в ацетонитриле в течение длительного периода времени при 60°C. Рентгеновский анализ данных кристаллов отчетливо различался от любых других полиморфов (см. фиг.5). Показано, что полиморф C является неустойчивым гидратом, который при повышенных температурах, десольватируется в нестабильную форму.
Аморфное вещество: Данный полиморф получают посредством нагревания полиморфа Формы A при температуре до 200°C. Данный полиморф неустойчив в присутствии атмосферной влажности, формируя неустойчивые гидраты.
Способы анализа Форм A, B, C и Аморфного вещества
Рентгеновская дифракция порошка
Анализ рентгеновской дифракции порошка (XRPD) выполняли на рентгеновском порошковом дифрактометре Shimadzu XRD-6000 с использованием Cu Kα излучения. Прибор был оборудован тонко сфокусированной рентгеновской трубкой, и напряжение, и сила тока были установлены на 40 кВ и 40 мА соответственно. Дивергенция и рассеивающие щели были установлены на 1" и принимающая щель быль установлена на 0,15 мм. Дифрагированное излучение анализировали посредством NaI сцинтилляционного детектора. Непрерывное сканирование тета-два тета проводили при 3°/мин (0,4 с/0,02° шаг) от 2,5-40° 2θ. Для проверки настройки прибора использовали кремниевый стандарт. Данные собирали и анализировали с использованием программного обеспечения XRD-6000 в.4.1.
Анализ рентгеновской дифракции порошка (XRPD) также выполняли с применением дифрактометра Inel XRG-3000, оборудованного детектором CPS (нелинейный позиционно-чувствительный) с 28 ранжированием 120°. Калибровку прибора выполняли с помощью кремниевого стандартного образца. Напряжение и сила тока в трубке были установлены на 40 кВ и 30 мА соответственно. Монохроматическую щель установили на 5 мм по 80 мкм. Образцы поместили в алюминиевый держатель образцов с силиконовой вставкой или в стеклянные капилляры для XRPD. Каждый капилляр устанавливали на крышке гониометра, который двигался для обеспечения вращения капилляров в течение сбора данных. Данные в режиме реального времени собирали с использованием Cu Kα излучения при разрешении 0,03° 2θ. Как правило, данные собирали в течение периода 300 секунд. Графики XRPD образцы показывали только экспериментальные точки в пределе 2,5-40° 2θ.
Термический анализ
Термогравиметрический (TG) анализ выполняли на оборудовании TA 2050 или на 2950 термогравиметрическом анализаторе. Калибровочными стандартами были никель и Алюмель™. Образцы поместили в алюминиевый противень для образцов, вставили в TG нагревательную установку и тщательно уравновешивали. Образцы нагревали в азоте при условиях 10°C/мин до 300 или 350°C. Если не указано иначе, массы образцов уравновешивали при 25°C в TGA духовых шкафах перед анализом.
Анализы дифференциальной сканирующей калориметрии (DSC) выполняли на оборудовании TA дифференциального сканирующего калориметра 2920. Тщательно уравновешенные образцы помещали в сжатые емкости или в герметически закрытые емкости, которые содержали поры, чтобы можно было снизить давление. Каждый образец нагревали в азоте при условиях 10°C/мин до 300 или 350°C. Металл индий применяли в качестве калибровочного стандарта. Температуры записывали в области максимума теплового перехода.
Инфракрасная спектроскопия
Инфракрасную спектроскопию осуществляли на инфракрасном спектрофотометре преобразования Фурье (FT-IR) Magna 860® (Nicolet Instrument Corp.), оборудованного средним/дальним ИК источником Ever-Glo, расширенным уровнем расщепителя пучка калия бромида и дейтерированным триглицинсульфатным детектором (DTGS). Если не указано иначе, для отбора проб применяли прибор диффузного отражения Spectra-Tech, Inc. (Коллектор™). Каждый спектр представлял собой 256 взаимодополняющих считываний в спектральном разрешении 4 см-1. Получение образца для соединения состояло из помещения образца в микрокапсулу и выравнивания вещества по плоскости матового стекла. Установление исходного уровня проводили путем регулирования зеркала в рабочем положении. Спектр представлял собой отношение однолучевого показателя образца к однолучевому показателю исходного уровня. Калибровка длин волн в приборе осуществляли с применением полистирола.
ЯМР Спектроскопия
Спектр фазового раствора 1H ЯМР проводили при температуре окружающей среды на спектрометре AM-250 модели Bruker, работающем при 5,87 T (рабочая частота: 1H=250 МГц). Данные временного интервала получали с применением ширины импульса 7,5 ps и времени экспозиции 1,6834 секунды при спектральном окне 5000 Гц. Было собрано в общей сложности 16384 экспериментальных точек. Снижение времени выдержки 5 секунд применяли между переходными состояниями. Каждый набор данных, как правило, состоял из 128 усредненных переходных состояний. Спектр обрабатывали с применением программного обеспечения GRAMS 132 Al, версии 6,00. Сигнал свободной индукции (FID) обнуляли четыре раза числом координат данных и экпоненциально умножали на фактор расширения спектральной линии 0,61 Гц перед преобразованием Фурье. Спектры 1Η сравнивали с тетраметилсиланом (0 м.д.), который был добавлен в качестве внутреннего стандарта.
Альтернативно, анализ ЯМР выполняли, как описано в Примере 4.
Анализ сорбции/десорбции паров воды
Данные сорбции/десорбции паров воды собирали на паровом сорбционном анализаторе VTI SGA-100. Данные сорбции и десорбции собирали в пределах от 5% до 95% относительной влажности (RK) при 10% интервалах RH при продувании азотом. В качестве калибровочных стандартов применяли хлорид натрия (NaCl) и поливинилпирролидон (PVP). Критерии равновесия, применяемые для анализа, были менее чем 0,0100% изменения массы в течение 5 минут, с максимальным временем равновесия 180 минут, если критерий массы не соответствовал. Графические данные с учетом содержания начальной влажности не корректировали.
Номенклатура
Структура соединения (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида является следующей:
Figure 00000011
Синтез (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида
Один способ для широкомасштабного синтеза (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида представлен в реакционной схеме I.
СХЕМА РЕАКЦИИ I
Figure 00000012
Figure 00000013
Figure 00000013
Стадия 1 - Получение формулы (2)
Соединение формулы (2) получают из соединения формулы (1) посредством реакции с гидразином моногидратом в отсутствии растворителя. Реакцию проводят при температуре приблизительно 40°C плюс/минус 5°C. Когда реакция завершена, продукт формулы (2) выделяют путем смешивания с протонным растворителем, в котором соединение формулы (2) обладает ограниченной растворимостью, например, с этанолом или изопропанолом. Смесь перемешивают в течение приблизительно 1-5 часов, и затем фильтруют. Твердый осадок очищают путем смешивания с водой, фильтрования и промывания водой, затем изопропанолом и высушивают под вакуумом, и переходят на следующую стадию без очистки.
Стадия 2 - Получение формулы (3)
Соединение формулы (2) затем переводят в соединение формулы (3) с помощью реакции с приблизительно 1-1,2 молярным эквивалентом этиловым эфиром 2-формил-3-оксопропионовой кислоты.
Реакцию проводят в протонном растворителе, предпочтительно этаноле, при температуре кипения с обратным холодильником в течение приблизительно 2-4 часов. После охлаждения до приблизительно 0°C твердый осадок отфильтровывают, промывают холодным этанолом и высушивают при пониженном давлении. Продукт формулы (3) переводят на следующую стадию без очистки.
Стадия 3 - Получение конечного продукта
Конечный продукт получают из соединения формулы (3) с помощью реакции с метиламином, предпочтительно с водным метиламином. Реакцию проводят при комнатной температуре, в течение приблизительно 4 часов. Продукт формулы I выделяют с помощью обычных способов, например с помощью фильтрования, промывки осадка холодным этанолом и высушивания при пониженном давлении.
Получение исходных веществ
(4S,2R,3R,5R)-2-(6-амино-2-хлорпурин-9-ил)-5-(гидроксиметил)оксолан-3,4-диол применяют в качестве исходного вещества на стадии 1. Данное соединение является коммерчески доступным.
Этиловый эфир 2-формил-3-оксопропионовой кислоты применяют в качестве исходного вещества на стадии 2. Он является коммерчески доступным, или может быть получен, как представлено на реакционной схеме II.
СХЕМА РЕАКЦИИ II
Figure 00000014
Этиловый эфир 3,3-диэтоксипропионовой кислоты взаимодействует с этилформиатом в присутствии сильного основания, предпочтительно гидрида натрия. Реакцию проводят приблизительно при 0-5°C, приблизительно в течение 24 часов. Продукт выделяют обычными способами, например посредством добавления воды и экстракции примесей обычными растворителями, например трет-бутилметиловым эфиром, подкисления водной фазы, например, соляной кислотой, с последующей экстракцией растворителем, таким как дихлорометан, и удаления растворителя из высушенного экстракта при пониженном давлении.
Предпочтительный способ широкомасштабного синтеза (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида представлен в реакционной схеме III.
Реакционная схема III
Figure 00000015
Figure 00000016
Стадия 1 - Получение формулы (2)
Соединение формулы (2) получают из соединения формулы (1) с помощью реакции с гидразином моногидратом в отсутствии растворителя. Реакцию проводят при температуре приблизительно 45-55°C плюс/минус 5°C. Когда реакция окончена, продукт формулы (2) выделяют путем смешивания с протонным растворителем, в котором соединение формулы (2) обладает ограниченной растворимостью, например с этанолом или изопропанолом. Смесь перемешивают в течение приблизительно 1-5 часов и затем фильтруют. Твердый осадок очищают путем смешивания с водой, фильтрования и промывкой водой, затем этанолом или изопропанолом и сушкой под вакуумом, и переходят на следующую стадию без очистки.
Стадия 2 - Получение формулы (4)
Соединение формулы (2) затем переводят в соединение формулы (4) с помощью реакции с избытком этиловым эфиром 2-формил-3-оксопропионовой кислоты, например 2-10 кратным избытком, предпочтительно приблизительно 5-10 кратным избытком. Реакцию проводят в протонном растворителе, например этаноле, при температуре кипения с обратным холодильником в течение приблизительно 2-4 часов. После охлаждения до приблизительно 0°C, твердый осадок отфильтровывают, промывают холодным этанолом и высушивают при пониженном давлении, и продукт формулы (4) переводят на следующую стадию без очистки.
Соединение формулы (4) изображено в виде алкенового производного (2E), т.к. он является основным изомером, образующимся в данной реакции. Однако следует отметить, что в данной реакции также может быть образовано значительное количество алкенового производного (2Z), структурной формулы
Figure 00000017
названное как этил-(2Z)-3-({9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)-оксолан-2-ил]-2-[4-(этоксикарбонил)пиразолил]пуринн-6-ил}амино)-2-формилпроп-2-еноат.
Таким образом, хотя соединение формулы (4) представлено только как алкеновое производное (2E), предполагается, что термин "соединение формулы (4)" означает, что соединение представляет собой только изомер (2E) или соединение, основную часть которого составляет изомер (2E), а также присутствует небольшая часть изомера (2Z). Превращение соединения формулы (4) в конечный продукт посредством реакции с метиламином, как описано в стадии 3, проводят одним и тем же способом, присутствует ли соединение формулы (4) в виде изомера (2E) или в виде смеси изомера (2E) и изомера (2Z).
Стадия 3 - Получение конечного продукта
Конечный продукт получают из соединения формулы (4) с помощью реакции с метиламином, предпочтительно с водным метиламином. Первоначально реакцию проводят приблизительно при 0-5°C в течение 8 часов, предпочтительно в реакторе под давлением, с последующим повышением температуры до 50-60°C в течение приблизительно 1 часа, и поддержание температуры в течение 15-30 мин. Продукт выделяют с помощью обычных способов, например охлаждением до 0-5°C и оставляя в вакууме приблизительно на 1 час, удаляя таким образом метиламин. Вакуум убирают, и оставшееся содержимое оставляют при 0-5°C в течение, по меньшей мере, 30 минут, с последующим фильтрованием. Осадок, полученный таким образом, промывают водой, затем этанолом и высушивают при пониженном давлении.
Данный процесс обеспечивает (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамид в виде его моногидрата. Данный полиморф можно дополнительно очистить посредством растворения в диметилсульфоксиде, фильтрования любых твердых примесей из раствора и осаждением моногидрата из раствора посредством добавления воды.
ПРИМЕР 1
Получение этилового эфира 2-формил-3-оксопропионовой кислоты
Figure 00000018
Трех- или четырехгорловую круглодонную колбу, оборудованную магнитной мешалкой, термопарой, цифровым термометром, подводом и выводом газа и дополнительной трубой, продули аргоном. Этиловый эфир 3,3-диэтоксипропионовой кислоты (64,5 г) в тетрагидрофуране загрузили в дополнительную воронку. Гидрид натрия (21,2 г 60% коллоидного раствора) загрузили в реакционную колбу вслед за тетрагидрофураном. Содержимое колбы охладили до 0-5°C на ледяной бане и добавили этилформиат (257 г). Смесь охладили до 0-5°C и содержимое дополнительной воронки добавили по каплям, поддерживая внутреннюю температуру менее чем 5°C. Ледяную баню удалили и содержимому позволили нагреться до температуры окружающей среды. Расход этилового эфира 3,3-диэтоксипропионовой кислоты контролировали с помощью TLC анализа. Реакцию останавливали посредством добавления ледяной воды (10,6 объемов) и экстрагировали три раза метил-трет-бутиловым эфиром (5,4 объема каждый) и удаляли органические слои. В водную фазу добавили концентрированную соляную кислоту до pH от 1 до 1,5. Подкисленный водный слой экстрагировали три раза с дихлорметаном и соединенные органические слои высушили с помощью сульфата натрия. Растворитель удалили при пониженном давлении, и осадок перегоняли в вакууме с получением этилового эфира 2-формил-3-оксопропионовой кислоты, 27,92 г, с 70% выходом.
ПРИМЕР 2
A. Получение 2-гидразиноаденозина (2)
Figure 00000019
Реакционную колбу, оборудованную механической мешалкой, подводом и выводом газа и термопарой, продули аргоном. Добавили гемигидрат 2-хлороаденозина (53,1 г), с последующим добавлением моногидрата гидразина (134 г). Смесь перемешивали при нагревании до 40-45°C в течение 2 часов. Ход реакции наблюдали с помощью TLC анализа. Когда реакция закончилась, нагревательный элемент убрали и добавили этанол (800 мл). Смесь перемешивали в течение 2 часов при температуре окружающей среды, затем осадок собрали посредством фильтрования. Отфильтрованный осадок промыли этанолом и высушивали при пониженном давлении в течение 30 минут. Осадок перенесли в чистую реакционную колбу, оборудованную механической мешалкой, и добавили воду (300 мл). Суспензию перемешивали при комнатной температуре в течение 18 часов, и осадок выделили с помощью фильтрации. Отфильтрованный осадок промыли ледяной водой (300 мл), затем промыли охлажденным льдом этанолом (300 мл). Осадок высушивали при пониженном давлении с получением 2-гидразинаденозина (41,38 г, 81,4% выхода, 99,3% чистого продукта).
B. Альтернативное получение 2-гидразиноаденозина (2)
Реакционный сосуд, содержащий гидрат гидразина (258 г, 250 мл), нагрели до 40-50°C. К теплой смеси порциями добавили гемигидрат хлораденозина (100 г), поддерживая температуру между 45 и 55°C. Температуру поддерживали на данном уровне в течение двух часов и затем добавили деионизированную воду (500 мл) в течение 30 минут, поддерживая температуру при 45-55°C. Затем смесь постепенно охлаждали до 0-5°C в течение 3 часов, затем перемешивали при данной температуре в течение следующих 30 минут. Осадок затем отфильтровывали и промывали холодной (2-5°C) деионизированной водой (200 мл), затем промыли этанолом (400 мл). Осадок высушили под вакуумом в течение 12 часов для получения 2-гидразинаденозина.
ПРИМЕР 3
Получение этил-1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксилата (3)
Figure 00000020
Этиловый эфир 2-формил-3-оксопропионовой кислоты (23,93 г, 0,17 моль) поместили в реакционную колбу, оборудованную механической мешалкой, подводом и выводом газа и обратным холодильником. В реакционную колбу добавили 2-пропанол, затем добавили 2-гидразинаденозин (44,45 г, 0,15 моль). Смесь нагревали до температуры кипения с обратным холодильником при перемешивании в течение 2-4 часов, при этом оценивая ход реакции посредством TLC анализа. Когда решали, что реакция закончилась, нагревательный элемент убрали и смесь охлаждали до комнатной температуры. Суспензию охлаждали при помешивании на ледяной бане в течение от 1,5 до 2 часов. Осадок выделяли посредством вакуумной фильтрации и промывали охлажденным льдом 2-пропанолом. Продукт, этил-1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксилат, высушивали при пониженном давлении до постоянной массы. Выход 54,29 г, чистый продукт (по HPLC) 96,6%.
ПРИМЕР 4
Получение 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида
Figure 00000021
Смесь этил-1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксилата (46,4 г) и метиламина (40% в воде, 600 мл) перемешивали при температуре окружающей среды в течение приблизительно 4 часов, при этом оценивая ход реакции посредством TLC анализа. Большую часть избыточности метиламина было удалено при пониженном давлении, и оставшуюся смесь охлаждали при 0°C в течение 2 часов. Твердое вещество отфильтровали, промывали охлажденным льдом этанолом с крепостью 200, и высушивали при пониженном давлении с получением 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксамида в виде его моногидрата, 36,6 г, чистый продукт 99,6%.
Структура вещества была подтверждена 1H ЯМР (см. фиг.1 и ниже). Термический анализ (см. фиг.2) представил результаты, соответствующие наличию одной молекулы воды. Были получены профили рентгеновской дифракции порошка (фиг.3).
Figure 00000022
1H и 13C ЯМР спектры получили следующим способом. Два образца вещества, полученные выше, взвесили и растворили в d6-DMSO - 5,3 мг использовали для 1H спектра, и 20,8 мг использовали для 13C спектра. Все спектры получали при температуре окружающей среды на спектрометре JEOL Eclipse* 400, производящего 400 МГц для 1H и 100 МГц для 13C.
Метка 13C сдвиг(м.д.) lH сдвиг(м.д.) Частота, расщепление, Гц(Hz)
2 150,5 или 150,3 -
4 156,4 -
4a 117,9 -
6 140,0 8,41 s
7a 150,5 или 150,3 -
1' 86,9 5,94 D, 6,2
2' 73,7 4,62 m
2'-OH - 5,50 D, 6,2
3' 70,5 4,17 m
3'-OH - 5,23 D, 4,7
4' 85,7 3,96 m
5' 61,5 3,67, 3,57 m
5'-OH - 5,02 D, 5,7
A 140,9 8,07 D, 0,8
В 120,2 -
С 129,6 8,95 D, 0,8
D 161,7 -
E 25,6 2,76 D, 4,6
NH2 - 7,77 br s
NH - 8,35 Q, 4,6
Очистка моногидрата 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксамида
Раствор моногидрата 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксамида (100 г) в диметилсульфоксиде (300 мл) фильтровали через 0,6-0,8 микронные префильтры и 0,2 микронный префильтр для удаления любых твердых примесей. Отфильтрованное вещество затем медленно в течение периода 1 час добавляли к деионизированной воде (1 литр) с помешиванием, и, таким образом, помешивая суспензию в течение не менее чем 1 ч. Твердый осадок отфильтровали, промывали деионизированной водой (2×1 литр) и высушили в вакууме в течение не менее чем 1 час. Высушенный продукт затем смешивали до получения суспензии с деионизированной водой (1,5 литра) в течение не менее чем 2 часа, отфильтровали и промывали деионизированной водой (1 литр), затем промывали абсолютным этанолом (750 мл). Очищенный продукт затем высушили под вакуумом при температуре не более чем 40°C в течение не менее чем 12 часов с получением моногидрата 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-карбоксамида, свободного от какой-либо примеси 2-гидразинаденозина.
ПРИМЕР 5
Получение этил-(2Е)-3-({9-[(4S , 2R , 3R,5R)-3,4-дигидрокси-5-(гидроксиметил)-оксолан-2-ил]-2-[4(этоксикарбонил)пиразолил]пурин-6-ил}амино)-2-формилпроп-2-еноата.
Figure 00000023
Смесь 2-гидразинаденозина (100 г, 0,34 моль), этилового эфира 2-формил-3-оксопропионовой кислоты (242 г, 1,7 моль) и абсолютного этанола загружали в реакционную колбу, и смесь нагревали до кипения с обратным холодильником в течение 2 часов. Когда решали, что реакция закончилась, нагревательный элемент убрали и смесь постепенно охлаждали до 5-10°C в течение 3 часов. Суспензию перемешивали в течение 30 минут при данной температуре, и фильтровали смесь. Осадок промывали холодным (5-10°C) абсолютным этанолом и затем высушивали в вакууме при температуре, не превышающей 40°C с получением этил-(2Е)-3-({9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)-оксолан-2-ил]-2-[4(этоксикарбонил)пиразолил]пурин-6-ил}амино)-2-формилпроп-2-еноата.
Элементный анализ дал следующие результаты: C, 48,75%; H, 4,86%; N, 18,05%; O, 27,57. Теоретические: C, 49,72%; H, 4,74%; N, 18,45%; O, 27,09. В пределах погрешностей эксперимента анализ соответствует гемигидрату ожидаемого продукта (C, 48,89%; H, 4,81%; N, 18,1%; O, 28,12).
1H и 13C ЯМР спектры были получены следующим способом. 20,2 мг соединения формулы (4) растворили в ~0,75 мл DMSO-d6, и спектры получали при температуре окружающей среды на спектрометре JEOL ECX-400 NMR, производящего 400 МГц для 1H и 100 МГц для 13C. Химические сдвиги были по отношению к растворителю DMSO, 2,50 м.д. для 1H и 39,5 м.д. для 13C.
РЕЗУЛЬТАТЫ
Химические сдвиги 1H и 13C перечислены в Таблице 1. Два изомера с соотношением ~60/30 были обнаружены и в спектре 1H и в спектре 13C, помеченные в таблице как основной и побочный.
Атомa 13C Химический сдвиг (м.д.) lH Химический сдвиг (м.д.) Частота, расщепление, Гц
21 (основной) 192,4 9,96 d, 3,6
21 (побочный) 187,6 9,83 S
22(побочный) 167,1 - -
22(основной) 165,2 - -
15 (побочный) 161,8 - -
15(основной) 161,7 - -
6(основной) 153,1 - -
6(побочный) 152,9 _ _
2(побочный) 149,4 _ _
2(основной) 149,3 - -
19(побочный) 148,0 9,22 d, 13,0
4(побочный) 147,9 - -
4(основной) 147,8 - -
19(основной) 147,5 9,26 d, 12,4, d, 3,6
8(основной) 144,9 8,87 s
8 (побочный) 144,7 8,85 s
12 143,1 8,20-8,23 m
14(побочный) 132,8 9,20 d,~0,7
14(основной) 132,6 9,12 d,~0,7
5(основной) 120,7 - -
5(побочный) 120,6 - -
13 116,7 - -
20(побочный) 107,2 - -
20(основной) 106,1 - -
1' (основной) 87,9 6,07 d, 5,3
1' (побочный) 87,9 6,06 d,5,3
4' 85,8 4,02 q,3,9
2'(побочный) 74,1 4,62 q,~5,4
2'(основной) 74,1 4,61 q,~5,4
3' 70,1 4,22 q,4,2
5' 61,0 3,62, 3,73 m
23, 16 60,3-60,8 4,25-4,39 m
17, 24 14,1-14,2 1,28-1,38 m
18(основной) - 12,51 d, 12,4
18 (побочный) - 11,47 d, 13,0
2'-OH (основной) - 5,63 d, 6,1
2'-OH (побочный) - 5,62 d, 6,1
Подтверждено, что соединение формулы (4) является смесью двух следующих изомеров:
Figure 00000024
ПРИМЕР 6
Получение 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида из соединения (4)
Figure 00000025
40% Водный раствор метиламина (1300 мл) помещали в реактор под давлением, охладили до 0-5°C и добавили продукт Примера 5 этил-(2Е)-3-({9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)-оксолан-2-ил]-2-[4-(этоксикарбонил)пиразолил]пурин-6-ил}амино)-2-формилпроп-2-еноат (100 г). Смесь перемешивали при 0-5°C в течение, по меньшей мере, 8 часов, контролируя реакцию до ее завершения. Когда реакция была завершена, смесь нагрели, поддерживая температуру между 50 и 60°C в течение 1 часа, и затем охладили менее чем до 30°C в течение периода времени 1 час. Когда температура стала ниже 30°C, смесь дегазировали посредством давления 100-150 мм Hg, позволяя температуре опуститься до 0-5°C. Смесь перемешивали при 0-5°C в течение, по меньшей мере, 1 часа, поддерживая давление 100-150 мм Hg. Затем вакуум заменяли на азот, поддерживая температуру 0-5°C в течение не менее 30 минут. Затем твердый продукт отфильтровали, промыли водой (3×500 мл), затем абсолютным этанолом (625 мл). Продукт высушили под вакуумом, не позволяя температуре превысить 40°C, для получения 1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида в виде его моногидрата.
1H и 13C ЯМР спектры получили следующим способом. Два образца вещества, полученные выше, взвесили и растворили в d6-DMSO - 5,3 мг использовали для 1H спектра, и 20,8 мг использовали для 13C спектра. Все спектры получали при температуре окружающей среды на спектрометре JEOL Eclipse* 400, производящего 400 МГц для 1H и 100 МГц для 13C.
Метка 13C сдвиг (м.д.) 1H сдвиг(м.д.) Частота, расщепление, Гц
2 150,5 или 150,3 -
4 156,4 -
4a 117,9 -
6 140,0 8,41 s
7a 150,5 или 150,3 -
1' 86,9 5,94 D, 6,2
2' 73,7 4,62 m
2'-OH _ 5,50 D, 6,2
3' 70,5 4,17 m
3'-OH - 5,23 D, 4,7
4' 85,7 3,96 m
5' 61,5 3,67, 3,57 m
5'-OH - 5,02 D, 5,7
A 140,9 8,07 D, 0,8
В 120,2 -
С 129,6 8,95 D, 0,8
D 161,7 -
Е 25,6 2,76 D, 4,6
NH2 - 7,77 br s
NH - 8,35 Q,4,6
Элементный анализ дал следующие результаты: C, 43,96%; H, 4,94%; N, 27,94. Теоретические: C, 44,12%; H, 4,94%; N, 27,44%; O, 27,09. Анализ соответствует моногидрату в пределах погрешностей эксперимента.

Claims (15)

1. Способ широкомасштабного получения моногидрата (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида
Figure 00000026

включающий взаимодействие соединения формулы (3)
Figure 00000027

с водным раствором метиламина при начальной температуре приблизительно 0-5°С с последующим нагреванием до приблизительно 50-70°С, и реакцию проводят в герметичном реакторе под давлением.
2. Способ по п.1, дополнительно включающий выделение конечного продукта (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида в виде чистого моногидрата посредством:
(a) растворения продукта в растворителе,
(b) добавления очищенной воды,
(c) фильтрования суспензии, полученной таким образом,
(d) промывания содержимого фильтра водой с последующей промывкой этанолом и
(e) высушивания твердого осадка, который остается, под вакуумом при температуре, не превышающей 40°С.
3. Способ по п.2, где растворителем, применяемым на стадии (а), является диметилсульфоксид.
4. Способ получения соединения формулы (3)
Figure 00000028

включающий взаимодействие соединения формулы (2)
Figure 00000029

с приблизительно 1,1 молярным эквивалентом этилового эфира 2-формил-3-оксопропионовой кислоты в растворителе.
5. Способ по п.4, где растворителем является этанол.
6. Способ по п.5, где реакцию проводят при температуре приблизительно 80°С.
7. Способ получения моногидрата (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида путем взаимодействия соединения формулы (4)
Figure 00000030

с водным раствором метиламина при начальной температуре приблизительно 0-5°С с последующим нагреванием до приблизительно 50-70°С в герметичном реакторе под давлением.
8. Способ по п.7, дополнительно включающий выделение конечного продукта (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида в виде чистого моногидрата посредством:
(a) растворения продукта по п.7 в растворителе,
(b) добавления очищенной воды,
(c) фильтрования суспензии, полученной таким образом,
(d) промывания содержимого фильтра водой с последующей промывкой этанолом и
(e) высушивания твердого осадка, который остается, под вакуумом при температуре, не превышающей 40°С.
9. Способ по п.8, где растворителем, применяемым на стадии (а), является диметилсульфоксид.
10. Способ получения соединения формулы (4)
Figure 00000031

включающий взаимодействие соединения формулы (2)
Figure 00000032

с приблизительно 2-10-кратным молярным избытком этилового эфира 2-формил-3-оксопропионовой кислоты в растворителе.
11. Способ по п.10, где растворителем является этанол.
12. Способ по п.11, где реакцию проводят при температуре приблизительно 80°С.
13. Способ по п.10, где приблизительно 5-10-кратный молярный избыток этилового эфира 2-формил-3-оксопропионовой кислоты взаимодействует с соединением формулы (2).
14. Моногидрат (1-{9-[(4S,2R,3R,5R)-3,4-дигидрокси-5-(гидроксиметил)оксолан-2-ил]-6-аминопурин-2-ил}пиразол-4-ил)-N-метилкарбоксамида, который находится в кристаллической форме.
15. Моногидрат по п.14, где кристаллическая форма характеризуется следующим Н ЯМР спектром:
13С сдвиг (м.д.) 1Н сдвиг (м.д.) Частота, расщепление, Гц (Hz) 150.5 или 150.3 - 156.4 - 117.9 - 140.0 8.41 s 150.5 или 150.3 - 86.9 5.94 D, 6.2 73.7 4.62 m - 5.50 D, 6.2 70.5 4.17 m - 5.23 D, 4.7 85.7 3.96 m 61.5 3.67, 3.57 m - 5.02 D, 5.7 140.9 8.07 D, 0.8 120.2 - 129.6 8.95 D, 0.8 161.7 - 25.6 2.76 D, 4.6 - 7.77 br s - 8.35 Q, 4.6
RU2008131956/04A 2006-02-03 2007-02-02 Способ получения агониста a2a-аденозинового рецептора и его полиморфов RU2447081C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US76511406P 2006-02-03 2006-02-03
US60/765,114 2006-02-03
US80185706P 2006-05-18 2006-05-18
US60/801,857 2006-05-18

Publications (2)

Publication Number Publication Date
RU2008131956A RU2008131956A (ru) 2010-02-10
RU2447081C2 true RU2447081C2 (ru) 2012-04-10

Family

ID=38120353

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008131956/04A RU2447081C2 (ru) 2006-02-03 2007-02-02 Способ получения агониста a2a-аденозинового рецептора и его полиморфов

Country Status (18)

Country Link
US (8) US7732595B2 (ru)
EP (2) EP1989214B8 (ru)
JP (3) JP5326156B2 (ru)
KR (2) KR20080090491A (ru)
CN (1) CN102260311A (ru)
AU (1) AU2007212542B2 (ru)
CA (1) CA2640089C (ru)
ES (1) ES2593028T3 (ru)
HK (1) HK1127358A1 (ru)
IL (2) IL193153A (ru)
MX (1) MX2010014060A (ru)
NO (1) NO341322B1 (ru)
NZ (1) NZ570239A (ru)
PL (1) PL1989214T3 (ru)
PT (1) PT1989214T (ru)
RU (1) RU2447081C2 (ru)
SI (1) SI1989214T1 (ru)
WO (1) WO2007092372A1 (ru)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47351E1 (en) 1999-06-22 2019-04-16 Gilead Sciences, Inc. 2-(N-pyrazolo)adenosines with application as adenosine A2A receptor agonists
US6403567B1 (en) * 1999-06-22 2002-06-11 Cv Therapeutics, Inc. N-pyrazole A2A adenosine receptor agonists
US20020012946A1 (en) 2000-02-23 2002-01-31 Luiz Belardinelli Method of identifying partial agonists of the A2A receptor
US8470801B2 (en) 2002-07-29 2013-06-25 Gilead Sciences, Inc. Myocardial perfusion imaging methods and compositions
US20050020915A1 (en) * 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
CN1671399A (zh) * 2002-07-29 2005-09-21 Cv医药有限公司 利用a2a受体激动剂的心肌灌注显像
AU2005295437B2 (en) * 2004-10-20 2011-05-19 Gilead Palo Alto, Inc. Use of A2A adenosine receptor agonists
PT1989214T (pt) 2006-02-03 2016-09-22 Gilead Sciences Inc Processo para preparar um agonista de recetor de adenosina a2a e polimorfos do mesmo
CA2655310A1 (en) * 2006-06-22 2008-05-29 Cv Therapeutics, Inc. Use of a2a adenosine receptor agonists in the treatment of ischemia
US20090081120A1 (en) * 2006-09-01 2009-03-26 Cv Therapeutics, Inc. Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
JP2010502649A (ja) * 2006-09-01 2010-01-28 シーブイ・セラピューティクス・インコーポレイテッド 心筋層画像化法中の患者の耐性を増加させるための方法および組成物
WO2008042796A2 (en) * 2006-09-29 2008-04-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
US20080267861A1 (en) * 2007-01-03 2008-10-30 Cv Therapeutics, Inc. Myocardial Perfusion Imaging
CA2685589C (en) * 2007-05-17 2014-09-16 Cv Therapeutics, Inc. Process for preparing an a2a-adenosine receptor agonist and its polymorphs
US20100324279A1 (en) * 2007-12-20 2010-12-23 Andres Patricia M J Crystal forms of 2-[2-(4-chlorophenyl)ethoxy]adenosine
US20110044904A1 (en) * 2008-02-29 2011-02-24 Moorman Allan R Crystal forms of 2--adenosine
DK2300489T3 (en) 2008-06-06 2016-02-15 Neurmedix Inc PROCESSES FOR PREPARING 17-alkynyl-7-HYDROXY STEROIDS AND RELATED COMPOUNDS
EP2344145A1 (en) * 2008-09-29 2011-07-20 Gilead Sciences, Inc. Combinations of a rate control agent and an a-2-alpha receptor antagonist for use in multidetector computed tomography methods
US8859522B2 (en) 2011-04-27 2014-10-14 Reliable Biopharmaceutical Corporation Processes for the preparation of regadenoson and a new crystalline form thereof
CZ308577B6 (cs) 2011-08-18 2020-12-16 Farmak, A. S. Způsob přípravy 2-(4-methoxykarbonylpyrazol-1-yl)adenosinu a 2-(4-ethoxykarbonylpyrazol-1-yl)adenosinu
CZ304053B6 (cs) * 2011-08-22 2013-09-04 Farmak, A. S. Zpusob prípravy 2-[4-[(methylamino)karbonyl]-1-H-pyrazol-1-yl]adenosinu monohydrátu
EP2908858B1 (en) 2012-10-19 2020-06-24 New York University Compositions for use in inhibiting osteolysis
ES2837751T3 (es) * 2013-04-11 2021-07-01 Amri Italy S R L Formas sólidas estables de regadenoson
CZ305213B6 (cs) * 2013-04-29 2015-06-10 Farmak, A. S. Polymorf E 2-[4-[(methylamino)karbonyl]-1H-pyrazol-1-yl]adenosinu a způsob jeho přípravy
US9624258B2 (en) * 2013-05-30 2017-04-18 Biophore India Pharmaceuticals Pvt. Ltd. Polymorph of regadenoson
CA2930464A1 (en) * 2013-12-10 2015-06-18 Scinopharm Taiwan, Ltd. A process for the preparation of regadenoson
CN105085593A (zh) * 2014-04-21 2015-11-25 上海紫源制药有限公司 瑞加德松的晶型及其制备方法
CN105175468B (zh) * 2014-06-17 2018-06-19 上海紫源制药有限公司 一种瑞加德松晶型b的制备方法
CN105198950B (zh) * 2014-06-17 2018-10-02 上海紫源制药有限公司 一种瑞加德松晶型e的制备方法
US10442832B2 (en) 2015-02-06 2019-10-15 Apicore Us Llc Process of making regadenoson and novel polymorph thereof
US9809617B2 (en) 2015-07-03 2017-11-07 Shanghai Ziyuan Pharmaceutical Co., Ltd. Crystal form of regadenoson and preparation method thereof
CN106397442B (zh) * 2015-07-28 2020-03-27 国药集团国瑞药业有限公司 一种瑞加德松的纯化方法
US10392417B2 (en) 2016-11-04 2019-08-27 Apicore Us Llc Polymorph of regadenoson and process for preparation thereof
CN106749254B (zh) * 2017-01-10 2018-05-25 青岛科技大学 一种6-氨基嘌呤乙基萘乙酸酯类化合物及其作为植物生长调节剂的用途
WO2019191389A1 (en) 2018-03-29 2019-10-03 Johnson Matthey Public Limited Company Solid-state forms of regadenoson, their use and preparation
US10815265B2 (en) 2018-06-29 2020-10-27 Usv Private Limited Process for preparation of regadenoson and polymorphs thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA004861B1 (ru) * 1999-06-15 2004-08-26 Пфайзер Инк. Производные пурина

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826038Y1 (ru) 1970-12-25 1973-07-30
DK135130B (da) 1970-12-28 1977-03-07 Takeda Chemical Industries Ltd Analogifremgangsmåde til fremstilling af 2-substituerede adenosinderivater eller syreadditionssalte deraf.
BE787064A (fr) 1971-08-03 1973-02-01 Philips Nv Dispositif magnetique comportant des domaines
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US4120947A (en) 1976-03-31 1978-10-17 Cooper Laboratories, Inc. Xanthine compounds and method of treating bronchospastic and allergic diseases
US4089959A (en) 1976-03-31 1978-05-16 Cooper Laboratories, Inc. Long-acting xanthine bronchodilators and antiallergy agents
SE7810946L (sv) 1978-10-20 1980-04-21 Draco Ab Metod att behandla kronisk obstruktiv luftvegssjukdom
US4326525A (en) 1980-10-14 1982-04-27 Alza Corporation Osmotic device that improves delivery properties of agent in situ
US4593095A (en) 1983-02-18 1986-06-03 The Johns Hopkins University Xanthine derivatives
US5364620A (en) 1983-12-22 1994-11-15 Elan Corporation, Plc Controlled absorption diltiazem formulation for once daily administration
US4696932A (en) 1984-10-26 1987-09-29 The United States Of America As Represented By The Department Of Health And Human Services Biologically-active xanthine derivatives
JPS6299395A (ja) 1985-10-25 1987-05-08 Yamasa Shoyu Co Ltd 2−アルキニルアデノシンおよび抗高血圧剤
US4968697A (en) 1987-02-04 1990-11-06 Ciba-Geigy Corporation 2-substituted adenosine 5'-carboxamides as antihypertensive agents
US4992445A (en) 1987-06-12 1991-02-12 American Cyanamid Co. Transdermal delivery of pharmaceuticals
US5001139A (en) 1987-06-12 1991-03-19 American Cyanamid Company Enchancers for the transdermal flux of nivadipine
US4990498A (en) 1988-04-26 1991-02-05 Temple University-Of The Commonwealth System Of Higher Education 2- and 8-azido(2'-5')oligoadenylates and antiviral uses thereof
US4902514A (en) 1988-07-21 1990-02-20 Alza Corporation Dosage form for administering nilvadipine for treating cardiovascular symptoms
US5070877A (en) 1988-08-11 1991-12-10 Medco Research, Inc. Novel method of myocardial imaging
DE3831430A1 (de) 1988-09-15 1990-03-22 Bayer Ag Substituierte 4-heterocyclyloximino-pyrazolin-5-one, verfahren zu ihrer herstellung und ihre verwendung als schaedlingsbekaempfungsmittel
KR0137786B1 (ko) 1988-11-15 1998-05-15 하마구찌 미찌오 심장 또는 뇌의 허혈성 질환의 치료, 예방제
IT1229195B (it) 1989-03-10 1991-07-25 Poli Ind Chimica Spa Derivati xantinici ad attivita' broncodilatatrice e loro applicazioni terapeutiche.
DE69022176T2 (de) 1989-06-20 1996-02-15 Yamasa Shoyu Kk Zwischenverbindung für 2-alkynyladenosinherstellung, herstellung dieser zwischenverbindung, herstellung von 2-alkynyladenosin aus diesem zwischenprodukt sowie stabiles 2-alkynyladenosinderivat.
US5032252A (en) 1990-04-27 1991-07-16 Mobil Oil Corporation Process and apparatus for hot catalyst stripping in a bubbling bed catalyst regenerator
DE4019892A1 (de) 1990-06-22 1992-01-02 Boehringer Ingelheim Kg Neue xanthinderivate
US5189027A (en) 1990-11-30 1993-02-23 Yamasa Shoyu Kabushiki Kaisha 2-substituted adenosine derivatives and pharmaceutical compositions for circulatory diseases
FR2671356B1 (fr) 1991-01-09 1993-04-30 Inst Nat Sante Rech Med Procede de description des repertoires d'anticorps (ab) et des recepteurs des cellules t (tcr) du systeme immunitaire d'un individu.
JP2740362B2 (ja) 1991-02-12 1998-04-15 ヤマサ醤油株式会社 安定な固体状2‐オクチニルアデノシンおよびその製造法
JP3053908B2 (ja) 1991-06-28 2000-06-19 ヤマサ醤油株式会社 2‐アルキニルアデノシン誘導体
US5516894A (en) 1992-03-11 1996-05-14 The General Hospital Corporation A2b -adenosine receptors
IT1254915B (it) 1992-04-24 1995-10-11 Gloria Cristalli Derivati di adenosina ad attivita' a2 agonista
GB9210839D0 (en) 1992-05-21 1992-07-08 Smithkline Beecham Plc Novel compounds
EP0644935A1 (en) 1992-06-12 1995-03-29 Garvan Institute Of Medical Research DNA SEQUENCES ENCODING THE HUMAN A1, A2a and A2b ADENOSINE RECEPTORS
US5705491A (en) 1992-10-27 1998-01-06 Nippon Zoki Pharmaceutical Co., Ltd. Adenosine deaminase inhibitor
CA2112031A1 (en) 1992-12-24 1994-06-25 Fumio Suzuki Xanthine derivatives
US5477857A (en) 1993-09-10 1995-12-26 Discovery Therapeutics, Inc. Diagnostic uses of hydrazinoadenosines
WO1995011681A1 (en) 1993-10-29 1995-05-04 Merck & Co., Inc. Human adenosine receptor antagonists
EP0698607B1 (en) 1994-02-23 2002-05-29 Kyowa Hakko Kogyo Kabushiki Kaisha Xanthine derivative
US5704491A (en) 1995-07-21 1998-01-06 Cummins-Allison Corp. Method and apparatus for discriminating and counting documents
US5646156A (en) 1994-04-25 1997-07-08 Merck & Co., Inc. Inhibition of eosinophil activation through A3 adenosine receptor antagonism
US5877180A (en) 1994-07-11 1999-03-02 University Of Virginia Patent Foundation Method for treating inflammatory diseases with A2a adenosine receptor agonists
US6514949B1 (en) 1994-07-11 2003-02-04 University Of Virginia Patent Foundation Method compositions for treating the inflammatory response
US6448235B1 (en) 1994-07-11 2002-09-10 University Of Virginia Patent Foundation Method for treating restenosis with A2A adenosine receptor agonists
US5854081A (en) 1996-06-20 1998-12-29 The University Of Patent Foundation Stable expression of human A2B adenosine receptors, and assays employing the same
US5780481A (en) 1996-08-08 1998-07-14 Merck & Co., Inc. Method for inhibiting activation of the human A3 adenosine receptor to treat asthma
US5776960A (en) 1996-10-16 1998-07-07 Buckman Laboratories International, Inc. Synergistic antimicrobial compositions containing an ionene polymer and a pyrithione salt and methods of using the same
US5770716A (en) 1997-04-10 1998-06-23 The Perkin-Elmer Corporation Substituted propargylethoxyamido nucleosides, oligonucleotides and methods for using same
AU7449598A (en) 1997-05-23 1998-12-11 Nippon Shinyaku Co. Ltd. Medicinal composition for prevention or treatment of hepatopathy
CA2295195C (en) 1997-06-18 2009-12-15 Discovery Therapeutics, Inc. Compositions and methods for preventing restenosis following revascularization procedures
US6026317A (en) 1998-02-06 2000-02-15 Baylor College Of Medicine Myocardial perfusion imaging during coronary vasodilation with selective adenosine A2 receptor agonists
US6117878A (en) 1998-02-24 2000-09-12 University Of Virginia 8-phenyl- or 8-cycloalkyl xanthine antagonists of A2B human adenosine receptors
AU4675699A (en) 1998-06-08 1999-12-30 Epigenesis Pharmaceuticals, Inc. Composition and method for prevention and treatment of cardiopulmonary and renal failure or damage associated with ischemia, endotoxin release, ards or brought about by administration of certain drugs
US6322771B1 (en) 1999-06-18 2001-11-27 University Of Virginia Patent Foundation Induction of pharmacological stress with adenosine receptor agonists
US6214807B1 (en) 1999-06-22 2001-04-10 Cv Therapeutics, Inc. C-pyrazole 2A A receptor agonists
US6403567B1 (en) * 1999-06-22 2002-06-11 Cv Therapeutics, Inc. N-pyrazole A2A adenosine receptor agonists
WO2001016134A1 (en) 1999-08-31 2001-03-08 Vanderbilt University Selective antagonists of a2b adenosine receptors
US6368573B1 (en) 1999-11-15 2002-04-09 King Pharmaceuticals Research And Development, Inc. Diagnostic uses of 2-substituted adenosine carboxamides
US6294522B1 (en) 1999-12-03 2001-09-25 Cv Therapeutics, Inc. N6 heterocyclic 8-modified adenosine derivatives
US6605597B1 (en) 1999-12-03 2003-08-12 Cv Therapeutics, Inc. Partial or full A1agonists-N-6 heterocyclic 5′-thio substituted adenosine derivatives
US6552023B2 (en) 2000-02-22 2003-04-22 Cv Therapeutics, Inc. Aralkyl substituted piperazine compounds
US6677336B2 (en) 2000-02-22 2004-01-13 Cv Therapeutics, Inc. Substituted piperazine compounds
US20020012946A1 (en) 2000-02-23 2002-01-31 Luiz Belardinelli Method of identifying partial agonists of the A2A receptor
US6387913B1 (en) 2000-12-07 2002-05-14 S. Jamal Mustafa Method of treating airway diseases with combined administration of A2B and A3 adenosine receptor antagonists
US6670334B2 (en) 2001-01-05 2003-12-30 University Of Virginia Patent Foundation Method and compositions for treating the inflammatory response
US6758388B1 (en) 2001-02-27 2004-07-06 Rohr, Inc. Titanium aluminide honeycomb panel structures and fabrication method for the same
US6995148B2 (en) 2001-04-05 2006-02-07 University Of Pittsburgh Adenosine cyclic ketals: novel adenosine analogues for pharmacotherapy
US6599283B1 (en) 2001-05-04 2003-07-29 Cv Therapeutics, Inc. Method of preventing reperfusion injury
PT1389183E (pt) 2001-05-14 2010-04-26 Novartis Ag Derivados de sulfonamida
US7125993B2 (en) 2001-11-09 2006-10-24 Cv Therapeutics, Inc. A2B adenosine receptor antagonists
US6977300B2 (en) 2001-11-09 2005-12-20 Cv Therapeutics, Inc. A2B adenosine receptor antagonists
KR100937620B1 (ko) 2001-11-09 2010-01-20 씨브이 쎄러퓨틱스, 인코포레이티드 A2b 아데노신 수용체 길항제
JP4440642B2 (ja) 2001-12-20 2010-03-24 オーエスアイ・ファーマスーティカルズ・インコーポレーテッド ピリミジンA2b選択的アンタゴニスト化合物、それらの合成、及び使用
WO2003086451A1 (en) 2002-04-05 2003-10-23 Centocor, Inc. Asthma-related anti-il-13 immunoglobulin derived proteins, compositions, methods and uses
CN1646142A (zh) 2002-04-18 2005-07-27 Cv医药有限公司 包括给予A1腺苷激动剂以及β受体阻滞剂、钙通道阻滞剂、或强心苷的治疗心律失常的方法
CN1671399A (zh) 2002-07-29 2005-09-21 Cv医药有限公司 利用a2a受体激动剂的心肌灌注显像
US20050020915A1 (en) 2002-07-29 2005-01-27 Cv Therapeutics, Inc. Myocardial perfusion imaging methods and compositions
US8470801B2 (en) 2002-07-29 2013-06-25 Gilead Sciences, Inc. Myocardial perfusion imaging methods and compositions
CA2691611A1 (en) 2004-01-27 2005-09-09 Gilead Palo Alto, Inc. Myocardial perfusion imaging using adenosine receptor agonists
KR20070063548A (ko) 2004-10-15 2007-06-19 씨브이 쎄러퓨틱스, 인코포레이티드 A2b 아데노신 수용체 길항제를 사용하는, 기도 개형 및폐 염증의 예방 및 치료 방법
AU2005295437B2 (en) 2004-10-20 2011-05-19 Gilead Palo Alto, Inc. Use of A2A adenosine receptor agonists
EP1841355A4 (en) 2005-01-12 2012-09-05 King Pharmaceuticals Res & Dev METHOD FOR DETECTING MYOCARDIAL DYSFUNCTION IN PATIENTS SUFFERING IN THE ASTHMA OR BRONCHOSPASM PASS
US20070114269A1 (en) 2005-11-22 2007-05-24 Straza George C Formed metal core sandwich structure and method and system for making same
PT1989214T (pt) * 2006-02-03 2016-09-22 Gilead Sciences Inc Processo para preparar um agonista de recetor de adenosina a2a e polimorfos do mesmo
CA2655310A1 (en) 2006-06-22 2008-05-29 Cv Therapeutics, Inc. Use of a2a adenosine receptor agonists in the treatment of ischemia
US20090081120A1 (en) 2006-09-01 2009-03-26 Cv Therapeutics, Inc. Methods and Compositions for Increasing Patient Tolerability During Myocardial Imaging Methods
JP2010502649A (ja) 2006-09-01 2010-01-28 シーブイ・セラピューティクス・インコーポレイテッド 心筋層画像化法中の患者の耐性を増加させるための方法および組成物
WO2008042796A2 (en) 2006-09-29 2008-04-10 Cv Therapeutics, Inc. Methods for myocardial imaging in patients having a history of pulmonary disease
US20080267861A1 (en) 2007-01-03 2008-10-30 Cv Therapeutics, Inc. Myocardial Perfusion Imaging
CA2685589C (en) 2007-05-17 2014-09-16 Cv Therapeutics, Inc. Process for preparing an a2a-adenosine receptor agonist and its polymorphs
WO2009076580A2 (en) 2007-12-12 2009-06-18 Thomas Jefferson University Compositions and methods for the treatment and prevention of cardiovascular diseases
EP2344145A1 (en) 2008-09-29 2011-07-20 Gilead Sciences, Inc. Combinations of a rate control agent and an a-2-alpha receptor antagonist for use in multidetector computed tomography methods
WO2014068589A2 (en) * 2012-10-29 2014-05-08 Biophore India Pharmaceuticals Pvt. Ltd. Novel process for the preparation of (1-{9-[(4s, 2r, 3r, 5r)-3, 4-dihydroxy-5-(hydroxymethyl) oxolan-2-yl)-6-aminopurin-2-yl} pyrazole-4-yl)-n-methylcarboxamide
CZ305213B6 (cs) * 2013-04-29 2015-06-10 Farmak, A. S. Polymorf E 2-[4-[(methylamino)karbonyl]-1H-pyrazol-1-yl]adenosinu a způsob jeho přípravy
US9624258B2 (en) * 2013-05-30 2017-04-18 Biophore India Pharmaceuticals Pvt. Ltd. Polymorph of regadenoson
CA2930464A1 (en) * 2013-12-10 2015-06-18 Scinopharm Taiwan, Ltd. A process for the preparation of regadenoson

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA004861B1 (ru) * 1999-06-15 2004-08-26 Пфайзер Инк. Производные пурина

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Niiya К et al, Journal of Medicinal Chemistry, 1992, 35(24), CC.4557-4561. *

Also Published As

Publication number Publication date
US20120165350A1 (en) 2012-06-28
US7732595B2 (en) 2010-06-08
USRE47301E1 (en) 2019-03-19
SI1989214T1 (sl) 2016-10-28
EP2581381A2 (en) 2013-04-17
US7671192B2 (en) 2010-03-02
JP5326156B2 (ja) 2013-10-30
JP2009525347A (ja) 2009-07-09
KR20130130868A (ko) 2013-12-02
NZ570239A (en) 2011-09-30
US20100179313A1 (en) 2010-07-15
NO20083395L (no) 2008-08-01
US20140213539A1 (en) 2014-07-31
WO2007092372A1 (en) 2007-08-16
EP2581381A3 (en) 2013-10-30
AU2007212542A1 (en) 2007-08-16
CN102260311A (zh) 2011-11-30
JP2013014620A (ja) 2013-01-24
RU2008131956A (ru) 2010-02-10
IL193153A (en) 2017-06-29
US7956179B2 (en) 2011-06-07
KR101494125B1 (ko) 2015-02-16
EP1989214B1 (en) 2016-06-22
IL193153A0 (en) 2009-02-11
NO341322B1 (no) 2017-10-09
US20100267953A1 (en) 2010-10-21
HK1127358A1 (zh) 2009-09-25
AU2007212542B2 (en) 2013-01-31
US20070225247A1 (en) 2007-09-27
EP1989214B8 (en) 2016-12-21
IL252700A0 (en) 2017-08-31
US20070265445A1 (en) 2007-11-15
KR20080090491A (ko) 2008-10-08
US8268988B2 (en) 2012-09-18
CA2640089A1 (en) 2007-08-16
US8106183B2 (en) 2012-01-31
ES2593028T3 (es) 2016-12-05
PL1989214T3 (pl) 2017-07-31
JP2013010791A (ja) 2013-01-17
MX2010014060A (es) 2011-01-18
PT1989214T (pt) 2016-09-22
CA2640089C (en) 2013-07-23
US9085601B2 (en) 2015-07-21
US8524883B2 (en) 2013-09-03
EP1989214A1 (en) 2008-11-12
US20110257387A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
RU2447081C2 (ru) Способ получения агониста a2a-аденозинового рецептора и его полиморфов
EP2158208B1 (en) Process for preparing an a2a-adenosine receptor agonist and its polymorphs
CA2787759C (en) Process for preparing an a2a-adenosine receptor agonist and its polymorphs
RU2443708C2 (ru) Способ получения агониста рецептора a2a-аденозина и его полиморфных модификаций
JP2013067662A (ja) A2a−アデノシン受容体アゴニストおよびその多形体を調製するための方法
MX2008009879A (en) Process for preparing an a2a-adenosine receptor agonist and its polymorphs
AU2014200786A1 (en) Process for preparing an A2A-adenosine receptor agonist and its polymorphs

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20140702

TC4A Change in inventorship

Effective date: 20190409