RU2403959C2 - Способ улучшения протекания потока в мембранном биореакторе - Google Patents

Способ улучшения протекания потока в мембранном биореакторе Download PDF

Info

Publication number
RU2403959C2
RU2403959C2 RU2007145645A RU2007145645A RU2403959C2 RU 2403959 C2 RU2403959 C2 RU 2403959C2 RU 2007145645 A RU2007145645 A RU 2007145645A RU 2007145645 A RU2007145645 A RU 2007145645A RU 2403959 C2 RU2403959 C2 RU 2403959C2
Authority
RU
Russia
Prior art keywords
membrane bioreactor
specified
salt
membrane
reactors
Prior art date
Application number
RU2007145645A
Other languages
English (en)
Other versions
RU2007145645A (ru
Inventor
Сеонг-Хоон ЙООН (US)
Сеонг-Хоон Йоон
Джон Х. КОЛЛИНЗ (US)
Джон Х. КОЛЛИНЗ
Джероэн А. КОППС (NL)
Джероэн А. КОППС
Ингмар Х. ХЬЮСМАН (NL)
Ингмар Х. ХЬЮСМАН
Original Assignee
Налко Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Налко Компани filed Critical Налко Компани
Publication of RU2007145645A publication Critical patent/RU2007145645A/ru
Application granted granted Critical
Publication of RU2403959C2 publication Critical patent/RU2403959C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/02Separating microorganisms from their culture media
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/28Anaerobic digestion processes
    • C02F3/2853Anaerobic digestion processes using anaerobic membrane bioreactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Изобретение относится к области биологической очистки воды. Исходные сточные воды 1 подают в мембранный биореактор. Очищаемые стоки последовательно проходят анаэробный 2, аноксический 3 и аэрируемый 5 сосуды, последний из которых содержит мембрану 5. В каждый из сосудов добавляют полиэлектролит 9. Осуществляют рециркуляцию осадка из аноксического сосуда 3 в анаэробный сосуд 2 и из аэрируемого сосуда 4 в аноксический сосуд 3. Очищенную воду 6 отводят насосами. Изобретение эффективно и экономично. 4 н. и 15 з.п. ф-лы, 4 ил.

Description

Это изобретение относится к использованию растворимых в воде катионных, амфотерных или цвиттер-ионных полимеров либо их сочетания для того, чтобы увеличить поток воды через мембраны в мембранных биореакторах.
Блок мембранного биореактора (МБР) объединяет два основных способа, биологическую деградацию и мембранное разделение, в единый способ, где взвешенные твердые частицы и микроорганизмы, ответственные за биодеградацию, отделяются от обработанной воды с помощью мембранного фильтрационного блока. Вся биомасса заключена в пределах системы, обеспечивающей и регулирование времени пребывания микроорганизмов в реакторе (возраст иловой смеси) и дезинфекцию выпускаемого потока.
Обычно входящий поток поступает в биореактор, где он вступает в контакт с биомассой.
Смесь фильтруют через мембрану с помощью насоса, давления воды или их сочетания. Фильтрат сливают из системы, в то время как вся биомасса удерживается в биореакторе.
Фильтрат сливают из системы, причем всю биомассу возвращают в биореактор. Избыток иловой смеси откачивают, чтобы поддерживать постоянным возраст иловой смеси, а мембрану регулярно очищают путем обратной промывки, химической промывки или и той, и другой.
Мембраны, используемые в блоке МБР, включают ультра- и микрофильтрационные мембраны с внутренним и наружным покрытием, половолоконные, трубчатые и плоские, органические, металлические, керамические и тому подобные. Предпочтительные мембраны для промышленного применения включают полое волокно с ультрафильтрующим наружным покрытием, плоский листовой ультрафильтр и полое волокно с микрофильтрующим наружным покрытием. Предпочтительный размер пор мембраны составляет 0,01-5 мкм.
В аэробном способе с применением мембранного биореактора (МБР) загрязнение мембраны всегда создавало значительную проблему, ограничивая гидравлические характеристики способа. Из-за засорения мембраны пропускная способность МБР, или интенсивность потока, часто уменьшается, и, чтобы компенсировать потерю пропускной способности, требуется большее количество мембран.
Недавно результаты многих исследований (Nagaoka et al., 1996, 1998; Lee et al., 2002) показали, что одной из основных причин засорения мембраны являются биополимеры, которые включают полисахариды и протеины, вырабатываемые биомассой, присутствующей в иловой смеси МБР. Кроме того, сообщалось о ряде неорганических отложений, образующихся в биореакторах, где концентрации солей во входящем потоке относительно высоки. В результате образования отложения на поверхности мембраны качество работы мембраны значительно снижается (Huisman, 2005; Ognier, 2004).
Чтобы предотвратить засорение мембраны, вызванное биополимерами, были разработаны способы, использующие катионные полимеры, которые не реагируют с отрицательно заряженными мембранами, контактирующими с иловой смесью (Collins и Salmen, 2004). В этом способе разнообразные полимеры добавляют прямо в аэробный МБР, обычно в аэрируемый сосуд, и эти полимеры реагируют с биополимерами. Получаемые в результате частицы, состоящие из биополимеров и полимеров, имеют значительно более низкую склонность к засорению мембран.
Известно, что те же самые микробиологически образованные в МБР полисахаридные и протеиновые биополимеры, которые являются причиной засорения мембраны, также являются причиной пенообразования в иловой смеси в МБР. Причиной этого является то, что эти соединения содержат много поверхностно-активных функциональных групп, которые помогают стабилизировать пену на поверхности раздела воздух - вода. Кроме того, МБР часто содержат значительное количество нитевидных микроорганизмов, которое соотносится с пенообразованием. И биополимеры, и нитевидные микроорганизмы реагируют с катионными полимерами, описанными в этом изобретении. Предварительная работа показала, что снижение пены или ликвидация пены всегда происходит в то время, когда, согласно наблюдению, катионный полимер улучшает протекание сквозь мембрану (Richard, 2003).
В настоящее время в МБР все больше устанавливают аноксические и анаэробные сосуды, чтобы увеличивать эффективность удаления азота и фосфора. При этом аэробная биомасса периодически подвергается условиям дефицита кислорода, в то время как анаэробная биомасса подвергается аэробным условиям, поскольку иловая смесь циркулирует между условиями кислородного обогащения и кислородного дефицита. Поэтому биомасса производит больше биополимера благодаря кислородному воздействию. Помимо ускоренного генерирования биополимера, спровоцированного циклическим изменением концентрации кислорода, генерирование биополимера может также быть ускорено условиями низкого количества растворенного кислорода (РК) в аноксических и анаэробных сосудах (Calvo et al., 2001).
Наиболее прямые свидетельства ускоренного засорения мембраны в условиях низкого количества РК были получены в эксперименте Kang et al. (2003). В их эксперименте газообразный азот использовали, чтобы непрерывно промывать погруженные мембраны, в то время как воздух подавали сквозь отдельные форсунки в зону, над которой не размещали мембраны. Скорость потока фильтрата поддерживали постоянной на уровне 20 л/м2/час. Как только подачу воздуха прекращали, содержание ТМФ начинало увеличиваться, а содержание РК начинало уменьшаться.
Соответственно, если в МБР способе использованы аноксический и/или анаэробный сосуды, то содержание биополимера в иловой смеси выше, чем для других МБР, имеющих только аэрируемые сосуды. Поэтому, если МБР содержит аноксические и анаэробные реакторы, то предшествующий способ (John et al., 2004) будет значительно менее эффективен в плане дозирования и улучшения протекания. Кроме того, предшествующий способ не эффективен в анаэробных МБР, которые включают анаэробный реактор для ферментативного гидролиза в качестве единственного биореактора или в качестве одного из биореакторов. Необходим более эффективный и экономичный способ, который делал бы возможным улучшение характеристик и уменьшение дозировки.
Помимо проблемы биополимеров недавно появились сообщения о засорениях неорганическими веществами в некоторых МБР (Huisman, 2005; Ognier et al., 2002). Эти засорения неорганическими веществами часто состоят главным образом из карбоната кальция (СаСО3) и/или фосфата кальция, которые могут осаждаться при аэрированной биологической обработке сточных вод или прямо на мембране ("отложения"). Засорения неорганическими веществами включают также оксиды железа.
Аэрация в сосуде для обработки (и в мембранном сосуде) может приводить к засорению неорганическими веществами разнообразными путями. Например, аэрация выводит растворенный CO2 из сточных вод и этим сдвигает равновесие реакции (1) вправо.
Figure 00000001
Карбонат (СО32-), образующийся по реакции (1), осаждается с кальцием, который присутствует в сточных водах, с образованием СаСО3 (известняк). Более того, реакция (1) является причиной увеличения рН, что благоприятствует осаждению фосфата кальция и оксида железа. Осаждение карбонатов и фосфатов отчасти происходит в объеме сточных вод и создает мелкие частицы, большинство которых удерживается мембранами. Это осаждение также происходит на всех поверхностях, в том числе на поверхности мембран.
Настоящее изобретение предусматривает способ улучшения протекания потока в мембранном биореакторе, в котором входящий поток имеет концентрацию солей неорганических оксидов, достаточную, чтобы она явилась причиной создания условий для отложений или засорения неорганическими веществами, путем добавления эффективного количества одного или более катионных, амфотерных или цвиттер-ионных полимеров либо их сочетания в упомянутый мембранный биореактор. Мембранный биореактор может также включать один или более аэробных реакторов. Мембранный реактор может также включать сочетание по меньшей мере из двух следующих реакторов: анаэробный, аноксический и аэробный реакторы.
Настоящее изобретение также предусматривает способ улучшения протекания потока в мембранном биореакторе, который состоит из по меньшей мере двух реакторов следующих типов: анаэробные, аноксические и аэробные реакторы. Эффективное количество одного или более катионного, амфотерного или цвиттер-ионного полимеров или их сочетание добавляют в мембранный биореактор этого типа.
Настоящее изобретение также предусматривает способ улучшения протекания потока в мембранном биореакторе, который включает один или более анаэробных реакторов для ферментативного гидролиза. Эффективное количество одного или более катионного, амфотерного или цвиттер-ионного полимеров или их комбинации добавляют в мембранный биореактор этого типа.
Настоящее изобретение также предусматривает способ улучшения протекания потока в мембранном биореакторе, который включает один или более анаэробных реакторов для ферментативного гидролиза и один или более аэробных реакторов. Эффективное количество одного или более катионного, амфотерного или цвиттер-ионного полимеров или их комбинации добавляют в мембранный биореактор этого типа.
Краткое описание чертежей
Фиг.1 представляет собой схему типичного МБР, который состоит из одного аэрируемого сосуда и где (1) обозначает сточные воды (ХПК (химическая потребность в кислороде) составляет 50-30000 мг/л), (2) обозначает аэрируемый сосуд, (3) обозначает мембраны, (4) обозначает выпускаемый поток, отводимый насосами или под действием силы тяжести, а (5) обозначает добавление полимера.
Фиг.2 представляет собой схему типичного МБР, который состоит из аэрируемого и аноксического сосудов. Размеры реактора на схеме не отображают объемное отношение реакторов, и (1) обозначает сточные воды (ХПК=50-30000 мг/л), (2) обозначает аноксический сосуд, (3) обозначает аэрируемый сосуд, (4) обозначает мембраны, (5) обозначает внутреннюю рециркуляцию осадка из аэрируемого сосуда в аноксический сосуд, (6) обозначает выпускаемый поток, отводимый насосами или под действием силы тяжести, а (7) обозначает добавление полиэлектролита.
На Фиг. 3 представлена схема типичного МБР, который состоит из аэрируемого, аноксического и анаэробного сосудов. Размеры реактора на схеме не отображают объемное отношение реакторов, а (1) обозначает сточные воды (ХПК=50-30000 мг/л), (2) обозначает анаэробный сосуд (не аэрируемый), (3) обозначает аноксический сосуд (не аэрируемый), (4) обозначает аэрируемый сосуд, (5) обозначает мембраны, (6) обозначает выпускаемый поток, отводимый насосами или под действием силы тяжести, (7) обозначает внутреннюю рециркуляцию осадка из аноксического сосуда в анаэробный сосуд, (8) обозначает внутреннюю рециркуляцию осадка из аэрируемого сосуда в аноксический сосуд, а (9) обозначает добавление полиэлектролита.
На Фиг.4 представлена схема анаэробного МБР, где (1) обозначает сточные воды (ХПК=200-100000 мг/л), (2) обозначает добавление полиэлектролита (его также можно добавлять в любом месте в поток со стороны мембраны), (3) обозначает смеситель (необязательный компонент), (4) обозначает незаполненное пространство над продуктом, (5) обозначает анаэробный сосуд, (6) обозначает мембраны, (7) обозначает выпускаемый поток, (8) обозначает рециркуляцию газа из незаполненного пространства к нижней стороне мембран и (9) обозначает насос для рециркуляции осадка.
Определение терминов
"Примерно" означает близкое или равное указанному значению какой-либо величины.
Используемые здесь и далее следующие аббревиатуры и термины имеют следующие значения:
МБР - мембранный биореактор;
АкАМ - акриламид;
ДМАЭА·МХЧ - четвертичная соль метилхлорида и диметиламино-этилакрилата.
"Амфотерный полимер" означает полимер, являющийся производным и катионных мономеров и анионных мономеров и, возможно, других не ионных мономер(ов). Амфотерные полимеры могут иметь чисто положительный или отрицательный заряд. Амфотерный полимер может также быть производным цвиттер-ионных мономеров и катионных или анионных мономеров и, возможно, не ионных мономеров. Амфотерный полимер растворим в воде.
"Катионный полимер" означает полимер, имеющий в целом положительный заряд. Катионные полимеры по этому изобретению приготовлены полимеризацией одного или более катионных мономеров, сополимеризацией одного или более не ионных мономеров и одного или более катионных мономеров, конденсацией эпихлоргидрина и диамина или полиамина или конденсацией этилендихлорида и аммиака или формальдегида и соли амина. Катионный полимер растворим в воде.
"Катионный мономер" означает мономер, который обладает чисто положительным зарядом.
"Полимер, полученный полимеризацией в растворителе" означает растворимый в воде полимер в непрерывной водной фазе раствора.
"Аэробный сосуд" означает биореактор, имеющий более 0,5 ppm (частей на миллион) растворенного кислорода для роста аэробных бактерий. В этих условиях бактерии могут активно окислять органические материалы, содержащиеся во входящем потоке, используя растворенный кислород.
"Аноксический сосуд" означает биореактор, имеющий менее 0,5 ppm растворенного кислорода. В этот реактор обычно подают иловую смесь, содержащую более 3 ppm нитрат-иона (NO3) в качестве азотсодержащего соединения. В этих условиях большинство гетеротрофических бактерий может использовать для дыхания связанный кислород из нитрата и восстанавливать нитрат до газообразного азота, который, в конечном счете, попадает в воздух.
"Анаэробный сосуд" означает биореактор, имеющий менее 0,1 ppm растворенного кислорода и менее 3 ppm нитрат-иона.
"Анаэробный реактор для ферментативного гидролиза" означает биореактор, который полностью изолирован от воздуха верхней крышкой, чтобы выращивать строго анаэробные бактерии, которые производят газообразный метан.
"Цвиттер-ионный полимер" означает полимер, состоящий из цвиттер-ионных мономеров и, возможно, из других не ионных мономер(ов). В цвиттер-ионных полимерах все полимерные цепи и сегменты в этих цепях электрически строго нейтральны. Поэтому цвиттер-ионные полимеры представляют подмножество амфотерных полимеров, обязательно поддерживающих нейтральность заряда по всем полимерным цепям и сегментам, поскольку и анионный и катионный заряды введены в один и тот же цвиттер-ионный мономер. Цвиттер-ионный полимер растворим в воде.
"Цвиттер-ионный мономер" означает полимеризуемую молекулу, содержащую катионные и анионные (заряженные) функциональные группы в равных пропорциях, так что молекула в целом нейтральна.
Катионные, амфотерные и цвиттер-ионные полимеры или их сочетания непосредственно вводят в один из биореакторов или в любой поток жидкости, входящий в один из биореакторов, с помощью разнообразных средств.
Во всех случаях полимер следует в достаточной степени перемешать с иловой смесью в биореакторе, чтобы сделать максимальной адсорбцию. Это можно выполнить путем подачи полимера в зону биореактора, где размещена аэрационная форсунка. Следует избегать так называемых "мертвых" зон в биореакторе, в которых течение мало или отсутствует. В некоторых случаях, чтобы увеличить перемешивание в емкости, может понадобиться погружная пропеллерная мешалка, или же иловую смесь можно подавать рециклом через обводной трубопровод.
Полимеры, полученные полимеризацией в растворителе, можно дозировать с помощью дозирующего химикаты насоса, такого как LMI Model 121 от Milton Roy (Актон, Массачусетс).
В одном воплощении поток, поступающий в мембранный биореактор, имеет концентрацию солей или неорганических оксидов, достаточную для того, чтобы стать причиной отложений и засорения органическими веществами. Соли и неорганические оксиды выбраны из группы, состоящей из магния, кальция, кремния и железа. В других воплощениях соли или неорганические оксиды магния и кальция могут иметь концентрацию примерно 5 ppm или больше, соли или неорганические оксиды железа могут иметь концентрацию примерно 0,1 ppm или больше, а соли или неорганические оксиды кремния иметь концентрацию примерно 5 ppm или больше. В еще одном воплощении соли выбраны из группы, состоящей из карбонатов, фосфатов, оксилатов и сульфатов.
В другом воплощении количество катионного полимера, добавляемого в мембранный биореактор, составляет от примерно 10 до примерно 2000 ppm в расчете на общий объем мембранного биореактора.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, имеет молекулярную массу примерно 25000 Да или более.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, имеет примерно 10% мол. заряженных групп или более.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, составляет 25000 Да или более и имеет примерно 10% мол. заряженных групп или более.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, выбирают из группы, состоящей из полимера эпихлоргидрин-диметиламина, сшитого либо с помощью аммиака, либо с помощью этилендиамина; линейного полимера эпихлоргидрина и диметиламина, гомополимера полиэтиленимина; хлорида полидиаллилдиметиламмония; гомополимера DMAEM·H2SO4; четвертичной соли полимеризованного метилхлорида и триэтаноламина, четвертичной соли полимеризованного триэтаноламина и жирной кислоты таллового масла/метилхлорида, полиэтилендихлорида/аммиака и модифицированного полиэтиленимина.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, представляет собой полимер (мет)акриламида и одного или более катионных мономеров, включая диалкиламиноалкилакрилаты и метакрилаты и их четвертичные или кислые соли, в том числе, но без ограничений, четвертичная соль метилхлорида и диметиламиноэтилакрилата, четвертичная соль метилсульфата и диметиламиноэтилакрилата, четвертичная соль бензилхлорида и диметиламиноэтилакрилата, соль серной кислоты и диметиламиноэтилакрилата, соль соляной кислоты и диметиламиноэтилакрилата, четвертичная соль метилхлорида и диметиламиноэтилметакрилата, четвертичная соль метилсульфата и диметиламиноэтилметакрилата, четвертичная соль бензилхлорида и диметиламиноэтилметакрилата, соль серной кислоты и диметиламиноэтилметакрилата, соль соляной кислоты и диметиламиноэтилметакрилата, диалкиламиноалкилакриламиды или метакриламиды и их четвертичные или кислые соли, такие как акриламидопропилтриметиламмоний хлорид, четвертичная соль метилсульфата и диметиламинопропилакриламида, соль серной кислоты и диметиламинопропилакриламида, соль соляной кислоты и диметиламино-пропилакриламида, метакриламидопропилтриметиламмоний хлорид, четвертичная соль метилсульфата и диметиламинопропилметакриламида, соль серной кислоты и диметиламинопропилметакриламида, соль соляной кислоты и диметиламинопропилметакриламида, диэтиламиноэтилакрилат, диэтиламиноэтилметакрилат, диаллилдиэтиламмоний хлорид и диаллилдиметил аммоний хлорид.
В другом воплощении катионный полимер, добавляемый в мембранный биореактор, это сополимер диаллилдиметиламмоний хлорида и акриламида.
В другом воплощении амфотерный полимер, добавляемый в мембранный биореактор, выбирают из группы, состоящей из сополимера четвертичной соли метилхлорида и диметиламиноэтилакрилата/акриловой кислоты, сополимера диаллилдиметиламмоний хлорида/акриловой кислоты, сополимера соли метилхлорида и диметиламиноэтилакрилата/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний бетаина, сополимера акриловой кислоты/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний бетаина и тройного сополимера ДМАЭА·МХЧ/акриловой кислоты/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний бетаина.
В другом воплощении цвиттер-ионный полимер, добавляемый в мембранный биореактор, примерно на 99 % мол. состоит из N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний бетаина и из примерно 1 % мол. более не ионных мономеров.
Представленные ниже примеры не ограничивают изобретение.
ПРИМЕР 1
На фиг.2 мембраны (3) непосредственно погружены в аэрируемый сосуд (2). Аэрируемый сосуд можно подразделить на множество реакторов. Мембраны можно погрузить в один из реакторов или установить за пределами реактора. ВВИС (количество взвешенных веществ в иловой смеси) можно поддерживать между 3000 мг/л и 30000 мг/л. Когда входящий поток (1) содержит более 5 ppm ионов кальция, и/или более 5 ppm магния, и/или более 10 ppm диоксида кремния, и/или более 0,1 ppm железа, может произойти образование отложений или неорганических осадков на поверхности мембраны. Катионные полимеры, имеющие молекулярную массу (ММ) 10000-20000000 Да и количество заряженных групп от 1 до 100%, можно добавить прямо в один из сосудов (5) или в любые потоки, поступающие в один из реакторов, при концентрации 10-2000 ppm, в качестве активного полимера. Верхний предел ММ ограничен только растворимостью и диспергируемостью полимера в воде.
ПРИМЕР 2
На фиг.2 аноксический сосуд (2) добавлен к аэрируемому сосуду (3), а иловую смесь из аэрируемого сосуда подают рециклом в аноксический сосуд, куда не поступает воздух, чтобы поддерживать уровень растворенного кислорода <0,5 мг/л. Соединения азота, содержащиеся в сточных водах, окисляются до нитрата в аэрируемом сосуде (3), и их подают рециклом в аноксический сосуд (2). В аноксическом сосуде какие-либо денитрифицирующие бактерии потребляют связанный кислород, содержащийся в нитрат-ионах, и производят газообразный азот. Конфигурация мембраны может быть следующей: плоский лист, полое волокно, трубчатая или их комбинация. Мембрану можно размещать вне мембранного сосуда, а осадок из одного из сосудов можно подавать рециклом в мембранную систему с помощью насоса(ов). Если входящий поток (1) содержит свыше 5 ppm кальций-иона, и/или свыше 5 ppm магния, и/или свыше 0,1 ppm железа, и/или свыше 10 ppm кремнезема, то на поверхности мембраны может происходить образование отложений или неорганических осадков.
Хотя предотвращению засорения мембран способствует широкий спектр катионных полимеров, особенно эффективны полимеры с высокой ММ (>50000 Да) и высоким мольным содержанием заряженных групп (>10%). Один или несколько различных полимеров можно добавлять в аноксический сосуд, и/или в аэрируемый сосуд, и/или в любой поток, поступающий в один из реакторов.
ПРИМЕР 3
На фиг.3 анаэробный (2) и аноксический (3) сосуды добавлены к аэрируемому сосуду (4) одновременно, чтобы сделать максимальным удаление фосфора. Хотя иловая смесь, подаваемая рециклом из аноксического сосуда в анаэробный сосуд (7), содержит какое-то количество нитрат-ионов, в целом поступление кислорода чрезвычайно ограничено, поскольку уровень РК составляет менее 0,1 мг/л. Даже в этой среде некоторые организмы, аккумулирующие фосфор (ОФА), могут получать энергию путем гидролиза полимерных форм фосфорсодержащих соединений, накопленных в сосуде. Поскольку ОФА перемещаются в аэрируемый сосуд через аноксический сосуд, они с избытком аккумулируют фосфорсодержащие соединения для последующего потребления, это так называемое "избыточное поглощение". Избыточно аккумулированные фосфорсодержащие соединения, в конечном счете, удаляются, когда избыток твёрдых веществ биологического происхождения извлекают из системы. Конфигурация мембраны может быть следующей: плоский лист, полое волокно, трубчатая или их сочетания. Мембрану можно размещать вне мембранного сосуда, а осадок из одного из сосудов можно подавать рециклом в мембранную систему с помощью насосов. Если входящий поток (1) содержит свыше 5 ppm кальций-иона, и/или свыше 5 ppm магния, и/или свыше 0,1 ppm железа, и/или свыше 10 ppm диоксида кремния, то на поверхности мембраны может происходить образование отложений или засорение неорганическими веществами.
Хотя предотвращению засорения мембран способствует широкий спектр катионных полимеров, особенно эффективны полимеры с высокой ММ (>50000 Да) и высоким мольным содержанием заряженных частиц (>10%). Один или несколько различных полимеров можно добавлять в аноксический сосуд, и/или в аэрируемый сосуд, и/или в любой поток, поступающий в один из реакторов.
ПРИМЕР 4
Четвертый пример применения представляет собой анаэробный МБР (фиг.4), который работает в диапазоне между температурой окружающей среды и 70°С. Этот МБР имеет крышку вверху реактора, и воздух не поступает. Необязательное механическое перемешивание можно осуществлять с помощью смесителя (3). В случае погружной мембраны (фиг.4а) газы из незаполненного пространства (4) можно подавать рециклом в нижнюю часть сосуда/чтобы промывать мембраны. Если мембраны размещены снаружи (фиг.4b), то для циркуляции осадка надо использовать насосы (9). Этот анаэробный реактор для ферментативного гидролиза можно использовать отдельно или в комбинации с аэробным реактором. Количество взвешенных твердых веществ в иловой смеси (ВВИС) поддерживают на уровне 3000-30000 мг/л, а ХПК входящего потока - 200-100000 мг/л.

Claims (19)

1. Способ улучшения протекания потока в мембранном биореакторе, в котором входящий поток имеет концентрацию солей или неорганических оксидов достаточную, чтобы явиться причиной условий для отложений или засорения неорганическими веществами, включающий добавление в указанный мембранный биореактор эффективного количества одного или более катионных, амфотерных или цвиттер-ионных полимеров или их сочетания, где указанный мембранный биореактор содержит погружную мембрану, и количество взвешенных веществ в иловой смеси составляет между 3000 мг/л и 30000 мг/л.
2. Способ по п.1, в котором указанные соли или неорганические оксиды выбраны из группы, состоящей из магния, кальция, кремния и железа.
3. Способ по п.2, в котором указанный магний или указанный кальций имеет концентрацию примерно 5 ч./млн или более, или указанное железо имеет концентрацию примерно 0,1 ч./млн или более, или указанный кремний имеет концентрацию примерно 5 ч./млн или более.
4. Способ по п.1, в котором указанное эффективное количество катионного полимера составляет от примерно 10 до примерно 2000 ч./млн в расчете на общий объем мембранного биореактора.
5. Способ по п.1, в котором указанный мембранный биореактор включает сочетание, по меньшей мере, двух из следующих типов реакторов: анаэробные реакторы, аноксические реакторы и аэробные реакторы.
6. Способ по п.1, в котором указанный мембранный биореактор включает один или более аэробный реактор.
7. Способ улучшения протекания потока в мембранном биореакторе, включающий стадии:
обеспечение указанного мембранного биореактора, который содержит погружную мембрану и включает сочетание, по меньшей мере, двух следующих типов реакторов: анаэробные реакторы, аноксические реакторы и аэробные реакторы, и
добавление в указанный мембранный биореактор эффективного количества одного или более катионного, амфотерного или цвиттер-ионного полимеров или их сочетаний, где количество взвешенных веществ в иловой смеси в указанном мембранном биореакторе составляет между 3000 мг/л и 30000 мг/л.
8. Способ по п.7, в котором указанное эффективное количество катионного полимера составляет от примерно 10 до примерно 2000 ч./млн в расчете на общий объем мембранного биореактора.
9. Способ по п.7, в котором указанный катионный полимер, который добавляют в упомянутый мембранный биореактор, имеет молекулярную массу примерно 25000 Дальтонов или более.
10. Способ по п.7, в котором указанный катионный полимер, который добавляют в указанный мембранный биореактор, имеет примерно 10 мол.% заряженных групп или более.
11. Способ по п.7, в котором указанный катионный полимер, который добавляют в указанный мембранный биореактор, имеет молекулярную массу примерно 25000 Дальтонов или более и примерно 10 мол.% заряженных групп или более.
12. Способ по п.7, в котором указанный катионный полимер выбран из группы, состоящей из полимера эпихлоргидрин-диметиламина, сшитого либо с помощью аммиака, либо с помощью этилендиамина; линейного полимера эпихлоргидрина и диметиламина, гомополимера полиэтиленимина; хлорида полидиаллилдиметиламмония; гомополимера DMAEM·H2SO4; четвертичной соли полимеризованного метилхлорида и триэтаноламина, четвертичной соли полимеризованного триэтаноламина и жирной кислоты таллового масла/метилхлорида, полиэтилендихлорида/аммиака и модифицированного полиэтиленимина.
13. Способ по п.7, где указанный катионный полимер представляет собой полимер (мет)акриламида и одного или более катионных мономеров, включая диалкиламиноалкилакрилаты и метакрилаты и их четвертичные или кислые соли, в том числе, но без ограничений, четвертичную соль метилхлорида и диметиламиноэтилакрилата, четвертичную соль метилсульфата и диметиламиноэтилакрилата, четвертичную соль бензилхлорида и диметиламиноэтилакрилата, соль серной кислоты и диметиламиноэтилакрилата, соль соляной кислоты и диметиламиноэтилакрилата, четвертичную соль метилхлорида и диметиламиноэтилметакрилата, четвертичную соль метилсульфата и диметиламиноэтилметакрилата, четвертичную соль бензилхлорида и диметиламиноэтилметакрилата, соль серной кислоты и диметиламиноэтилметакрилата, соль соляной кислоты и диметиламиноэтилметакрилата, диалкиламиноалкилакриламиды или метакриламиды и их четвертичные или кислые соли, такие как акриламидопропилтриметиламмонийхлорид, четвертичная соль метилсульфата и диметиламинопропилакриламида, соль серной кислоты и диметиламинопропилакриламида, соль соляной кислоты и диметиламинопропилакриламида, метакриламидопропилтриметиламмонийхлорид, четвертичная соль метилсульфата и диметиламинопропилметакриламида, соль серной кислоты и диметиламинопропилметакриламида, соль соляной кислоты и диметиламинопропилметакриламида, диэтиламиноэтилакрилат, диэтиламиноэтилметакрилат, диаллилдиэтиламмонийхлорид и диаллилдиметиламмонийхлорид.
14. Способ по п.7, в котором указанный катионный полимер представляет собой сополимер диаллилдиметиламмонийхлорида и акриламида.
15. Способ по п.7, в котором указанный амфотерный полимер выбирают из группы, состоящей из сополимера четвертичной соли метилхлорида и диметиламиноэтилакрилата/акриловой кислоты, сополимера диаллилдиметиламмонийхлорида/ акриловой кислоты, сополимера соли метилхлорида и диметиламиноэтилакрилата/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний-бетаина, сополимера акриловой кислоты/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний-бетаина и тройного сополимера ДМАЭА·МХЧ/акриловой кислоты/N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний-бетаина.
16. Способ по п.7, в котором указанный цвиттер-ионный полимер состоит из примерно 99 мол.% N,N-диметил-N-метакриламидопропил-N-(3-сульфопропил)-аммоний-бетаина и примерно 1 мол.% более неионных мономеров.
17. Способ улучшения протекания потока в мембранном биореакторе, включающий стадии:
обеспечение указанного мембранного биореактора, который содержит погружную мембрану и включает один или более анаэробный реактор для ферментативного гидролиза, и
добавление в указанный мембранный биореактор эффективного количества одного или более катионных, амфотерных или цвиттер-ионных полимеров или их сочетания, где количество взвешенных веществ в иловой смеси в указанном мембранном биореакторе составляет между 3000 мг/л и 30000 мг/л.
18. Способ улучшения протекания потока в мембранном биореакторе, включающий стадии:
обеспечение указанного мембранного биореактора, который содержит погружную мембрану и включает сочетание из одного или более анаэробных реакторов для ферментативного гидролиза и одного или более аэробных реакторов, и
добавление в указанный мембранный биореактор эффективного количества одного или более катионных, амфотерных или цвиттер-ионных полимеров или их сочетания, где количество взвешенных веществ в иловой смеси в указанном мембранном биореакторе составляет между 3000 мг/л и 30000 мг/л.
19. Способ по п.1, в котором указанные соли выбирают из группы, состоящей из карбонатов, фосфатов, оксалатов и сульфатов.
RU2007145645A 2005-06-01 2005-07-26 Способ улучшения протекания потока в мембранном биореакторе RU2403959C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/142,745 US8017014B2 (en) 2005-06-01 2005-06-01 Method for improving flux in a membrane bioreactor
US11/142,745 2005-06-01

Publications (2)

Publication Number Publication Date
RU2007145645A RU2007145645A (ru) 2009-07-20
RU2403959C2 true RU2403959C2 (ru) 2010-11-20

Family

ID=35295634

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007145645A RU2403959C2 (ru) 2005-06-01 2005-07-26 Способ улучшения протекания потока в мембранном биореакторе

Country Status (20)

Country Link
US (1) US8017014B2 (ru)
EP (2) EP1885656A4 (ru)
JP (2) JP2006334587A (ru)
KR (1) KR20060125443A (ru)
CN (1) CN1872734B (ru)
AR (1) AR054976A1 (ru)
AU (1) AU2005332342B2 (ru)
BR (1) BRPI0503711B1 (ru)
CA (2) CA2610081C (ru)
IL (1) IL170010A (ru)
IN (1) IN2007DE08267A (ru)
MX (1) MXPA05008707A (ru)
MY (1) MY150868A (ru)
NO (1) NO20053729L (ru)
NZ (1) NZ563531A (ru)
RU (1) RU2403959C2 (ru)
SG (1) SG128537A1 (ru)
TW (1) TWI388514B (ru)
WO (1) WO2006130163A1 (ru)
ZA (1) ZA200506536B (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498946C2 (ru) * 2011-12-19 2013-11-20 Открытое акционерное общество "Башкирская содовая компания" Способ обезвоживания осадка сточных вод
WO2014085553A1 (en) * 2012-11-30 2014-06-05 Tangent Company Llc Method and apparatus for residential water recycling
RU2537611C2 (ru) * 2012-08-14 2015-01-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Установка очистки хозяйственно-бытовых сточных вод
US10703658B2 (en) 2017-03-06 2020-07-07 Tangent Company Llc Home sewage treatment system

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7790034B2 (en) * 2005-07-25 2010-09-07 Zenon Technology Partnership Apparatus and method for treating FGD blowdown or similar liquids
CN101390165B (zh) * 2006-04-27 2012-06-20 三菱电机株式会社 光学式记录介质的再现装置以及光学式记录介质的再现方法
US7378023B2 (en) * 2006-09-13 2008-05-27 Nalco Company Method of improving membrane bioreactor performance
US7713417B2 (en) * 2007-03-16 2010-05-11 Envirogen Technologies, Inc. Method for wastewater treatment with resource recovery and reduced residual solids generation
CN101815677B (zh) * 2007-08-07 2014-02-12 栗田工业株式会社 膜分离方法及膜分离装置
WO2009049401A1 (en) * 2007-10-15 2009-04-23 Seprotech Systems Incorporated An integrated water processing technology
DE102008021190A1 (de) 2008-04-29 2009-11-05 Microdyn - Nadir Gmbh Verfahren zur Reinigung von Filtrationsmembranmodul sowie Membranbioreaktor-System zum Aufbereiten von Roh- oder Abwasser bzw. Belebtschlamm
US8889008B2 (en) * 2008-05-02 2014-11-18 Nalco Company Method of conditioning a mixed liquor containing nonionic polysaccharides and/or nonionic organic molecules
US7611632B1 (en) * 2008-11-07 2009-11-03 General Electric Company Method of conditioning mixed liquor using a tannin containing polymer
CA2752747C (en) 2009-02-18 2019-05-07 Anaergia Inc. Anaerobic fermentation to produce biogas
CN101885538B (zh) * 2009-05-15 2013-02-27 江西金达莱环保股份有限公司 一种不排泥除磷膜生物反应器工艺
RU2540068C2 (ru) 2009-06-10 2015-01-27 Конокофиллипс Компани Набухаемый полимер с анионными участками
WO2010147901A1 (en) 2009-06-15 2010-12-23 Conocophillips Company-Ip Services Group Swellable polymer with cationic sites
TW201107250A (en) * 2009-08-05 2011-03-01 Dia Nitrix Co Ltd Removal method of causative agent which decrease filtration flux in membrane bioreactor
US10689280B2 (en) * 2009-12-31 2020-06-23 Ecolab Usa Inc. Method for the removing and reducing scaling
KR101126871B1 (ko) * 2010-02-05 2012-03-23 금강엔지니어링 주식회사 플라즈마 방전조를 구비한 하폐수 고도처리 시스템
WO2011120192A1 (en) 2010-03-31 2011-10-06 General Electric Company (A New York Corporation) Methods of conditioning mixed liquor using water soluble quaternary ammonium starches
ES2910442T3 (es) * 2010-08-13 2022-05-12 Anaergia Inc Tratamiento de agua residual municipal con digestión anaeróbica
US8580113B2 (en) * 2010-08-31 2013-11-12 Zenon Technology Partnership Method for utilizing internally generated biogas for closed membrane system operation
FR2967153B1 (fr) * 2010-11-04 2014-10-03 Solvay Procede pour le traitement d'eaux usees provenant de la preparation d'un polymere halogene
WO2012065283A1 (en) * 2010-11-18 2012-05-24 General Electric Company Methods for improving membrane bioreactor systems
US9272935B2 (en) 2011-02-03 2016-03-01 Anaergia Inc. Treatment of waste products with anaerobic digestion
CA2829783A1 (en) 2011-03-10 2012-09-13 Envirogen Technologies, Inc. Anoxic membrane filtration system and water treatment method
CN102276059B (zh) * 2011-05-24 2013-04-24 杭州师范大学 甜菜碱在维持厌氧氨氧化系统常温稳定运行中的应用
RU2475268C1 (ru) * 2011-10-17 2013-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный нефтяной технический университет" Дезинфицирующее средство
CN102491505A (zh) * 2011-11-20 2012-06-13 江苏鼎泽环境工程有限公司 一种减轻膜生物反应器中膜污染的方法
CA2798889A1 (en) 2011-12-16 2013-06-16 Meurer Research Inc. Method and system for cleaning membrane filters
WO2014209318A1 (en) 2013-06-27 2014-12-31 General Electric Company Treatment of treating wastewater containing high levels of total dissolved solids with a tannin-based polymer
AU2013394505B2 (en) * 2013-07-17 2017-03-23 Mitsubishi Heavy Industries, Ltd. Water treatment device
WO2016032321A1 (en) * 2014-08-29 2016-03-03 Industriewater Eerbeek B.V. Method and apparatus for decalcifying effluent of a water treatment
CN104355507B (zh) * 2014-12-05 2017-06-09 河海大学 分置式厌氧膜生物‑膜蒸馏技术组合的污水处理系统及工艺
EP3280685B1 (en) 2015-01-27 2022-12-21 Anaergia Inc. Treatment of waste products with anaerobic digestion
WO2016161151A1 (en) * 2015-03-31 2016-10-06 Aquatech International Corporation Enhanced membrane bioreactor process for treatment of wastewater
US10196291B1 (en) * 2015-09-09 2019-02-05 Adelante Consulting, Inc. Wastewater treatment
JP6188864B1 (ja) * 2016-05-09 2017-08-30 富士電機株式会社 排水処理方法、排水処理装置、及び排水処理用の活性剤
WO2019001875A1 (en) * 2017-06-29 2019-01-03 Unilever N.V. COMPOSITION FOR THE PURIFICATION OF TROUBLE WATER
JP2019048284A (ja) * 2017-09-12 2019-03-28 オルガノ株式会社 シリカ系スケール抑制剤およびシリカ系スケールの抑制方法
CN107557279B (zh) * 2017-10-24 2020-11-27 中南大学 一种高效培养浸矿微生物的反应器
CN109351198A (zh) * 2018-12-12 2019-02-19 济南恩沃商贸有限公司 正渗透、纳滤和反渗透膜脱盐率修复剂及修复方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3142638A (en) * 1962-06-29 1964-07-28 Blaisdell Donald Stapf Process for separating solids from sewage
US3472765A (en) * 1968-06-10 1969-10-14 Dorr Oliver Inc Membrane separation in biological-reactor systems
JPS61136500A (ja) * 1984-12-05 1986-06-24 Shinko Fuaudoraa Kk 電気浸透による汚泥の脱水方法
WO1986005771A1 (en) * 1985-04-01 1986-10-09 Mitsui Sekiyu Kagaku Kogyo Kabushiki Kaisha Method of treating active sludge in waste water
JPS62221494A (ja) * 1986-03-20 1987-09-29 Ebara Infilco Co Ltd し尿処理方法
JPS6391196A (ja) 1986-10-03 1988-04-21 Mitsui Zosen Eng Kk 限外濾過膜を用いたし尿処理における脱リン方法
GB8701491D0 (en) 1987-01-23 1987-02-25 Ecc Int Ltd Aqueous suspensions of calcium
JPH034996A (ja) 1989-05-31 1991-01-10 Kubota Corp 高濃度窒素・リン含有廃水処理方法
US5114576A (en) * 1990-02-15 1992-05-19 Trineos Prevention of contaminants buildup in captured and recirculated water systems
JPH0729117B2 (ja) 1990-04-18 1995-04-05 荏原インフイルコ株式会社 し尿系汚水の処理方法
DE4022651A1 (de) 1990-07-17 1992-01-23 Muenzing Chemie Gmbh Kationische bzw. ueberwiegend kationische wasserloesliche oder wasserdispergierbare homo- oder copolymerisate
GB2251254B (en) 1990-12-04 1994-06-29 Ecc Int Ltd Calcium carbonate slurry
EP0516357A1 (en) 1991-05-31 1992-12-02 Calgon Corporation Anionic/cationic polymer mixture for scale inhibition
US5558774A (en) * 1991-10-09 1996-09-24 Zenon Environmental Inc. Aerated hot membrane bioreactor process for treating recalcitrant compounds
US5151187A (en) * 1991-11-19 1992-09-29 Zenon Environmental, Inc. Membrane bioreactor system with in-line gas micronizer
US5266203A (en) * 1992-01-30 1993-11-30 Arrowhead Industrial Water, Inc. Method for treating process streams containing cyanide and heavy metals
JP3358824B2 (ja) 1992-05-15 2002-12-24 三菱重工業株式会社 廃水処理方法
US5302288A (en) * 1993-03-19 1994-04-12 Zimpro Environmental, Inc. Treatment of highly colored wastewaters
NL9302260A (nl) * 1993-12-24 1995-07-17 Stork Friesland Bv Membraan-bioreaktor met gas-lift systeem.
FR2715590B1 (fr) * 1994-02-01 1996-04-12 Rhone Poulenc Chimie Procédé d'épuration d'un milieu contenant des déchets organiques.
JPH07232192A (ja) 1994-02-23 1995-09-05 Kubota Corp 汚水の処理方法
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
US6025335A (en) * 1995-09-21 2000-02-15 Lipitek International, Inc. L-Nucleoside Dimer Compounds and therapeutic uses
US6177011B1 (en) 1996-03-18 2001-01-23 Nitto Denko Corporation Composite reverse osmosis membrane having a separation layer with polyvinyl alcohol coating and method of reverse osmotic treatment of water using the same
JPH10128393A (ja) * 1996-10-31 1998-05-19 Mitsubishi Rayon Co Ltd 廃水処理方法および廃水処理装置
US6428705B1 (en) * 1996-11-26 2002-08-06 Microbar Incorporated Process and apparatus for high flow and low pressure impurity removal
US6027649A (en) * 1997-04-14 2000-02-22 Zenon Environmental, Inc. Process for purifying water using fine floc and microfiltration in a single tank reactor
JPH1157739A (ja) * 1997-08-25 1999-03-02 Hitachi Ltd 浄水処理方法
JP2000325988A (ja) * 1999-05-19 2000-11-28 Nishihara Environ Sanit Res Corp 汚泥濃縮手段を有する廃水処理システム
US6313246B1 (en) * 1999-07-07 2001-11-06 Nalco Chemical Company High molecular weight zwitterionic polymers
US6416668B1 (en) * 1999-09-01 2002-07-09 Riad A. Al-Samadi Water treatment process for membranes
US6517723B1 (en) * 2000-07-27 2003-02-11 Ch2M Hill, Inc. Method and apparatus for treating wastewater using membrane filters
US6723245B1 (en) * 2002-01-04 2004-04-20 Nalco Company Method of using water soluble cationic polymers in membrane biological reactors
US6692642B2 (en) * 2002-04-30 2004-02-17 International Waste Management Systems Organic slurry treatment process
JP4242137B2 (ja) * 2002-11-01 2009-03-18 株式会社クボタ 膜分離メタン発酵方法
US6863817B2 (en) * 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
CN1480410A (zh) * 2003-07-18 2004-03-10 天津大学 防止膜污染并维持膜通量的絮凝方法
TWI313187B (en) * 2003-11-21 2009-08-11 Ind Tech Res Inst System for the treatment of organic containing waste water
CN1253388C (zh) * 2004-05-12 2006-04-26 东华大学 一种污染流体的处理方法及其设备
TWI284119B (en) * 2004-12-22 2007-07-21 Ind Tech Res Inst Biological membrane filtration system for water treatment and water treatment process using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГВОЗДЕВ В.Д. и др. Очистка производственных сточных вод и утилизация осадков. - М.: Химия, 1988, с.5, строки 19, 30-34. КУЛЬСКИЙ Л.А. и др. Проектирование и расчет очистных сооружений водопроводов. - Киев: БУДIВЕЛЬНИК, 1972, с.6-7 табл.1, строки 10-13, 24-25. ВЕЙЦЕР Ю.И., Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. - М.: Стройиздат, 1984, с.31, 41, 42, 46. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2498946C2 (ru) * 2011-12-19 2013-11-20 Открытое акционерное общество "Башкирская содовая компания" Способ обезвоживания осадка сточных вод
RU2537611C2 (ru) * 2012-08-14 2015-01-10 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Установка очистки хозяйственно-бытовых сточных вод
WO2014085553A1 (en) * 2012-11-30 2014-06-05 Tangent Company Llc Method and apparatus for residential water recycling
US9809479B2 (en) 2012-11-30 2017-11-07 Tangent Company Llc Method and apparatus for residential water recycling
US10407332B2 (en) 2012-11-30 2019-09-10 Tangent Company Llc Biological wastewater treatment system containing a salt-rejecting membrane filter and recycle conduit
US10703658B2 (en) 2017-03-06 2020-07-07 Tangent Company Llc Home sewage treatment system

Also Published As

Publication number Publication date
CN1872734B (zh) 2011-08-24
RU2007145645A (ru) 2009-07-20
BRPI0503711B1 (pt) 2015-09-01
CN1872734A (zh) 2006-12-06
AU2005332342A1 (en) 2006-12-07
MXPA05008707A (es) 2006-11-30
KR20060125443A (ko) 2006-12-06
TWI388514B (zh) 2013-03-11
JP2006334587A (ja) 2006-12-14
WO2006130163A1 (en) 2006-12-07
ZA200506536B (en) 2006-07-26
EP1885656A1 (en) 2008-02-13
IN2007DE08267A (ru) 2008-07-04
MY150868A (en) 2014-03-14
US20060272198A1 (en) 2006-12-07
CA2903725C (en) 2017-04-04
CA2903725A1 (en) 2006-12-07
NO20053729L (no) 2006-12-18
CA2610081A1 (en) 2006-12-07
SG128537A1 (en) 2007-01-30
EP1734011A1 (en) 2006-12-20
EP1734011B1 (en) 2015-09-23
JP2012187586A (ja) 2012-10-04
JP5553861B2 (ja) 2014-07-16
CA2610081C (en) 2017-01-10
AU2005332342B2 (en) 2011-08-18
TW200642969A (en) 2006-12-16
NZ563531A (en) 2011-07-29
US8017014B2 (en) 2011-09-13
IL170010A (en) 2009-12-24
AR054976A1 (es) 2007-08-01
NO20053729D0 (no) 2005-08-03
BRPI0503711A (pt) 2007-02-13
EP1885656A4 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
RU2403959C2 (ru) Способ улучшения протекания потока в мембранном биореакторе
EP1461141B1 (en) Method of using water soluble polymers in a membrane biological reactor
US20040168980A1 (en) Combination polymer treatment for flux enhancement in MBR
KR101411212B1 (ko) 생물막 반응기 성능을 개선시키는 방법
JP2018535093A (ja) メンブレンバイオリアクターにおけるリン析出およびメンブレンフラックスの改善
Świerczyńska et al. Treatment of industrial wastewater in the sequential membrane bioreactor
Hussain et al. Membrane bio reactors (MBR) in waste water treatment: a review of the recent patents

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20180717

PC41 Official registration of the transfer of exclusive right

Effective date: 20180823

PC41 Official registration of the transfer of exclusive right

Effective date: 20180914

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180917

Effective date: 20180917

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20180921

Effective date: 20180921

QB4A Licence on use of patent

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180925

Effective date: 20180925

TK4A Correction to the publication in the bulletin (patent)

Free format text: CORRECTION TO CHAPTER -QB4A- IN JOURNAL 26-2018

QB4A Licence on use of patent

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180927

Effective date: 20180927

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180925

Effective date: 20191210

QB4A Licence on use of patent

Free format text: SUB-LICENCE FORMERLY AGREED ON 20191213

Effective date: 20191213

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: SUB-LICENCE FORMERLY AGREED ON 20180927

Effective date: 20200212