RU2394040C2 - Способ фторирования для синтеза 2-[18f]-фтор-2-дезокси-d-глюкозы - Google Patents
Способ фторирования для синтеза 2-[18f]-фтор-2-дезокси-d-глюкозы Download PDFInfo
- Publication number
- RU2394040C2 RU2394040C2 RU2007115903/04A RU2007115903A RU2394040C2 RU 2394040 C2 RU2394040 C2 RU 2394040C2 RU 2007115903/04 A RU2007115903/04 A RU 2007115903/04A RU 2007115903 A RU2007115903 A RU 2007115903A RU 2394040 C2 RU2394040 C2 RU 2394040C2
- Authority
- RU
- Russia
- Prior art keywords
- fluoride
- solvent
- derivative
- water
- reaction
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000015572 biosynthetic process Effects 0.000 title description 18
- 238000003786 synthesis reaction Methods 0.000 title description 16
- 238000003682 fluorination reaction Methods 0.000 title description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 95
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical group CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000002904 solvent Substances 0.000 claims abstract description 39
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims abstract description 37
- 238000006243 chemical reaction Methods 0.000 claims abstract description 36
- 150000002303 glucose derivatives Chemical class 0.000 claims abstract description 7
- 239000003444 phase transfer catalyst Substances 0.000 claims abstract description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract 2
- 229910052700 potassium Inorganic materials 0.000 claims abstract 2
- 239000011591 potassium Substances 0.000 claims abstract 2
- 235000000346 sugar Nutrition 0.000 claims description 38
- 239000000243 solution Substances 0.000 claims description 37
- OIBDVHSTOUGZTJ-PEBLQZBPSA-N [(2r,3r,4s,5s,6s)-3,4,6-triacetyloxy-5-(trifluoromethylsulfonyloxy)oxan-2-yl]methyl acetate Chemical group CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@@H](OS(=O)(=O)C(F)(F)F)[C@@H](OC(C)=O)[C@@H]1OC(C)=O OIBDVHSTOUGZTJ-PEBLQZBPSA-N 0.000 claims description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 9
- 239000003960 organic solvent Substances 0.000 claims description 7
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 claims description 3
- 150000002703 mannose derivatives Chemical class 0.000 claims description 3
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- AUFVJZSDSXXFOI-UHFFFAOYSA-N 2.2.2-cryptand Chemical compound C1COCCOCCN2CCOCCOCCN1CCOCCOCC2 AUFVJZSDSXXFOI-UHFFFAOYSA-N 0.000 claims 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 229920005989 resin Polymers 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- KRHYYFGTRYWZRS-BJUDXGSMSA-M fluorine-18(1-) Chemical compound [18F-] KRHYYFGTRYWZRS-BJUDXGSMSA-M 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000000047 product Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000000155 isotopic effect Effects 0.000 description 10
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 10
- 239000007787 solid Substances 0.000 description 10
- 238000004809 thin layer chromatography Methods 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 239000008103 glucose Substances 0.000 description 7
- -1 fluoride ions Chemical class 0.000 description 6
- 125000006239 protecting group Chemical group 0.000 description 6
- 230000002285 radioactive effect Effects 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 239000002449 isotope indicator Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229910000027 potassium carbonate Inorganic materials 0.000 description 5
- 239000007790 solid phase Substances 0.000 description 5
- 230000002194 synthesizing effect Effects 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000003384 imaging method Methods 0.000 description 3
- 150000002772 monosaccharides Chemical class 0.000 description 3
- 230000000269 nucleophilic effect Effects 0.000 description 3
- 238000010534 nucleophilic substitution reaction Methods 0.000 description 3
- 238000002600 positron emission tomography Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- 235000006506 Brasenia schreberi Nutrition 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 229930091371 Fructose Natural products 0.000 description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 2
- 239000005715 Fructose Substances 0.000 description 2
- 238000003109 Karl Fischer titration Methods 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- XZROGSCQGJWNFT-RGDJUOJXSA-N [(2r,3r,4s,5r,6s)-3,4,6-triacetyloxy-5-fluoro-5-hydroxyoxan-2-yl]methyl acetate Chemical compound CC(=O)OC[C@H]1O[C@@H](OC(C)=O)[C@](O)(F)[C@@H](OC(C)=O)[C@@H]1OC(C)=O XZROGSCQGJWNFT-RGDJUOJXSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 description 2
- 238000005904 alkaline hydrolysis reaction Methods 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- AOYNUTHNTBLRMT-MXWOLSILSA-N 2-Deoxy-2(F-18)fluoro-2-D-glucose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H]([18F])C=O AOYNUTHNTBLRMT-MXWOLSILSA-N 0.000 description 1
- ZCXUVYAZINUVJD-AHXZWLDOSA-N 2-deoxy-2-((18)F)fluoro-alpha-D-glucose Chemical compound OC[C@H]1O[C@H](O)[C@H]([18F])[C@@H](O)[C@@H]1O ZCXUVYAZINUVJD-AHXZWLDOSA-N 0.000 description 1
- LBLYYCQCTBFVLH-UHFFFAOYSA-M 2-methylbenzenesulfonate Chemical compound CC1=CC=CC=C1S([O-])(=O)=O LBLYYCQCTBFVLH-UHFFFAOYSA-M 0.000 description 1
- 101000584314 Homo sapiens Myc target protein 1 Proteins 0.000 description 1
- 102100030625 Myc target protein 1 Human genes 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 description 1
- 239000012346 acetyl chloride Substances 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007810 chemical reaction solvent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical group CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002148 esters Chemical group 0.000 description 1
- 125000001033 ether group Chemical group 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012025 fluorinating agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000008040 ionic compounds Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M methanesulfonate group Chemical group CS(=O)(=O)[O-] AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 1
- 210000004088 microvessel Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 239000012434 nucleophilic reagent Substances 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003608 radiolysis reaction Methods 0.000 description 1
- 239000012217 radiopharmaceutical Substances 0.000 description 1
- 229940121896 radiopharmaceutical Drugs 0.000 description 1
- 230000002799 radiopharmaceutical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 238000007614 solvation Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000000565 sulfonamide group Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000002827 triflate group Chemical group FC(S(=O)(=O)O*)(F)F 0.000 description 1
- YOIAWAIKYVEKMF-UHFFFAOYSA-N trifluoromethanesulfonic acid Chemical group OS(=O)(=O)C(F)(F)F.OS(=O)(=O)C(F)(F)F YOIAWAIKYVEKMF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
- A61K51/02—Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
- A61K51/04—Organic compounds
- A61K51/0491—Sugars, nucleosides, nucleotides, oligonucleotides, nucleic acids, e.g. DNA, RNA, nucleic acid aptamers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H1/00—Processes for the preparation of sugar derivatives
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/04—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals attached to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H13/00—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids
- C07H13/02—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids
- C07H13/10—Compounds containing saccharide radicals esterified by carbonic acid or derivatives thereof, or by organic acids, e.g. phosphonic acids by carboxylic acids having the esterifying carboxyl radicals directly attached to heterocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07H—SUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
- C07H3/00—Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
- C07H3/02—Monosaccharides
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Optics & Photonics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Veterinary Medicine (AREA)
- Saccharide Compounds (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
Abstract
Изобретение относится к способу получения защищенного фторированного производного глюкозы, включающему взаимодействие производного тетраацетилманнозы с фторидом, отличающемуся тем, что реакцию проводят в растворителе, содержащем воду в количестве, превышающем 1000 частей на миллион и составляющем менее 50000 частей на миллион. Предпочтительно защищенное фторированное производное глюкозы представляет собой 2-фтор-1,3,4,6-тетра-O-ацетил-D-глюкозу (тетраацетилфторглюкозу или pFDG), производное тетраацетилманнозы представляет собой 1,3,4,6-тетра-O-ацетил-2-O-трифторметансульфонил-β-D-маннопиранозу (трифлат тетраацетилманнозы), растворитель представляет собой ацетонитрил, фторид представляет собой ионный фторид с калиевым противоионом и к фториду добавлен катализатор фазового переноса, такой как 4,7,13,16,21,24-гексаокса-1,10-диазабицикло-[8,8,8]-гексакозан. 13 з.п. ф-лы, 2 табл., 3 ил.
Description
Изобретение относится к способу фторирования производных сахаров и, в частности, изобретение относится к получению фторированной глюкозы. Способ особенно пригоден для приготовления производных сахаров, фторированных радиоактивным фтором, используемых в таких способах исследования, как позитрон-эмиссионная томография (ПЭТ).
В способах приготовления изотопных индикаторов, меченных [18F], которые применяют в ПЭТ, одним из наиболее важных факторов является общий нескорректированный выход синтеза. Он зависит не только от общего химического выхода способа, но и от времени синтеза, которое является чрезвычайно важным фактором из-за относительно короткого периода полураспада [18F], составляющего 109,7 минут.
[18F]-фторид ион обычно приготавливают в виде водного раствора, получаемого при циклотронном облучении молекул-мишеней воды, содержащих [18О]. Для превращения [18F]-фторида в реакционноспособный нуклеофильный реагент, пригодный для использования в реакциях нуклеофильного введения радиоактивных изотопов, применяли разнообразные операции. Как и в реакциях фторирования нерадиоактивным фтором, эти операции включали элиминирование воды от [18F]-фторидного иона и создание подходящего противоиона (Handbook of Radiopharmaceuticals 2003 Welch & Redvanly eds. Ch.6 pp.195-227). Затем реакции нуклеофильного радиофторирования проводят в безводных растворителях (Aigbirhio et al., 1995, J. Fluor. Chem. 70 pp.279-87). Отделение воды от фторидного иона называется приготовлением «голого» фторидного иона. Присутствие значительных количеств воды, как полагают, приводит к сольватации фторидных ионов, экранирующей фторидный ион, что предотвращает проведение нуклеофильной атаки по защищенному предшественнику сахара. Таким образом, в данной области техники отделение воды считается операцией, необходимой для повышения реакционной способности фторид-иона и избежания получения побочных гидроксилированных продуктов, образующихся в присутствии воды (Moughamir et al., 1998 Tetr. Letts. 39 pp.7305-6).
В патенте США 6172207, относящемся к способу синтеза соединений, меченных [18F], таких как [18F]-фтордезоксиглюкозы ([18F]-FDG), подчеркнута необходимость получения абсолютно безводного фторирующего агента, который получают добавлением ацетонитрила в водные растворы с последующим азеотропным испарением досуха.
Наиболее широко используемым способом синтеза [18F]-FDG является способ, предложенный Hamacheret al., J. Nucl. Med. 27:235-238 (1986), который включает проведение реакции 1,3,4,6-тетра-O-ацетил-2-O-трифторметансульфонил-β-D-маннопиранозы с [18F]-фторидом в безводном растворителе.
Способы, используемые в настоящее время для приготовления производных сахаров, меченных [18F], имеют ряд недостатков; одним из них является то, что полное отделение остаточной воды от фторид-иона и растворителя занимает некоторое время и, следовательно, влияет на общий нескорректированный выход синтеза. Кроме того, необходимость удаления всей остаточной воды приводит к повышению синтетической и механической сложности любого автоматического синтезирующего устройства. Например, для синтеза может потребоваться большее количество циклов осушения, в то время как для выполнения синтеза в синтезирующем устройстве может потребоваться установка более мощного нагревателя.
Кроме того, обычно довольно сложно обеспечить хорошую воспроизводимость реакции радиофторирования. Это объясняется частым присутствием небольших количеств остаточной воды в растворителе (например, в количестве приблизительно 1000 частей на миллион), и общий нескорректированный выход синтеза значительно изменяется в зависимости от количества остаточной воды, присутствующей во время проведения реакции введения радиоактивного индикатора. Было установлено, что можно поддерживать содержание воды, составляющее 1500 частей на миллион +/-200 частей на миллион, т.е. с отклонением 15%. При 750 частях на миллион такое абсолютное отклонение содержания воды приведет к удвоению процентного отклонения.
Авторы неожиданно обнаружили, что фторирование производных сахаров не обязательно проводить в безводных условиях. Действительно, если тщательно регулировать содержание воды в реакционной смеси, то фактически повышается радиохимическая чистота (и, следовательно, общий выход) получения производных. Это особенно неожиданно, учитывая особое внимание, которое на существующем уровне техники уделялось проведению реакции в безводных условиях.
Таким образом, первый аспект настоящего изобретения относится к способу получения фторированного производного сахара, включающему взаимодействие нефторированного производного сахара с фторидом, отличающемуся тем, что указанную реакцию проводят в растворителе, содержащем воду в количестве, превышающем 1000 частей на миллион и составляющем менее 50000 частей на миллион.
Способ, предлагаемый согласно настоящему изобретению, имеет значительные преимущества перед способами существующего уровня техники. Во-первых, было обнаружено, что выход реакции не только не уменьшается, но, наоборот, увеличивается в присутствии таких регулируемых количеств воды.
Во-вторых, поскольку содержание воды в реакционной смеси превышает 1000 частей на миллион, то обеспечить присутствие соответствующего количества воды в реакционной смеси становится намного проще (например, намеренно вводя загрязняющие количества воды в растворитель для проведения реакции), что означает большую воспроизводимость условий реакции.
В-третьих, это позволяет исключить несколько стадий сушки, применяемых в существующем уровне техники, что может снизить общую стоимость способа как в отношении стоимости реактивов, так и в отношении себестоимости синтезирующего устройства. Также полагают, что упрощение способа окажет позитивное влияние на общую надежность способа.
В настоящем описании термин «нефторированное производное сахара» относится к сахару типа полисахарида, олигосахарида, дисахарида или моносахарида, в котором одна из групп ОН замещена отщепляющейся группой, которая, возможно, связана с твердой подложкой, например, как описано в WO-A-03/002157. Способ, предлагаемый согласно настоящему изобретению, особенно пригоден для фторирования моносахаридов, таких как глюкоза, фруктоза, рибоза, арабиноза, манноза или галактоза.
В «защищенном нефторированном производном сахара» остальные группы ОН сахара защищены подходящими защитными группами.
Термин «фторированное производное сахара» относится к сахару типа полисахарида, олигосахарида, дисахарида или моносахарида, такому как глюкоза, фруктоза, рибоза, арабиноза, манноза или галактоза, в котором одна из групп ОН замещена на атом фтора.
В «защищенном фторированном производном сахара» остальные группы ОН сахара защищены подходящими защитными группами.
Подходящие защитные группы, применяемые для защиты производных сахаров в соответствии с настоящим изобретением, известны в данной области техники и описаны, например, в публикации "Protecting Groups in Organic Synthesis", Theodora W.Green and Peter G.M.Wuts, опубликованной John Wiley & Sons Inc. Выбор конкретной защитной группы зависит от предполагаемого использования фторированного продукта, но, например, гидроксильная группа может быть защищена превращением ее в алкильную или ароматическую сложноэфирную группу, например, по реакции с алканоилхлоридом, таким как ацетилхлорид. В альтернативном случае гидроксильные группы могут быть превращены в эфирные группы, например в алкильные или бензиловые эфиры.
Предпочтительно, как исходные материалы, так и продукты реакции представляют собой защищенные производные сахаров.
Подходящие отщепляющиеся группы хорошо известны в данной области техники и включают толуолсульфонатную и метансульфонатную группы. Однако особо предпочтительная отщепляющаяся группа представляет собой трифторметансульфонатную (трифлатную) группу.
Реакция фторирования обычно представляет собой реакцию нуклеофильного замещения, а замещение отщепляющейся группы фтором может вызывать инверсию стереохимического строения сахара, протекающую по механизму SN2. Таким образом, исходное нефторированное производное сахара часто бывает производным сахара, который отличается от продукта.
Предпочтительный продукт представляет собой защищенное фторированное производное глюкозы, которое может быть получено из соответствующего производного маннозы, например из производного тетраацетилманнозы.
Реакция особенно пригодна для приготовления 2-фтор-1,3,4,6-тетра-O-ацетил-D-глюкозы (тетраацетилфторглюкозы или pFDG) из 1,3,4,6-тетра-О-ацетил-2-O-трифторметансульфонил-β-D-маннопиранозы (трифлата тетраацетилманнозы).
Подходящие растворители включают апротонные органические растворители, такие как ацетонитрил, диметилформамид, диметилсульфоксид, тетрагидрофуран, диоксан, 1,2-диметоксиэтан, сульфолан или N-метилпирролидинон либо смесь любых указанных растворителей. Однако было обнаружено, что наиболее предпочтительным растворителем для проведения реакции является ацетонитрил.
Несмотря на то, что повышения выхода реакции достигают за счет включения в растворитель по меньшей мере 1000 частей на миллион, но менее 50000 частей на миллион воды, дальнейшего повышения выхода достигали за счет добавления от 1000 до 15000 частей на миллион воды. Наилучшие результаты получали при использовании растворителя, содержание воды в котором составляло приблизительно от 2000 до 7000 частей на миллион, предпочтительно от 2500 до 5000 частей на миллион. В одном из примеров реализации предпочтительное содержание воды составляет от 3000 до 6000 частей на миллион.
В настоящем описании при обозначении содержания воды в конкретном растворителе термин «части на миллион» означает микрограммы воды/грамм.
Правильной концентрации воды в растворителе можно достигать либо сушкой влажного растворителя до достижения желаемого содержания воды, либо добавлением подходящего количества воды в сухой растворитель. Фторид можно получать в водном растворе и в этом случае раствор фторида с желаемым содержанием воды можно получать многократным добавлением растворителя с последующим испарением смеси растворитель/вода или разбавлением водного раствора фторида желаемым органическим растворителем. Содержание воды в растворителе также можно снизить, применяя поглотительную смолу, такую как функционализированная полистирольная смола, например эпоксидная смола, метилизоцианатная смола или функционализированная смола на основе ангидридов кислот, предназначенная для удаления воды из раствора фторида. Подходящие смолы являются коммерчески доступными продуктами, например, поставляемыми Novabiochem. Технические характеристики поглотительной смолы можно улучшить, используя подходящий катализатор, например, 4-диметиламинопиридин (4-DMAP).
В этом примере реализации стадию сушки можно проводить смешиванием поглотительной смолы с раствором фторида в контейнере и последующим отделением поглотительной смолы при помощи фильтрования. В альтернативном и особенно подходящем случае, если поглотительную смолу применяют в автоматическом синтезирующем устройстве, поглотительная смола может находиться в сосуде, через который пропускают раствор фторида. Раствор фторида можно пропускать через поглотительную смолу непрерывным потоком, например со скоростью от 0,1 до 100 мл/мин, или в периодическом режиме, выдерживая раствор в контакте с поглотительной смолой в течение времени пребывания, достаточного для осушения.
Такое применение поглотительной смолы является новым; таким образом, в соответствии со следующим аспектом настоящего изобретения предложен способ снижения содержания воды в растворе радиофторида, в частности в растворе [18F]-фторида, который включает контакт указанного раствора с поглотительной смолой. Удобно получать раствор фторида в апротонных органических растворителях, таких как ацетонитрил, диметилформамид, диметилсульфоксид, тетрагидрофуран, диоксан, 1,2-диметоксиэтан, сульфолан и N-метилпирролидинон; наиболее подходящим растворителем является ацетонитрил.
Реакцию можно проводить в растворе или, в альтернативном случае, нефторированное производное сахара может быть связано с твердой подложкой с образованием вектора смола-линкер (RVL) формулы (I):
ТВЕРДАЯ ПОДЛОЖКА-ЛИНКЕР-Х-Защищенное нефторированное производное сахара (I)
где твердая подложка представляет собой любую подходящую твердую подложку;
защищенное нефторированное производное сахара определено выше;
Х представляет собой группу, промотирующую нуклеофильное замещение по конкретному центру защищенного нефторированного производного сахара, например -SO2O-;
линкер представляет собой любую органическую группу, которая служит для достаточного разделения реакционноспособного центра и структуры твердой подложки с целью создания максимальной реакционной способности, например содержащая от нуля до четырех арильных групп (например, фенильных), и/или C1-С6-алкильную или галогеналкильную (в особенности, фторалкильную) цепочку, и, возможно, от одной до четырех дополнительных функциональных групп, таких как амидные или сульфонамидные группы.
Системы RVL подробно описаны в WO-A-03/002157, в которой также описаны подходящие линкеры.
RVL формулы (I) вводят в контакт с раствором фторида, что приводит к отщеплению сахара от твердой подложки с образованием защищенного нефторированного производного сахара.
Подходящие твердые подложки также описаны в WO-A-03/002157 и включают полимеры, такие как полистирол (который может быть блокпривитым, например, полиэтиленгликолем), полиакриламид или полипропилен, или стекло, или кремний с нанесенным на него покрытием из указанного полимера. В альтернативном случае, например, может быть использована смола, подобная описанной в WO-A-03/002157. Твердая подложка может находиться в виде мелких разрозненных частиц, например шариков или палочек, или в виде покрытия на внутренней поверхности картриджа или микрососуда. Проведение способа, предлагаемого согласно настоящему изобретению, на твердой подложке позволяет получать продукт в чистом виде, без проведения дополнительной стадии разделения. Это особенно выгодно, если фторирование представляет собой радиофторирование, поскольку любое сэкономленное время при изготовлении продукта приводит к повышению нескорректированного радиохимического выхода.
Реакцию обычно проводят при температуре от 5 до 180°С, но, в частности, от 75 до 125°С.
Способ, предлагаемый согласно настоящему изобретению, можно осуществлять как часть автоматизированного синтеза. Это осуществимо, если реакция протекает в растворе, или если нефторированный сахар связан с твердой фазой.
Фторид, который приводят во взаимодействие с нефторированным производным сахара, может представлять собой ионное соединение и может находиться в паре с любым подходящим противоионом. Однако, важно отметить, что противоион должен иметь достаточную растворимость в реакционном растворителе, чтобы поддерживать растворимость фторида. Таким образом, подходящие противоионы включают большие, но мягкие ионы металлов, таких как рубидий или цезий, или, в альтернативном случае, ионы неметаллов, такие как ионы тетраалкиламмония и тетраалкилфосфония. Ионы калия также можно использовать в качестве противоионов, но в этом случае для повышения реакционной способности фторида добавляют катализатор фазового переноса, такой как 4,7,13,16,21,24-гексаокса-1,10-диазабицикло-[8,8,8]-гексакозан (продаваемый под торговой маркой Kryptofix™ 2.2.2), чтобы повысить растворимость соли калия в органических растворителях.
Способ, предлагаемый согласно настоящему изобретению, хорошо подходит для получения радиофторированных производных, в частности производных, меченных [18F], и, следовательно, фторид может включать [18F]-фторидный ион.
Как было кратко отмечено выше, [18F]-фторидный ион можно получать облучением молекул-мишеней воды, содержащих [18О], и эта операция может представлять собой начальную стадию способа, предлагаемого согласно настоящему изобретению.
Способ по настоящему изобретению особенно пригоден для получения радиофторированных производных сахаров, например [18F]-pFDG, с которых затем может быть снята защита с образованием таких соединений, как [18F]-FDG, хорошо известного изотопного индикатора для ПЭТ. Снятие защиты может представлять собой дополнительную стадию способа. Если защитная группа в получаемом фторированном сахаре представляет собой сложный эфир, например производное ацетила, то снятие защиты можно проводить кислотным или щелочным гидролизом.
Другие дополнительные стадии включают удаление избытка [18F]-фторида из раствора и удаление органического растворителя. Избыток [18F]-фторида можно удалять любым стандартным способом, например ионообменной хроматографией или твердофазными поглотителями. Подходящие ионообменные смолы включают BIO-RAD AG 1-X8™ и Waters QMA™, а подходящие твердофазные поглотители включают оксид алюминия.
Органический растворитель можно удалять испарением при повышенной температуре в вакууме или пропусканием потока инертного газа, такого как азот или аргон, через раствор.
Конечный продукт этих стадий, т.е. изотопный индикатор, меченный [18F], можно изготовить в виде композиции для введения пациенту, например в виде водного раствора, который можно приготовить растворением меченного [18F] изотопного индикатора в стерильном изотоническом солевом растворе, который также может содержать до 10% подходящего органического растворителя, например этанола, или, в альтернативном случае, в подходящем буферном растворе, таком как фосфатный буфер. В композицию можно вводить и другие добавки, например аскорбиновую кислоту, которая снижает радиолиз.
Как уже было отмечено, особенно предпочтительно соединение, которое можно получить способом по настоящему изобретению, - это [18F]-pFDG, и, следовательно, второй аспект настоящего изобретения относится к способу приготовления [18F]-pFDG, причем указанный способ включает реакцию трифлата тетраацетилманнозы с [18F]-фторидом и отличается тем, что указанный фторид растворяют в растворителе, содержащем воду в количестве, превышающем 1000 частей на миллион и составляющем менее 50000 частей на миллион. В одном из примеров реализации этого аспекта настоящего изобретения трифлат тетраацетилманнозы (1 эквивалент) взаимодействует с [18F]-фторидом в присутствии Kryptofix™ 2.2.2 (от 0,9 до 1,1 молярных эквивалентов; предпочтительно, от 0,98 до 0,99 молярных эквивалентов) и карбоната калия (от 0,4 до 0,6 молярных эквивалентов; предпочтительно от 0,50 до 0,60 молярных эквивалентов) в ацетонитриле, содержащем воду в количестве, превышающем 1000 частей на миллион и составляющем менее 50000 частей на миллион.
Предпочтительные особенности настоящего изобретения подробно рассмотрены выше для первого аспекта изобретения. В частности, способ может включать начальную стадию получения [18F]-фторида облучением молекул-мишеней воды, содержащих [18О], и последующую стадию превращения [18F]-pFDG в [18F]-FDG кислотным или щелочным гидролизом.
Далее изобретение будет более подробно описано со ссылками на примеры и чертежи где:
На Фиг.1 изображен график зависимости радиохимической чистоты получаемой [18F]-pFDG от содержания воды в растворителе.
На Фиг.2 - график зависимости образования [18F]-pFDG и защищенной глюкозы в процессе введения изотопного индикатора при помощи вектора смола-линкер.
На Фиг.3 - график зависимости радиохимической чистоты получаемой [18F]-pFDG от содержания воды в растворителе при автоматизированном синтезе.
Пример 1. Влияние изменения содержания воды на введение изотопного индикатора [18F] в молекулы сахаров
В этом примере применяли три разных способа введения изотопного индикатора 18F- и исследовали влияние изменения содержания воды в реакционной смеси.
а) Введение изотопного индикатора при помощи вектора смола-линкер (RVL)
Ион 18F- вводили в Tracerlab MX™, и систему сушили с применением стандартного способа сушки, используемого в получении 2-[18F]-фтор-2-дезоксиглюкозы. Для повышения растворимости фторида в ацетонитриле применяли Kryptofix™ 2.2.2/карбонат калия. После завершения сушки и последующего растворения фторида в ацетонитриле отбирали образец раствора осушенного 18F- в ацетонитриле для проведения анализа содержания воды, который проводили при помощи титрометра Карла Фишера. При необходимости для достижения содержания воды, превышающего концентрацию, получаемую при сушке, добавляли дополнительное количество воды.
В картридж Hi Trap® емкостью 1 мл упаковали приблизительно 370 мг предшественника защищенной маннозы, связанного с твердофазной подложкой, при замещении 0,003 ммол/г. Один конец картриджа соединяли посредством петли с поршнем шприца. Другой конец картриджа соединяли с флаконом, наполненным N2 и снабженным выпускным отверстием, закрытым молекулярным ситом. Для нагрева картриджа использовали пистолет-распылитель горячего воздуха; внешняя температура картриджа составляла 80°С.
Затем через систему пропускали 6×0,5 мл сухого ацетонитрила для удаления каких-либо примесей и воды (естественно присутствующих в смоле, например, из-за неполной сушки) и затем ацетонитрил отбрасывали. Флакон для автоотбора проб, содержащий высушенный раствор 18F- (450 мкл), вставляли в аппарат на отведенное ему место. Затем поршень шприца передвигал высушенный раствор фторида возвратно-поступательным способом при скорости потока 180 мкл/мин в течение 5 циклов. Высушенный фторид взаимодействовал с твердофазным предшественником маннозы с высвобождением защищенного производного [18F]-2-дезоксиглюкозы (которое после снятия защиты образует 2-[18F]-2-дезоксиглюкозу).
Затем из флакона для автоотбора проб брали образец объемом 5 мкл, который исследовали при помощи тонкослойной хроматографии (ТСХ); образец помещали на пластинку силикагеля 60 F254 и проявляли смесью ацетонитрила с водой, взятых в отношении 90/10. Радиохимическую чистоту устанавливали при помощи устройства мгновенного формирования изображения Perkin Elmer.
b) Введение изотопного индикатора в трифлат тетраацетилманнозы
Готовили раствор 32 мг K2CO3 в 600 мкл H2O хроматографической чистоты с добавлением 150 мг Kryptofix™ 2.2.2, растворенного в 2,5 мл ацетонитрила. В реактор, изготовленный из стеклоуглерода, помещали 0,6 мл этого раствора и приблизительно 40 МБк (мегабеккерель) 18F- в воде, обогащенной 18О. Автоматический регулятор нагревателя устанавливали на отметке 95°С и реакционный сосуд нагревали в течение 35 минут для осушения фторида. Воду и ацетонитрил выпаривали в токе азота.
Для ускорения азеотропного удаления воды из фторида в него вводили, разделив на три порции, 1 мл ацетонитрила через 2-х минутные интервалы; первое добавление производили спустя 20 минут после начала операции сушки. Спустя 35 минут нагреватель отключали и реакционный сосуд охлаждали потоком сжатого воздуха снаружи реакционного сосуда приблизительно до температуры 45°С.
Затем к высушенному фториду добавляли 25 мг трифлата маннозы в 2,0 мл CH3CN и перемешивали. Автоматический регулятор нагревателя устанавливали на отметке 85°С. Спустя 2 минуты после достижения заданной температуры отбирали образец для ТСХ. Нагреватель отключали, и реакционный сосуд охлаждали потоком сжатого воздуха приблизительно до температуры 45°С.
Образец для ТСХ помещали на полоску с силикагелем и проявляли смесью ацетонитрила с водой, взятых в отношении 95:5. Радиохимическую чистоту устанавливали при помощи устройства мгновенного формирования изображения Perkin Elmer. Затем снимали крышку реакционного сосуда и отбирали образец объемом 50 мкл для анализа содержания воды, который выполняли на титрометре Карла Фишера.
с) Автоматизированное введение изотопного индикатора
Введение изотопного индикатора проводили с помощью опытного образца платформы для автоматизированного синтеза, включающего 25 трехходовых клапанов, встроенный нагреваемый реакционный сосуд и одноразовую полипропиленовую кассету. Проточный канал кассеты также позволял производить очистку промежуточных продуктов или конечного продукта с помощью твердофазной экстракции.
Первоначально фторид был зафиксирован на картридже квадурпольного масс-анализатора (QMA), и его элюировали раствором, содержащим 20 мг Kryptofix™ 2.2.2, 4,1 мг K2CO3, 320 мкл CH3CN, 80 мкл H2O. Затем смесь сушили при 105°С/120°С в течение приблизительно 6 минут в токе азота и вновь растворяли в 1,5 мл раствора трифлата тетраацетилманнозы в ацетонитриле концентрацией приблизительно 20 мг/мл.
Реакцию введения изотопного индикатора проводили при температуре реакции, равной либо 105°С, либо 120°С, в течение либо 90, либо 270 секунд. После введения изотопного индикатора 2-[18F]-2-дезоксиглюкозу анализировали способом ТСХ. Пластинка для ТСХ представляла собой пластинку силикагеля 60 F254; хроматограмму проявляли смесью 95% ацетонитрила и 5% воды. Радиохимическую чистоту устанавливали при помощи устройства мгновенного формирования изображения Perkin Elmer.
Результаты трех экспериментов Примера 1 показаны на Фиг.1, из которого ясно, что радиохимическая чистота продукта относительно низка, если содержание воды в растворителе меньше 1000 частей на миллион, но она сильно улучшается, если содержание воды в растворителе составляет от 1000 до 5000 частей на миллион. Из графика видно, что оптимальные концентрации воды в растворителе находятся в диапазоне от 2000 до 7000 частей на миллион.
Пример 2. Корреляция между образованием [18F]-pFDG и защищенной глюкозы в процессе введения изотопного индикатора
Введение [18F] в RVL проводили в ацетонитриле в присутствии Kryptofix™ 2.2.2, карбоната калия и различных количеств воды. После введения индикатора полученную смесь подвергали жидкостной хроматографии высокого давления (ЖХВД) с обращенной фазой, с градиентом проявителя: от смеси 90% растворитель А:10% растворитель В (растворитель А=0,1% раствор трифторуксусной кислоты в воде; растворитель В=0,1% раствор трифторуксусной кислоты в ацетонитриле) до 5% А, 95% В, в течение 10 минут при скорости 1 мл/мин, с использованием колонки Phenomenex Luna 5 мкм C18 (4,6 мм × 150 мм). Были определены и скоррелированы интегральные пики, соответствующие защищенной глюкозе при времени задержки, равном 3 минуты, и защищенной FDG при времени задержки, равном 6,6 минут (в основном, благодаря присутствию [19F]-FDG, концентрация которой пропорциональна концентрации [18F]-FDG).
В общем, полагают, что присутствие больших количеств воды в реакционной смеси приводит к образованию больших количеств защищенной глюкозы (а не [18F]-pFDG), происходящему в результате нуклеофильного замещения трифлатной группы. Таким образом, полагают, что график зависимости концентрации [18F]-pFDG от концентрации производного защищенной глюкозы в смеси продуктов реакции должен иметь отрицательный наклон, причем большие концентрации воды должны приводить к образованию больших концентраций защищенной глюкозы и меньших концентраций [18F]-pFDG.
Однако исследования введения изотопного индикатора в трифлат тетраацетилманнозы, связанный со смолой, показали, что имеется сильная положительная корреляция (см. Фиг.2) между двумя пиками на хроматограмме ЖХВД. Это указывает на то, что присутствие высоких концентраций воды замедляет образование обоих продуктов.
Пример 3. Автоматизированный синтез 1,3,4,6-тетра-O-ацетил-2-фтор-β-D-маннопиранозы
Отбор пробы из радиоактивной реакционной смеси в начале введения радиоизотопного индикатора оказался проблематичным. Таким образом, содержание воды, а также радиохимическую чистоту измеряли при помощи мгновенной тонкослойной хроматографии (МТСХ) по окончании реакции введения радиоизотопного индикатора. Затем содержание воды в начале реакции введения радиоизотопного индикатора вычисляли, определяя коэффициент связывания воды, как описано ниже.
Эксперимент по введению радиоизотопного индикатора
Синтез 1,3,4,6-тетра-O-ацетил-2-фтор-β-D-маннопиранозы проводили при помощи автоматического синтезирующего устройства, в которое может быть вставлена одноразовая кассета. Эта кассета включает 25-клапанную одноразовую кассету, включающую различные флаконы, содержащие реактивы, а также шприцы и пространство для установки картриджей твердофазной экстракции.
Затем выполняли последовательность синтезов, включающую фиксацию приблизительно 50 МБк [18F]-фторида в 2 мл воды в картридже Waters Access PlusQMA (в виде карбонатной формы) и последующее элюирование картриджа раствором Kryptofix и карбоната в ацетонитриле/воде (Kryptofix 2.2.2 - 20,3 мг, карбонат калия - 4,3 мг, ацетонитрил - 320 мкл, вода - 80 мкл) в нагреваемый реактор. Полученную смесь сушили в токе сухого азота, затем в реактор добавляли раствор трифлата маннозы в ацетонитриле, содержащий определенные количества воды.
Далее реактор выдерживали еще в течение 80 секунд при внешней температуре нагревателя, равной 125°С, затем отбирали 0,6 мл раствора, которые отбрасывали (для удаления каких-либо следов остаточной воды из трубок), и остаток переносили во флакон с продуктом. Содержание воды во флаконе с продуктом определяли титрованием Карла Фишера, используя 50 мкл раствора, а радиохимическую чистоту определяли при помощи мгновенной тонкослойной хроматографии (МТСХ). Тонкослойную хроматографию производили на пластинках силикагеля, предназначенных для проведения для ТСХ, проявляя смесью 95% ацетонитрила и 5% воды, а затем измеряли относительное содержание [18F]-фторида и 1,3,4,6-тетра-O-ацетил-2-фтор-β-D-маннопиранозы (во всех случаях они были единственными компонентами) при помощи МТСХ.
Измерение коэффициента связывания воды
Для определения снижения количества воды во время реакции с трифлатом маннозы проводили два холодных (нерадиоактивных) опыта, в которых из реактора отбирали определенный объем жидкости до и после введения индикатора. Это позволяло определить коэффициент связывания воды в измеряемых количествах воды.
Затем выполняли последовательность синтезов, аналогичную последовательности эксперимента введения радиоизотопного индикатора; при этом 2 мл воды пропускали через картридж Waters Access PlusQMA (в карбонатной форме), после чего картридж элюировали раствором Kryptofix и карбоната в ацетонитриле/воде (Kryptofix 2.2.2 - 20,3 мг, карбонат калия - 4,3 мг, ацетонитрил - 320 мкл, вода - 80 мкл) в нагреваемый реактор. Полученную смесь сушили в токе сухого азота, затем в реактор добавляли раствор трифлата маннозы в ацетонитриле, содержащий определенные количества воды.
После добавления в реактор раствора трифлата маннозы отбирали 0,6 мл раствора, которые помещали во флакон с продуктом. Далее реакцию введения радиоизотопного индикатора проводили еще в течение 80 секунд при внешней температуре нагревателя, равной 125°С, затем отбирали остаток раствора, который помещали в отдельный флакон с продуктом. Содержание воды в каждом флаконе определяли титрованием Карла Фишера, используя 50 мкл раствора.
Результаты определения опытов по связыванию воды показаны в Таблице 1, в которой приведены концентрации воды, присутствующие в ацетонитрильном растворителе.
Таблица 1 | |
Перед началом реакции (части на миллион) | После проведения реакции (части на миллион) |
786 | 802 |
2603 | 2527 |
8433 | 7860 |
При низких и средних концентрациях воды значительного связывания воды в результате реакции с трифлатом маннозы не наблюдали. Однако при повышенных концентрациях воды наблюдали снижение содержания воды приблизительно на 7%.
Результаты введения радиоизотопного индикатора
Для получения содержания воды перед началом проведения реакции введения радиоизотопного индикатора измеряли содержание воды в каждой реакции введения радиоизотопного индикатора, которое затем уточняли, вводя коэффициент связывания воды трифлатом маннозы. Степени радиохимической чистоты, полученные для каждой концентрации воды, приведены в Таблице 2 и показаны на Фиг.3.
Таблица 2 | |
Части на миллион воды до начала реакции (вычислено) | Радиохимическая чистота, % |
506 | 94,6 |
707 | 91,4 |
2803 | 97,6 |
3855 | 95,9 |
4114 | 96,7 |
5779 | 98,4 |
5943 | 94,1 |
7980 | 85,6 |
9206 | 73,6 |
15382 | 85,0 |
43375 | 85,5 |
Эти результаты подтверждают, что предпочтительное содержание воды составляет от 3000 до 6000 частей на миллион. Если исключить случайный результат при 73,6% радиохимической чистоты, то результаты реакции группируются около радиохимической чистоты, равной 85%, даже при большом содержании влаги.
Claims (14)
1. Способ получения защищенного фторированного производного глюкозы, включающий взаимодействие производного тетраацетилманнозы с фторидом, отличающийся тем, что реакцию проводят в растворителе, содержащем воду в количестве, превышающем 1000 частей на миллион и составляющем менее 50000 частей на миллион.
2. Способ по п.1, в котором защищенное фторированное производное глюкозы представляет собой 2-фтор-1,3,4,6-тетра-O-ацетил-D-глюкозу (тетраацетилфторглюкозу или pFDG), а указанное производное тетраацетилманнозы представляет собой 1,3,4,6-тетра-O-ацетил-2-O-трифторметансульфонил-β-D-маннопиранозу (трифлат тетраацетилманнозы).
3. Способ по любому из п.1 или 2, в котором растворитель выбирают из группы, содержащей ацетонитрил, диметилформамид, диметилсульфоксид, тетрагидрофуран, диоксан, 1,2-диметоксиэтан, сульфолан и N-метилпирролидинон.
4. Способ по п.3, в котором растворитель представляет собой ацетонитрил.
5. Способ по п.1, в котором содержание воды в растворителе составляет приблизительно от 1000 до 15000 частей на миллион.
6. Способ по п.5, в котором содержание воды в растворителе составляет приблизительно от 2000 до 7000 частей на миллион.
7. Способ по п.1, в котором содержание воды в растворителе составляет приблизительно от 3000 до 6000 частей на миллион.
8. Способ по п.7, который проводят в растворе.
9. Способ по п.1, который автоматизирован.
10. Способ по п.1, в котором фторид представляет собой ионный фторид с калиевым противоионом, и к фториду добавлен катализатор фазового переноса, такой как 4,7,13,16,21,24-гексаокса-1,10-диазабицикло-[8,8,8]-гексакозан.
11. Способ по п.1 для приготовления радиофторированного производного сахара.
12. Способ по п.11, в котором радиофторированное производное сахара представляет собой производное сахара, меченное [18F].
13. Способ п.12, в котором указанное производное сахара, меченное [18F], представляет собой [18F]-pFDG.
14. Способ п.1, также включающий одну или несколько дополнительных стадий, проводимых в любом порядке:
1) удаление избытка фторида из раствора;
2) снятие защиты с защищенного фторированного производного сахара с получением незащищенного фторированного производного сахара;
3) удаление органического растворителя; и
4) введение незащищенного фторированного производного сахара в водный раствор.
1) удаление избытка фторида из раствора;
2) снятие защиты с защищенного фторированного производного сахара с получением незащищенного фторированного производного сахара;
3) удаление органического растворителя; и
4) введение незащищенного фторированного производного сахара в водный раствор.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0425501.4 | 2004-11-19 | ||
GBGB0425501.4A GB0425501D0 (en) | 2004-11-19 | 2004-11-19 | Fluoridation process |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2007115903A RU2007115903A (ru) | 2008-12-27 |
RU2394040C2 true RU2394040C2 (ru) | 2010-07-10 |
Family
ID=33548541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2007115903/04A RU2394040C2 (ru) | 2004-11-19 | 2005-11-18 | Способ фторирования для синтеза 2-[18f]-фтор-2-дезокси-d-глюкозы |
Country Status (22)
Country | Link |
---|---|
US (1) | US20090076259A1 (ru) |
EP (1) | EP1817320B1 (ru) |
JP (1) | JP5318416B2 (ru) |
KR (1) | KR101267122B1 (ru) |
CN (1) | CN101061130B (ru) |
AT (1) | ATE472552T1 (ru) |
AU (1) | AU2005305624B2 (ru) |
BR (1) | BRPI0518316A2 (ru) |
CA (1) | CA2584649C (ru) |
DE (1) | DE602005022099D1 (ru) |
ES (1) | ES2347165T3 (ru) |
GB (1) | GB0425501D0 (ru) |
HK (1) | HK1107353A1 (ru) |
IL (1) | IL182740A0 (ru) |
MX (1) | MX2007006052A (ru) |
NO (1) | NO20073037L (ru) |
NZ (1) | NZ554613A (ru) |
PL (1) | PL1817320T3 (ru) |
PT (1) | PT1817320E (ru) |
RU (1) | RU2394040C2 (ru) |
WO (1) | WO2006054098A2 (ru) |
ZA (1) | ZA200705015B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2608932C2 (ru) * | 2010-12-29 | 2017-01-26 | ДжиИ ХЕЛТКЕР ЛИМИТЕД | Раствор элюента |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007031647A (ja) * | 2005-07-29 | 2007-02-08 | Japan Health Science Foundation | 固相合成を利用した超短半減期核種を含む化合物の製造方法およびそれに用いる化合物 |
CN101346392A (zh) * | 2005-12-06 | 2009-01-14 | 日本医事物理股份有限公司 | 放射性氟标记化合物的制备方法 |
EP2070937A4 (en) * | 2006-09-06 | 2014-01-01 | Nihon Mediphysics Co Ltd | METHOD FOR PRODUCING A RADIOACTIVE FLUOR-MARKED ORGANIC COMPOUND AND CORRESPONDING SYNTHESIS DEVICE AND PROGRAM |
EP2111293A2 (en) * | 2006-12-21 | 2009-10-28 | Hammersmith Imanet Limited | Nucleophilic radiofluorination using microfabricated devices |
US9073802B2 (en) | 2010-02-12 | 2015-07-07 | Tokyo Institute Of Technology | Method for producing 18F-labeled compound and high molecular compound to be used in the method |
EP2556372A1 (en) * | 2010-04-08 | 2013-02-13 | Siemens Medical Solutions USA, Inc. | Synthesis of 18f-labeled tracers in hydrous organic solvents |
US9101895B2 (en) | 2011-04-15 | 2015-08-11 | General Electric Company | System for mixing and dispersing microbubble pharmaceuticals |
US20140256970A1 (en) * | 2011-09-30 | 2014-09-11 | Ge Healthcare Limited | Reactor for multi-step radiochemistry |
JP6758065B2 (ja) * | 2016-03-30 | 2020-09-23 | 日本メジフィジックス株式会社 | 放射性標識化合物の製造装置及び製造方法 |
CN113801173B (zh) * | 2021-09-24 | 2024-03-12 | 上海安迪科正电子技术有限公司 | 一种氟-18标记的脱氧葡糖注射液的制备方法及应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2581558B1 (fr) * | 1985-05-10 | 1987-06-26 | Elf France | Procede de traitement d'un carburant compose d'un melange d'hydrocarbures et d'alcools, et produit d'adsorption selective d'eau |
GB0115927D0 (en) * | 2001-06-29 | 2001-08-22 | Nycomed Amersham Plc | Solid-phase nucleophilic fluorination |
-
2004
- 2004-11-19 GB GBGB0425501.4A patent/GB0425501D0/en not_active Ceased
-
2005
- 2005-11-18 BR BRPI0518316-2A patent/BRPI0518316A2/pt not_active Application Discontinuation
- 2005-11-18 AU AU2005305624A patent/AU2005305624B2/en not_active Ceased
- 2005-11-18 NZ NZ554613A patent/NZ554613A/en not_active IP Right Cessation
- 2005-11-18 MX MX2007006052A patent/MX2007006052A/es active IP Right Grant
- 2005-11-18 PT PT05813632T patent/PT1817320E/pt unknown
- 2005-11-18 AT AT05813632T patent/ATE472552T1/de not_active IP Right Cessation
- 2005-11-18 DE DE602005022099T patent/DE602005022099D1/de active Active
- 2005-11-18 JP JP2007542100A patent/JP5318416B2/ja active Active
- 2005-11-18 PL PL05813632T patent/PL1817320T3/pl unknown
- 2005-11-18 EP EP05813632A patent/EP1817320B1/en not_active Not-in-force
- 2005-11-18 CA CA2584649A patent/CA2584649C/en not_active Expired - Fee Related
- 2005-11-18 RU RU2007115903/04A patent/RU2394040C2/ru active IP Right Revival
- 2005-11-18 ES ES05813632T patent/ES2347165T3/es active Active
- 2005-11-18 US US11/719,601 patent/US20090076259A1/en not_active Abandoned
- 2005-11-18 CN CN2005800394892A patent/CN101061130B/zh not_active Expired - Fee Related
- 2005-11-18 WO PCT/GB2005/004451 patent/WO2006054098A2/en active Application Filing
- 2005-11-18 KR KR1020077011340A patent/KR101267122B1/ko active IP Right Grant
-
2007
- 2007-04-23 IL IL182740A patent/IL182740A0/en not_active IP Right Cessation
- 2007-06-04 ZA ZA200705015A patent/ZA200705015B/xx unknown
- 2007-06-14 NO NO20073037A patent/NO20073037L/no not_active Application Discontinuation
-
2008
- 2008-01-28 HK HK08101069.6A patent/HK1107353A1/xx not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
K.Hamacher et al. // Appl. Radiat. Isot. Vol.41, No.1, pp.49-55, 1990. Timothy J.Tewson // J. Org. Chem. 1983, 48, 3507-3510. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2608932C2 (ru) * | 2010-12-29 | 2017-01-26 | ДжиИ ХЕЛТКЕР ЛИМИТЕД | Раствор элюента |
US11504430B2 (en) | 2010-12-29 | 2022-11-22 | Ge Healthcare Limited | Eluent solution |
Also Published As
Publication number | Publication date |
---|---|
WO2006054098A2 (en) | 2006-05-26 |
CA2584649C (en) | 2013-09-24 |
KR20070084361A (ko) | 2007-08-24 |
JP5318416B2 (ja) | 2013-10-16 |
US20090076259A1 (en) | 2009-03-19 |
DE602005022099D1 (de) | 2010-08-12 |
GB0425501D0 (en) | 2004-12-22 |
ES2347165T3 (es) | 2010-10-26 |
ZA200705015B (en) | 2008-09-25 |
MX2007006052A (es) | 2007-07-10 |
HK1107353A1 (en) | 2008-04-03 |
CA2584649A1 (en) | 2006-05-26 |
AU2005305624A1 (en) | 2006-05-26 |
EP1817320B1 (en) | 2010-06-30 |
PT1817320E (pt) | 2010-09-13 |
AU2005305624B2 (en) | 2012-05-10 |
NO20073037L (no) | 2007-08-16 |
IL182740A0 (en) | 2007-07-24 |
EP1817320A2 (en) | 2007-08-15 |
ATE472552T1 (de) | 2010-07-15 |
BRPI0518316A2 (pt) | 2008-11-11 |
RU2007115903A (ru) | 2008-12-27 |
NZ554613A (en) | 2011-01-28 |
PL1817320T3 (pl) | 2010-11-30 |
JP2008520636A (ja) | 2008-06-19 |
CN101061130B (zh) | 2012-08-15 |
WO2006054098A3 (en) | 2006-08-03 |
CN101061130A (zh) | 2007-10-24 |
KR101267122B1 (ko) | 2013-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2394040C2 (ru) | Способ фторирования для синтеза 2-[18f]-фтор-2-дезокси-d-глюкозы | |
RU2315769C9 (ru) | Нуклеофильное фторирование в твердой фазе | |
JP6145107B2 (ja) | 加水分解性脱保護工程及び固相抽出を含む18f−標識化合物の生産 | |
AU2002314298A1 (en) | Solid-phase nucleophilic fluorination | |
US8323616B2 (en) | Solid-phase fluorination of benzothiazoles | |
Füchtner et al. | Basic hydrolysis of 2-[18F] fluoro-1, 3, 4, 6-tetra-O-acetyl-D-glucose in the preparation of 2-[18F] fluoro-2-deoxy-D-glucose | |
WO2013012817A1 (en) | Methods and compositions for drying in the preparation of radiopharmaceuticals | |
US20170197912A1 (en) | Synthesizing pet tracers using [f-18]sulfonyl fluoride as a source of [f-18]fluoride | |
JP5512688B2 (ja) | 放射性フッ素化 | |
JP2011526932A (ja) | 放射性医薬品の製造のための方法 | |
Bejot et al. | 18F-Radionuclide chemistry | |
Mandaric | Development of an 18F radiolabeling method using solid phase chemistry | |
KR20140069001A (ko) | [18f]플루오로메틸 브로마이드의 단순화된 방사합성 | |
Karimi et al. | The Role of Recent Development of 18F Radiochemistry in Drug Development | |
WO2012055992A2 (en) | Stabilisation of radiopharmaceutical precursors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TK4A | Correction to the publication in the bulletin (patent) |
Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 19-2010 FOR TAG: (73) |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20141119 |
|
NF4A | Reinstatement of patent |
Effective date: 20170216 |