RU2344099C2 - Водная известково-магнезиальная суспензия и способ ее приготовления - Google Patents

Водная известково-магнезиальная суспензия и способ ее приготовления Download PDF

Info

Publication number
RU2344099C2
RU2344099C2 RU2006106223/15A RU2006106223A RU2344099C2 RU 2344099 C2 RU2344099 C2 RU 2344099C2 RU 2006106223/15 A RU2006106223/15 A RU 2006106223/15A RU 2006106223 A RU2006106223 A RU 2006106223A RU 2344099 C2 RU2344099 C2 RU 2344099C2
Authority
RU
Russia
Prior art keywords
lime
suspension
milk
specific surface
viscosity
Prior art date
Application number
RU2006106223/15A
Other languages
English (en)
Other versions
RU2006106223A (ru
Inventor
ЧАВЕС Луис Альфредо ДИАЗ (BE)
ЧАВЕС Луис Альфредо ДИАЗ
Тимоти Л. СОЛТЕР (BE)
Тимоти Л. СОЛТЕР
Зиад ХАБИБ (BE)
Зиад Хабиб
Анри-Рене ЛЭНЖЕЛЕН (BE)
Анри-Рене ЛЭНЖЕЛЕН
Original Assignee
С.А. Луаст Решерш Э Девелопмен
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by С.А. Луаст Решерш Э Девелопмен filed Critical С.А. Луаст Решерш Э Девелопмен
Publication of RU2006106223A publication Critical patent/RU2006106223A/ru
Application granted granted Critical
Publication of RU2344099C2 publication Critical patent/RU2344099C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение может быть использовано для приготовления водной суспензии на основе извести или известкового соединения. Известково-магнезиальная суспензия содержит частицы твердого вещества, удельная поверхность которых, рассчитанная по методу BET, перед суспендированием составляет не более 10 м2/г. Частицы твердого вещества отвечают формуле xCa(OH)2·(1-x)MgO·yH2O, где 0<х≤1 и у≤(1-х), при этом у и х означают мольные доли. Предложен способ приготовления такой суспензии. Изобретение позволяет приготовить известково-магнезиальную суспензию с низкой вязкостью. 2 н. и 5 з.п. ф-лы, 7 табл.

Description

Настоящее изобретение относится к водной известково-магнезиальной суспензии и способу ее приготовления.
Одним из видов водной известково-магнезиальной суспензии является известковое молоко, представляющее собой жидкую суспензию гашеной извести, называемую также гидратированной известью (гидроксид кальция Са(ОН)2) и способную очевидно содержать в себе примеси, в частности кремнезем, глинозем или оксид магния в количестве нескольких процентов. Такую суспензию получают либо гашением негашеной извести (оксида кальция СаО) избыточным количеством воды, либо смешением гашеной извести с водой, масса которой в несколько раз превышает массу извести. Полученная суспензия отличается концентрацией твердого вещества и распределением по размерам частиц в ней. Оба этих показателя определяют свойства известкового молока, в основном его вязкость и реакционную способность.
Вязкость - это свойство суспензии, определяющее применение и обращение с ней (перекачка, транспортировка по трубопроводу и пр.). Экспериментально было установлено, что динамическая вязкость не должна превышать 1,2 Па·с. Как правило, вязкость возрастает в том случае, когда концентрация твердого вещества увеличивается, а размер частиц в суспензии уменьшается.
Реакционная способность известкового молока - это показатель скорости растворения частиц при его разбавлении значительным объемом деминерализованной воды. Этот показатель, основанный на регистрации изменения удельной проводимости полученной жидкой фазы, был разработан для контроля за реакционной способностью разных видов известкового молока, предназначенных для умягчения питьевой воды (см. v. Van Eckeren и др. Improved milk-of lime for softening of drinking water: the answer to the carry-over problem (Улучшенное известковое молоко для умягчения питьевой воды: решение проблемы), Aqua, 1994 г., №43 (1), стр.1-10).
Реакционная способность известкового молока важна также для любой операции по нейтрализации или флокуляции.
Известно, что скорость растворения известковых частиц тем выше, чем меньше их размер. Кроме того, при большой дисперсности частиц, как правило, снижается осаждение твердой фазы в суспензии.
Как правило, экономически целесообразно располагать возможностью увеличения концентрации известкового молока для снижения транспортных расходов и размеров оборудования (резервуары-хранилища, насосы и пр.).
Очевидной является трудность сочетания между собой низкой вязкости, высокой концентрации и снижения размера частиц в суспензии.
Известен способ повышения концентрации известкового молока добавкой диспергирующего средства в присутствии небольшого количества гидроксида щелочного металла (US 5616283, US 4849128, US 4610801). Этот способ позволяет довести концентрацию сухого вещества до величины свыше 40% при динамической вязкости менее 1,2 Па·с. Однако использование диспергирующего средства ведет к удорожанию и не совместимо с некоторыми областями применения.
Также известен способ повышения концентрации твердой фазы в суспензии путем ограничения роста вязкости введением гашеной извести с более крупными частицами или путем гашения негашеной извести в условиях, благоприятных для роста зерен, например в результате ограничения повышения температуры при гашении, внесением добавок, таких как сульфаты, и пр. (BE 1006655, US 4464353). Такие виды известкового молока обладают меньшей реакционной способностью, что ограничивает области их применения. Однако эти суспензии быстрее осаждаются в том случае, когда в них не добавляется диспергирующее средство.
Целью настоящего изобретения является создание водной суспензии на основе извести или известкового соединения с контролируемой, предпочтительно низкой вязкостью для обеспечения возможности повышения концентрации твердого вещества и/или уменьшения размера частиц в суспензии.
Данная цель достигается согласно изобретению с помощью водной известково-магнезиальной суспензии, содержащей частицы твердого вещества, удельная поверхность которых, рассчитанная по методу BET, перед суспендированием составляет не более 10 м2/г.
Частицы твердого вещества в водной известково-магнезиальной суспензии согласно изобретению отвечают формуле
xCa(OH)2·(1-x)MgO·yH2O,
где 0<х≤1;
y≤(1-х),
при этом х и у являются мольными долями.
Предпочтительно, чтобы х имело значение от 0,8 до 1, особо предпочтительно 1.
Такую суспензию можно приготовить путем суспендирования известково-магнезиального твердого вещества с частицами с малой удельной поверхностью, составляющей не более 10 м2/г, измеренной методом адсорбции азота (метод BET). Неожиданно было найдено, что водная суспензия из такого типа твердого известково-магнезиального вещества может обладать очень низкой вязкостью, что в результате позволяет сильно увеличить концентрацию твердого вещества в суспензии, что почти невозможно было достигнуть ранее, или же уменьшить размер частиц в суспензии и, следовательно, получать концентрированное и реакционноспособное известковое молоко. Благодаря изобретению стало возможным выявить прямую связь между удельной поверхностью частиц и вязкостью таких суспензий при одинаковых концентрациях и размерах частиц.
Следует отметить, что гидратированная известь с такой удельной поверхностью стала известной лишь с недавнего времени. Ее можно получать, в частности, гашением негашеной извести в присутствии CaCl2 (см. Holmberg, J., Slaking of lime (Гашение извести), документ, приведенный на сайте Интернета <http://server1.chemeng.lth.se/exjobb/009.pdf >(http://www.chemeng.lth.se/exjobb/009.pdf) в июне 2003 г.) или диспергирующего средства (см. JP 11-139850).
Согласно предпочтительному варианту осуществления изобретения частицы твердого вещества имеют удельную поверхность, составляющую согласно методу BET не более 8 м2/г, предпочтительно не более 5 м2/г.
Оптимально, чтобы динамическая вязкость суспензии составляла не более 1,2 Па·с, предпочтительно не более 1,0 Па·с.
В таких условиях становится возможным приготовление суспензии согласно изобретению, содержание твердого вещества в которой составляет более 25%, предпочтительно более 40%, и/или гранулометрический показатель d98 составляет менее 20 мкм, предпочтительно не более 5 мкм.
Следовательно, частицы суспензии согласно изобретению могут состоять только из гидратированной извести, а также из смешанного соединения, состоящего из гидратированной извести и окиси магния, которая может быть гидратирована полностью или частично или даже не гидратирована. Такой известково-магнезиальный материал может, очевидно, содержать кроме того примеси, упоминавшиеся ранее в связи с гидратированной известью.
Другие варианты выполнения продукта и способа согласно изобретению приведены в приложенной формуле изобретения.
Ниже изобретение подробнее поясняется с помощью не ограничивающих примеров.
Пример 1
Смешиванием 10 л воды и 5 кг гидратированной извести при 20°С приготовили три вида концентрированного известкового молока. Удельная поверхность одного из видов извести составляла 20 м2/г, двух других видов согласно настоящему изобретению - соответственно 10 и 5 м2/г. Удельную поверхность измеряли посредством адсорбции азота по методу BET. Смесь выдерживали при механическом размешивании в течение 30 минут.
Для приготовления разных видов известкового молока с сопоставимым гранулометрическим распределением последние были процежены через сито с размером ячеек 200 мкм; при необходимости подрешетный продукт подвергали влажному измельчению в дробилке со стеклянными шарами диаметром от 0,5 до 0,8 мм. Распределение по размерам частиц определяли лазерным гранулометром; распределения обозначены в терминах d50, d90 и d98, являющихся величинами, интерполированными с кривой распределения размеров частиц. Размеры d50, d90 и d98 соответствуют размерам, при которых соответственно 50%, 90% и 98% частиц меньше указанных размеров.
Процентное содержание твердого вещества в суспензиях задавалось разбавлением таким образом, чтобы из каждой гидратированной извести можно было получить три вида известкового молока, содержащего соответственно 20%, 25% и 30% твердого вещества. Вязкость этих видов молока измеряли вискозометром "Brookfield DV III Rheometer" со стрелкой №3 при скорости вращения 100 об/мин.
Показатели удельной поверхности трех видов гидратированной извести, использованной для приготовления известкового молока, а также гранулометрические характеристики и показатели вязкости соответствующих суспензий приведены в таблице 1.
Figure 00000001
Как и предполагалось, при сопоставимом гранулометрическом составе и идентичной удельной поверхности вязкость возрастает в зависимости от концентрации. Зато независимо от содержания твердого вещества вязкость очень сильно снижается в зависимости от удельной поверхности гидратированной извести. В частности, в том случае, когда концентрация твердого вещества в суспензии достигла 20%, вязкость уменьшилась с 1 до 0,08 Па·с, при этом удельная поверхность гидратированной базовой извести снизилась с 20 до 5 м2/г при сопоставимом гранулометрическом составе.
Однако в том случае, когда удельная поверхность составляет 20 м2/г, концентрация твердого вещества должна быть менее 25% для сохранения приемлемой вязкости (1,2 Па·с). Напротив можно легко приготовить известковое молоко с 30% твердого вещества и низкой вязкостью (0,6 Па·с) в том случае, когда удельная поверхность гидратированной извести не более 10 м2/г согласно настоящему изобретению.
Пример 2
По методике примера 1 было приготовлено три вида концентрированного известкового молока, один вид из гидратированной извести с удельной поверхностью 15 м2/г и два других в соответствии с настоящим изобретением из 2 видов гидратированной извести с удельной поверхностью соответственно 10 и 5 м2/г. Как и в примере 1, частицы суспензии имели сопоставимый гранулометрический состав, но были более мелкими. В примере 2 концентрация сухого вещества задавалась также путем разбавления, но с обеспечением 15%, 20% и 25% сухого вещества. Результаты приведены в таблице 2.
Figure 00000002
Результаты таблицы 2 согласуются с результатами примера 1: при одинаковом содержании твердого вещества и сопоставимом гранулометрическом составе (d98=5 мкм) вязкость известкового молока уменьшалась с уменьшением удельной поверхности применявшейся гидратированной извести. Однако, как и ожидалось, из сравнения обеих таблиц 1 и 2 следует в отношении применявшихся видов гидратированной извести с удельной поверхностью 5 и 10 м2/г и содержанием сухого вещества в количестве 20 и 25%, что вязкость известкового молока возрастает с уменьшением размера частиц.
Из примера 2 можно заключить, что известковое молоко с вязкостью менее 1,2 Па·с при содержании твердого вещества в количестве равном или более 20% невозможно приготовить из гидратированной извести с большой дисперсностью (d98=5 мкм) в том случае, когда удельная поверхность этой извести менее или равна 10 м2/г согласно настоящему изобретению.
Пример 3
Три вида концентрированного известкового молока, приготовленного в примере 1, разбавили с целью доведения вязкости до величины 1-1,2 Па·с. Затем определили концентрацию соответствующего сухого вещества. Результаты приведены в таблице 3.
Figure 00000003
При сопоставимых распределениях по размерам частиц и вязкости содержание сухого вещества тем выше, чем меньше удельная поверхность гидратированной извести. Таким образом, без применения диспергирующего средства можно вдвое увеличить содержание твердого вещества, т.е. с 20 до 40%, при условии, что удельная поверхность гидратированной извести снижена с 20 до 5 м2/г согласно настоящему изобретению.
Пример 4
Аналогично примеру 3 разбавили три вида концентрированного известкового молока, приготовленного, как описано в примере 2, с таким расчетом, чтобы вязкость составила 1-1,2 Па·с. Затем определили концентрацию сухого вещества. Результаты представлены в таблице 4.
Figure 00000004
Выводы из примера 3 применимы также и для известкового молока с большей гранулометрической дисперсностью (d98=5 мкм). Содержание твердого вещества, составляющего 15% в гашеной извести с удельной поверхностью 15 м2/г, достигает 35% в гидратированной извести с удельной поверхностью 5 м /г согласно изобретению.
Пример 5
Целью этого примера является подтверждение эффективности данного изобретения по сравнению с известным способом промышленного получения концентрированного известкового молока (с добавкой диспергирующего средства). Известковое молоко в промышленности приготавливают из гидратированной извести с удельной поверхностью 20 м2/г, его вязкость составляет 1,2 Па·с. Эту суспензию сравнили с известковым молоком, приготовленным в соответствии с настоящим изобретением с применением гидратированной извести с удельной поверхностью 5 м2/г. Характеристики обоих видов известкового молока представлены в таблице 5.
Figure 00000005
Таким образом, без применения диспергирующего средства возможно приготовление в соответствии с настоящим изобретением известкового молока с той же вязкостью (1,2 Па·с) и с тем же содержанием твердого вещества (45%), что и в промышленном известковом молоке очень высокой концентрации, обеспечиваемой добавкой диспергирующего средства. Кроме того, следует отметить, что известковое молоко согласно изобретению обладает большей дисперсностью при одинаковой вязкости. При этом оно не содержит диспергирующего средства, что удешевляет производство и обеспечивает возможность применения в большем количестве областей.
Пример 6
По методике примера 1 приготовили три вида известкового молока из гидратированной извести с удельной поверхностью 5 м2/г, но при разном распределении по размерам частиц, с содержанием твердого вещества 34-45%. Вязкость этих видов известкового молока замерили сразу после его приготовления (начальная вязкость) и через 7 суток, в течение которых его выдерживали при перемешивании. Характеристики трех видов известкового молока приведены в таблице 6.
Figure 00000006
Существенного изменения вязкости в рассмотренном интервале времени не отмечено. Следовательно, приготовленные в соответствии с изобретением виды известкового молока могут храниться до момента применения без ущерба для своей способности к применению.
Пример 7
По методике примера 1 приготовили три вида известкового молока из гидратированной извести с удельной поверхностью 5, 10 и 15 м2/г с целью получения нескольких видов известкового молока с очень высокой дисперсностью и, следовательно, с очень высокой реакционной способностью.
Реакционную способность определяли измерением скорости растворения известного количества частиц извести в суспензии при очень высокой степени разбавления. В частности, речь идет об измерении времени t90, необходимого для достижения удельной проводимости, соответствующей 90% от максимальной удельной проводимости, соответствующей равновесному состоянию раствора.
Тест проводился следующим образом. 5 см3 известкового молока разбавили до 2% сухого вещества, мгновенно добавили в 700 см3 деминерализованной воды, термостатировали при 25°С и выдерживали при перемешивании со скоростью 400 об/мин. Через каждые 0,3 секунды измеряли изменение удельной проводимости до получения ее устойчивой величины. Значение t90 кривой удельной проводимости интерполировали.
Известковое молоко с низкой реакционной способностью имело показатель t90 в несколько десятков секунд; напротив, известковое молоко может считаться очень реакционноспособным, если его показатель t90 равен менее 3 секундам.
Результаты тестов на реакционную способность, полученные по трем видам известкового молока, приведены в таблице 7.
Figure 00000007
Можно видеть, что величина реакционной способности (t90) не зависит от удельной поверхности гидратированной извести, используемой для приготовления известкового молока.
Необходимо иметь в виду, что настоящее изобретение не ограничивается приведенными выше вариантами его осуществления и что в него могут быть внесены многочисленные изменения, не выходящие за пределы приложенной формулы изобретения.

Claims (8)

1. Водная известково-магнезиальная суспензия, содержащая частицы твердого вещества, удельная поверхность которых, рассчитанная по методу BET, перед суспендированием составляет не более 10 м2/г, и частицы твердого вещества отвечают формуле:
xCa(OH)2·(1-x)MgO·yH2O,
где 0<х≤1 и у≤(1-х), при этом у и х означают мольные доли.
2. Суспензия по п.1, в которой упомянутые частицы имеют удельную поверхность, рассчитанную по методу BET, равную не более 8 м2/г, предпочтительно не более 5 м2/г.
3. Суспензия по п.1 или 2, отличающаяся тем, что она обладает динамической вязкостью, составляющей не более 1,2 Па·с.
4. Суспензия по п.1 или 2, отличающаяся тем, что она содержит твердое вещество в количестве более 25%, предпочтительно более 40%.
5. Суспензия по п.3, отличающаяся тем, что она содержит твердое вещество в количестве более 25%, предпочтительно более 40%.
6. Суспензия по п.1 или 2, отличающаяся тем, что гранулометрический размер d98 составляет менее 20 мкм, предпочтительно не более 5 мкм.
7. Суспензия по п.3, отличающаяся тем, что гранулометрический размер d98 составляет менее 20 мкм, предпочтительно не более 5 мкм.
8. Способ приготовления водной известково-магнезиальной суспензии по любому из пп.1-7, отличающийся тем, что он включает в себя суспендирование твердого известково-магнезиального вещества, частицы которого имеют удельную поверхность, рассчитанную по методу BET и составляющую не более 10 м2/г, в водной среде, и частицы твердого вещества отвечают формуле:
xCa(OH)2·(1-x)MgO·yH2O,
где 0<х≤1 и у≤(1-х), при этом у и х означают мольные доли.
RU2006106223/15A 2003-07-28 2004-07-27 Водная известково-магнезиальная суспензия и способ ее приготовления RU2344099C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2003/0426A BE1015623A3 (fr) 2003-07-28 2003-07-28 Suspension aqueuse calco-magnesienne et son procede de preparation.
BE2003/0426 2003-07-28

Publications (2)

Publication Number Publication Date
RU2006106223A RU2006106223A (ru) 2006-07-27
RU2344099C2 true RU2344099C2 (ru) 2009-01-20

Family

ID=34120389

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006106223/15A RU2344099C2 (ru) 2003-07-28 2004-07-27 Водная известково-магнезиальная суспензия и способ ее приготовления

Country Status (21)

Country Link
US (1) US8206680B2 (ru)
EP (1) EP1663869B1 (ru)
JP (1) JP4842813B2 (ru)
CN (1) CN100354206C (ru)
AR (1) AR045092A1 (ru)
BE (1) BE1015623A3 (ru)
BR (1) BRPI0412996B1 (ru)
CA (1) CA2533529C (ru)
DK (1) DK1663869T3 (ru)
ES (1) ES2389903T3 (ru)
MA (1) MA28006A1 (ru)
MX (1) MXPA06001196A (ru)
MY (1) MY145979A (ru)
NO (1) NO340757B1 (ru)
PL (1) PL1663869T3 (ru)
PT (1) PT1663869E (ru)
RU (1) RU2344099C2 (ru)
SI (1) SI1663869T1 (ru)
UA (1) UA87988C2 (ru)
WO (1) WO2005014483A2 (ru)
ZA (1) ZA200601514B (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653152C2 (ru) * 2012-09-12 2018-05-07 С.А. Луаст Решерш Э Девелопман Ультратонкодисперсная композиция известкового молока

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS54909B1 (sr) 2012-02-03 2016-10-31 Omya Int Ag Postupak za dobijanje vodenog rastvora koji sadrži najmanje jedan hidrokarbonat zemnoalkalnog metala i njegova upotreba
US10160674B2 (en) 2012-03-30 2018-12-25 Premier Magnesia, Llc Improving wastewater pumping and conveying efficiency
BE1020787A3 (fr) * 2012-07-12 2014-05-06 Lhoist Rech Et Dev Compose mixte calcique et magnesien et son procede de fabrication.
BE1021199B1 (fr) * 2012-10-25 2015-07-28 S.A. Lhoist Recherche Et Developpement Suspension calco-magnesienne maniable
BE1021563B1 (fr) * 2013-02-19 2015-12-14 S.A. Lhoist Recherche Et Developpement Procede d'extinction en voie seche d'oxydes de calcium et magnesium provenant de composes calco-magnesiens
BE1022069B1 (fr) * 2014-03-11 2016-02-15 Lhoist Recherche Et Developpement Sa Composition de lait de chaux
WO2015135954A1 (fr) 2014-03-11 2015-09-17 Lhoist Recherche Et Developpement Sa Composition de lait de chaux
CN110997593B (zh) 2017-07-17 2023-01-24 埃科莱布美国股份有限公司 使浆料的流变性改性的方法
US11254610B2 (en) 2018-06-04 2022-02-22 Lhoist North America, Inc. Composition and method for simultaneous water softening and silica removal in boiler feed water

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1181653A (en) * 1981-03-24 1985-01-29 Alban Timmons Process and composition for conditioning an aqueous system
US4464353A (en) * 1982-06-21 1984-08-07 Chemlime Corporation Quicklime slaking process
GR79057B (ru) * 1982-09-24 1984-10-02 Blue Circle Ind Plc
JPH02229712A (ja) 1990-01-26 1990-09-12 Kyowa Chem Ind Co Ltd 水酸化マグネシウムの製法
US5173279A (en) * 1990-11-21 1992-12-22 Lhoist Recherche Et Developpement S.A. Method and composition for treating flue or exhaust gases utilizing modified calcium hydroxide
DE4302539C2 (de) * 1992-01-31 2001-09-20 Lhoist Rech & Dev Sa Kalk-und/oder Magnesiumhydroxid-Aufschlämmung und ihre Herstellung
US5422092A (en) * 1992-09-08 1995-06-06 Kabushiki Kaisha Kaisui Kagaku Kenkyujo Flame retardant and flame-retardant resin composition
JP3107926B2 (ja) * 1992-09-08 2000-11-13 株式会社海水化学研究所 難燃剤および難燃性樹脂組成物
JP3086566B2 (ja) * 1993-05-06 2000-09-11 株式会社海水化学研究所 安定化された含ハロゲン樹脂組成物
US5616283A (en) * 1995-08-25 1997-04-01 Chemical Lime Company High solids lime as a caustic replacement
JP3979550B2 (ja) * 1997-02-07 2007-09-19 奥多摩工業株式会社 高効率酸性ガス処理剤の性能判定方法
JP4213247B2 (ja) 1997-02-21 2009-01-21 奥多摩工業株式会社 高濃度水酸化カルシウム水性懸濁液及びその製造方法
JPH11139850A (ja) 1997-11-07 1999-05-25 Denki Kagaku Kogyo Kk 生石灰組成物と消石灰の製造法
JP2001123071A (ja) * 1999-08-19 2001-05-08 Kaisui Kagaku Kenkyusho:Kk 水酸化カルシウムの製造方法および樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2653152C2 (ru) * 2012-09-12 2018-05-07 С.А. Луаст Решерш Э Девелопман Ультратонкодисперсная композиция известкового молока

Also Published As

Publication number Publication date
SI1663869T1 (sl) 2012-11-30
AR045092A1 (es) 2005-10-12
JP2007500116A (ja) 2007-01-11
WO2005014483A2 (fr) 2005-02-17
CA2533529C (fr) 2012-04-03
BRPI0412996B1 (pt) 2013-09-03
MXPA06001196A (es) 2006-04-11
UA87988C2 (ru) 2009-09-10
MA28006A1 (fr) 2006-07-03
US8206680B2 (en) 2012-06-26
MY145979A (en) 2012-05-31
DK1663869T3 (da) 2012-09-24
NO20060930L (no) 2006-02-24
PL1663869T3 (pl) 2012-11-30
CN1829662A (zh) 2006-09-06
PT1663869E (pt) 2012-09-04
CA2533529A1 (fr) 2005-02-17
EP1663869A2 (fr) 2006-06-07
US20060275203A1 (en) 2006-12-07
BRPI0412996A (pt) 2006-10-03
BE1015623A3 (fr) 2005-06-07
RU2006106223A (ru) 2006-07-27
CN100354206C (zh) 2007-12-12
NO340757B1 (no) 2017-06-12
WO2005014483A3 (fr) 2005-05-26
ZA200601514B (en) 2007-04-25
ES2389903T3 (es) 2012-11-02
EP1663869B1 (fr) 2012-08-01
JP4842813B2 (ja) 2011-12-21

Similar Documents

Publication Publication Date Title
ES2930124T3 (es) Lechada de cal
KR940001535B1 (ko) 미네랄 및/또는 충진제 및/또는 안료의 고농축 수성현탁액
RU2344099C2 (ru) Водная известково-магнезиальная суспензия и способ ее приготовления
US8585819B2 (en) Aqueous slurry of amorphous silica and method for its production
CA2647492C (en) Stabilization of milk of lime suspensions
Konduri et al. Dispersion of kaolin particles with carboxymethylated xylan
ES2202468T3 (es) Cal con alto contenido de solidos como un sustituyente caustico.
CA2810345C (en) Slurry comprising manganomanganic oxide particles and dispersant and method for the production of such slurries
Backfolk et al. Aspects on the interaction between sodium carboxymethylcellulose and calcium carbonate and the relationship to specific site adsorption
KR20150087220A (ko) 유용한 칼코-마그네시아 현탁액
JP2018520079A (ja) 沈降炭酸カルシウムの製造
JP7038046B2 (ja) コポリマー添加剤を有する高固形分pcc
CA2998882A1 (en) An antiscale dispersant composition and use thereof
JP2018535907A (ja) 沈降炭酸カルシウム(pcc)の製造
US9890054B2 (en) Process for producing a stabilized magnesium hydroxide slurry
JP2008239465A (ja) 軽質炭酸カルシウム−シリカ複合物及びアルミニウム系水溶性無機化合物を含むスラリー
JPS61291413A (ja) 水酸化マグネシウム懸濁液の製造法
EA045864B1 (ru) Известковое молоко
US7527825B2 (en) Method for avoiding the agglomeration of pellets treated at high temperatures
JPH0339010B2 (ru)
JPS61101413A (ja) 流動性および懸濁安定性に富む珪酸塩スラリ−
EP1791916A2 (en) Stabilized kaolin slurry and methods for improving kaolin slurry stability
HORIOKA RESEARCH ON THE PREPARATION OF THE COAGULANT FROM ALLOPHANE