RU2325757C2 - Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально-частотное уплотнение - Google Patents

Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально-частотное уплотнение Download PDF

Info

Publication number
RU2325757C2
RU2325757C2 RU2005101415/09A RU2005101415A RU2325757C2 RU 2325757 C2 RU2325757 C2 RU 2325757C2 RU 2005101415/09 A RU2005101415/09 A RU 2005101415/09A RU 2005101415 A RU2005101415 A RU 2005101415A RU 2325757 C2 RU2325757 C2 RU 2325757C2
Authority
RU
Russia
Prior art keywords
pair
transmission
symbols
modulation symbols
antennas
Prior art date
Application number
RU2005101415/09A
Other languages
English (en)
Other versions
RU2005101415A (ru
Inventor
Джей Р. УОЛТОН (US)
Джей Р. УОЛТОН
Джон У. КЕТЧУМ (US)
Джон У. КЕТЧУМ
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2005101415A publication Critical patent/RU2005101415A/ru
Application granted granted Critical
Publication of RU2325757C2 publication Critical patent/RU2325757C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0678Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using different spreading codes between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к технике передачи данных. Технический результат состоит в обеспечении возможности использования нескольких режимов передачи с разнесением, в зависимости от функциональной возможности устройства приема и состояния канала. Для этого в способе для каждого одного или более потоков данных выбирают конкретный режим передачи с разнесением для использования из нескольких возможных режимов передачи. Эти режимы передачи могут включать в себя режим передачи с разнесением по частоте, режим передачи с разнесением Уолша и режим передачи с пространственно-временным разнесением передачи (ПВРП). Каждый режим передачи с разнесением передает данные с избыточностью во времени, по частоте, в пространстве или их комбинации. Каждый поток данных кодируют и модулируют, чтобы предоставить символы модуляции, которые дополнительно обрабатывают на основании выбранного режима передачи с разнесением, чтобы предоставить символы передачи. Для ортогонально частотного уплотнения (ОЧУ) символы передачи для всех потоков данных дополнительно модулируют с помощью ОЧУ, чтобы предоставить поток символов передачи для каждой передающей антенны, используемой для передачи данных. 6 н. и 48 з.п. ф-лы, 12 ил., 2 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение, в целом, относится к передаче данных и, более конкретно, к способам, предназначенным для передачи данных с использованием нескольких режимов передачи с разнесением в системах с MIMO OFDM (ОЧУ с МВхМВых, ортогонально частотным уплотнением с множеством входов и множеством выходов).
Уровень техники
Системы беспроводной связи широко используются, чтобы обеспечить различные типы связи, такие как речь, пакетные данные и т.д. Эти системы могут быть системами множественного доступа, которые могут поддерживать связь с множеством пользователей либо последовательно, либо одновременно. Это достигается с помощью разделения имеющихся системных ресурсов, которые в количественной форме могут быть выражены с помощью общей имеющейся рабочей полосы частот и мощности передачи.
Система множественного доступа может включать в себя несколько пунктов доступа (или базовых станций), которые взаимодействуют с несколькими пользовательскими терминалами. Каждый пункт доступа может быть оснащен одной или множеством антенн, предназначенных для передачи и приема данных. Подобным образом каждый терминал может быть оснащен одной или множеством антенн.
Передача между данным пунктом доступа и данным терминалом может отличаться числом антенн, используемых для передачи и приема данных. В частности, пара: пункт доступа и терминал могут рассматриваться как (1) система с множеством входов и множеством выходов (МВхМВых), если для передачи данных используется множество (NT) передающих и множество (NR) принимающих антенн, (2) система с множеством входов и одним выходом (MISO, МВхОВых), если используется множество передающих антенн и одна принимающая антенна, (3) система с одним входом и множеством выходов (SIMO, ОВхМВых), если используется одна передающая антенна и множество принимающих антенн, или (4) система с одним входом и одним выходом (SISO, ОВхОВых), если используется одна передающая антенна и одна принимающая антенна.
Для системы с МВхМВых канал с МВхМВых, сформированный с помощью NT передающих и NR принимающих антенн, может быть разделен на NS независимых каналов с NS ≤ min (NT, NR). Каждый из NS независимых каналов также упоминается как пространственный подканал канала с МВхМВых и соответствует некоторому измерению. Система с МВхМВых может обеспечить улучшенную эффективность (например, повышенную пропускную способность передачи и/или бульшую надежность), если используются дополнительные измерения, созданные с помощью множества передающих и принимающих антенн. Для системы с МВхОВых для передачи данных доступен только один пространственный подканал. Однако множество передающих антенн может быть использовано для того, чтобы передавать данные некоторым способом, чтобы повысить вероятность правильного приема приемником.
Пространственные подканалы широкополосной системы могут сталкиваться с различными состояниями каналов из-за различных факторов, таких как замирание и множество маршрутов. Следовательно, каждый пространственный подканал может испытывать частотное избирательное замирание, которое отличается разными коэффициентами усиления каналов на разных частотах общей полосы частот системы. Хорошо известно, что частотное избирательное замирание вызывает межсимвольные помехи (ISI, МП), которые являются явлением, при котором каждый символ в принятом сигнале действует как искажение для следующих символов в принятом сигнале. Искажение МП ухудшает производительность с помощью влияния на способность правильно обнаруживать принятые символы.
Чтобы побороть частотное избирательное замирание, может быть использовано ортогональное частотное уплотнение (OFDM, ОЧУ), чтобы эффективно разделить общую полосу частот системы на несколько поддиапазонов (NF), которые также могут быть упомянуты как поддиапазоны ОЧУ, частотные элементы кодированного сигнала или частотные подканалы. Каждый поддиапазон связан с соответствующей поднесущей, на которой могут быть модулированы данные. Для каждого интервала времени, который может зависеть от полосы частот одного поддиапазона, символ модуляции может быть передан в каждом из NF поддиапазонов.
Для системы множественного доступа данный пункт доступа может взаимодействовать с терминалами, имеющими различное число антенн, в разные моменты времени. Кроме того, характеристики каналов связи между пунктом доступа и терминалами обычно изменяются от терминала к терминалу и дополнительно могут изменяться во времени, особенно для мобильных терминалов. Тогда могут требоваться разные схемы передачи для разных терминалов в зависимости от их функциональных возможностей и требований.
Следовательно, в данной области техники имеется потребность в способах, предназначенных для передачи данных с использованием нескольких режимов передачи с разнесением, в зависимости от функциональной возможности устройства приемника и состояний канала.
Раскрытие изобретения
В настоящей заявке предоставлены способы, предназначенные для передачи данных некоторым способом, чтобы повысить надежность передачи данных. Система с ОЧУ с МВхМВых может быть сконструирована таким образом, чтобы поддерживать несколько режимов работы для передачи данных. Эти режимы передачи могут включать в себя режимы с разнесением, которые могут использоваться, чтобы достичь более высокой надежности для определенной передачи данных (например, для служебных каналов, плохих состояний каналов и т.д.). Режимы передачи с разнесением пытаются достичь разнесения передачи с помощью установления ортогональности между множеством сигналов, переданных из множества передающих антенн. Ортогональность между переданными сигналами может быть получена по частоте, во времени, в пространстве или любой их комбинации. Режимы передачи также могут включать в себя режимы передачи с пространственным мультиплексированием и режимы передачи с управлением лучом, которые могут быть использованы, чтобы достичь более высоких скоростей передачи при определенных благоприятных состояниях канала.
В варианте осуществления представлен способ, предназначенный для обработки данных для передачи (например, с ОЧУ с МВхМВых) в системе беспроводной связи. В соответствии со способом выбирают конкретный режим с разнесением передачи из некоторого числа возможных режимов передачи. Каждый режим с разнесением передачи передает с избыточностью данные во времени, по частоте, в пространстве или их комбинации. Каждый поток данных кодируют и модулируют на основании схем кодирования и модуляции, выбранных для потока данных, чтобы предоставить символы модуляции. Символы модуляции для каждого потока данных дополнительно обрабатывают на основании выбранного режима с разнесением передачи, чтобы предоставить символы передачи. Для ОЧУ символы передачи для всех потоков данных дополнительно модулируют с помощью ОЧУ, чтобы предоставить поток символов передачи для каждой одной или более передающих антенн, используемых для передачи данных. Пилот-символы также могут быть мультиплексированы с символами модуляции с использованием частотного уплотнения (FDM, ЧУ), временного мультиплексирования (TDM, ВМ), кодового уплотнения (CDM, КУ) или любой их комбинации.
Режимы передачи могут включать в себя, например, (1) режим передачи с разнесением по частоте, который передает с избыточностью символы модуляции через множество поддиапазонов ОЧУ, (2) режим передачи с разнесением Уолша, который передает каждый символ модуляции через NT периодов символов ОЧУ, где NT - число передающих антенн, используемых для передачи данных, (3) режим передачи с пространственно-временным разнесением передачи (STTD, ПВРП), который передает символы модуляции через множество периодов символов ОЧУ и множество передающих антенн, и (4) режим передачи Уолша-ПВРП, который передает символы модуляции с использованием комбинации разнесения Уолша и ПВРП. Для режимов передачи с разнесением Уолша и Уолша-ПВРП одни и те же символы модуляции могут быть переданы с избыточностью через все передающие антенны или разные символы модуляции могут быть переданы через разные передающие антенны.
Каждый поток данных может быть предназначен для служебного канала или адресован для конкретного устройства приемника. Скорость данных для каждого потока данных, заданного пользователем, может регулироваться на основании функциональных возможностей передачи устройства приемника. Символы передачи для каждого потока данных передают в соответствующих группах одного или более поддиапазонов.
В другом варианте осуществления представлен способ, предназначенный для обработки передачи данных в приемнике системы беспроводной связи. В соответствии с этим способом сначала определяют конкретный режим с разнесением передачи, используемый для каждого одного или более восстанавливаемых потоков данных. Режим с разнесением передачи, используемый для каждого потока данных, выбирают из некоторого числа возможных режимов передачи. Затем принятые символы для каждого потока данных обрабатывают на основании режима передачи с разнесением, использованного для потока данных, чтобы обеспечить восстановленные символы, которые являются оценками символов модуляции, переданных из передатчика, для потока данных. Восстановленные символы для каждого потока данных дополнительно демодулируют и декодируют, чтобы предоставить декодированные данные для потока данных.
Различные аспекты и варианты осуществления изобретения описаны более подробно ниже. Изобретение дополнительно представляет способы, блоки передатчика, блоки приемника, терминалы, пункты доступа, системы и признаки изобретения, как описано более подробно ниже.
Краткое описание чертежей
Признаки, сущность и преимущества настоящего изобретения станут более понятными из подробного описания, приведенного ниже, взятого совместно с чертежами, на которых одинаковые ссылочные символы соответственно указаны по всем чертежам и на которых:
фиг.1 представляет схему системы множественного доступа, которая поддерживает несколько пользователей;
фиг.2 представляет блок-схему варианта осуществления пункта доступа и двух терминалов;
фиг.3 представляет блок-схему блока передатчика;
фиг.4 представляет блок-схему процессора разнесения ТХ, ПЕРЕД, который может быть использован, чтобы реализовать схему с разнесением по частоте;
фиг.5 представляет блок-схему процессора разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему разнесения Уолша;
фиг.6 представляет блок-схему процессора разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему ПВРП;
фиг.7 представляет блок-схему процессора разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему повторенного Уолша-ПВРП;
фиг.8 представляет блок-схему процессора разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему неповторенного Уолша-ПВРП;
фиг.9 представляет блок-схему блока приемника;
фиг.10 представляет блок-схему процессора разнесения RX, ПРИЕМ;
фиг.11 представляет блок-схему процессора антенны ПРИЕМ в процессоре разнесения ПРИЕМ, и которая может быть использована для схемы разнесения Уолша; и
фиг.12 представляет блок-схему процессора поддиапазона ПРИЕМ в процессоре антенны приемника, и которая может быть использована для схем повторенного и неповторенного Уолша-ПВРП.
Подробное описание предпочтительного варианта осуществления
Фиг.1 представляет схему системы 100 множественного доступа, которая поддерживает несколько пользователей. Система 100 включает в себя один или более пунктов 104 доступа (АР, ПД), которые взаимодействуют с некоторым числом терминалов (Т, Т) 106 (для простоты на фиг.1 изображен только один пункт доступа). Пункт доступа также может быть упомянут как базовая станция, UTRAN или некоторая другая терминология. Терминал также может быть упомянут как микротелефонная трубка, подвижная станция, дистанционная станция, пользовательское оборудование (UE, ПО) или некоторая другая терминология. Каждый терминал 106 может одновременно взаимодействовать с множеством пунктов 104 доступа, когда находится в состоянии мягкой передачи обслуживания (если мягкая передача обслуживания поддерживается системой).
В варианте осуществления каждый пункт 104 доступа использует множество антенн и представляет (1) множество входов (MI, МВх) для передачи по прямой линии связи из пункта доступа в терминал и (2) множество выходов (МО, МВых) для передачи по обратной линии связи из терминала в пункт доступа. Множество из одного или более терминалов 106, взаимодействующих с данным пунктом доступа, совместно представляет множество выходов для передачи по прямой линии связи и множество входов для передачи по обратной линии связи.
Каждый пункт доступа может взаимодействовать с одним или множеством терминалов 106 либо одновременно, либо последовательно через множество антенн, имеющихся в пункте доступа, и одну или множество антенн, имеющихся в каждом терминале. Терминалы, не находящиеся в активной связи, могут принимать пилот-сигналы и/или другую сигнальную информацию из пункта доступа, как изображено с помощью пунктирных линий для терминалов 106е-106h на фиг.1.
Для прямой линии связи пункт доступа использует NT антенн, и каждый терминал использует 1 или NR антенн для приема одного или более потоков данных из пункта доступа. В целом NR может быть разным для разных терминалов с множеством антенн и может быть любым целым числом. Канал МВхМВых, сформированный с помощью NT передающих антенн и NR принимающих антенн, может быть разбит на NS независимых каналов с NS ≤ min {NT, NR}. Каждый такой независимый канал также упоминается как пространственный подканал канала с МВхМВых. Терминалы, одновременно принимающие передачи данных приямой линии связи, необязательно должны быть оснащены одинаковым числом принимающих антенн.
Для прямой линии связи число принимающих антенн в данном терминале может быть больше или равно числу передающих антенн в пункте доступа (т.е. NR ≥ NT). Для такого терминала число пространственных подканалов ограничено числом передающих антенн в пункте доступа. Каждый терминал с множеством антенн взаимодействует с пунктом доступа через соответствующий канал МВхМВых, сформированный с помощью NT передающих антенн пункта доступа и его собственными NR антеннами. Однако даже, если выбрано множество терминалов с множеством антенн для одновременной передачи данных прямой линии связи, имеется только NS пространственных подканалов, независимо от числа терминалов, принимающих передачу прямой линии связи.
Для прямой линии связи число принимающих антенн в данном терминале также может быть меньше чем число передающих антенн в пункте доступа (т.е. NR < NT). Например, терминал с МВхОВых оснащен одной принимающей антенной (NR = 1) для передачи данных прямой линии связи. Тогда пункт доступа может использовать разнесение, управление лучом, множественный доступ с пространственным разделением (SDMA, МДПР) или некоторые другие способы передачи, чтобы одновременно взаимодействовать с одним или множеством терминалов с МВхМВых.
Для обратной линии связи каждый терминал может использовать одну антенну или множество антенн для передачи данных обратной линии связи. Каждый терминал также может использовать все или только подмножество своих имеющихся антенн для передачи обратной линии связи. В любой данный момент NT передающих антенн для обратной линии связи сформированы с помощью всех антенн, используемых одним или более активными терминалами. Тогда канал с МВхМВых формируется с помощью NT передающих антенн из всех активных терминалов и NR принимающих антенн пункта доступа. Число пространственных подканалов ограничено числом передающих антенн, которое обычно ограничено числом принимающих антенн в пункте доступа (т.е. NS ≤ min {NT, NR}).
Фиг.2 представляет блок-схему варианта осуществления пункта 104 доступа и двух терминалов. В прямой линии связи в пункте 104 доступа различные типы данных трафика, такие как данные, заданные пользователем из источника 208 данных, сигнальные данные и т.д., подаются в процессор 210 данных передачи (TX, ПЕРЕД). Затем процессор 210 форматирует и кодирует данные трафика на основании одной или более схем кодирования, чтобы предоставить закодированные данные. Затем закодированные данные перемежают и дополнительно модулируют (т.е. отображают в символы) на основании одной или более схем модуляции, чтобы предоставить символы модуляции (т.е. модулированные данные). Скорость данных, кодирование, перемежение и отображение в символы могут быть определены с помощью управляющих сигналов, предоставленных с помощью контроллера 230 и планировщика 234. Обработка с помощью процессора 210 данных ПЕРЕД описана более подробно ниже.
Процессор 220 передачи затем принимает и обрабатывает символы модуляции и пилот-данные, чтобы предоставить символы передачи. Пилот-данные обычно являются известными данными, обработанными, вообще говоря, известным способом. В конкретном варианте осуществления обработка с помощью процессора 220 передачи включает в себя (1) обработку символов модуляции на основании одного или более режимов передачи, выбранных для использования для передачи данных, в терминалы, чтобы предоставить символы передачи, и (2) обработку с помощью ОЧУ символов передачи, чтобы предоставить символы передачи. Обработка с помощью процессора 220 передачи описана более подробно ниже.
Процессор 220 передачи подает NT потоков символов передачи в NT передатчиков (TMTR, ПЕРЕДАТ) 222а-222t, причем для передачи данных используется один передатчик для каждой антенны. Каждый передатчик 222 преобразует свой поток символов передачи в один или более аналоговых сигналов и дополнительно обрабатывает (например, усиливает, фильтрует и преобразует с повышением частоты) аналоговые сигналы, чтобы сгенерировать соответствующий модулированный сигнал прямой линии связи, подходящий для передачи через беспроводной канал связи. Каждый модулированный сигнал прямой линии связи затем передается через соответствующую антенну 224 в терминалы.
В каждом терминале 106 модулированные сигналы прямой линии связи из множества передающих антенн пункта доступа принимаются с помощью одной или множества антенн 252, имеющихся в терминале. Принятый сигнал из каждой антенны 252 подается в соответствующий приемник (RCVR, ПРИЕМН) 254. Каждый приемник 254 обрабатывает (например, фильтрует, усиливает и преобразует с понижением частоты) свой принятый сигнал и дополнительно преобразует в цифровой вид обработанный сигнал, чтобы предоставить соответствующий поток выборок.
Затем процессор 260 приема принимает и обрабатывает потоки выборок из всех приемников 254, чтобы предоставить восстановленные символы (т.е. демодулированные данные). В конкретном варианте осуществления обработка с помощью процессора 260 приема включает в себя (1) обработку с помощью ОЧУ принятых символов передачи, чтобы предоставить принятые символы, и (2) обработку принятых символов на основании выбранного режима (режимов) передачи, чтобы получить восстановленные символы. Восстановленные символы являются оценками символов модуляции, переданных пунктом доступа. Обработка с помощью процессора 260 приема описана более подробно ниже.
Процессор 262 приема (ПРИЕМ) данных выполняет операции обратного отображения символов, удаления перемежения и декодирует восстановленные символы, чтобы получить данные, заданные пользователем, и сигнальную информацию, переданные по прямой линии связи для терминала. Обработка с помощью процессора 260 приема и процессора 262 данных ПРИЕМ является дополняющей к обработке, выполняемой с помощью процессора 220 передачи и процессора 210 данных ПЕРЕД, соответственно, в пункте доступа.
В обратной линии связи в терминале 106 различные типы данных трафика, такие как данные, заданные пользователем, из источника 276 данных, сигнальная информация и т.д., подаются в процессор 278 данных ПЕРЕД данных. Процессор 278 кодирует разные типы данных трафика в соответствии с их соответствующими схемами кодирования, чтобы предоставить закодированные данные, и дополнительно перемежает закодированные данные. Затем модулятор 280 отображает символы перемежеванных данных, чтобы предоставить модулированные данные, которые подаются в один или более передатчиков 254. ОЧУ может использоваться или может не использоваться для передачи данных обратной линии связи в зависимости от конструкции системы. Каждый передатчик 254 обрабатывает принятый модулированный сигнал, чтобы сгенерировать соответствующий модулированный сигнал обратной линии связи, который затем передается через связанную антенну 252 в пункт доступа.
В пункте 104 доступа модулированные сигналы обратной линии связи из одного или более терминалов принимаются с помощью антенн 224. Принятый сигнал из каждой антенны 224 подается в приемник 222, который обрабатывает принятый сигнал и преобразует его в цифровой вид, чтобы предоставить соответствующий поток выборок. Затем потоки выборок из всех приемников 222 обрабатываются с помощью демодулятора 240 и дополнительно декодируются (если необходимо) с помощью процессора 242 данных ПРИЕМ, чтобы восстановить данные, переданные терминалами.
Контроллеры 230 и 270 управляют операцией в пункте доступа и терминале, соответственно. Памяти 232 и 272 обеспечивают запоминание программных кодов и данных, используемых контроллерами 230 и 270, соответственно. Планировщик 234 планирует передачу данных по прямой линии связи (и, возможно, обратной линии связи) для терминалов.
Для ясности разные схемы разнесения передачи конкретно описаны ниже для передачи прямой линии связи. Эти схемы также могут быть использованы для передачи обратной линии связи, и это находится в рамках объема изобретения. Также для ясности в следующем описании индекс "i" используется в качестве индекса для приемных антенн, индекс "j" используется в качестве индекса для передающих антенн, а индекс "k" используется в качестве индекса для поддиапазонов в системе с ОЧУ с МВхМВых.
Блок передатчика
Фиг.3 представляет блок-схему блока 300 передатчика, который является вариантом осуществления части передатчика пункта 104 доступа. Блок 300 передатчика включает в себя (1) процессор 210а данных ПЕРЕД, который принимает и обрабатывает данные трафика и пилот-данные, чтобы предоставить символы модуляции, и (2) процессор 220а передачи, который дополнительно обрабатывает символы модуляции, чтобы предоставить NT потоков символов передачи для NT передающих антенн. Процессор 210а данных ПЕРЕД и процессор 220а передачи являются одним вариантом осуществления процессора 210а данных ПЕРЕД и процессора 220а передачи, соответственно, на фиг.2.
В конкретном варианте осуществления, изображенном на фиг.3, процессор 210а данных ПЕРЕД включает в себя кодер 312, перемежитель 314 канала и элемент 316 отображения символов. Кодер 312 принимает и кодирует данные трафика (т.е. информационные биты) на основании одной или более схем кодирования, чтобы предоставить закодированные биты. Кодирование увеличивает надежность передачи данных.
В варианте осуществления данные, заданные пользователем, для каждого терминала и данные для каждого служебного канала могут рассматриваться как отдельные потоки данных. Служебные каналы могут включать в себя широковещательные, пейджинговые и другие общие каналы, предназначенные для приема всеми антеннами. Множество потоков данных также может быть послано в данный терминал. Каждый поток данных может быть закодирован независимо на основании конкретной схемы кодирования, выбранной для этого потока данных. Следовательно, некоторое число независимо закодированных потоков данных может быть обеспечено с помощью кодера 312 для разных служебных каналов и терминалов.
Конкретная схема кодирования, используемая для каждого потока данных, определяется с помощью управляющего сигнала кодирования из контроллера 230. Схема кодирования для каждого терминала может быть выбрана, например, на основании информации обратной связи, принятой из терминала. Каждая схема кодирования может включать в себя любую комбинацию кодов прямого нахождения ошибок (FED, ПНО) (например, код контроля циклическим избыточным кодом (CRC, КЦИК) и кодов прямого исправления ошибок (FEC, ПИО) (например, сверточный код, турбокод, блочный код и т.д.). Схема кодирования также может обозначать полное отсутствие кодирования. Для каждого потока данных также могут быть использованы двоичные коды или коды, основанные на решетках. Кроме того, со сверточными и турбокодами может быть использовано прокалывание, чтобы регулировать скорость кода. Более конкретно, прокалывание может быть использовано, чтобы увеличить скорость кода выше базовой скорости кода.
В конкретном варианте осуществления данные для каждого потока данных сначала разделяют на кадры (или пакеты). Для каждого кадра данные могут быть использованы таким образом, чтобы сгенерировать множество битов КЦИК для кадра, которые затем присоединяют к данным. Затем данные и биты КЦИК для каждого кадра кодируют либо с помощью сверточного кода, либо с помощью турбокода, чтобы сгенерировать закодированные данные для кадра.
Перемежитель 314 канала принимает и перемежает закодированные биты на основании одной или более схем перемежения. В этом случае каждый независимо закодированный поток данных мог бы быть перемежеван отдельно. Перемежение обеспечивает разнесение во времени для закодированных битов, позволяет каждому потоку данных быть переданным на основании среднего SNR (ОСШ (отношение сигнал/шум)) поддиапазонов и пространственных подканалов, использованных для потока данных, борется против затухания и дополнительно удаляет корреляцию между закодированными битами, использованными, чтобы сформировать каждый символ модуляции.
С ОЧУ перемежитель канала может быть предназначен для того, чтобы распределять закодированные данные для каждого потока данных через множество поддиапазонов одного символа ОЧУ или, возможно, через множество символов ОЧУ. Задачей перемежителя канала является рандомизировать закодированные данные таким образом, чтобы уменьшилась вероятность искажения последовательных закодированных битов каналом связи. Когда интервал перемежения для данного потока данных охватывает один символ ОЧУ, закодированные биты для потока данных произвольно распределяются по поддиапазонам, использованным для потока данных, чтобы использовать разнесение частоты. Когда интервал перемежения охватывает множество символов ОЧУ, закодированные биты произвольно распределяются по поддиапазонам, несущим данные интервалу перемежения с множеством символов, чтобы использовать как разнесение частоты, так и разнесение во времени. Для беспроводной локальной сети (WLAN, БЛС) разнесение во времени, реализованное с помощью перемежения через множество символов ОЧУ, может быть незначительным, если минимальное ожидаемое когерентное время когеренции канала связи во много раз больше, чем интервал перемежения.
Элемент 316 отображения символов принимает и отображает перемежеванные данные в соответствии с одной или более схемами модуляции, чтобы предоставить символы модуляции. Для каждого потока данных может быть использована конкретная схема модуляции. Отображение символов для каждого потока данных может быть выполнено с помощью группировки множеств qm закодированных и перемежеванных битов, чтобы сформировать символы данных (каждый из которых может быть недвоичной величиной), и отображения каждого символа данных в точку в совокупность сигналов, соответствующую схеме модуляции, выбранной для использования для этого потока данных. Выбранная схема модуляции может быть QPSK (КФМ (квадратурная фазовая манипуляция)), M-PSK (М-ФМ (многоуровневая фазовая манипуляция)), M-QAM (М-КАМ (многоуровневая квадратурная амплитудная манипуляция)) или некоторой другой схемой модуляции. Каждая точка отображенного сигнала является комплексной величиной и соответствует символу модуляции размерности Mm, где Mm соответствует конкретной схеме модуляции, выбранной для потока данных m, и Mm =
Figure 00000002
. Элемент 316 отображения символов предоставляет поток символов модуляции для каждого потока данных. Потоки символов модуляции для всех потоков данных совместно изображены как поток символов модуляции s(n) на фиг.3.
Таблица 1 перечисляет различные схемы кодирования и модуляции, которые могут быть использованы, чтобы достичь диапазона спектральных эффективностей (или скоростей бита) с использованием сверточного кода или турбокода. Каждая скорость бита (в единице бит/сек/Герц или бит/с/Гц) может быть достигнута с использованием конкретной комбинации скорости кода и схемы модуляции. Например, скорость бита, равная одной второй, может быть достигнута с использованием скорости кода, равной 1/2, и модуляции BPSK (ДФМ (дифференциальная фазовая манипуляция)), скорость бита, равная единице, может быть достигнута с использованием скорости кода, равной 1/2, и модуляции КФМ, и т.д.
В таблице 1 ДФМ, КФМ, 16-КАМ и 64-КАМ используются для перечисленных скоростей бита. Другие схемы модуляции, такие как ДФМ, 8-ФМ, 32 КАМ, 128-КАМ и т.д., также могут быть использованы и находятся в рамках объема изобретения. ДФМ (двоичная фазовая манипуляция) может быть использована, когда трудно отслеживать канал связи, так как указатель когерентности не требуется в приемнике, чтобы демодулировать модулированный сигнал ДФМ. Для ДФМ модуляция может быть выполнена на основе поддиапазона, и схема модуляции, используемая для каждого поддиапазона, может быть выбрана независимо.
Таблица 1
Сверточный код Турбокод
Эффективность (бит/с/Гц) Скорость кода Модуляция Эффективность (бит/с/Гц) Скорость кода Модуляция
0,5 1/2 ДФМ 0,5 1/2 ДФМ
1,0 1/2 КФМ 1,0 1/2 КФМ
1,5 3/4 КФМ 1,5 3/4 КФМ
2,0 1/2 16-КАМ 2,0 1/2 16-КАМ
2,67 2/3 16-КАМ 2,5 5/8 16-КАМ
3,0 3/4 16-КАМ 3,0 3/4 16-КАМ
3,5 7/8 16-КАМ 3,5 7/12 64-КАМ
4,0 2/3 64-КАМ 4,0 2/3 64-КАМ
4,5 3/4 64-КАМ 4,5 3/4 64-КАМ
5,0 5/6 64-КАМ 5,0 5/6 64-КАМ
Также могут быть использованы другие комбинации скоростей кода и схем модуляции, чтобы достичь различных скоростей бита, и это также находится в рамках объема изобретения.
В конкретном варианте осуществления, изображенном на фиг.3, процессор 220а передачи включает в себя процессор 320 разнесения ПЕРЕД и NT модуляторов ОЧУ. Каждый модулятор ОЧУ включает в себя блок 330 обратного быстрого преобразования Фурье (IFFT, ОБПФ) и генератор 332 циклического префикса. Процессор 320 разнесения ПЕРЕД принимает и обрабатывает символы модуляции из процессора 210а данных ПЕРЕД в соответствии с одним или более выбранными режимами передачи, чтобы предоставить символы передачи.
В варианте осуществления процессор 320 разнесения ПЕРЕД дополнительно принимает и мультиплексирует пилот-символы (т.е. пилот-данные) с символами передачи с использованием частотного уплотнения (ЧУ) в подмножестве имеющихся поддиапазонов. Примерная реализация схемы передачи пилот-сигнала ЧУ изображена в таблице 2. В этой реализации имеются 64 поддиапазона для системы с ОЧУ с МВхМВых, индексы поддиапазонов ±7 и ±21 используются для передачи пилот-сигнала. В альтернативных вариантах осуществления пилот-символы могут быть мультиплексированы с символами передачи, например, с использованием временного мультиплексирования (ВМ), кодового уплотнения (КУ) и любой комбинации ЧУ, ВМ и КУ.
Процессор 320 разнесения ПЕРЕД подает один поток символов передачи в каждый модулятор ОЧУ. Обработка с помощью процессора 320 разнесения ПЕРЕД описана более подробно ниже.
Каждый модулятор ОЧУ принимает соответствующий поток xj(n) символов передачи xj(n). В каждом модуляторе ОЧУ блок 330 ОБПФ группирует каждое множество из NF символов передачи в поток xj(n), чтобы сформировать соответствующий вектор символов, и преобразует вектор символов в его представление во временной области (которое упоминается как символ ОЧУ) с использованием обратного быстрого преобразования Фурье.
Для каждого символа ОЧУ генератор 332 циклического префикса повторяет часть символа ОЧУ, чтобы сформировать соответствующий символ передачи. Циклический префикс гарантирует, что символ передачи сохраняет свое свойство ортогональности при наличии распространения многомаршрутной задержки, таким образом, улучшая эффективность против вредных эффектов, таких как дисперсия канала, вызванных частотным избирательным замиранием. Фиксированный или регулируемый циклический префикс может быть использован для каждого символа ОЧУ. В качестве конкретного примера регулируемого циклического префикса система может иметь полосу частот, равную 20 МГц, период элементарной посылки, равный 50 нсек, и 64 поддиапазона. Для этой системы каждый символ ОЧУ имел бы длительность, равную 3,2 мксек (или 64×50 нсек). Циклический префикс для каждого символа ОЧУ может иметь минимальную длительность, равную 4 элементарным посылкам (200 нсек), и максимальную длительность, равную 16 элементарным посылкам (800 нсек), с приращением, равным 4 элементарным посылкам (200 нсек). Каждый символ передачи тогда имел бы длительность, находящуюся в диапазоне от 3,4 мксек до 4,0 мксек, для циклического префикса от 200 нсек до 800 нсек, соответственно.
Генератор 332 циклического префикса в каждом модуляторе ОЧУ подает поток символов передачи в связанный передатчик 222. Каждый передатчик 222 принимает и обрабатывает соответствующий поток символов передачи, чтобы сгенерировать модулированный сигнал прямой линии связи, который затем передается из связанной антенны 224.
Кодирование и модуляция для системы с ОЧУ с МВхМВых описаны более подробно в следующих заявках на патент США:
заявка на патент США, серийный № 09/993087, озаглавленная "Система связи множественного доступа с множеством входов, множеством выходов (МВхМВых)", зарегистрированная 6 ноября 2001 г.;
заявка на патент США, серийный № 09/854235, озаглавленная "Способ и устройство, предназначенные для обработки данных в системе связи с множеством входов, множеством выходов (МВхМВых), с использованием информации о состоянии канала", зарегистрированная 11 мая 2001 г.;
заявки на патент США, серийные №№ 09/826481 и 09/956449, обе озаглавленные "Способ и устройство, предназначенные для использования информации о состоянии канала в беспроводной системе связи", соответственно зарегистрированные 23 марта 2001 г. и 18 сентября 2001 г.;
заявка на патент США, серийный № 09/776075, озаглавленная "Схема кодирования для беспроводной системе связи", зарегистрированная 1 февраля 2001 г.; и
заявка на патент США, серийный № 09/532492, озаглавленная "Система связи высокой эффективности, высокой производительности, использующая модуляцию с множеством несущих", зарегистрированная 30 марта 2000 г.
Права на все эти заявки на патент переданы владельцу настоящей заявки, и эти заявки на патент включены в настоящее описание в качестве ссылки.
Система с ОЧУ с МВхМВых может быть сконструирована таким образом, чтобы поддерживать несколько режимов работы для передачи данных. Эти режимы передачи включают в себя режимы передачи с разнесением, режимы передачи с пространственным мультиплексированием и режимы передачи с управлением лучом.
Режимы пространственного мультиплексирования и управления лучом могут быть использованы, чтобы достичь более высоких скоростей бита при определенных благоприятных состояниях канала. Эти режимы передачи описаны более подробно в заявке на патент США, серийный № 10/085456, озаглавленной "Системы с множеством входов, множеством выходов (МВхМВых) с множеством режимов передачи", зарегистрированной 26 февраля 2002 г., права на которую переданы владельцу настоящей заявки, и включенной в настоящее описание в качестве ссылки.
Режимы передачи с разнесением могут быть использованы для того, чтобы достичь более высокой надежности для определенных передач данных. Например, режимы передачи с разнесением могут быть использованы для служебных каналов в прямой линии связи, таких как широковещательные, пейджинговые и другие общие каналы. Режимы передачи с разнесением также могут быть использованы для передачи данных (1) всякий раз, когда передатчик не имеет адекватной информации о состоянии канала (CSI, ИСК) для канала связи, (2) когда состояния канала являются достаточно плохими (например, при определенных состояниях мобильности) и не могут поддерживать более спектрально эффективные режимы передачи, и (3) для других ситуаций. Когда режимы передачи с разнесением используются для передачи данных прямой линии связи в терминалы, можно управлять скоростью и/или мощностью для каждого терминала, чтобы улучшить эффективность. Могут поддерживаться несколько режимов передачи с разнесением, и они описаны более подробно ниже.
Режимы передачи с разнесением пытаются достичь разнесения передачи с помощью установления ортогональности между множеством сигналов, передаваемых из множества передающих антенн. Ортогональность между передаваемыми сигналами может быть получена по частоте, во времени, в пространстве или любой их комбинации. Разнесение передачи может быть установлено посредством любого способа или комбинации следующих способов обработки:
- Разнесение по частоте (или поддиапазонам). Собственная ортогональность между поддиапазонами, обеспеченная с помощью ОЧУ, используется, чтобы обеспечить разнесение против частотного избирательного замирания.
- Разнесение передачи с использованием ортогональных функций. Функции Уолша или некоторые другие функции применяются к символам ОЧУ, передаваемым из множества передающих антенн, чтобы установить ортогональность между передаваемыми сигналами. Эта схема также упоминается в настоящем описании как схема "разнесения Уолша".
- Пространственно-временное разнесение передачи (ПВРП). Пространственную ортогональность устанавливают между парами передающих антенн, в то же время сохраняя потенциал для более высокой спектральной эффективности, предложенной способами МВхМВых.
В целом, схема разнесения по частоте может быть использована, чтобы побороть частотное избирательное замирание, и работает в частотных и пространственных измерениях. Схема разнесения Уолша и схема ПВРП работают во временных и пространственных измерениях.
Для ясности способы обработки, перечисленные выше, и определенные их комбинации будут описаны для примерной системы с ОЧУ с МВхМВых. В этой системе каждый пункт доступа оснащен четырьмя антеннами, чтобы передавать и принимать данные, а каждый терминал может быть оснащен одной или множеством антенн.
Разнесение по частоте
Фиг.4 представляет блок-схему варианта осуществления процессора 320а разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему разнесения по частоте. Для ОЧУ поддиапазоны являются ортогональными друг другу по своей сути. Разнесение по частоте может быть установлено с помощью передачи одинаковых символов модуляции в множестве поддиапазонов.
Как изображено на фиг.4, символы s(n) модуляции из процессора 210 данных ПЕРЕД подаются в блок 410 повторения символов. Блок 410 повторяет каждый символ модуляции на основании (например, двойного или квадратичного) разнесения, обеспечиваемого для символа модуляции. Затем демультиплексор 412 принимает повторенные символы и пилот-символы и демультиплексирует эти символы в NT потоков символов передачи. Символы модуляции для каждого потока данных могут быть переданы в соответствующих группах одного или более поддиапазонов, назначенных этому потоку данных. Некоторые из имеющихся поддиапазонов могут быть зарезервированы для передачи пилот-сигнала (например, с использованием ЧУ). В качестве альтернативы, пилот-символы могут быть переданы вместе с символами модуляции с использованием ВМ или КУ.
Обычно желательно передавать повторенные символы в поддиапазонах, которые разделены между собой, по меньшей мере, с помощью когерентной полосы частот канала связи. Кроме того, символы модуляции могут быть повторены через несколько поддиапазонов. Больший коэффициент повторения соответствует большей избыточности и увеличивает вероятность правильного приема в приемнике за счет уменьшенной эффективности.
Для ясности конкретный вариант реализации схемы разнесения по частоте описан ниже для конкретной системы с ОЧУ с МВхМВых, которая имеет некоторые из характеристик, определенных стандартом 802.11а IEEE. Спецификации для этого стандарта IEEE описаны в документе, озаглавленном "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications: High-speed Physical Layer in the 5 GHz Band", сентябрь 1999 г., который является общедоступным и включен в настоящее описание в качестве ссылки. Эта система имеет структуру формы сигнала ОЧУ с 64 поддиапазонами. Из этих 64 поддиапазонов 48 поддиапазонов (с индексами ±{1, ..., 6, 8, ..., 20, 22, ..., 26}) используются для данных, 4 поддиапазона (с индексами ±{7, 21}) используются для пилот-сигнала, поддиапазон постоянного тока (с индексом 0) не используется, а остальные поддиапазоны также не используются и служат в качестве защитных поддиапазонов.
Таблица 2 изображает конкретный вариант реализации для двойного и квадратичного разнесения по частоте для системы, описанной выше. Для двойного разнесения по частоте каждый символ модуляции передается через два поддиапазона, которые разделены либо 26, либо 27 поддиапазонами. Для квадратичного разнесения по частоте каждый символ модуляции передается через четыре поддиапазона, которые разделены либо 13, либо 14 поддиапазонами. Другие схемы разнесения по частоте также могут быть использованы и находятся в рамках объема изобретения.
Таблица 2
Индексы поддиапазона Двойное разнесение Квадратичное разнесение Индексы поддиапазона Двойное разнесение Квадратичное разнесение
-26 1 1 1 1 1
-25 2 2 2 2 2
-24 3 3 3 3 3
-23 4 4 4 4 4
-22 5 5 5 5 5
-21 пилот-сигнал пилот-сигнал 6 6 6
-20 6 6 7 пилот-сигнал пилот-сигнал
-19 7 7 8 7 7
-18 8 8 9 8 8
-17 9 9 10 9 9
-16 10 10 11 10 10
-15 11 11 12 11 11
-14 12 12 13 12 12
-13 13 1 14 13 1
-12 14 2 15 14 2
-11 15 3 16 15 3
-10 16 4 17 16 4
-9 17 5 18 17 5
-8 18 6 19 18 6
-7 пилот-сигнал пилот-сигнал 20 19 7
-6 19 7 21 пилот-сигнал пилот-сигнал
-5 20 8 22 21 8
-4 21 9 23 22 9
-3 22 10 24 23 10
-2 23 11 25 24 11
-1 24 12 26 25 12
0 DC DC - - -
Схема разнесения по частоте может быть использована передатчиком (например, терминалом), не оснащенным множеством передающих антенн. В этом случае один поток символов передачи выдается процессором 310а разнесения ПЕРЕД. Каждый символ модуляции в s(n) может быть повторен и передан в множестве поддиапазонов. Для терминала с одной антенной разнесение по частоте может быть использовано, чтобы обеспечить надежное функционирование при наличии частотного избирательного замирания.
Схема разнесения по частоте также может быть использована, когда имеется множество передающих антенн. Это может быть выполнено с помощью передачи одного и того же символа модуляции из всех передающих антенн в разных поддиапазонах или группах поддиапазонов. Например, в устройстве с четырьмя передающими антеннами каждый четвертый поддиапазон может быть назначен одной из передающих антенн. Тогда каждая передающая антенна была бы связана с разной группой из NF/4 поддиапазонов. Для квадратичного разнесения по частоте каждый символ модуляции тогда передавался бы в множестве из четырех поддиапазонов, один в каждой из групп четырех поддиапазонов, причем каждая группа связана с конкретной передающей антенной. Четыре поддиапазона в множестве также могут быть выбраны таким образом, чтобы они были как можно дальше разделены между собой. Для двойного разнесения по частоте каждый символ модуляции может быть передан в множестве из двух поддиапазонов, один в каждой из групп из двух поддиапазонов. Другие варианты реализации для разнесения по частоте с множеством передающих антенн также могут предполагаться, и это находится в рамках объема изобретения. Схема разнесения по частоте также может быть использована в комбинации с одной или более другими схемами разнесения по частоте, как описано ниже.
Разнесение передачи Уолша
Фиг.5 представляет блок-схему варианта осуществления процессора 320b разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему разнесения Уолша. Для этой схемы разнесения используются ортогональные функции (или коды), чтобы установить ортогональность во времени, которая, в свою очередь, может быть использована, чтобы установить полное разнесение передачи через все передающие антенны. Это выполняется с помощью повторения одних и тех же символов модуляции через передающие антенны и расширения во времени этих символов с помощью разных ортогональных функций для каждой передающей антенны, как описано ниже. Обычно могут быть использованы различные ортогональные функции, такие как функции Уолша, коды коэффициента ортогонального переменного расширения (OVSF, КОПР) и т.д. Для ясности в следующем описании используются функции Уолша.
В варианте осуществления, изображенном на фиг.5, символы s(n) модуляции из процессора 210 данных ПЕРЕД подаются в демультиплексор 510, который демультиплексирует символы в NB подпотоков символов модуляции, причем для передачи данных используется один подпоток для каждого поддиапазона (т.е. каждый поддиапазон, несущий данные). Каждый подпоток sk(n) символов модуляции подается в соответствующий процессор 520 поддиапазона ПЕРЕД.
В каждом процессоре 520 поддиапазона ПЕРЕД символы модуляции в подпотоке sk(n) подаются в NT мультиплексоров 524а-524d для NT передающих антенн (где NT = 4 для этой примерной системы). В варианте осуществления, изображенном на фиг.5, один символ sk модуляции подается во все четыре умножителя 524 в течение каждого периода из 4 символов, что соответствует частоте символов, равной (4ТОЧУ)-1. Каждый умножитель также принимает другую функцию Уолша, имеющую четыре элементарных посылки (т.е.
Figure 00000003
= {w1j, w2j, w3j, w4j}) и назначенные передающей антенне j, связанной с умножителем. Затем каждый умножитель перемножает символы sk c функцией Wj Уолша и выдает последовательность из четырех символов передачи, {(sk·w1j), (sk·w2j), (sk·w3j) и (sk·w4j)}, которые должны быть переданы через четыре последовательных периода символов ОЧУ в поддиапазоне k передающей антенны j. Эти четыре символа передачи имеют ту же самую величину, что и первоначальный символ sk модуляции. Однако знак каждого символа передачи в последовательности определяется с помощью знака элементарной посылки Уолша, используемой для того, чтобы сгенерировать этот символ передачи. Следовательно, функция Уолша используется для того, чтобы расширить во времени каждый символ модуляции через четыре периода символов. Четыре умножителя 524а-524d каждого процессора 520 поддиапазона ПЕРЕД выдают четыре подпотока символов передачи в четыре буфера/мультиплексора 530а-530d, соответственно.
Каждый буфер/мультиплексор 530 принимает пилот-символы и NB подпотоков символов передачи для NB поддиапазонов из NB процессоров 520а-520f поддиапазонов ПЕРЕД. Затем каждый блок мультиплексирует символы передачи и пилот-символы для каждого периода символов и выдает поток символов xj(n) передачи в соответствующий блок 330 ОБПФ. Каждый блок 330 ОБПФ принимает и обрабатывает соответствующий поток xj(n) символов передачи способом, описанным ниже.
В варианте осуществления, изображенном на фиг.5, один символ модуляции передается из всех передающих антенн в каждом из NB поддиапазонов, несущих данные, в течение каждых 4 периодов символов. Когда для передачи данных используются четыре передающие антенны, спектральная эффективность, достигнутая с помощью схемы разнесения Уолша, идентична спектральной эффективности, достигнутой с помощью схемы квадратурного разнесения по частоте, при которой один символ модуляции передается через четыре поддиапазона, несущих данные, в течение каждого периода символов. В схеме разнесения Уолша с четырьмя передающими антеннами длительность или длина функций Уолша равна четырем символам ОЧУ (как обозначено с помощью индекса в
Figure 00000004
Поскольку информация в каждом символе модуляции распределена через четыре последовательных символа ОЧУ, демодуляция в приемнике выполняется на основании четырех последовательных принятых символов ОЧУ.
В альтернативном варианте осуществления увеличенная спектральная эффективность может быть достигнута с помощью передачи разных символов модуляции (вместо одного и того же символа модуляции) в каждой передающей антенне. Например, демультиплексор 510 может быть сконструирован таким образом, чтобы выдавать четыре разных символа s1, s2, s3 и s4 модуляции в умножители 524а-524d в течение каждого периода из 4 символов. Тогда каждый умножитель 524 перемножал бы разный символ модуляции с его функцией Уолша, чтобы выдать разную последовательность из четырех символов передачи. Тогда спектральная эффективность для этого варианта осуществления была бы в четыре раза выше, чем варианта осуществления, изображенного на фиг.5. В качестве другого примера демультиплексор 510 может быть сконструирован таким образом, чтобы выдавать два разных символа модуляции (например, s1 в умножители 524а-524b и s2 в умножители 524с-524d) в течение каждого периода из 4 символов.
Пространственно-временное разнесение передачи (ПВРП)
Пространственно-временное разнесение передачи (ПВРП) поддерживает одновременную передачу фактически двух независимых потоков символов в двух передающих антеннах, в то же время поддерживая ортогональность в приемнике. Следовательно, схема ПВПР может обеспечить более высокую спектральную эффективность по сравнению со схемой разнесения передачи Уолша, изображенной на фиг.5.
Схема ПВПР работает следующим образом. Заявитель допускает, что два символа модуляции, обозначенные как s1 и s2, должны быть переданы в данном поддиапазоне. Передатчик генерирует два вектора
Figure 00000005
и
Figure 00000006
Каждый вектор включает в себя два элемента, которые должны быть переданы последовательно в двух периодах символов из соответствующей передающей антенны (т.е. вектор x 1 передается из антенны 1, а вектор x 2 передается из антенны 2).
Если приемник включает в себя одну принимающую антенну, тогда принятый сигнал может быть выражен в матричной форме как:
Figure 00000007
где r1 и r2 - два символа, принятые через два последовательных периода символов в приемнике;
h1 и h2 - коэффициенты усиления маршрутов из двух передающих антенн в приемную антенну для рассматриваемого поддиапазона, где коэффициенты усиления маршрутов предполагаются постоянными в течение поддиапазона и статичными в течение периода из 2 символов; и
n1 и n2 - шум, связанный с двумя принятыми символами r1 и r2.
Затем приемник может получить оценки двух переданных символов s1 и s2 следующим образом:
Figure 00000008
В альтернативном варианте осуществления передатчик может генерировать два вектора
Figure 00000009
и
Figure 00000010
причем элементы этих двух векторов передаются последовательно через два периода символов из двух передающих антенн. Тогда принятый сигнал может быть выражен как:
Figure 00000011
Тогда приемник может получить оценки двух переданных символов следующим образом:
Figure 00000012
Когда для передачи данных используются две передающие антенны, схема ПВРВ является в два раза более спектрально эффективной по сравнению как со схемой двойного разнесения по частоте, так и со схемой разнесения Уолша с двумя передающими антеннами. Схема ПВРП эффективно передает один независимый символ модуляции на поддиапазон через две передающие антенны в каждый период символов, тогда как схема двойного разнесения по частоте передает только один символ модуляции на два поддиапазона в каждый период символов, а схема разнесения Уолша передает только один символ модуляции в каждом поддиапазоне через два периода символов. Поскольку информация в каждом символе модуляции распределена через два последовательных символа ОЧУ для схемы ПВРП, демодуляция в приемнике выполняется на основании двух последовательных принятых символов ОЧУ.
Фиг.6 представляет блок-схему варианта осуществления процессора 320с разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему ПВРП. В этом варианте осуществления символы s(n) модуляции из процессора 210 данных ПЕРЕД подаются в демультиплексор 610, который демультиплексирует символы в 2NB подпотока символов модуляции, два подпотока для каждого поддиапазона, несущего данные. Каждая пара подпотоков символов модуляции подается в соответствующий процессор 620 поддиапазона ПЕРЕД. Каждый поток символов модуляции включает в себя один символ модуляции для каждого периода из 2 символов, что соответствует частоте символов, равной (2ТОЧУ)-1.
В каждом процессоре 620 поддиапазона ПЕРЕД пара потоков символов модуляции подается в пространственно-временной кодер 622. Для каждой пары символов модуляции в двух подпотоках пространственно-временной кодер 622 выдает два вектора
Figure 00000013
и
Figure 00000014
причем каждый вектор включает в себя два символа передачи, передаваемые через два периода символов. Два символа передачи в каждом векторе имеют ту же самую величину, что и исходные символы модуляции s1 и s2. Однако каждый символ передачи может быть повернут по фазе относительно исходного символа модуляции. Следовательно, каждый процессор 620 поддиапазона ПЕРЕД выдает два потока символов передачи в два буфера/мультиплексора 630а и 630b, соответственно.
Каждый буфер/мультиплексор 630 принимает пилот-символы и NB подпотоков символов передачи из NB процессоров 620а-620f поддиапазонов ПЕРЕД, мультиплексирует символы передачи и пилот-символы в течение каждого периода символа и выдает поток символов xj(n) передачи в соответствующий блок 330 ОБПФ. Затем каждый блок 330 ОБПФ обрабатывает соответствующий поток символов передачи способом, описанным выше.
Схема ПВРП описана более подробно S.M. Alamouti в статье, озаглавленной "Simple Transmit Diversity Technique for Wireless Communications", IEEE Journal on Selected Areas in Communications, Vol. 16, No. 8, October 1998, pgs. 1451-1458, которая включена в настоящее описание в качестве ссылки. Схема ПВРП также описана более подробно в заявке на патент США, серийный № 09/737602, озаглавленной "Способ и система, предназначенные для увеличенной эффективности полосы частот в каналах с множеством входов - множеством выходов", зарегистрированной 5 января 2001 г., права на которую переданы владельцу настоящей заявки, и включенной в настоящее описание в качестве ссылки.
Схема разнесения Уолша-ПВРП
Схема Уолша-ПВРП использует комбинацию разнесения Уолша и ПВРП, описанных выше. Схема Уолша-ПВРП может быть использована в системах с более чем двумя передающими антеннами. Для схемы Уолша-ПВРП с повторяемыми символами (которая также упоминается как схема повторенного Уолша-ПВРП) два вектора x 1 и x 2 передачи генерируются для каждой пары символов модуляции, передаваемых в данном поддиапазоне из двух передающих антенн, как описано выше для фиг.6. Эти два вектора передачи также повторяются через множество пар передающих антенн с использованием функций Уолша, чтобы достичь ортогональности через пары передающих антенн и чтобы обеспечить дополнительное разнесение передачи.
Фиг.7 представляет блок-схему варианта осуществления процессора 320d разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему повторенного Уолша-ПВРП. Символы s(n) модуляции из процессора 210 данных ПЕРЕД подаются в демультилексор 710, который демультиплексирует символы в 2NB подпотока символов модуляции, два подпотока для каждого поддиапазона, несущего данные. Каждый подпоток символов модуляции включает в себя один символ модуляции для каждого периода из 4 символов, что соответствует частоте символов, равной (4ТОЧУ)-1. Каждая пара подпотоков символов модуляции подается в соответствующий процессор 720 поддиапазона ПЕРЕД.
Пространственно-временной кодер 722 в каждом процессоре 720 поддиапазона ПЕРЕД принимает пару подпотоков символов модуляции и в течение каждого периода из 4 символов формирует пару символов
Figure 00000015
модуляции, причем один символ поступает из каждого из двух подпотоков. Пара символов
Figure 00000015
модуляции затем используется, чтобы сформировать два вектора
Figure 00000016
и
Figure 00000017
причем каждый вектор охватывает период из 4 символов. Пространственно-временной кодер 722 подает первый вектор x 1 в умножители 724а и 724с, а второй вектор x 2 в умножители 724b и 724d. Каждый из умножителей 724а и 724с также принимает функцию Уолша, имеющую две элементарные посылки (т.е.
Figure 00000018
и назначенную в передающие антенны 1 и 2. Аналогично каждый из умножителей 724с и 724d также принимает функцию Уолша
Figure 00000019
имеющую две элементарные посылки и назначенную в передающие антенны 3 и 4. Затем каждый умножитель 724 перемножает каждый символ в своем векторе x j с функцией Уолша, чтобы выдать два символа передачи, передаваемых через два последовательных периода символов в поддиапазоне k передающей антенны j.
В частности, умножитель 724а перемножает каждый символ в векторе x 1 с функцией
Figure 00000020
Уолша и выдает последовательность из четырех символов передачи {(s1·w11), (s1·w21), (
Figure 00000021
·w11) и (
Figure 00000021
·w21)}, которая должна быть передана через четыре последовательных периода символов. Умножитель 724b перемножает каждый символ в векторе x 2 с фукцией
Figure 00000022
Уолша и выдает последовательность из четырех символов передачи {(s2·w11), (s2·w21), (-
Figure 00000023
·w11) и (-
Figure 00000023
·w21)}. Умножитель 724с перемножает каждый символ в векторе x 1 с фукцией
Figure 00000024
Уолша и выдает последовательность из четырех символов передачи {(s1·w12), (s1·w22), (
Figure 00000021
·w12) и (
Figure 00000021
·w22)}. И умножитель 724d перемножает каждый символ в векторе x 2 с фукцией
Figure 00000025
Уолша и выдает последовательность из четырех символов передачи {(s2·w12), (s2·w22), (-
Figure 00000023
·w12) и (-
Figure 00000023
·w22)}. Следовательно, функция Уолша используется для того, чтобы расширить во времени каждый символ или элемент в векторе х через два периода символов. Четыре умножителя 724а-724d каждого процессора 720 поддиапазона ПЕРЕД выдают четыре подпотока символов передачи в четыре буфера/мультиплексора 730а-730d, соответственно.
Каждый буфер/мультиплексор 730а принимает пилот-символы и NB подпотоков символов передачи из NB процессоров 720а-720f поддиапазонов ПЕРЕД, мультиплексирует пилот-символы и символы передачи в течение каждого периода символа и выдает поток символов xj(n) передачи в соответствующий блок 330 ОБПФ. Дальнейшая обработка является такой же, как описано выше.
Схема повторенного Уолша-ПВРП, изображенная на фиг.7 (с четырьмя передающими антеннами), имеет такую же спектральную эффективность, что и схема ПВРП, изображенная на фиг.6, и в два раза большую спектральной эффективности схемы разнесения Уолша, изображенной на фиг.5. Однако дополнительное разнесение обеспечивается с помощью этой схемы Уолша-ПВРП с помощью передачи повторенных символов чрез множество пар антенн передачи. Обработка Уолша-ПВРП обеспечивает полное разнесение передачи (на поддиапазон) для сигналов, передаваемых из всех передающих антенн.
Фиг.8 представляет блок-схему варианта осуществления процессора 320е разнесения ПЕРЕД, который может быть использован, чтобы реализовать схему Уолша-ПВРП без схемы повторяемых символов (которая также упоминается, как схема неповторенного Уолша-ПВРП). Эта схема может быть использована для того, чтобы увеличить спектральную эффективность за счет меньшего разнесения по сравнению со схемой, изображенной на фиг.7. Как изображено на фиг.8, символы s(n) модуляции подаются в демультиплексор 810, который демультиплексирует символы в 4NB подпотока символов модуляции, четыре подпотока для каждого поддиапазона, несущего данные. Каждое множество из четырех подпотоков символов модуляции подается в соответствующий процессор 820 поддиапазона ПЕРЕД.
В каждом процессоре 820 поддиапазона ПЕРЕД пространственно-временной кодер 822а принимает первую пару подпотоков символов модуляции, а пространственно-временной кодер 822b принимает вторую пару подпотоков символов модуляции. Для каждой пары символов модуляции в двух подпотоках в первой паре пространственно-временной кодер 822а выдает два вектора
Figure 00000026
и
Figure 00000027
в умножители 824а-824b, соответственно. Аналогично, для каждой пары символов модуляции в двух подпотоках во второй паре пространственно-временной кодер 822b выдает два вектора
Figure 00000028
и
Figure 00000029
в умножители 824c-824d, соответственно.
Каждый умножитель 824а и 824b также принимает функцию
Figure 00000030
Уолша, а каждый умножитель 824с и 824d также принимает функцию
Figure 00000031
Уолша. Затем каждый умножитель 824 перемножает каждый символ в своем векторе х j со своей функцией Уолша, чтобы выдать два символа передачи, передаваемых через два последовательных периода символов в поддиапазоне k передающей антенны j. Четыре умножителя 824а-824d каждого процессора 820 поддиапазона ПЕРЕД выдают четыре подпотока символов передачи в четыре буфера/мультиплексора 830а-830d, соответственно.
Каждый буфер/мультиплексор 830 принимает пилот-символы и NB подпотоков символов передачи из NB процессоров 820а-820f поддиапазонов ПЕРЕД, мультиплексирует пилот-символы и символы передачи и передает символы в течение каждого периода символов и выдает поток символов xj(n) передачи в соответствующий блок 330 ОБПФ. Дальнейшая обработка является такой же, как описано выше.
Схема неповторенного Уолша-ПВРП, изображенная на фиг.8 (с четырьмя передающими антеннами), имеет в два раза большую спектральную эффективность по сравнению со схемой повторяемого Уолша-ПВРП, изображенной на фиг.7. Та же самая обработка может быть распространена на систему с любым числом пар передающих антенн. Вместо повторения двух векторов передачи через пары передающих антенн каждая пара передающих антенн может быть использована, чтобы передавать независимые потоки символов. Это имеет результатом бульшую спектральную эффективность, возможно, за счет эффективности разнесения. Некоторое из этого разнесения может быть восстановлено с помощью использования кода прямого исправления ошибок (ПИО).
Схема Уолша-ПВРП также описана более подробно в вышеупомянутой заявке на патент США, серийный № 09/737602.
Разнесение по частоте-ПВРП
Схема разнесения по частоте-ПВРП использует комбинацию разнесения по частоте и ПВРП. Схема разнесения по частоте-ПВРП также может использовать разнесение антенны для системы с более чем одной парой передающих антенн. Для схемы разнесения по частоте-ПВРП каждый символ модуляции передается в множестве (например, двух) поддиапазонов и подается в множество процессоров поддиапазонов ПЕРЕД. Поддиапазоны, используемые для каждого символа модуляции, могут быть выбраны таким образом, чтобы они были разделены между собой как можно дальше (например, как изображено в таблице 1), или на основании некоторой другой схемы назначения поддиапазона. Если имеются четыре передающие антенны, тогда для каждого поддиапазона обрабатываются две пары символов модуляции с использованием ПВРП. Первая пара символов модуляции передается из первой пары антенн (например, передающих антенн 1 и 2), а вторая пара символов модуляции передается из второй пары антенн (например, передающих антенн 3 и 4).
Следовательно, каждый символ модуляции передается в множестве поддиапазонов и через множество передающих антенн. Для ясности обработка для данного символа sa модуляции для системы с четырьмя передающими антеннами и с использованием двойного разнесения по частоте может быть выполнена следующим образом. Символ sa модуляции сначала подается в два процессора поддиапазона ПЕРЕД (например, для поддиапазонов k и k + NF/2). В поддиапазоне k символ sa модуляции обрабатывается с другим символом sb модуляции с использованием ПВРП, чтобы сформировать два вектора
Figure 00000032
и
Figure 00000033
которые передаются из передающих антенн 1 и 2, соответственно. В поддиапазоне k + NF/2 символ sa модуляции обрабатывается с другим символом sc модуляции с использованием ПВРП, чтобы сформировать два вектора
Figure 00000034
и
Figure 00000035
которые передаются из передающих антенн 3 и 4, соответственно. Символ sc модуляции может быть тем же самым, что и символ sb модуляции или другим символом модуляции.
Для упомянутого выше варианта реализации схемы разнесения по частоте-ПВРП символ модуляции в каждом поддиапазоне имеет два порядка разнесения передачи, обеспеченные с помощью обработки ПВРП. Каждый передаваемый символ модуляции имеет четыре порядка разнесения передачи плюс некоторое разнесение по частоте, обеспеченное с помощью использования двух поддиапазонов и ПВРП. Эта схема разнесения по частоте-ПВРП имеет такую же спектральную эффективность, что и схема повторяемого Уолша-ПВРП. Однако полное время передачи для каждого символа модуляции равно двум периодам символов со схемой разнесения по частоте-ПВРП, что равно половине полного времени передачи для каждого символа модуляции со схемой Уолша-ПВРП, так как обработка Уолша не выполняется с помощью схемы разнесения по частоте-ПВРП.
В одном варианте осуществления схемы разнесения по частоте-ПВРП все поддиапазоны используются каждой парой передающих антенн для передачи данных. Для квадратичного разнесения каждый символ модуляции подается в два поддиапазона для двух пар передающих антенн, как описано выше. В другом варианте осуществления схемы разнесения по частоте-ПВРП каждой паре передающих антенн назначена другая группа поддиапазона для передачи данных. Например, в устройстве с двумя парами передающих антенн каждый другой поддиапазон может быть назначен одной паре передающих антенн. Каждая пара передающих антенн тогда была бы связана с другой группой поддиапазонов NF/2. Для квадратурного разнесения тогда каждый символ модуляции передавался бы в двух поддиапазонах, один в каждом из двух групп поддиапазонов, причем каждая группа связана с конкретной парой передающих антенн. Два поддиапазона, использованные для каждого символа модуляции, могут быть выбраны таким образом, чтобы они были разделены между собой как можно дальше. Также могут предполагаться другие варианты реализации для разнесения по частоте-ПВРП с множеством пар передающих антенн, и это находится в рамках объема изобретения.
Как проиллюстрировано с помощью вышеописанного, разные схемы разнесения могут быть реализованы с использованием разных способов обработки, описанных в настоящей заявке. Для ясности конкретные варианты реализации разных схем разнесения описаны выше для конкретной системы. Также могут предполагаться варианты этих схем разнесения, и это находится в рамках объема изобретения.
Кроме того, также могут предполагаться другие схемы разнесения на основании других комбинаций способов обработки, описанных в настоящей заявке, и это находится в рамках объема изобретения. Например, другая схема разнесения может использовать разнесение по частоте и разнесение передачи Уолша, а еще одна схема разнесения может использовать разнесение по частоте, разнесение Уолша и ПВРП.
Режимы передачи с разнесением
Несколько режимов разнесения передачи могут быть использованы с использованием схем обработки передачи, описанных выше. Эти режимы передачи с разнесением могут включать в себя следующие режимы:
- Режим передачи с разнесением по частоте - использует только разнесение по частоте (например, двойное, квадратичное или некоторое другое целочисленное множественное разнесение по частоте).
- Режим передачи с разнесением Уолша - использует только разнесение передачи Уолша.
- Режим передачи ПВРП - использует только ПВРП.
- Режим передачи Уолша-ПВРП - использует как разнесение передачи Уолша, так и ПВРП с повторенными или неповторенными символами.
- Режим передачи с разнесением по частоте-ПВРП - использует разнесение по частоте и ПВРП.
- Режим передачи с разнесением по частоте-ПВРП -использует разнесение по частоте и разнесение передачи Уолша.
- Режим передачи с разнесением по частоте-Уолша-ПВРП - использует разнесение по частоте, разнесение передачи Уолша и ПВРП.
Режимы передачи с разнесением могут быть использованы для передачи данных между пунктами доступа и терминалами. Конкретный режим передачи для использования для данного потока данных может зависеть от различных факторов, таких как (1) тип передаваемых данных (например, либо общие для всех терминалов, либо заданные пользователем для конкретного терминала), (2) число антенн, имеющихся в передатчике и приемнике, (3) состояния канала, (4) требования передачи данных (например, требуемая частота ошибок пакетов) и т.д.
Каждый пункт доступа в системе может быть оснащен, например, четырьмя антеннами для передачи и приема данных. Каждый терминал может быть оснащен одной, двумя, четырьмя или некоторым другим числом антенн для передачи и приема данных. Для каждого типа терминала могут быть определены и использованы режимы передачи с разнесением по умолчанию. В конкретном варианте осуществления следующие режимы передачи с разнесением используются по умолчанию:
- Терминалы с одной антенной - используют режим передачи с разнесением с двойным или квадратурным разнесением.
- Терминалы с двумя антеннами - используют режим передачи ПВРП для двойного разнесения и режим передачи с разнесением по частоте-ПВРП для квадратичного разнесения.
- Терминалы с четырьмя антеннами - используют режим передачи ПВРП для двойного разнесения и режим передачи с разнесением Уолша-ПВРП для квадратичного разнесения.
В качестве режимов по умолчанию также могут быть выбраны другие режимы передачи с разнесением, и это находится в рамках объема изобретения.
Режимы передачи с разнесением также могут быть использованы для того, чтобы увеличить надежность передачи данных в служебных каналах, предназначенных для того, чтобы приниматься всеми терминалами в системе. В варианте осуществления конкретный режим передачи с разнесением используется для широковещательного канала, и этот режим известен сам по себе всем терминалам в системе (т.е. не требуется никакая передача сигналов, чтобы идентифицировать режим передачи, используемый для широковещательного канала). Таким образом, терминалы могут обрабатывать и восстанавливать данные, переданные в широковещательном канале. Режимы передачи, используемые для других служебных каналов, могут быть фиксированными или выбираемыми динамически. В одной схеме динамического выбора система определяет, какой режим передачи является самым надежным (и спектрально эффективным) для использования для каждого из остальных служебных каналов, на основании смеси используемых терминалов. Режимы передачи, выбранные для использования для этих служебных каналов, и другая информация конфигурации может быть передана в виде сигналов в терминалы, например, через широковещательный канал.
С ОЧУ поддиапазоны могут рассматриваться как отдельные каналы, и для поддиапазонов могут быть использованы одни и те же или разные режимы передачи с разнесением. Например, один режим передачи с разнесением может быть использован для всех поддиапазонов, несущих данные, или отдельный режим передачи с разнесением может быть выбран для каждого поддиапазона, несущего данные. Кроме того, для данного поддиапазона может быть возможным использовать разные режимы передачи с разнесением для разных множеств передающих антенн. Обычно каждый поток данных (либо для служебного канала, либо конкретного устройства приемника) может быть закодирован и модулирован на основании схем кодирования и модуляции, выбранных для этого потока данных, чтобы предоставить символы модуляции. Затем символы модуляции дополнительно обрабатывают на основании режима передачи с разнесением, выбранного для этого потока данных, чтобы предоставить символы передачи. Символы передачи дополнительно обрабатывают в группе одного или более поддиапазонов из множества из одной или более передающих антенн, предназначенных для использования для этого потока данных.
Блок приемника
Фиг.9 представляет блок-схему блока 900 приемника, который является вариантом осуществления части приемника терминала 106 с множеством антенн. Модулированные сигналы прямой линии связи из пункта 104 доступа принимаются с помощью антенн 252а-252r, и принятые сигналы из каждой антенны подаются в соответствующий приемник 254. Каждый приемник 254 обрабатывает (например, обрабатывает, преобразует в цифровой вид и демодулирует данные) принятый сигнал, чтобы выдать поток принятых символов передачи, который затем подается в соответствующий демодулятор ОЧУ в процессоре 260а приемника.
Каждый демодулятор ОЧУ включает в себя блок 912 удаления циклического префикса и блок 914 быстрого преобразования Фурье. Блок 912 удаляет циклический префикс, который был присоединен в каждом символе передачи, чтобы обеспечить соответствующий принятый символ ОЧУ. Удаление циклического префикса может быть выполнено с помощью определения множества NA выборок, соответствующих каждому принятому символу передачи, и выбора подмножества этих NA выборок в качестве множества NF выборок для принятого символа ОЧУ. Затем блок 914 БПФ преобразует каждый принятый символ ОЧУ (или каждое множество NF выборок) с использованием быстрого преобразования Фурье, чтобы предоставить вектор из NF принятых символов для NF поддиапазонов. Блоки 914а-914r подают потоки NR принятых символов, r1(n)-
Figure 00000036
(n), в процессор 920 разнесения ПРИЕМ.
Процессор 920 разнесения ПРИЕМ выполняет обработку разнесения относительно потоков NR принятых символов, чтобы предоставить восстановленные символы
Figure 00000037
которые являются оценками символов модуляции s(n), посланных передатчиком. Обработка, выполняемая процессором 920 разнесения ПРИЕМ, зависит от режима передачи, используемого для каждого восстанавливаемого потока данных, как указано сигналом управления режимом передачи. Процессор 920 разнесения ПРИЕМ описан более подробно ниже.
Процессор 920 разнесения ПРИЕМ подает восстановленные символы
Figure 00000038
для всех восстанавливаемых потоков данных в процессор 262а данных ПРИЕМ, который является вариантом осуществления процессора 262 данных ПРИЕМ на фиг.2. В процессоре 262а элемент 942 обратного отображения демодулирует восстановленные символы для каждого потока данных в соответствии со схемой демодуляции, которая является дополнительной к схеме модуляции, использованной для потока данных. Затем устройство 944 удаления перемежения удаляет перемежение демодулированных данных, способом, дополнительным к перемежению, выполненному в передатчике для потока данных, и данные с удаленным перемежением дополнительно декодируются с помощью декодера 946 способом, дополнительным к кодированию, выполненному в передатчике. Например, турбодекодер или декодер Витерби могут быть использованы для декодера 946, если в приемнике выполнено турбо- или сверточное кодирование, соответственно. Декодированные данные из декодера 946 представляют оценку восстанавливаемых переданных данных. Декодер также может предоставить статус каждого принятого пакета (например, указание, был ли он принят правильно или с ошибками).
В варианте осуществления, изображенном на фиг.9, устройство 950 оценки канала оценивает различные характеристики канала, такие как отклик канала и изменение шума (например, на основании восстановленных пилот-символов), и подает эти оценки в контроллер 270. Контроллер 270 может быть сконструирован таким образом, чтобы выполнять различные функции, связанные с обработкой разнесения в приемнике. Например, контроллер 270 может определять режим передачи с разнесением, используемый для каждого восстанавливаемого потока данных, и дополнительно может управлять работой процессора 920 разнесения ПРИЕМ.
Фиг.10 представляет блок-схему варианта осуществления процессора 920х разнесения ПРИЕМ, который может быть использован для устройства приемника с множеством антенн. В этом варианте осуществления NR потоков принятых символов для NR принимающих антенн подаются в NR процессоров 1020а-1020r антенн ПРИЕМ. Каждый процессор 1020 антенны ПРИЕМ обрабатывает соответствующий принятый поток ri(n) символов для связанной принимающей антенны и выдает соответствующий поток
Figure 00000039
восстановленных символов. В альтернативном варианте осуществления один или более процессоров 1020 антенн ПРИЕМ разделены во времени и используются таким образом, чтобы обрабатывать все NR потоков принятых символов.
Затем устройство 1030 объединения принимает и объединяет NR потоков восстановленных символов из NR процессоров 1020а-1020r антенн ПРИЕМ, чтобы предоставить один поток
Figure 00000040
восстановленных символов. Объединение может быть выполнено на посимвольной основе. В варианте осуществления для данного поддиапазона k NR восстановленных символов из NR принимающих антенн в течение каждого периода символов (который обозначен как
Figure 00000041
для i = (1, 2, ..., NR) сначала масштабируют с помощью NR весовых коэффициентов, назначенных NR принимающим антеннам. Затем NR масштабированных символов суммируют, чтобы предоставить восстановленный символ
Figure 00000042
для поддиапазона k. Весовые коэффициенты могут быть выбраны таким образом, чтобы достичь объединения с максимальным отношением, и могут быть определены на основании качества сигнала (например, ОСШ), связанного с принимающими антеннами. Масштабирование с помощью весовых коэффициентов также может быть выполнено посредством петли автоматического управления усилением (AGC, АУУ) для каждой принимающей антенны, как известно в данной области техники.
Для устройства приемника с одной антенной имеется только один поток принятых символов. В этом случае требуется только один процессор 1020 антенны ПРИЕМ. Конструкция для процессора 1020 антенны ПРИЕМ описана более подробно ниже.
Поток
Figure 00000040
восстановленных символов, выданный устройством 1030 объединения, может включать в себя восстановленные символы для всех потоков данных, переданных передатчиком. В качестве альтернативы, поток
Figure 00000040
может включать в себя только восстановленные символы для одного или более потоков данных, восстанавливаемых с помощью устройства приемника.
Фиг.11 представляет блок-схему процессора 1020х антенны ПРИЕМ, который может быть использован для того, чтобы выполнять обработку приема для схемы разнесения Уолша, изображенной на фиг.5. Процессор 1020х антенны ПРИЕМ обрабатывает поток ri(n) принятых символов для одной принимающей антенны, и может быть использован для каждого из процессоров 1020а-1020r антенн ПРИЕМ фиг.10.
В варианте осуществления, изображенном на фиг.11, поток ri(n) принятых символов подается в демультиплексор 1110, который демультиплексирует принятые символы в ri(n) в NB подпотоков принятых символов (которые обозначены как
Figure 00000043
где индекс i пропущен для простоты), один подпоток для каждого поддиапазона, несущего данные. Затем каждый подпоток rk восстановленных символов подается в соответствующий процессор 1120 поддиапазона ПРИЕМ.
Каждый процессор 1120 поддиапазона ПРИЕМ включает в себя несколько маршрутов обработки приема, один маршрут для каждой передающей антенны, используемой для передачи данных (на фиг.11 изображены четыре маршрута обработки передачи для четырех передающих антенн). Для каждого маршрута обработки принятые символы в подпотоке подаются в умножитель 1122, который также принимает масштабированную функцию Уолша
Figure 00000044
где
Figure 00000045
- оценка комплексного сопряженного отклика канала между передающей антенной j (которая связана с этим умножителем) и принимающей антенной для поддиапазона k, а
Figure 00000046
- комплексная сопряженная функция Уолша, назначенная передающей антенне j. Затем каждый умножитель 1122 перемножает принятые символы с масштабированной функцией Уолша и подает результат в связанный интегратор 1124. Затем интегратор 1124 интегрирует результаты умножителя по длине функции Уолша (или четыре периода символов) и подает интегрированный выходной сигнал в сумматор 1126. Один принятый символ подается в умножитель 1122 в течение каждого периода символов (т.е. частота = (ТОЧУ)-1), и интегратор 1124 выдает один интегрированный выходной сигнал для каждого периода из 4 символов (т.е. частота = (4ТОЧУ)-1).
Для каждого периода из 4 символов сумматор объединяет четыре выходных сигнала из интеграторов 1124а-1124d, чтобы предоставить восстановленный символ
Figure 00000047
для поддиапазона k, который является оценкой символа sk модуляции, переданного в этом поддиапазоне. Для каждого периода из 4 символов процессоры 1120а-1120f поддиапазонов ПРИЕМ выдают NB восстановленных символов
Figure 00000048
для NB поддиапазонов, несущих данные.
Мультиплексор 1140 принимает восстановленные символы из процессоров 1120а-1120f поддиапазонов ПРИЕМ и мультиплексирует эти символы в поток восстановленных символов
Figure 00000049
для принимающей антенны i.
Фиг.12 представляет блок-схему процессора 1120х поддиапазона ПРИЕМ, который может быть использован, чтобы выполнять обработку приема для схем Уолша-ПВРВ, изображенных на фиг.7 и фиг.8. Процессор 1120х поддиапазона ПРИЕМ обрабатывает один подпоток rk принятых символов для одного поддиапазона одной принимающей антенны и может быть использован для каждого из процессоров 1120а-1120f поддиапазонов ПРИЕМ на фиг.11.
В варианте осуществления, изображенном на фиг.12, принятые символы в подпотоке rk подаются в два маршрута обработки приема, один маршрут для каждой пары передающих антенн, использованных для передачи данных (на фиг.12 изображены два маршрута обработки передачи для четырех передающих антенн). Для каждого маршрута обработки принятые символы подаются в умножитель 1222, который также принимает комплексную сопряженную функцию Уолша
Figure 00000050
назначенную паре передающих антенн, обрабатываемых с помощью этого маршрута. Затем каждый умножитель перемножает принятые символы с функцией Уолша и подает результаты в связанный интегратор 1224. Затем интегратор 1224 интегрирует результаты умножения по длине функции Уолша (или двум периодам символов) и подает интегрированный выходной сигнал в элемент 1226 задержки и блок 1228. Один принятый символ подается в умножитель 1222 в течение каждого периода символов (т.е. скорость = (ТОЧУ)-1), и интегратор 1224 выдает один интегрированный выходной сигнал в течение каждого периода из двух символов (т.е. скорость = (2ТОЧУ)-1).
Ссылаясь опять на фиг.8, для схемы неповторенного Уолша-ПВРП четыре символа {sk1, sk2, sk3 и sk4} передаются через две пары передающих антенн через четыре периода символов для поддиапазона k (где индекс k используется, чтобы обозначить поддиапазон k). Пара символов {sk1 и sk2} передается через первую пару передающих антенн, а пара символов {sk3 и sk4} передается через вторую пару передающих антенн. Каждый символ модуляции передается через два периода символов с использованием функции Уолша с двумя элементарными посылками, назначенной паре передающих антенн.
Ссылаясь опять на фиг.12, дополняющая обработка выполняется в приемнике, чтобы восстановить символы модуляции. В течение каждого периода из четырех символов, соответствующего новой паре символов, переданных из каждой пары передающих антенн для поддиапазона k, интегратор 1224 выдает пару {rk1 и rk2} принятых символов. Затем элемент 1226 задержки выдает задержку двух периодов символов (т.е. TW = 2ТОЧУ, которая является длиной функции Уолша) для первого символа (т.е. rk1) в паре, а блок 1228 выдает ... второго символа (т.е.
Figure 00000051
в паре.
Затем умножители 1230а-1230d и сумматоры 1232а-1232b выполняют вычисления, показанные в уравнении (2), для первой пары передающих антенн. В частности, умножитель 1230а перемножает символ rk1 c оценкой
Figure 00000052
отклика канала, умножитель 1230b перемножает символ
Figure 00000053
c оценкой
Figure 00000054
отклика канала, умножитель 1230с перемножает символ
Figure 00000055
c оценкой
Figure 00000056
отклика канала и умножитель 1230d перемножает символ rk2 c оценкой
Figure 00000057
отклика канала, где
Figure 00000058
- оценка отклика канала из передающей антенны j в принимающую антенну для поддиапазона k. Затем сумматор 1232а вычитает выходной сигнал умножителя 1230b из выходного сигнала умножителя 1230а, чтобы предоставить оценку
Figure 00000059
первого символа модуляции в паре {sk1 и sk2}. Сумматор 1232b суммирует выходной сигнал умножителя 1230с с выходным сигналом умножителя 1230d, чтобы предоставить оценку
Figure 00000060
второго символа модуляции в паре.
Обработка с помощью второго маршрута для второй пары передающих антенн аналогична обработке, описанной выше для первого маршрута. Однако оценки
Figure 00000061
и
Figure 00000062
для второй пары передающих антенн для поддиапазона k используются для второго маршрута обработки. В течение каждого периода из четырех символов второй маршрут обработки выдает оценки
Figure 00000063
и
Figure 00000064
символов для пары символов {sk3 и sk4} модуляции, переданных в поддиапазоне k из второй пары передающих антенн.
Для схемы неповторенного Уолша-ПВРП, изображенной на фиг.8,
Figure 00000065
Figure 00000066
Figure 00000063
и
Figure 00000067
представляют оценки четырех символов sk1, sk2, sk3 и sk4 модуляции, посланных через четыре передающие антенны в поддиапазоне k через период из 4 символов. Эти оценки символов затем могут быть мультиплексированы вместе в подпоток
Figure 00000068
восстановленных символов для поддиапазона k, который затем подается в мультиплексор 1140 на фиг.11.
Для схемы повторенного Уолша-ПВРП, изображенной на фиг.7, одна пара символов {sk1 и sk2} посылается через обе пары передающих антенн в поддиапазоне k через каждый период символов из 4 символов. Затем оценки
Figure 00000069
и
Figure 00000070
символов могут быть объединены с помощью сумматора (не изображен на фиг.12), чтобы предоставить оценку первого символа в паре, а оценки
Figure 00000071
и
Figure 00000072
символов аналогично могут быть объединены с помощью другого сумматора, чтобы предоставить оценку второго символа в паре. Затем оценки символов из этих двух сумматоров могут быть мультиплексированы вместе в подпоток
Figure 00000073
восстановленных символов для поддиапазона k, который затем подается в умножитель 1140 на фиг.11.
Для ясности различные подробности конкретно описаны для передачи данных прямой линии связи из пункта доступа в терминал. Способы, описанные в настоящей заявке, также могут быть использованы для обратной линии связи, и это находится в рамках объема изобретения. Например, схемы обработки, изображенные на фиг.4, 5, 6, 7 и 8, могут быть реализованы в терминале с множеством антенн для передачи данных обратной линии связи. Система с ОЧУ с МВхМВых, описанная в настоящей заявке, также может быть сконструирована таким образом, чтобы реализовывать одну или более схем множественного доступа, такие как множественный доступ с кодовым разделением (МДКР), множественный доступ с временным разделением (TDMA, МДВР), множественный доступ с частотным разделением (FDMA, МДЧР) и т.д. МДКР может предоставить определенные преимущества по сравнению с другими типами систем, такие как увеличенная пропускная способность системы. Система ОЧУ с МВхМВых также может быть сконструирована таким образом, чтобы реализовывать различные способы обработки, описанные в стандартах МДКР, таких как IS-95, cdma2000, IS-856, W-CDMA и другие.
Способы, описанные в настоящей заявке, предназначенные для передачи и приема данных с использованием нескольких режимов передачи с разнесением, могут быть реализованы с помощью различных средств. Например, эти способы могут быть реализованы в аппаратном обеспечении, программном обеспечении или их комбинации. Для реализации аппаратного обеспечения элементы (например, процессор разнесения ПЕРЕД, процессор разнесения ПРИЕМ, процессоры поддиапазонов ПЕРЕД, процессоры антенн ПЕРЕД, процессоры поддиапазонов ПРИЕМ и т.д.), используемые для того, чтобы реализовать любой способ или комбинацию способов, могут быть реализованы в одной или более интегральных схем прикладной ориентации (ASIC, ИСПО), процессорах цифровых сигналов (DSP, ПЦС), устройствах обработки цифровых сигналов (DSPD, УОЦС), программируемых логических устройствах (PLD, ПЛУ), процессорах на вентильных матрицах, программируемых в условиях эксплуатации (FPGA, ВМПУЭ), процессорах, контроллерах, микроконтроллерах, микропроцессорах, других электронных устройствах, сконструированных таким образом, чтобы выполнять функции, описанные в настоящем описании, или их комбинации.
Для реализации программного обеспечения любой способ или комбинация способов, описанных в настоящей заявке, могут быть реализованы с помощью модулей (например, процедур, функций и т.д.), которые выполняют функции, описанные в настоящей заявке. Коды программного обеспечения могут быть запомнены в устройстве памяти (например, памяти 232 или 272 на фиг.2) и выполнены с помощью процессора (например, контроллера 230 или 270). Устройство памяти может быть реализовано в процессоре или внешне к процессору, в этом случае оно должно быть соединено с возможностью взаимодействия с процессором через различные средства, как известно в данной области техники.
Заголовки включены в настоящее описание для ссылки и, чтобы помочь в нахождении определенного раздела. Эти заголовки не предназначены ограничивать рамки объема и концепции, описанные в настоящей заявке под ними, и эти концепции могут иметь применимость в других разделах по всему описанию.
Предыдущее описание раскрытых вариантов осуществления предоставлено, чтобы дать возможность любому специалисту в данной области техники изготовить или использовать настоящее изобретение. Различные модификации в эти варианты осуществления будут легко понятны специалистам в данной области техники, а основные принципы, определенные в настоящей заявке, могут быть применены в других вариантах осуществления, не выходя за рамки объема и сущности изобретения. Следовательно, не предполагается, что настоящее изобретение ограничено вариантами осуществления, изображенными в настоящей заявке, а должно соответствовать самым широким рамкам, согласующимся с принципами и новыми признаками, раскрытыми в прилагаемой формуле изобретения.

Claims (53)

1. Способ обработки данных для передачи из устройства беспроводной связи, содержащий этапы, на которых
выбирают режим передачи с разнесением из множества режимов передачи с разнесением, при этом множество режимов передачи с разнесением включает в себя режим передачи с пространственно-временным разнесением передачи, в котором пространственно-временное разнесение передачи используется для передачи первой пары символов передачи, используя первую пару антенн, и для передачи второй пары символов передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн;
кодируют и модулируют по меньшей мере один поток данных, чтобы обеспечить первую и вторую пару символов модуляции; и
обрабатывают первую пару символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения первой пары символов передачи для передачи через первую пару антенн, и вторую пару символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения второй пары символов передачи для передачи через вторую пару антенн.
2 Способ по п.1, в котором первая пара символов модуляции и вторая пара символов модуляции передаются по разным поддиапазонам.
3. Способ по п.1, в котором, по меньшей мере один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
4. Способ по п.1, в котором множество режимов передачи с разнесением также включает в себя режим передачи с разнесением по частоте.
5. Способ по п.1, в котором множество режимов передачи с разнесением также включает в себя режим передачи с разнесением Уолша.
6. Способ по п.1, в котором по меньшей мере один поток данных соответствует служебному каналу.
7. Способ по п.1, в котором этап выбора включает в себя выбор, основанный на типе по меньшей мере одного потока данных.
8. Способ по п.1, в котором этап выбора включает в себя выбор, основанный на типе терминала, принявшего одну из первой пары и второй пары символов модуляции.
9. Способ по п.1, в котором этап выбора включает в себя выбор, основанный на смешении типов терминала, связанных с точкой доступа.
10. Способ по п.1, в котором этап выбора включает в себя выбор или одного из множества режимов передачи с разнесением или режима пространственного мультиплексирования.
11. Способ по п.1, в котором этап выбора включает в себя выбор основанный на канальной информации.
12. Способ по п.11, который также включает в себя мультиплексирование пилот-символов с символами модуляции.
13. Способ по п.12, в котором на этапе кодирования используют турбокод.
14. Способ по п.12, в котором на этапе кодирования используют сверточный код.
15. Передатчик в системе беспроводной связи, содержащий контроллер, сконфигурированный для выбора режима передачи с разнесением из множества режимов передачи с разнесением, при этом множество режимов передачи с разнесением включает в себя режим передачи с пространственно-временным разнесением передачи, в котором пространственно-временное разнесение передачи используется для передачи первой пары символов передачи, используя первую пару антенн, и для передачи второй пары символов передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн;
процессор, сконфигурированный для кодирования и модулирования по меньшей мере одного потока данных, чтобы обеспечить первую и вторую пару символов модуляции; и
другой процессор, сконфигурированный для обработки первой пары символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения первой пары символов передачи для передачи через первую пару антенн, и второй пары символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения второй пары символов передачи для передачи через вторую пару антенн.
16. Передатчик по п.15, в котором первая пара символов модуляции и вторая пара символов модуляции передаются по разным поддиапазонам.
17. Передатчик по п.15, в котором, по меньшей мере, один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
18. Передатчик по п.15, в котором множество режимов передачи с разнесением также включает в себя режим передачи с разнесением по частоте.
19. Передатчик по п.15, в котором множество режимов передачи с разнесением также включает в себя режим передачи с разнесением Уолша.
20. Передатчик по п.15, в котором по меньшей мере один поток данных соответствует служебному каналу.
21. Передатчик по п.15, в котором контроллер сконфигурирован для выбора, основанного на типе по меньшей мере одного потока данных.
22. Передатчик по п.15, в котором контроллер сконфигурирован для выбора, основанного на типе терминала, принявшего одну из первой пары и второй пары символов модуляции.
23. Передатчик по п.15, в котором контроллер сконфигурирован для выбора, основанного на смешении типов терминала, связанных с точкой доступа.
24. Передатчик по п.15, в котором контроллер сконфигурирован для выбора или одного из множества режимов передачи с разнесением или режима пространственного мультиплексирования.
25. Передатчик по п.15, в котором контроллер сконфигурирован для выбора, основанного на канальной информации.
26. Устройство беспроводной связи, содержащее
средство для выбора режима передачи с разнесением из множества режимов передачи с разнесением, при этом множество режимов передачи с разнесением включает в себя режим передачи с пространственно-временным разнесением передачи, в котором пространственно-временное разнесение передачи используется для передачи первой пары символов передачи, используя первую пару антенн, и для передачи второй пары символов передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн;
процессор, сконфигурированный для кодирования и модулирования по меньшей мере, одного потока данных, чтобы обеспечить первую и вторую пару символов модуляции; и
средство для обработки первой пары символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения первой пары символов передачи для передачи через первую пару антенн, и второй пары символов модуляции, основываясь на режиме передачи с пространственно-временным разнесением, для обеспечения второй пары символов передачи для передачи через вторую пару антенн.
27. Устройство по п.26, в котором первая пара символов модуляции и вторая пара символов модуляции передаются по разным поддиапазонам.
28. Устройство по п.26, в котором по меньшей мере один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
29. Устройство по п.26, в котором множество режимов передачи с разнесением также включает в себя режим передачи с разнесением по частоте.
30. Устройство по п.26, в котором по меньшей мере один поток данных соответствует служебному каналу.
31. Устройство по п.26, в котором средство для выбора содержит средство для выбора, основанного на типе по меньшей мере одного потока данных.
32. Устройство по п.26, в котором средство для выбора содержит средство для выбора, основанного на типе терминала, принявшего одну из первой пары и второй пары символов модуляции.
33. Устройство по п.26, в котором средство для выбора содержит средство для выбора, основанного на смешении типов терминала, связанных с точкой доступа.
34. Устройство по п.26, в котором средство для выбора содержит средство для выбора или одного из множества режимов передачи с разнесением или режима пространственного мультиплексирования.
35. Устройство по п.26, в котором средство для выбора содержит средство для выбора, основанного на канальной информации.
36. Способ обработки данных для передачи из устройства беспроводной связи, содержащий этапы, на которых
обеспечивают две пары символов модуляции;
обрабатывают каждую пару символов модуляции в соответствии с режимом передачи с пространственно-временным разнесением для получения первой пары символов передачи из двух пар символов модуляции и второй пары символов передачи из двух пар символов модуляции; и обеспечивают первую пару символов передачи для передачи, используя первую пару антенн, и вторую пару символов передачи для передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн.
37. Способ по п.36, в котором первая пара символов модуляции и вторая пара символов модуляции передаются по разным поддиапазонам.
38. Способ по п.36, в котором две пары символов модуляции соответствует служебному каналу.
39. Способ по п.36, в котором этап обеспечения двух пар символов модуляции включает в себя кодирование, использующее турбокод.
40. Способ по п.36, в котором этап обеспечения двух пар символов модуляции включает в себя кодирование, использующее сверточный код.
41. Способ по п.36, в котором этап обработки включает в себя обработку первой пары из двух пар символов модуляции для формирования первой пары символов передачи и обработку второй пары из двух пар символов модуляции для формирования второй пары символов передачи.
42. Способ по п.41, в котором по меньшей мере один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
43. Устройство беспроводной связи, содержащее
первый процессор, сконфигурированный для обеспечения двух пар символов модуляции; и
второй процессор, сконфигурированный для обработки каждой пары символов модуляции в соответствии с режимом передачи с пространственно-временным разнесением для получения первой пары символов передачи из двух пар символов модуляции и второй пары символов передачи из двух пар символов модуляции и для обеспечения первой пары символов передачи для передачи, используя первую пару антенн, и второй пары символов передачи для передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн.
44. Устройство по п.43, который также содержит контроллер, сконфигурированный для передачи первой пары символов модуляции и второй пары символов модуляции по разным поддиапазонам.
45. Устройство по п.43, в котором две пары символов модуляции соответствует служебному каналу.
46. Устройство по п.43, в котором первый процессор сконфигурирован для использования турбокода для обеспечения двух пар символов модуляции.
47. Устройство по п.43, в котором первый процессор сконфигурирован для использования сверточного кода для обеспечения двух пар символов модуляции.
48. Устройство по п.43, в котором второй процессор сконфигурирован для обработки первой пары из двух пар символов модуляции для формирования первой пары символов передачи и обработки, второй пары из двух пар символов модуляции для формирования второй пары символов передачи.
49. Устройство по п.43, в котором по меньшей мере один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
50. Устройство для обработки данных для передачи из устройства беспроводной связи, содержащее
средство для обеспечения двух пар символов модуляции;
средство для использования режима передачи с пространственно-временным разнесением, для получения первой пары символов передачи из двух пар символов модуляции и второй пары символов передачи из двух пар символов модуляции; и
средство для обеспечения первой пары символов передачи для передачи, используя первую пару антенн, и второй пары символов передачи для передачи, используя вторую пару антенн, при этом первая пара антенн отличается от второй пары антенн.
51. Устройство по п.50, в котором первая пара символов модуляции и вторая пара символов модуляции передаются по разным поддиапазонам.
52. Устройство по п.50, в котором две пары символов модуляции соответствуют служебному каналу.
53. Устройство по п.50, в котором средство для использования содержит обработку первой пары из двух пар символов модуляции для формирования первой пары символов передачи и обработку второй пары из двух пар символов модуляции для формирования второй пары символов передачи.
54. Устройство по п.50, в котором по меньшей мере один символ первой пары символов модуляции и второй пары символов модуляции является одним и тем же символом модуляции.
RU2005101415/09A 2002-06-24 2003-06-20 Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально-частотное уплотнение RU2325757C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/179,439 US7095709B2 (en) 2002-06-24 2002-06-24 Diversity transmission modes for MIMO OFDM communication systems
US10/179,439 2002-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
RU2007146368/07A Division RU2474955C2 (ru) 2002-06-24 2003-06-20 Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально частотное уплотнение

Publications (2)

Publication Number Publication Date
RU2005101415A RU2005101415A (ru) 2005-08-10
RU2325757C2 true RU2325757C2 (ru) 2008-05-27

Family

ID=29734900

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2007146368/07A RU2474955C2 (ru) 2002-06-24 2003-06-20 Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально частотное уплотнение
RU2005101415/09A RU2325757C2 (ru) 2002-06-24 2003-06-20 Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально-частотное уплотнение

Family Applications Before (1)

Application Number Title Priority Date Filing Date
RU2007146368/07A RU2474955C2 (ru) 2002-06-24 2003-06-20 Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально частотное уплотнение

Country Status (16)

Country Link
US (2) US7095709B2 (ru)
EP (2) EP2254262A3 (ru)
JP (2) JP2005531219A (ru)
KR (2) KR101207566B1 (ru)
CN (2) CN101552655B (ru)
AU (2) AU2003243681C1 (ru)
BR (1) BR0312090B1 (ru)
CA (1) CA2490520C (ru)
HK (1) HK1084515A1 (ru)
IL (2) IL165979A (ru)
MX (1) MXPA05000098A (ru)
NO (1) NO20050350L (ru)
RU (2) RU2474955C2 (ru)
TW (2) TWI401904B (ru)
UA (1) UA86927C2 (ru)
WO (1) WO2004002011A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2516866C2 (ru) * 2005-10-27 2014-05-20 Квэлкомм Инкорпорейтед Совместно используемый канал сигнализации
RU2518464C2 (ru) * 2009-06-23 2014-06-10 Нтт Досомо, Инк. Мобильный терминал, базовая радиостанция и способ осуществления радиосвязи
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system

Families Citing this family (324)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952511B1 (en) 1999-04-07 2011-05-31 Geer James L Method and apparatus for the detection of objects using electromagnetic wave attenuation patterns
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7394792B1 (en) * 2002-10-08 2008-07-01 Urbain A. von der Embse Multi-scale CDMA
JP2002344415A (ja) * 2001-05-14 2002-11-29 Matsushita Electric Ind Co Ltd マルチキャリア通信方法及びマルチキャリア通信装置
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
FR2835984B1 (fr) * 2002-02-11 2006-06-23 Evolium Sas Procede pour ameliorer les performances d'un systeme de radiocommunications mobiles
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US20040017785A1 (en) * 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US7542446B2 (en) * 2002-07-31 2009-06-02 Mitsubishi Electric Research Laboratories, Inc. Space time transmit diversity with subgroup rate control and subgroup antenna selection in multi-input multi-output communications systems
US7020446B2 (en) * 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
EP1529389B1 (en) * 2002-08-13 2016-03-16 Nokia Technologies Oy Symbol interleaving
US7031336B2 (en) * 2002-08-26 2006-04-18 Colubris Networks, Inc. Space-time-power scheduling for wireless networks
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US7720130B2 (en) * 2002-08-28 2010-05-18 Texas Instruments Incorporated Efficient receiver architecture for transmit diversity techniques
US7239672B2 (en) * 2002-09-05 2007-07-03 Silicon Integrated Systems Corp. Channel estimator for WLAN
US7349438B2 (en) * 2002-09-17 2008-03-25 Lucent Technologies Inc. Formatter, method of formatting encoded symbols and wireless communication system employing the same
WO2004036817A1 (en) 2002-10-18 2004-04-29 Matsushita Electric Industrial Co., Ltd. Constellation rearrangement for transmit diversity schemes
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US7724639B1 (en) * 2002-12-12 2010-05-25 Entropic Communications, Inc. Method of bit allocation in a multicarrier symbol to achieve non-periodic frequency diversity
US7508798B2 (en) * 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
US20040176097A1 (en) * 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
KR100595584B1 (ko) * 2003-02-12 2006-07-03 엘지전자 주식회사 무선 송수신 장치
US7095790B2 (en) * 2003-02-25 2006-08-22 Qualcomm, Incorporated Transmission schemes for multi-antenna communication systems utilizing multi-carrier modulation
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
US7646744B2 (en) * 2003-04-07 2010-01-12 Shaolin Li Method of operating multi-antenna wireless data processing system
JP4133531B2 (ja) * 2003-04-15 2008-08-13 シャープ株式会社 無線通信装置及び無線通信システム
ES2220208A1 (es) * 2003-05-06 2004-12-01 Diseño De Sistemas En Silicio, S.A. Procedimiento de configurabilidad espectral de señales moduladas por multiplexacion ortogonal por division en frecuencia (ofdm) para red electrica.
JP4536435B2 (ja) 2003-06-30 2010-09-01 パナソニック株式会社 送信方法及び送信装置
US7460494B2 (en) * 2003-08-08 2008-12-02 Intel Corporation Adaptive signaling in multiple antenna systems
US20050041693A1 (en) * 2003-08-22 2005-02-24 Paolo Priotti Method and apparatus for frequency synchronization in MIMO-OFDM wireless communication systems
ATE487291T1 (de) * 2003-08-27 2010-11-15 Wavion Ltd Wlan-kapazitäts-erweiterung durch verwendung von sdm
US7668201B2 (en) * 2003-08-28 2010-02-23 Symbol Technologies, Inc. Bandwidth management in wireless networks
US7263133B1 (en) * 2003-09-02 2007-08-28 Miao George J MIMO-based multiuser OFDM multiband for ultra wideband communications
US7769097B2 (en) * 2003-09-15 2010-08-03 Intel Corporation Methods and apparatus to control transmission of a multicarrier wireless communication channel through multiple antennas
US7418042B2 (en) 2003-09-17 2008-08-26 Atheros Communications, Inc. Repetition coding for a wireless system
US7724838B2 (en) * 2003-09-25 2010-05-25 Qualcomm Incorporated Hierarchical coding with multiple antennas in a wireless communication system
US7164890B2 (en) * 2003-11-21 2007-01-16 Telefonaktiebologet Lm Ericsson (Publ) Link adaptation for point-to-multipoint channel
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US20050135321A1 (en) * 2003-12-17 2005-06-23 Jacob Sharony Spatial wireless local area network
US8204149B2 (en) 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US7302009B2 (en) 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US7133646B1 (en) * 2003-12-29 2006-11-07 Miao George J Multimode and multiband MIMO transceiver of W-CDMA, WLAN and UWB communications
US20050141495A1 (en) * 2003-12-30 2005-06-30 Lin Xintian E. Filling the space-time channels in SDMA
US7573946B2 (en) * 2003-12-31 2009-08-11 Intel Corporation Apparatus and associated methods to perform space-frequency interleaving in a multicarrier wireless communication channel
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
WO2005081439A1 (en) 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
CN1918838B (zh) * 2004-02-13 2012-02-01 松下电器产业株式会社 发送装置、接收装置及无线通信方法
US20050180312A1 (en) * 2004-02-18 2005-08-18 Walton J. R. Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
CN100341295C (zh) * 2004-02-19 2007-10-03 美国博通公司 具有高数据吞吐量的wlan发射器
US7746886B2 (en) * 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US7519035B2 (en) 2004-02-23 2009-04-14 Sharp Laboratories Of America, Inc. Method to negotiate consumed power versus medium occupancy time in MIMO based WLAN systems using admission control
US7742533B2 (en) 2004-03-12 2010-06-22 Kabushiki Kaisha Toshiba OFDM signal transmission method and apparatus
EP1726111B1 (en) * 2004-03-15 2019-05-29 Apple Inc. Pilot design for ofdm systems with four transmit antennas
US7386027B2 (en) * 2004-03-31 2008-06-10 Matsushita Electric Industrial Co., Ltd. Methods and apparatus for generating and processing wideband signals having reduced discrete power spectral density components
US9450664B2 (en) * 2004-04-02 2016-09-20 Apple Inc. Space-time transmit diversity systems and methods for ofdm applications
US7720042B2 (en) * 2004-04-02 2010-05-18 Lg Electronics Inc. Method for transmitting and receiving data signal in MIMO system
US7848442B2 (en) * 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
EP3447935B1 (en) 2004-04-02 2022-01-26 Apple Inc. Wireless communication methods, systems, and signal structures
US7545874B1 (en) 2004-04-05 2009-06-09 National Semiconductor Corporation Apparatus for pre-scaling data packets with multiple signal gain coefficients in a SIMO/MISO transceiver for communication with a SISO transceiver
US7394861B1 (en) * 2004-04-05 2008-07-01 National Semiconductor Corporation Apparatus for generating signal gain coefficients for a SIMO/MISO transceiver for providing packet data communication with a SISO transceiver
US7630356B2 (en) * 2004-04-05 2009-12-08 Nortel Networks Limited Methods for supporting MIMO transmission in OFDM applications
ATE333724T1 (de) * 2004-04-08 2006-08-15 Mitsubishi Electric Inf Tech Verfahren zur übertragung von optimalverteilten informationen in einem mimo telekommunikationssystem
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
US7684507B2 (en) * 2004-04-13 2010-03-23 Intel Corporation Method and apparatus to select coding mode
US7729233B2 (en) * 2004-04-14 2010-06-01 Webster Mark A Dual mode communication systems and methods
US20050237923A1 (en) * 2004-04-26 2005-10-27 Texas Instruments Incorporated Multi-bank OFDM high data rate extensions
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
US8923785B2 (en) 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8036710B2 (en) * 2004-05-07 2011-10-11 Qualcomm, Incorporated Power-efficient multi-antenna wireless device
GB2414365B (en) * 2004-05-19 2008-12-17 Motorola Inc Method of selecting a downlink transmit diversity technique
CN100461650C (zh) * 2004-06-01 2009-02-11 美国博通公司 非对称多入多出无线通信
JP4276677B2 (ja) * 2004-06-14 2009-06-10 パナソニック株式会社 無線通信装置
GB2415336B (en) * 2004-06-18 2006-11-08 Toshiba Res Europ Ltd Bit interleaver for a mimo system
US7660362B2 (en) * 2004-06-18 2010-02-09 Broadcom Corporation Wireless local area network system using space-time block coding (STBC) having backward compatibility with prior standards
EP3313001A1 (en) 2004-06-22 2018-04-25 Apple Inc. Closed loop mimo systems and methods
EP3537681B1 (en) 2004-06-24 2020-10-07 Apple Inc. Preambles in ofdma system
US8014377B2 (en) 2004-06-24 2011-09-06 Nortel Networks Limited Efficient location updates, paging and short bursts
US8027243B2 (en) * 2004-06-25 2011-09-27 Lg Electronics Inc. Allocation of radio resource in orthogonal frequency division multiplexing system
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
CN1998176B (zh) * 2004-07-01 2011-06-15 高通股份有限公司 高级mimo交织方法和系统
US7548592B2 (en) * 2004-07-02 2009-06-16 James Stuart Wight Multiple input, multiple output communications systems
US7738595B2 (en) * 2004-07-02 2010-06-15 James Stuart Wight Multiple input, multiple output communications systems
WO2006002550A1 (en) 2004-07-07 2006-01-12 Nortel Networks Limited System and method for mapping symbols for mimo transmission
US7978649B2 (en) 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US7460839B2 (en) * 2004-07-19 2008-12-02 Purewave Networks, Inc. Non-simultaneous frequency diversity in radio communication systems
US7263335B2 (en) * 2004-07-19 2007-08-28 Purewave Networks, Inc. Multi-connection, non-simultaneous frequency diversity in radio communication systems
US7430163B2 (en) * 2004-07-19 2008-09-30 Tzero Technologies, Inc. Data stream transmission preprocessing
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
JP4525227B2 (ja) * 2004-07-28 2010-08-18 ソニー株式会社 無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
US7864659B2 (en) * 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
FR2873878A1 (fr) * 2004-08-02 2006-02-03 Nortel Networks Ltd Procede d'emission radio a diversite spatiale et emetteur radio mettant en oeuvre le procede
KR100719339B1 (ko) * 2004-08-13 2007-05-17 삼성전자주식회사 다중 입력 다중 출력 무선 통신 시스템에서 채널 추정을통한 프레임 송수신 방법
US7978778B2 (en) * 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7894548B2 (en) 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
US7120201B2 (en) * 2004-09-10 2006-10-10 Interdigital Technology Corporation Method and system for optimization of channel estimation and synchronization in an OFDM-MIMO wireless communication system
JP3754441B1 (ja) * 2004-09-10 2006-03-15 三洋電機株式会社 受信方法ならびに装置およびそれを利用した通信システム
EP1792425B1 (en) * 2004-09-22 2016-02-24 Samsung Electronics Co., Ltd. Mb-ofdm transmitter and receiver and signal processing method thereof
KR100905605B1 (ko) * 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
EP1803314B1 (en) 2004-10-15 2016-03-09 Apple Inc. Communication resource allocation systems and methods
KR20060035358A (ko) * 2004-10-22 2006-04-26 삼성전자주식회사 다수의 송수신 안테나를 구비하는 이동통신시스템의 고속데이터 통신 장치 및 방법
CN102868511B (zh) 2004-10-29 2016-08-03 夏普株式会社 通信方法和无线发射机
US8130855B2 (en) 2004-11-12 2012-03-06 Interdigital Technology Corporation Method and apparatus for combining space-frequency block coding, spatial multiplexing and beamforming in a MIMO-OFDM system
CN1780188A (zh) * 2004-11-25 2006-05-31 松下电器产业株式会社 多速率无线通信系统及其动态码分配方法
JP4541165B2 (ja) * 2005-01-13 2010-09-08 富士通株式会社 無線通信システム及び送信装置
US8150442B2 (en) 2005-01-18 2012-04-03 Sharp Kabushiki Kaisha Method and apparatus for controlling power of subcarriers in a wireless communication system
US7554952B2 (en) * 2005-02-09 2009-06-30 Alcatel-Lucent Usa Inc. Distributed multiple antenna scheduling for wireless packet data communication system using OFDM
KR100651555B1 (ko) * 2005-02-16 2006-11-29 삼성전자주식회사 연접시공간블록부호 기반의 다중입출력 통신 시스템
JPWO2006088081A1 (ja) * 2005-02-18 2008-07-03 三菱電機株式会社 通信装置
CN101160735B (zh) * 2005-02-25 2011-09-07 日本电气株式会社 码串发送方法、无线通信系统、发送机以及接收机
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US7603109B2 (en) * 2005-03-10 2009-10-13 Qualcomm Incorporated Methods and apparatus for over-the-air subscriptions
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US7539463B2 (en) 2005-03-30 2009-05-26 Intel Corporation Techniques to enhance diversity for a wireless system
US20060221928A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Wireless device and method for wireless multiple access
US20060221873A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony System and method for wireless multiple access
US20060221904A1 (en) * 2005-03-31 2006-10-05 Jacob Sharony Access point and method for wireless multiple access
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
TWI369088B (en) * 2005-04-04 2012-07-21 Qualcomm Inc Method and apparatus for management of multi-carrier communications in a wireless communication system
US7957351B2 (en) * 2005-04-04 2011-06-07 Qualcomm Incorporated Method and apparatus for management of multi-carrier communications in a wireless communication system
DE102005017080B4 (de) * 2005-04-08 2007-07-26 Accelant Communications Gmbh Übertragungsverfahren in einem Funksystem mit mehreren Sende-/Empfangszweigen in der Basisstation
KR101049440B1 (ko) * 2005-04-13 2011-07-15 연세대학교 산학협력단 공간 분할 다중화 심볼 검출 장치 및 그 방법
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) * 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US8473570B2 (en) 2005-05-05 2013-06-25 Qualcomm Incorporated Methods and apparatus for simultaneously hosting multiple service providers on a network
US8634432B2 (en) * 2005-05-06 2014-01-21 Samsung Electronics Co., Ltd. System and method for subcarrier allocation in a multicarrier wireless network
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8971461B2 (en) * 2005-06-01 2015-03-03 Qualcomm Incorporated CQI and rank prediction for list sphere decoding and ML MIMO receivers
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US7813374B2 (en) * 2005-06-29 2010-10-12 Broadcom Corporation Multiple protocol wireless communication baseband transceiver
KR101137345B1 (ko) * 2005-07-03 2012-04-23 엘지전자 주식회사 이동 통신 시스템에서 분산된 파일럿 신호가 포함된 신호를송수신하는 방법
EP1911171A1 (en) * 2005-07-29 2008-04-16 The Governors of the University of Alberta Antenna selection apparatus and methods
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
KR101276797B1 (ko) * 2005-08-24 2013-06-20 한국전자통신연구원 이동 통신 시스템에서의 송신 다이버시티 방법 및 기지국송신기
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
WO2007029579A1 (ja) * 2005-09-06 2007-03-15 Sanyo Electric Co., Ltd. 受信方法および装置ならびにそれを利用した通信システム
JP4768368B2 (ja) * 2005-09-09 2011-09-07 富士通株式会社 無線通信システム、送信機および受信機
US8139672B2 (en) * 2005-09-23 2012-03-20 Qualcomm Incorporated Method and apparatus for pilot communication in a multi-antenna wireless communication system
US7738585B2 (en) 2005-09-23 2010-06-15 Intel Corporation Scalable system to adaptively transmit and receive including adaptive antenna signal and back-end processors
US20070070925A1 (en) * 2005-09-23 2007-03-29 Intel Corporation Scalable system to adaptively transmit and receive including front-end and adaptive antenna signal processors
US20070071149A1 (en) * 2005-09-27 2007-03-29 Linbo Li Maximum ratio combining in broadcast OFDM systems based on multiple receive antennas
US8363739B2 (en) * 2005-09-30 2013-01-29 Apple Inc. Pilot scheme for a MIMO communication system
CN100407825C (zh) * 2005-10-18 2008-07-30 上海贝尔阿尔卡特股份有限公司 分布式基站、通信系统及其使用的信号传输方法
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US8693405B2 (en) 2005-10-27 2014-04-08 Qualcomm Incorporated SDMA resource management
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
JP2009514310A (ja) * 2005-10-28 2009-04-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 可変ダイバーシティ利得を有する多重アンテナ伝送
KR100996023B1 (ko) * 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
CN1968042B (zh) * 2005-11-17 2011-01-05 松下电器产业株式会社 用于多天线、正交频分多址蜂窝系统的上行宏分集方法
US8582548B2 (en) * 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8107549B2 (en) 2005-11-30 2012-01-31 Qualcomm, Incorporated Multi-stage receiver for wireless communication
WO2007066291A2 (en) * 2005-12-08 2007-06-14 Koninklijke Philips Electronics N.V. System, apparatus, and method for spatial multiplexing with symbol spreading
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US20070160016A1 (en) * 2006-01-09 2007-07-12 Amit Jain System and method for clustering wireless devices in a wireless network
KR100906333B1 (ko) * 2006-01-11 2009-07-06 삼성전자주식회사 공간분할 다중접속 시스템에서 무선주파수 밴드 자원을 병합하여 할당하는 장치 및 방법
KR101221706B1 (ko) 2006-01-25 2013-01-11 삼성전자주식회사 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
JP4751733B2 (ja) * 2006-02-13 2011-08-17 富士通東芝モバイルコミュニケーションズ株式会社 Ofdm無線通信システム
EP1989809B1 (en) * 2006-02-21 2011-01-12 QUALCOMM Incorporated Feedback channel design for multiple-input multiple-output communication systems
US8689025B2 (en) * 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
US8077595B2 (en) 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US9461736B2 (en) * 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8009646B2 (en) 2006-02-28 2011-08-30 Rotani, Inc. Methods and apparatus for overlapping MIMO antenna physical sectors
ES2530992T3 (es) * 2006-04-12 2015-03-09 Lg Electronics Inc Asignación de señales de referencia en sistema MIMO
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
KR20070105558A (ko) * 2006-04-26 2007-10-31 삼성전자주식회사 직교 주파수 분할 다중 접속 기반 셀룰러무선통신시스템에서 공통제어채널의 수신 성능 향상을 위한방법 및 장치
US8290089B2 (en) 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
EP2030341B1 (en) * 2006-05-23 2017-03-29 LG Electronics Inc. Apparatus for processing received signal, method thereof, and method for selecting mapping rule
KR101306730B1 (ko) * 2006-07-13 2013-09-11 엘지전자 주식회사 시간, 또는 시간 및 주파수 다이버시티를 가지는 데이터의송신 방법, 장치, 및 이에 이용되는 패턴 생성 방법
US8126983B2 (en) * 2006-09-28 2012-02-28 Broadcom Corporation Method and system for distributed infrastructure for streaming data via multiple access points
US20080056117A1 (en) * 2006-09-01 2008-03-06 Tarik Muharemovic Specification of sub-channels for fdm based transmission including ofdma and sc-ofdma
US20080080434A1 (en) * 2006-09-28 2008-04-03 Guy Wolf Method and apparatus of system scheduler
KR100758766B1 (ko) * 2006-10-04 2007-09-14 엘지노텔 주식회사 다양성 이득 향상을 위한 무선 자원 할당 제어 방법
KR101355313B1 (ko) * 2006-10-12 2014-01-23 엘지전자 주식회사 Mimo 시스템에서의 참조신호 배치 방법
KR100816500B1 (ko) * 2006-11-13 2008-03-24 한국전자통신연구원 다중 송신 안테나를 이용한 디지털 방송 송수신기
US7813262B1 (en) * 2006-12-05 2010-10-12 Xilinx, Inc. Multiple input multiple-output orthogonal frequency-division multiplexing modulator
JP4905461B2 (ja) 2006-12-14 2012-03-28 富士通株式会社 多入力多出力通信のためのアンテナを選択する制御装置
CN101114890A (zh) * 2007-01-09 2008-01-30 华为技术有限公司 Mimo多码字通信方法
WO2008083619A1 (fr) * 2007-01-09 2008-07-17 Huawei Technologies Co., Ltd. Procédé de communication pour mots multicodés mimo
US7990920B2 (en) * 2007-04-26 2011-08-02 Samsung Electronics Co., Ltd. Transmit diversity for acknowledgement and category 0 bits in a wireless communication system
CN101689935B (zh) * 2007-05-09 2014-02-26 Lg电子株式会社 移动通信系统中的延迟控制
US8102944B2 (en) 2007-05-18 2012-01-24 Qualcomm Incorporated Mode and rate control for MIMO transmission
CN101321040B (zh) * 2007-06-05 2013-01-16 中兴通讯股份有限公司 用于多输入多输出正交频分复用系统的发射机和数据发送方法及接收机和数据接收方法
US8068566B2 (en) * 2007-07-31 2011-11-29 Intel Corporation Unified multi-mode receiver detector
DK2242198T3 (da) * 2007-09-28 2012-04-23 Lg Electronics Inc Apparat til sending af et signal og fremgangsmåde til sending af et signal
ES2611594T3 (es) * 2007-10-31 2017-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Selección de modo de transmisión durante un procedimiento de acceso aleatorio
CN101442352B (zh) * 2007-11-20 2012-10-10 中兴通讯股份有限公司 一种发射分集方法及装置
CN101442354B (zh) * 2007-11-21 2012-11-28 中兴通讯股份有限公司 发射和接收方法及发射机和接收机
EP2073398B1 (en) * 2007-12-20 2017-03-29 Sony Corporation Improved transmit power allocation for adaptive multi-carrier multiplexing MIMO systems
KR101434566B1 (ko) * 2008-01-02 2014-08-27 삼성전자주식회사 사이클릭 프리픽스가 없는 신호를 처리하는 중계기 기반의통신 시스템 및 그 방법
GB2457260A (en) * 2008-02-08 2009-08-12 Kassem Benzair Combining MRC and MMSE equalisation techniques for MIMO-OFDM system
US20090213946A1 (en) * 2008-02-25 2009-08-27 Xilinx, Inc. Partial reconfiguration for a mimo-ofdm communication system
JP5277673B2 (ja) * 2008-03-17 2013-08-28 富士通株式会社 無線通信システム及び無線通信方法並びに送信装置及び受信装置
CN101572573B (zh) * 2008-04-29 2012-10-10 电信科学技术研究院 多入多出天线模式切换方法及设备
US20090316829A1 (en) * 2008-06-19 2009-12-24 Ahmadreza Rofougaran Method and system for transmit diversity for chip-to-chip communications
WO2009156846A1 (en) * 2008-06-27 2009-12-30 Nokia Corporation Unsynchronized signaling in radio systems using frequency domain processing
KR101531515B1 (ko) 2008-07-04 2015-06-26 엘지전자 주식회사 파일롯 서브캐리어 할당을 사용하는 복수개의 송신 안테나를 갖는 무선 통신 시스템
US8225170B2 (en) * 2008-07-15 2012-07-17 Quang Nguyen MIMO wireless system with diversity processing
US9137058B2 (en) * 2008-07-17 2015-09-15 Nokia Technologies Oy Data packet processing for estimation of a direction towards a transmitter
KR101646249B1 (ko) * 2008-08-11 2016-08-16 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR101603338B1 (ko) 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
KR20100019948A (ko) * 2008-08-11 2010-02-19 엘지전자 주식회사 공간 다중화 기법을 이용한 데이터 전송방법
US20100034314A1 (en) * 2008-08-11 2010-02-11 Motorola Inc Antenna Configuration and Transmission Mode Signaling In Wireless Communication System
KR101571566B1 (ko) 2008-08-11 2015-11-25 엘지전자 주식회사 무선 통신 시스템에서 제어신호 전송 방법
KR101597573B1 (ko) * 2008-08-11 2016-02-25 엘지전자 주식회사 제어정보의 상향링크 전송 방법
KR20100019947A (ko) 2008-08-11 2010-02-19 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법
US20100067512A1 (en) * 2008-09-17 2010-03-18 Samsung Electronics Co., Ltd. Uplink transmit diversity schemes with 4 antenna ports
EP2329605A4 (en) 2008-09-22 2013-04-17 Nortel Networks Ltd METHOD AND SYSTEM FOR A PUCCH ROOM CODE TRANSMISSION DIVERSITY
US9608780B2 (en) * 2008-09-23 2017-03-28 Qualcomm Incorporated Transmit diversity for SC-FDMA
KR101001015B1 (ko) * 2008-09-25 2010-12-14 한국전자통신연구원 다운링크 송신 모드를 적응적으로 결정하는 다중 안테나 무선 통신 시스템
TWI385672B (zh) * 2008-11-05 2013-02-11 Lite On It Corp 儲存裝置之適應性多通道控制器及其方法
EP2357735B1 (en) 2008-11-14 2016-11-09 LG Electronics Inc. Method and apparatus for information transmission in wireless communication system
US8908793B2 (en) * 2008-11-14 2014-12-09 Lg Electronics Inc. Method and apparatus for signal transmission in wireless communication system
KR20100091876A (ko) 2009-02-11 2010-08-19 엘지전자 주식회사 다중안테나 전송을 위한 단말 동작
WO2010103989A1 (ja) 2009-03-10 2010-09-16 シャープ株式会社 無線通信システム、無線送信装置および無線送信装置の制御プログラム
US20100304744A1 (en) * 2009-05-29 2010-12-02 Qualcomm Incorporated Method and apparatus for performing searches with multiple receive diversity (rxd) search modes
US8520718B2 (en) * 2009-06-18 2013-08-27 Qualcomm Incorporated PUSCH transmit delivery scheme selection
US8374260B2 (en) * 2009-06-22 2013-02-12 Motorola Mobility Llc Method and apparatus for implementing uplink transmit diversity in a switched antenna orthogonal frequency division multiplexing communication system
US20110033011A1 (en) * 2009-08-05 2011-02-10 Industrial Technology Research Institute Methods and apparatuses relating to multi-resolution transmissions with mimo scheme
CN101989873B (zh) * 2009-08-07 2014-03-19 电信科学技术研究院 上行控制信道的传输方法及装置
CN101997649B (zh) * 2009-08-21 2014-12-10 中兴通讯股份有限公司 一种基于正交分集的mu-mimo处理方法和装置
JP5678420B2 (ja) * 2009-09-01 2015-03-04 富士通株式会社 中継方法及び中継装置
WO2011069277A1 (en) * 2009-12-10 2011-06-16 Texas Instruments Incorporated Method for high-efficient implementation of de-rate matching including harq combining for lte
EP2355432A1 (en) 2010-02-05 2011-08-10 Nokia Siemens Networks Oy Method and arrangement for transmitting an orthogonal frequency diversity multiplex signal via at least one optical filter
US9264675B2 (en) * 2010-04-14 2016-02-16 Hughes Network Systems, Llc System and method for multi-carrier multiplexing
US9444514B2 (en) 2010-05-28 2016-09-13 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
US10681568B1 (en) 2010-05-28 2020-06-09 Cohere Technologies, Inc. Methods of data channel characterization and uses thereof
US10667148B1 (en) 2010-05-28 2020-05-26 Cohere Technologies, Inc. Methods of operating and implementing wireless communications systems
US11943089B2 (en) 2010-05-28 2024-03-26 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-shifting communications system
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
JP2012010205A (ja) * 2010-06-25 2012-01-12 Sharp Corp 通信システム、通信装置および通信方法
KR101718018B1 (ko) * 2010-06-30 2017-03-20 엘지전자 주식회사 이종 모뎀을 구비하는 단말에서의 송신 전력 검출 장치 및 방법
CA3017181C (en) * 2010-12-10 2023-07-18 Sun Patent Trust Signal generation method and signal generation device
CN102684819B (zh) * 2011-03-15 2015-06-03 华为技术有限公司 一种数据传输方法及相关设备、系统
US9565004B2 (en) * 2011-08-10 2017-02-07 Telefonaktiebolaget L M Ericsson Transmit diversity for pre-coded radio control signals
CN103248459B (zh) * 2012-02-14 2016-09-14 延世大学校产学协力团 用于在差分正交空时分组编码系统中解码的方法和装置
US9066249B2 (en) * 2012-03-07 2015-06-23 Apple Inc. Methods and apparatus for interference coordinated transmission and reception in wireless networks
US10090972B2 (en) 2012-06-25 2018-10-02 Cohere Technologies, Inc. System and method for two-dimensional equalization in an orthogonal time frequency space communication system
US10469215B2 (en) 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
US9929783B2 (en) * 2012-06-25 2018-03-27 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9621254B2 (en) * 2012-09-21 2017-04-11 Spatial Digital Systems, Inc. Communications architectures via UAV
CN103023550A (zh) * 2012-12-14 2013-04-03 西北农林科技大学 基于egt和mrc的miso无线系统的相位tcq量化的方法
US9160643B2 (en) * 2013-03-14 2015-10-13 Qualcomm Incorporated Systems and methods for statistically profiling channels in MIMO communications
EP3065322B1 (en) * 2013-10-31 2019-05-22 Panasonic Intellectual Property Corporation of America Transmission method
US9344180B2 (en) * 2014-08-29 2016-05-17 Freescale Semiconductor, Inc. Antenna-diversity receiver and method of operating an antenna-diversity receiver and a transmitter in a frequency-hopping communication system
RU2580055C1 (ru) * 2015-01-28 2016-04-10 Открытое акционерное общество "Научно-исследовательский институт точных приборов" Способ передачи информации в обратном канале бортовой аппаратуры командно-измерительной системы методом квадратурной фазовой модуляции несущей частоты, кодируемой м-последовательностью с малоразрядными кодами, и устройство для его осуществления
FR3033109B1 (fr) * 2015-02-19 2017-02-24 Commissariat Energie Atomique Procede de transmission d'un plan de frequences dans un systeme de telecommunication
US10158394B2 (en) 2015-05-11 2018-12-18 Cohere Technologies, Inc. Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data
US10090973B2 (en) 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
CN114070701B (zh) 2015-06-27 2024-05-14 凝聚技术股份有限公司 与ofdm兼容的正交时频空间通信系统
US10693581B2 (en) 2015-07-12 2020-06-23 Cohere Technologies, Inc. Orthogonal time frequency space modulation over a plurality of narrow band subcarriers
CN108770382B (zh) 2015-09-07 2022-01-14 凝聚技术公司 使用正交时间频率空间调制的多路存取的方法
EP3369186A4 (en) * 2015-10-29 2018-10-31 Telefonaktiebolaget LM Ericsson (PUBL) First and second radio nodes and methods therein, for performing a radio communication
WO2017087706A1 (en) 2015-11-18 2017-05-26 Cohere Technologies Orthogonal time frequency space modulation techniques
KR102655272B1 (ko) 2015-12-09 2024-04-08 코히어 테크놀로지스, 아이엔씨. 복소 직교 함수를 이용하는 파일럿 패킹
CN115694764A (zh) 2016-02-25 2023-02-03 凝聚技术公司 用于无线通信的参考信号封装
EP3433969B1 (en) 2016-03-23 2021-11-03 Cohere Technologies, Inc. Receiver-side processing of orthogonal time frequency space modulated signals
CN117097594A (zh) 2016-03-31 2023-11-21 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
US9667307B1 (en) 2016-03-31 2017-05-30 Cohere Technologies Wireless telecommunications system for high-mobility applications
EP3437279B1 (en) 2016-04-01 2021-03-03 Cohere Technologies, Inc. Iterative two dimensional equalization of orthogonal time frequency space modulated signals
KR102250054B1 (ko) 2016-04-01 2021-05-07 코히어 테크널러지스, 아이엔씨. Otfs 통신 시스템에서의 tomlinson-harashima 프리코딩
WO2017201467A1 (en) 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals
EP3497799A4 (en) 2016-08-12 2020-04-15 Cohere Technologies, Inc. MULTILEVEL ITERATIVE EQUALIZATION AND DECODING
EP4362590A3 (en) 2016-08-12 2024-06-26 Cohere Technologies, Inc. Method for multi-user multiplexing of orthogonal time frequency space signals
WO2018032016A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Localized equalization for channels with intercarrier interference
US11310000B2 (en) 2016-09-29 2022-04-19 Cohere Technologies, Inc. Transport block segmentation for multi-level codes
WO2018064605A1 (en) 2016-09-30 2018-04-05 Cohere Technologies Uplink user resource allocation for orthogonal time frequency space modulation
EP3454476A4 (en) * 2016-09-30 2019-06-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. METHOD AND APPARATUS FOR DATA TRANSMISSION
EP3549200B1 (en) 2016-12-05 2022-06-29 Cohere Technologies, Inc. Fixed wireless access using orthogonal time frequency space modulation
EP3552332B1 (en) * 2016-12-12 2022-09-07 Sony Group Corporation Communication device and method for communication with a couterpart communication device
WO2018129554A1 (en) 2017-01-09 2018-07-12 Cohere Technologies Pilot scrambling for channel estimation
WO2018140837A1 (en) 2017-01-27 2018-08-02 Cohere Technologies Variable beamwidth multiband antenna
US10568143B2 (en) 2017-03-28 2020-02-18 Cohere Technologies, Inc. Windowed sequence for random access method and apparatus
EP3610582A4 (en) 2017-04-11 2021-01-06 Cohere Technologies, Inc. DIGITAL COMMUNICATION USING ORTHOGONALLY MODULATED SIGNALS IN DISPERSED TIME, FREQUENCY AND SPACE
EP4109983A1 (en) 2017-04-21 2022-12-28 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
EP3616265A4 (en) 2017-04-24 2021-01-13 Cohere Technologies, Inc. MULTI-HARNESS ANTENNA DESIGNS AND OPERATION
EP3616341A4 (en) 2017-04-24 2020-12-30 Cohere Technologies, Inc. DIGITAL COMMUNICATION USING LATTICE DISTRIBUTION MULTIPLEXING
KR102612426B1 (ko) 2017-07-12 2023-12-12 코히어 테크놀로지스, 아이엔씨. Zak 변환에 기초한 데이터 변조 기법
WO2019027360A1 (en) * 2017-07-31 2019-02-07 Telefonaktiebolaget Lm Ericsson (Publ) DIFFERENTIAL CODED M-PSK IN A WIRELESS COMMUNICATION SYSTEM
US11546068B2 (en) 2017-08-11 2023-01-03 Cohere Technologies, Inc. Ray tracing technique for wireless channel measurements
WO2019036492A1 (en) 2017-08-14 2019-02-21 Cohere Technologies ASSIGNMENT OF TRANSMISSION RESOURCES BY DIVISION OF BLOCKS OF PHYSICAL RESOURCES
CN111279337B (zh) 2017-09-06 2023-09-26 凝聚技术公司 一种由无线通信接收器装置实现的无线通信方法
US10461896B2 (en) 2017-09-08 2019-10-29 At&T Intellectual Property I, L.P. Configuration of repetition factors for transmitting feedback data for 5G or other next generation network
US11283561B2 (en) 2017-09-11 2022-03-22 Cohere Technologies, Inc. Wireless local area networks using orthogonal time frequency space modulation
WO2019055861A1 (en) 2017-09-15 2019-03-21 Cohere Technologies, Inc. REALIZING SYNCHRONIZATION IN AN ORTHOGONAL SPACE-FREQUENCY SPACE SIGNAL RECEIVER
EP3685470A4 (en) 2017-09-20 2021-06-23 Cohere Technologies, Inc. LOW COST ELECTROMAGNETIC POWER SUPPLY
US11152957B2 (en) 2017-09-29 2021-10-19 Cohere Technologies, Inc. Forward error correction using non-binary low density parity check codes
EP4362344A2 (en) 2017-11-01 2024-05-01 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2019113046A1 (en) 2017-12-04 2019-06-13 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
US11632270B2 (en) 2018-02-08 2023-04-18 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
US11489559B2 (en) 2018-03-08 2022-11-01 Cohere Technologies, Inc. Scheduling multi-user MIMO transmissions in fixed wireless access systems
WO2019241589A1 (en) 2018-06-13 2019-12-19 Cohere Technologies, Inc. Reciprocal calibration for channel estimation based on second-order statistics
US11522600B1 (en) 2018-08-01 2022-12-06 Cohere Technologies, Inc. Airborne RF-head system
US10790936B1 (en) * 2019-01-02 2020-09-29 Sprint Spectrum L.P. Use of orthogonal coding to help facilitate multi-layer transmission of user-plane data from closely spaced antennas
JP6723424B1 (ja) 2019-06-21 2020-07-15 株式会社横須賀テレコムリサーチパーク 送受信方法および送受信システム
CN111313940B (zh) * 2020-02-12 2022-05-06 惠州Tcl移动通信有限公司 一种mimo系统和mimo系统区分信号的方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4573141A (en) 1984-04-12 1986-02-25 General Electric Company Memory interface for communicating between two storage media having incompatible data formats
US5265119A (en) 1989-11-07 1993-11-23 Qualcomm Incorporated Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
US5511067A (en) * 1994-06-17 1996-04-23 Qualcomm Incorporated Layered channel element in a base station modem for a CDMA cellular communication system
US5734980A (en) * 1995-01-31 1998-03-31 Ericsson Inc. Preferred system selection techniques for mobile terminals
RU2090003C1 (ru) 1995-04-19 1997-09-10 Военная академия связи Система спутниковой связи
US5914933A (en) * 1996-03-08 1999-06-22 Lucent Technologies Inc. Clustered OFDM communication system
AU4238697A (en) * 1996-08-29 1998-03-19 Cisco Technology, Inc. Spatio-temporal processing for communication
US5991282A (en) * 1997-05-28 1999-11-23 Telefonaktiebolaget Lm Ericsson Radio communication system with diversity reception on a time-slot by time-slot basis
SE512115C2 (sv) * 1997-09-08 2000-01-24 Ericsson Telefon Ab L M Testsändare samt förfarande för tillverkning av en mobil testsändare för ett mobiltelekommunikationssystem
KR100326314B1 (ko) * 1998-08-03 2002-06-24 윤종용 이동통신시스템의기지국에서송신전력을제한하기위한송신스위칭다이버시티송신장치및방법
BR9913277A (pt) * 1998-09-04 2001-09-25 At & T Corp Codificação de bloco-espaço e codificação de canal combinado em um arranjo de multi-antenas
US6199158B1 (en) * 1998-12-16 2001-03-06 Nokia Mobile Phones Ltd. Method and apparatus for configuring variant software for electronic devices
US6356528B1 (en) * 1999-04-15 2002-03-12 Qualcomm Incorporated Interleaver and deinterleaver for use in a diversity transmission communication system
EP1179230B1 (en) * 1999-05-19 2004-07-28 Nokia Corporation Transmit diversity method and system
US6385264B1 (en) * 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6891897B1 (en) * 1999-07-23 2005-05-10 Nortel Networks Limited Space-time coding and channel estimation scheme, arrangement and method
US6067290A (en) * 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
WO2001039456A1 (en) 1999-11-23 2001-05-31 Thomson Licensing S.A. Gray encoding for hierarchical qam transmission systems
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US6952454B1 (en) * 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
US7068628B2 (en) * 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US6690712B2 (en) * 2000-05-25 2004-02-10 Samsung Electronics Co., Ltd. Apparatus and method for transmission diversity using more than two antennas
US6731619B1 (en) * 2000-08-02 2004-05-04 Ericsson Inc. Method and system for using one type of transmit diversity in a first time slot and a second type in an adjacent time slot
EP1182799A3 (en) * 2000-08-22 2002-06-26 Lucent Technologies Inc. Method for enhancing mobile cdma communications using space-time transmit diversity
US6850481B2 (en) * 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
US6985434B2 (en) * 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US7233625B2 (en) * 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US7020175B2 (en) * 2000-09-21 2006-03-28 Motorola, Inc. MMSE reception of DS-CDMA with transmit diversity
US7010053B2 (en) * 2000-11-06 2006-03-07 Hesham El-Gamal Method and system for utilizing space-time and space-frequency codes for multi-input multi-output frequency selective fading channels
US6947748B2 (en) * 2000-12-15 2005-09-20 Adaptix, Inc. OFDMA with adaptive subcarrier-cluster configuration and selective loading
KR100353641B1 (ko) * 2000-12-21 2002-09-28 삼성전자 주식회사 부호분할다중접속 이동통신시스템의 기지국 전송 안테나다이버시티 장치 및 방법
US7072413B2 (en) * 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7063962B2 (en) * 2001-07-20 2006-06-20 Novozymes A/S DNA sequences for regulating transcription
US7548506B2 (en) * 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7103325B1 (en) * 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US8208364B2 (en) * 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7260394B2 (en) * 2004-10-13 2007-08-21 Motorola Inc. Using an enhanced preferred roaming list in a terminal device
US7937083B2 (en) * 2005-04-14 2011-05-03 Nokia Corporation Method, apparatus and computer program providing for rapid network selection in a multimode device
US7689218B2 (en) * 2005-04-14 2010-03-30 Nokia Corporation Method, apparatus and computer program providing network-associated system priority list for multimode system selection
US8545602B2 (en) 2007-05-18 2013-10-01 Exxonmobil Research And Engineering Company Removal of CO2, N2, and H2S from gas mixtures containing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10313069B2 (en) 2000-09-13 2019-06-04 Qualcomm Incorporated Signaling method in an OFDM multiple access system
US10194463B2 (en) 2004-07-21 2019-01-29 Qualcomm Incorporated Efficient signaling over access channel
RU2516866C2 (ru) * 2005-10-27 2014-05-20 Квэлкомм Инкорпорейтед Совместно используемый канал сигнализации
RU2518464C2 (ru) * 2009-06-23 2014-06-10 Нтт Досомо, Инк. Мобильный терминал, базовая радиостанция и способ осуществления радиосвязи

Also Published As

Publication number Publication date
TW200408216A (en) 2004-05-16
RU2005101415A (ru) 2005-08-10
KR20120003508A (ko) 2012-01-10
CA2490520A1 (en) 2003-12-31
TW201004177A (en) 2010-01-16
CN100459453C (zh) 2009-02-04
MXPA05000098A (es) 2005-06-06
JP2011050074A (ja) 2011-03-10
HK1084515A1 (en) 2006-07-28
WO2004002011A1 (en) 2003-12-31
BR0312090B1 (pt) 2017-12-05
AU2008255260A1 (en) 2009-01-08
AU2008255260B8 (en) 2010-06-17
US7095709B2 (en) 2006-08-22
KR20050013624A (ko) 2005-02-04
EP2254262A3 (en) 2012-09-26
US20060193268A1 (en) 2006-08-31
CA2490520C (en) 2013-11-19
UA86927C2 (ru) 2009-06-10
JP5080628B2 (ja) 2012-11-21
KR101110955B1 (ko) 2012-03-13
CN101552655A (zh) 2009-10-07
AU2003243681A1 (en) 2004-01-06
US7990841B2 (en) 2011-08-02
US20030235147A1 (en) 2003-12-25
IL165979A0 (en) 2006-01-15
TWI330954B (en) 2010-09-21
EP2254262A2 (en) 2010-11-24
CN1675853A (zh) 2005-09-28
RU2474955C2 (ru) 2013-02-10
TWI401904B (zh) 2013-07-11
IL165979A (en) 2010-06-30
AU2003243681C1 (en) 2009-07-02
BR0312090A (pt) 2007-05-29
AU2008255260B2 (en) 2010-02-18
JP2005531219A (ja) 2005-10-13
IL201345A0 (en) 2010-05-31
KR101207566B1 (ko) 2012-12-03
CN101552655B (zh) 2013-03-06
RU2007146368A (ru) 2009-06-20
EP1516441A1 (en) 2005-03-23
NO20050350L (no) 2005-03-17
AU2003243681B2 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
RU2325757C2 (ru) Способ передачи с разнесением для систем связи с множеством входов и множеством выходов, которые используют ортогонально-частотное уплотнение
US8873365B2 (en) Transmit diversity processing for a multi-antenna communication system
RU2330381C2 (ru) Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования
RU2380845C2 (ru) Передача с множеством несущих с использованием множества размеров символов ofdm
PT1628419E (pt) Método e aparelho para medir a informação de estado de canal
WO2006004313A1 (en) Apparatus and method for switching between an amc mode and a diversity mode in a broadbrand wireless communication system
Ramesh et al. Design and implementation of high throughput, low-complexity MIMO-OFDM transciever
KR100828466B1 (ko) 다중-안테나 통신 시스템에서 공간 확산을 이용한브로드캐스트 송신
Sand et al. Orthogonal STBC MC-CDMA system with channel estimation over realistic high mobility MIMO channels
Zhang Diversity strategies for MIMO communication systems