WO2010103989A1 - 無線通信システム、無線送信装置および無線送信装置の制御プログラム - Google Patents

無線通信システム、無線送信装置および無線送信装置の制御プログラム Download PDF

Info

Publication number
WO2010103989A1
WO2010103989A1 PCT/JP2010/053536 JP2010053536W WO2010103989A1 WO 2010103989 A1 WO2010103989 A1 WO 2010103989A1 JP 2010053536 W JP2010053536 W JP 2010053536W WO 2010103989 A1 WO2010103989 A1 WO 2010103989A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
power
unit
transmission diversity
diversity method
Prior art date
Application number
PCT/JP2010/053536
Other languages
English (en)
French (fr)
Inventor
一成 横枕
泰弘 浜口
中村 理
淳悟 後藤
高橋 宏樹
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011503785A priority Critical patent/JP5583115B2/ja
Priority to US13/255,519 priority patent/US8886138B2/en
Publication of WO2010103989A1 publication Critical patent/WO2010103989A1/ja
Priority to US14/505,033 priority patent/US9531462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0623Auxiliary parameters, e.g. power control [PCB] or not acknowledged commands [NACK], used as feedback information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/18Selecting a network or a communication service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to a technique for performing transmission diversity by selecting at least two transmission antennas and selecting one of a plurality of types of transmission diversity methods.
  • LTE Long Termination Evolution
  • IMT-A Third Generation Partnership Project
  • an OFDM (Orthogonal Frequency Division Division Multiplexing) scheme in which each subcarrier is independently modulated is adopted. Furthermore, since the base station apparatus transmits a signal and thus the restriction on power consumption is weak, a transmission diversity method has already been defined. For example, when the number of transmission antennas is 2, a spatial frequency block code (SFBC: Space Frequency Block Code) ) And cyclic delay diversity (CDD: Cyclic Delay Delay) (for example, Non-Patent Document 1).
  • SFBC Space Frequency Block Code
  • CDD Cyclic Delay Delay
  • FIG. 7 is a diagram showing the concept of SFBC.
  • transmission data is SFBC encoded by the SFBC encoding unit 1000 and transmitted from the transmission antenna 1001 and the transmission antenna 1002.
  • subcarrier S1003 has a relationship obtained by adding a minus to the complex conjugate of subcarrier S1000, and subcarrier S1001 and subcarrier S1002 have a complex conjugate relationship. That is, the amplitude of the 2k ⁇ 1th subcarrier input to the original transmission data (SFBC encoding unit 1000) is S (2k ⁇ 1). Assuming that the amplitude of the 2k-th subcarrier is S (2k), the amplitudes of subcarrier S1000 to subcarrier S1003 are respectively expressed by the following equations.
  • S1 (2k ⁇ 1) and S1 (2k) are amplitudes expressed by complex numbers of 2k ⁇ 1 and 2kth subcarriers transmitted from the transmitting antenna 1001
  • S2 (2k ⁇ 1) and S2 ( 2k) is the amplitude of 2k-1 and 2kth subcarriers transmitted from the transmitting antenna 1002.
  • the transmission signal transmitted in this way is received by the receiving antenna 1003, and the SFBC decoding unit 1004 extracts the SFBC decoded data.
  • the complex gain of the propagation path from the transmission antenna 1001 to the reception antenna 1003 in the 2k-1 and 2k-th subcarriers is H1 (2k-1), H1 (2k), and the propagation path of the propagation path from the transmission antenna 1001 to the reception antenna 1003.
  • the complex gain is H2 (2k-1) and H2 (2k)
  • the received signals R (2k-1) and R (2k) are expressed by the following equations.
  • S (2k-1) and S (2k) are represented by the received signal as follows. In practice, however, noise from the receiver and interference from adjacent cells are included, but are omitted here for the sake of simplicity.
  • FIG. 8 is a diagram showing an example of CDD.
  • CDD in the case of CDD, in the case of two transmission antennas, only one antenna has a cyclic shift unit 1005, and the transmission signal 1009 from the transmission antenna 1007 is cyclic with respect to the transmission signal 1008 transmitted from the transmission antenna 1006. It is cyclically shifted by the click shift unit 1005 and is shifted by 2 symbols from the transmission signal 1008.
  • signals are received from all transmitting antennas with the receiving antenna 1010 being added. This is because the transmission signal from the transmission antenna 1007 is observed on the reception side so that the transmission signal is shifted by the number of symbols cyclically shifted by the propagation path, so that the maximum delay time of the impulse response of the propagation path is equivalently increased. .
  • the frequency fluctuation is made intense so that a good frequency and a poor frequency of the channel gain are mixed and the entire signal band is prevented from falling into a frequency band of the poor channel gain.
  • it is not effective, it is effective when moving at high speed or when propagation path fluctuations cannot be predicted at all.
  • the present invention has been made in view of such circumstances, and a radio communication system capable of efficiently performing uplink transmission diversity by switching a transmission diversity method in accordance with required transmission power in the uplink.
  • An object of the present invention is to provide a wireless transmission device and a control program for the wireless transmission device.
  • the wireless communication system of the present invention includes at least two transmission antennas, a first communication device that performs transmission diversity by selecting one of a plurality of types of transmission diversity methods, and the first communication device. And a second communication device that performs wireless communication, wherein the first communication device transmits any one of the plurality of types of transmission diversity methods based on transmission power. It is characterized by selecting a diversity method.
  • any one of the plurality of types of transmission diversity methods is selected based on the transmission power, the transmission diversity method with a high peak power and the transmission diversity method without a high peak power are switched. Therefore, the transmission efficiency of the system can be increased.
  • the first communication device is characterized by selecting a transmission diversity method based on an index representing the magnitude of peak power.
  • the first communication apparatus selects the transmission diversity method based on the index representing the magnitude of the peak power, it becomes possible to select an appropriate transmission diversity method according to the transmission power.
  • the transmission efficiency can be increased.
  • the index indicating the magnitude of the peak power is CM (Cubic Metric) or PAPR (Peak-to-Average Power Ratio).
  • the transmission diversity method is selected on the basis of these indicators.
  • An appropriate transmission diversity method can be selected according to the power, and the transmission efficiency of the system can be improved.
  • the first communication device transmits a transmission diversity method based on at least one of a power headroom calculated when determining transmission power and the CM or the PAPR. It is characterized by selecting.
  • the first communication device selects the transmission diversity method based on at least one of Power Headroom and CM or PAPR calculated when determining the transmission power.
  • the transmission diversity method can be selected, and the transmission efficiency of the system can be increased.
  • the first communication device is characterized by selecting a transmission diversity method based on assignment of a frequency used for transmission.
  • the first communication apparatus selects the transmission diversity method based on the assignment of the frequency used for transmission, information for selecting the transmission diversity is not necessary. As a result, efficient transmission diversity can be performed without affecting the control information of the system.
  • the wireless communication system of the present invention includes at least two transmission antennas, a first communication device that performs precoding by selecting one of a plurality of types of precoding methods, and the first communication device.
  • a wireless communication system comprising a second communication device that performs wireless communication with a communication device, wherein the first communication device uses the plurality of types of precoding methods based on assignment of frequencies used for transmission. One of the precoding methods is selected.
  • the first communication device selects any one of the plurality of types of precoding methods based on the assignment of the frequency used for transmission. Since the precoding method in which the peak power does not increase can be switched, the transmission efficiency of the system can be increased.
  • the wireless transmission device of the present invention is a wireless transmission device that includes at least two transmission antennas and performs transmission diversity by selecting one of a plurality of types of transmission diversity methods, and serves as a transmission destination.
  • a transmission power determination unit that determines transmission power based on information notified from the receiving device, and selects one transmission diversity method from among the plurality of types of transmission diversity methods based on the determined transmission power
  • a transmission diversity method selection unit that performs transmission, and a transmission unit that performs radio transmission to the reception device using the selected transmission diversity method.
  • any one of the plurality of types of transmission diversity methods is selected based on the transmission power, the transmission diversity method with a high peak power and the transmission diversity method without a high peak power are switched. Therefore, the transmission efficiency of the system can be increased.
  • the transmission diversity method selection unit selects a transmission diversity method based on an index representing the magnitude of peak power.
  • the transmission diversity method is selected based on the index representing the magnitude of the peak power, it becomes possible to select an appropriate transmission diversity method according to the transmission power, thereby improving the transmission efficiency of the system. It becomes possible.
  • the index indicating the magnitude of the peak power is CM (Cubic Metric) or PAPR (Peak-to-Average Power Ratio).
  • the transmission diversity method is selected on the basis of these indicators.
  • An appropriate transmission diversity method can be selected according to the power, and the transmission efficiency of the system can be improved.
  • the transmission power determination unit outputs a power headroom calculated when determining transmission power to the transmission diversity method selection unit
  • the transmission diversity method selection unit includes: A transmission diversity method is selected based on at least one of the Power Headroom and the CM or the PAPR.
  • the transmission diversity method is selected based on at least one of Power Headroom and CM or PAPR calculated when determining the transmission power, an appropriate transmission diversity method is selected according to the transmission power.
  • the transmission efficiency of the system can be increased.
  • the wireless transmission device of the present invention further includes a detection unit that detects allocation of frequencies used for transmission based on information notified from a reception device serving as a transmission destination, and the transmission diversity method selection unit includes: The transmission diversity method is selected based on the detected frequency assignment.
  • the transmission diversity method is selected based on the assignment of the frequency used for transmission, information for selecting transmission diversity is not necessary. As a result, efficient transmission diversity can be performed without affecting the control information of the system.
  • the wireless transmission device of the present invention is a wireless transmission device that includes at least two transmission antennas and performs precoding by selecting one of a plurality of types of precoding methods, and serves as a transmission destination.
  • a detection unit that detects allocation of frequencies used for transmission based on information notified from the receiving apparatus, and one of the plurality of types of precoding methods based on the detected allocation of frequencies
  • a precoding method selection unit for selecting a method.
  • one of the plurality of types of precoding methods is selected based on the assignment of the frequency used for transmission, a precoding method with high peak power and a precoding method without high peak power are selected. Since the recording method can be switched, the transmission efficiency of the system can be increased.
  • control program for a wireless transmission device of the present invention is a control program for a wireless transmission device that includes at least two transmission antennas and performs transmission diversity by selecting one of a plurality of types of transmission diversity methods. Then, the transmission power determination unit determines the transmission power based on the information notified from the receiving device as the transmission destination, and the transmission diversity method selection unit determines the transmission power based on the determined transmission power. A series of processes including a process of selecting any one transmission diversity method among the types of transmission diversity methods, and a process of performing wireless transmission to the receiving device by the selected transmission diversity method in the transmission unit
  • the computer is readable and executable as a computer.
  • any one of the plurality of types of transmission diversity methods is selected based on the transmission power, the transmission diversity method with a high peak power and the transmission diversity method without a high peak power are switched. Therefore, the transmission efficiency of the system can be increased.
  • one transmission diversity method is selected from among a plurality of types of transmission diversity methods based on transmission power, a transmission diversity method with high peak power, and a transmission diversity method without high peak power, Thus, the transmission efficiency of the system can be increased.
  • SFBC and CDD are switched, but the peak power increase method (for example, FSTD that divides the waveform) and the transmission diversity method that does not increase the peak power (for example, STBC, TSTD, DFT point number) A mode of switching FSTD to be reduced) is also included in the present invention.
  • the peak power increase method for example, FSTD that divides the waveform
  • the transmission diversity method that does not increase the peak power
  • STBC, TSTD, DFT point number for example, STBC, TSTD, DFT point number
  • a mode of switching FSTD to be reduced is also included in the present invention.
  • a case where transmission diversity is applied to the SC-FDMA scheme is shown, but a scheme such as the Clustered DFT-S-OFDM scheme may be used.
  • FIG. 1 is a diagram illustrating an outline of a wireless communication system according to the first embodiment.
  • FIG. 1 illustrates an uplink radio communication system in which a base station apparatus A, a first mobile station apparatus B, and a second mobile station apparatus C exist as a system.
  • the first mobile station apparatus B is far from the base station apparatus A, the use of a transmission method with high peak power may not satisfy the desired reception quality.
  • the second mobile station apparatus C is relatively close to the base station apparatus A, even if a transmission method with high peak power is used, there is no influence on the transmission amplifier, and communication with a desired quality is possible. Can be done.
  • the first mobile station apparatus B is suitable for the transmission diversity method that does not increase the peak power
  • the second mobile station apparatus C has the maximum ratio.
  • a transmission diversity method that provides a combined gain is suitable.
  • the mobile station apparatus close to the base station apparatus applies transmission diversity such as SFBC that increases the peak power
  • the mobile station apparatus far from the base station apparatus uses a peak such as CDD.
  • a transmission diversity method that does not increase power is applied.
  • FIG. 2 is a diagram showing a schematic configuration of a mobile station apparatus that switches between SFBC and CDD.
  • the mobile station apparatus includes an encoding unit 10, an interleaving unit 11, a modulation unit 12, a DFT unit 13, a transmission power determination unit 14, a transmission diversity method selection unit 15, a switching unit 16, an SFBC encoding unit 17, and a CDD.
  • the information bit string to be transmitted is subjected to error correction coding by the encoding unit 10, and the bit sequence order is rearranged by the interleaving unit 11.
  • the bit string output from the interleave unit 11 is modulated by the modulation unit 12, and a modulated signal such as QPSK (Quaternary Phase Shift Keying) or 16QAM (Qaudrature Amplitude Modulation) is output.
  • the output modulated signal is converted into a frequency signal by the DFT unit 13.
  • the transmission power determining unit 14 calculates the transmission power necessary for communication from the information regarding the transmission power notified from the base station apparatus described later, and the transmission diversity method selecting unit 15 determines the transmission diversity according to the transmission power.
  • the law is selected.
  • the transmission diversity method selection unit 15 selects from peak powers such as CM (Cubic Metric) and PAPR (Peak-to-Average Power Ratio), which are indices indicating the magnitude of the peak power.
  • Information indicating the selected transmission diversity method is input to the switching unit 16.
  • the frequency signal input from the DFT unit 13 to the switching unit 16 is input to either the SFBC encoding unit 17 or the CDD unit 18 according to the selected transmission diversity method.
  • the time-axis cyclic shift has been described, but here, the CDD process is realized by rotating the phase of each subcarrier equivalent to the time-axis cyclic shift. Note that the phase rotation of the subcarrier is physically equivalent even in the cyclic shift.
  • the signal output from the SFBC encoding unit 17 or the CDD unit 18 is converted into a time signal by the IFFT units 19-1 and 19-2, and a CP (Cyclic Prefix) is inserted by the CP insertion units 20-1 and 20-2. And transmitted from the transmission antennas 21-1 and 21-2.
  • FIG. 3 is a diagram showing a schematic configuration of the base station apparatus.
  • the base station apparatus includes a reception antenna 90, a CP removal unit 100, a reception power measurement unit 101, a transmission power information generation unit 102, an FFT unit 103, a transmission diversity method detection unit 104, an SFBC decoding unit 105, an equalization unit 106, and an IDFT unit. 107, a demodulator 108, a deinterleaver 109, and a decoder 110.
  • the received signal is received by the receiving antenna 90, and the CP removing unit 100 removes the CP.
  • the received power is measured by the received power measuring unit 101 and input to the transmission power information generating unit 102.
  • transmission power information generation section 102 information on transmission power to be transmitted by the mobile station apparatus is generated and notified to the mobile station apparatus.
  • the signal is output to the transmission diversity method detector 104 for signal detection.
  • the received signal from which CP has been removed is converted into a frequency signal by the FFT unit 103 and input to the transmission diversity method detecting unit 104.
  • the transmission diversity method detection unit 104 detects the transmission diversity method used by the mobile station apparatus using the necessary transmission power value generated by the transmission power information generation unit 102, and the transmission diversity method is SFBC. If it is a CDD, it is output to the equalization unit 106.
  • the signal from each transmission antenna is detected by the SFBC decoding unit 105 and input to the equalization unit 106 that removes distortion of the transmission signal.
  • CDD since the synthesis process in the reception process is not necessary, it is directly input to the equalization unit 106 to compensate for distortion caused by the propagation path.
  • the signal equalized by the equalization unit 106 is converted into a time signal by the IDFT unit 107 and input to the demodulation unit 108, and the received code bit is detected from the modulation symbol.
  • the demodulated code bits are returned to the original sequence order of the code bits in the deinterleaving unit 109, and error correction decoding is performed in the decoding unit 110 to obtain decoded data.
  • the transmission power information generation unit 102 has been described above to generate information on transmission power information, but this is because the base station apparatus determines the transmission power.
  • the mobile station apparatus since the mobile station apparatus notifies the base station apparatus of information indicating how much transmission power of the mobile station apparatus called Power Headroom is available, the mobile station apparatus performs transmission diversity by looking at the value. May be set.
  • the transmission power determination unit 14 in FIG. 2 calculates the power headroom, the mobile station device notifies the base station device, the base station device detects the power headroom, and the transmission diversity method is detected by the transmission diversity method detection unit 104. It becomes a configuration to detect with.
  • the present invention also includes this concept.
  • the present invention switches between the transmission diversity method that has good transmission characteristics, such as SFBC, but the peak power increases, and the CDD method that does not increase the peak power according to the transmission power, thereby improving the transmission efficiency of the system. Can do.
  • SC-FDMA and Clustered DFT-S-OFDM are determined to be applied to the LTE-A uplink.
  • SC-FDMA is applied when it is necessary to reduce the peak power as much as possible, such as a mobile station apparatus located at the cell edge.
  • Clustered DFT-S-OFDM is applied.
  • Clustered DFT-S-OFDM divides the SC-FDMA spectrum (frequency signal) and distributes the spectrum according to the frequency characteristics and other mobile station apparatus allocation status, and therefore has higher peak power than SC-FDMA. .
  • Clustered DFT-S-OFDM is already applied to a mobile station apparatus with sufficient transmission power, and in this case, it may be considered that there is no limit on the transmission power, so transmission diversity such as SFBC is applied. It is a form that can be done.
  • FIG. 4 is a diagram illustrating a schematic configuration of a mobile station apparatus according to the second embodiment.
  • This mobile station apparatus includes an encoding unit 201, an interleaving unit 202, a modulation unit 203, a DFT unit 204, a spectrum allocation unit 205, a spectrum allocation information detection unit 206, a transmission diversity method selection unit 207, a switching unit 208, and an SFBC encoding unit. 209, a CDD unit 210, IFFT units 211-1, 211-2, CP insertion units 212-1, 212-2, and transmission antennas 213-1, 213-2.
  • encoding section 201 interleaving section 202, modulation section 203, DFT section 204, switching section 208, SFBC encoding section 209, CDD section 210, IFFT sections 211-1, 211-2, CP insertion section 212-1, Since 212-2 and transmission antennas 213-1 and 213-2 are the same as those in the first embodiment, description thereof will be omitted.
  • the spectrum allocation unit 205 arranges signals based on frequency allocation information.
  • the spectrum allocation information detection unit 206 detects information indicating the frequency at which a signal is allocated from the base station apparatus. For example, in LTE or LTE-A, the spectrum allocation information detection unit 206 detects from PDCCH (Physical-Downlink-Control-CHannel). Is done. At this time, if it is continuously arranged, it is SC-FDMA system, and if it is information arranged discretely, it is Clustered DFT-S-OFDM. This is grasped by the transmission diversity method selection unit 207, and when it is determined that it is Clustered DFT-S-OFDM, SFBC is selected, and when it is SC-FDMA, CDD is selected and input to the switching unit 208.
  • PDCCH Physical-Downlink-Control-CHannel
  • the information on spectrum allocation is already defined in LTE for the purpose of the base station apparatus grasping which frequency band should be continuously allocated only by SC-FDMA, Notification is made on the PDCCH.
  • transmission schemes if transmission schemes are detected, transmission diversity can be switched without requiring information regarding switching, so that control information of the system is not affected, and efficient transmission diversity can be applied.
  • the same concept can be applied to 16QAM, etc., in which the peak power increases in the same way by putting information on the amplitude based on the same concept. Switching to CDD is possible for QPSK, and SFBC is possible for 16QAM or more. Therefore, such an embodiment is also included in the present invention.
  • MIMO Multiple-Input Multiple-Output
  • signals are spatially multiplexed by transmitting a different signal at each transmission antenna using a plurality of transmission antennas, and equipped with more reception antennas than the number of signals multiplexed on the reception side. Assuming, each stream is detected by solving simultaneous linear equations.
  • FIG. 5 is a diagram showing an example of the precoding concept. Precoding is particularly effective when there is a spatial correlation.
  • LTE Long Term Evolution
  • the number of transmission antennas 2
  • four types of precoding matrices are defined, and when the number of transmission antennas is four, 16 types of precoding matrices are defined.
  • FIG. 5 description will be made assuming that the number of streams to be transmitted (signals simultaneously transmitted, also referred to as the number of layers) is 1, and the number of transmission antennas is 2.
  • the modulation symbols to be transmitted signals for the number of streams are parallelized in the layer map section 300.
  • the number of layers is 1, it is output as it is.
  • a signal precoded by the number of transmission antennas by the precoding unit 301 is output.
  • the precoding matrix for example, in the case of two transmitting antennas of one layer, one of the following four types is selected.
  • the first row is the weight of the transmission antenna 1
  • the second row is the weight of the transmission antenna 2, and they are multiplied on the frequency axis.
  • precoding suitable for frequency characteristics can be realized by changing precoding for each of a plurality of frequency blocks called subbands (this is also called frequency selective precoding).
  • subcarriers are arranged at frequencies allocated by subcarrier mapping sections 302-1 and 302-2, converted into time signals by IFFT sections 303-1 and 303-2, and CP insertion sections 304-1 and 304-. 2 is inserted and transmitted from the transmitting antennas 305-1 and 305-2.
  • the above example was for OFDM, but when applied on the uplink, peak power must be taken into account as with transmit diversity.
  • the frequency and time are one-to-one, and the precoding matrix is generally composed of a unitary matrix in which unit orthogonal vectors are arranged, or a partial matrix thereof, so that the waveform is not distorted.
  • frequency selective precoding Frequency Selective Precoding
  • Wideband precoding Wideband Precoding that uses the same precoding matrix for the entire transmission band
  • FIG. 6 is a diagram illustrating an example of a wireless transmission device according to the third embodiment.
  • This radio transmission apparatus includes an encoding unit 401, an interleaving unit 402, a modulation unit 403, a DFT unit 404, a layer map unit 405, a spectrum allocation information detection unit 406, a precoding method selection unit 407, a precoding unit 408, and a spectrum allocation unit. 409, IFFT units 410-1 and 410-2, CP insertion units 411-1 and 411-2, and transmission antennas 412-1 and 412-2.
  • the encoding unit 401, the interleaving unit 402, the modulating unit 403, the DFT unit 404, the IFFT unit 410, the CP inserting unit 411, and the transmitting antenna 412 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the case where the number of layers is 1 and the number of transmission antennas is 2 is described, but the same processing is possible even if the number of layers is 2 or more and the number of transmission antennas is 2 or more, and is essentially the same. Therefore, it is included in the present invention.
  • Spectrum allocation information detection section 406 detects spectrum allocation information related to allocation of transmission signals to frequencies from control information (for example, PDCCH in the case of LTE) notified from the base station apparatus on the downlink, and detects the detected information.
  • the data is output to the recording method selection unit 407 and the spectrum allocation unit 409.
  • the precoding method selection unit 407 selects the frequency selective precoding when the spectrum allocation is discontinuous (Clustered DFT-S-OFDM), while the spectrum allocation is continuous when the spectrum allocation is continuous (SC-FDMA). Select precoding. Then, the precoding unit 408 performs precoding selected by the precoding method selection unit 407.
  • precoding in the case of an open loop (OL: Open : Loop) in which the base station apparatus does not feed back the precoding information, an arbitrary precoding matrix is selected and a closed loop (CL: Closed) is selected.
  • OLL Open : Loop
  • CL Closed
  • precoding is performed using PMI (Precoding Matrix Indicator) notified as control information from the base station apparatus.
  • the frequency unit in the case of frequency selective precoding may be the same subband size as LTE, or may be one subcarrier.
  • the base station apparatus Even if the precoding method is selected, it is essentially the same. Moreover, since it is possible to use information such as Power Headroom and CM, PAPR indicating transmission power margin as described in the first embodiment, it is essentially the same and is included in the present invention.
  • transmission diversity can be efficiently applied from the viewpoint of transmission power, power consumption, and transmission characteristics of a wireless communication system by switching the transmission diversity method according to transmission power. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 上り回線においてSFBCとCDDを所要の送信電力に応じて切り替えることにより、上り回線の送信ダイバーシチを効率的に行なう。送信アンテナ21-1、21-2を備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう無線送信装置であって、送信先となる受信装置から通知された情報に基づいて、送信電力を決定する送信電力決定部14と、その決定された送信電力に基づいて、複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択する送信ダイバーシチ法選択部15と、その選択した送信ダイバーシチ法で受信装置に対して無線送信を行なう切替部16、SFBC符号化部17、CDD部18、IFFT部19-1、19-2、CP挿入部20-1、20-2、送信アンテナ21-1、21-2を備える。

Description

無線通信システム、無線送信装置および無線送信装置の制御プログラム
 本発明は、送信アンテナを少なくとも2本以上使用し、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう技術に関する。
 第3.9世代の携帯電話の無線通信システムであるLTE(Long Term Evolution)システムの標準化がほぼ完了し、最近ではLTEシステムをより発展させた第4世代の無線通信システムであるLTE-A(LTE-Advanced、IMT-Aなどとも呼称する。)の標準化が3GPP(Third Generation Partnership Project)で開始された。LTE-Aシステムの上り回線(移動局装置から基地局装置への通信)では、LTEシステムをさらに拡張したシステムであるため、移動局装置の消費電力やコストを考慮してLTEの上り回線では定義されていなかった複数の送信アンテナを用いる送信ダイバーシチ法が定義される予定になっている。
 ところで、LTEの下り回線(基地局装置から移動局装置への通信)では、各サブキャリアが独立に変調されるOFDM(Orthogonal Frequency Division Multiplexing)方式が採用されている。さらに、基地局装置が信号を送信することから消費電力に関する制限は弱いため、既に送信ダイバーシチ法が定義されており、例えば送信アンテナ数が2の場合は空間周波数ブロック符号(SFBC:Space Frequency Block Code)と、循環遅延ダイバーシチ(CDD:Cyclic Delay Diversity)が定義されている(例えば、非特許文献1)。
 図7は、SFBCの概念を示す図である。図7において、送信データは、SFBC符号化部1000によりSFBC符号化され、送信アンテナ1001と送信アンテナ1002から送信される。SFBC符号化は、例えば、2アンテナの場合は、サブキャリアS1003はサブキャリアS1000の複素共役にマイナスを付した関係にあり、サブキャリアS1001とサブキャリアS1002は複素共役関係にある。つまり、元の送信データ(SFBC符号化部1000)に入力された2k-1番目のサブキャリアの振幅をS(2k-1)。2k番目のサブキャリアの振幅をS(2k)とすると、サブキャリアS1000からサブキャリアS1003の振幅はそれぞれ次式で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ただし、S1(2k-1)、S1(2k)は、送信アンテナ1001から送信される2k-1、2k番目のサブキャリアの複素数で表される振幅であり、S2(2k-1)、S2(2k)は送信アンテナ1002から送信される2k-1、2k番目のサブキャリアの振幅である。
 このように送信された送信信号は、受信アンテナ1003で受信され、SFBC復号部1004により、SFBC復号されたデータが取り出される。2k-1および2k番目のサブキャリアにおける送信アンテナ1001から受信アンテナ1003への伝搬路の複素利得をH1(2k-1)、H1(2k)、および送信アンテナ1001から受信アンテナ1003への伝搬路の複素利得をH2(2k-1)、H2(2k)とすると、受信信号R(2k-1)およびR(2k)は次式で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 式(5)、式(6)から、S(2k-1)、S(2k)を受信信号で表現すると、次式のようになる。ただし、実際には受信機からの雑音や隣接セルからの干渉も含まれるが、ここでは説明を簡単にするために省略している。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 式(7)、式(8)において、サブキャリア2k-1とサブキャリア2kにおける伝搬路の利得がほぼ同じ(変動が緩慢)であれば、H1(2k-1)=H1(2k)およびH2(2k-1)=H2(2k)とみなせるので、この場合、式(7)、式(8)の右辺第2項がゼロになるため、各送信アンテナからの伝搬路の利得の大きさで重み付けして合成する最大比合成(MRC:Maximum Ratio Combining)の効果が得られる。
 図8は、CDDの一例を示す図である。図8において、CDDの場合には2送信アンテナの場合、一方のアンテナだけサイクリックシフト部1005があり、送信アンテナ1006から送信された送信信号1008に対し、送信アンテナ1007からの送信信号1009はサイクリックシフト部1005によりサイクリックシフトされ、送信信号1008に対して2シンボル分ずれている。受信側では、受信アンテナ1010で全送信アンテナからの信号が加算されたまま受信される。これは、送信アンテナ1007からの送信信号は伝搬路によりサイクリックシフトされたシンボル数だけずれているように受信側で観測されるため、等価的に伝搬路のインパルス応答の最大遅延時間が長くなる。そのため、周波数変動を激しくすることで伝搬路利得の良好な周波数と劣悪な周波数を混在させ、信号帯域全体が劣悪な伝搬路利得の周波数帯に落ち込むことを防いでおり、SFBCほどの特性は出ないものの、高速移動時や伝搬路の変動が全く予想できない場合に有効である。
3GPP TS 36.211, v 8.5.0
 しかしながら、LTEの上り回線ではピーク電力の低い伝送方式が望まれる。これは、ピーク電力の高い伝送方式では、増幅器の線形領域を越えてしまうため、送信信号が歪んでしまうためである。そこでLTEやLTE-Aでは、SC-FDMA(Single Carrier Frequency Division Multiple Access)方式やClustered DFT-S-OFDM(Discrete Fourier Transform Spread)といったピーク電力の低い伝送方式が採用されている。しかしながら、SFBCはサブキャリアの並びを入れ替えるため、ピーク電力が高くなってしまう。その結果、ピーク電力が高くなった分だけ送信電力を低くしなければならないため、セル端のような高い送信電力を必要とする移動局装置には向かない。
 本発明は、このような事情に鑑みてなされたもので、上り回線において送信ダイバーシチ法を所要の送信電力に応じて切り替えることにより、上り回線の送信ダイバーシチを効率的に行なうことができる無線通信システム、無線送信装置および無線送信装置の制御プログラムを提供することを目的とする。
 (1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の無線通信システムは、送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう第1の通信装置と、前記第1の通信装置と無線通信を行なう第2の通信装置と、から構成される無線通信システムであって、前記第1の通信装置は、送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択することを特徴としている。
 このように、送信電力に基づいて、複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択するので、ピーク電力が高い送信ダイバーシチ法と、ピーク電力が高くならない送信ダイバーシチ法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
 (2)また、本発明の無線通信システムにおいて、前記第1の通信装置は、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択することを特徴としている。
 このように、第1の通信装置は、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (3)また、本発明の無線通信システムにおいて、前記ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であることを特徴としている。
 このように、ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であるので、これらの指標に基づいて、送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (4)また、本発明の無線通信システムにおいて、前記第1の通信装置は、送信電力を決定する際に算出されるPower Headroom、および前記CMまたは前記PAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択することを特徴としている。
 このように、第1の通信装置は、送信電力を決定する際に算出されるPower Headroom、およびCMまたはPAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (5)また、本発明の無線通信システムにおいて、前記第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、送信ダイバーシチ法を選択することを特徴としている。
 このように、第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、送信ダイバーシチ法を選択するので、送信ダイバーシチを選択するための情報が不要となる。その結果、システムの制御情報に影響を与えることがなく、効率的な送信ダイバーシチを行なうことが可能となる。
 (6)また、本発明の無線通信システムは、送信アンテナを少なくとも2本以上備え、複数種類のプレコーディング法のいずれかを選択してプレコーディングを行なう第1の通信装置と、前記第1の通信装置と無線通信を行なう第2の通信装置と、から構成される無線通信システムであって、前記第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択することを特徴としている。
 このように、第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択するので、ピーク電力が高いプレコーディング法と、ピーク電力が高くならないプレコーディング法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
 (7)また、本発明の無線送信装置は、送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう無線送信装置であって、送信先となる受信装置から通知された情報に基づいて、送信電力を決定する送信電力決定部と、前記決定された送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択する送信ダイバーシチ法選択部と、前記選択した送信ダイバーシチ法で前記受信装置に対して無線送信を行なう送信部と、を備えることを特徴としている。
 このように、送信電力に基づいて、複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択するので、ピーク電力が高い送信ダイバーシチ法と、ピーク電力が高くならない送信ダイバーシチ法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
 (8)また、本発明の無線送信装置において、前記送信ダイバーシチ法選択部は、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択することを特徴としている。
 このように、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (9)また、本発明の無線送信装置において、前記ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であることを特徴としている。
 このように、ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であるので、これらの指標に基づいて、送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (10)また、本発明の無線送信装置において、前記送信電力決定部は、送信電力を決定する際に算出するPower Headroomを前記送信ダイバーシチ法選択部に出力し、前記送信ダイバーシチ法選択部は、前記Power Headroom、および前記CMまたは前記PAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択することを特徴としている。
 このように、送信電力を決定する際に算出されるPower Headroom、およびCMまたはPAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択するので、送信電力に応じて適切な送信ダイバーシチ法を選択することが可能となり、システムの伝送効率を高めることが可能となる。
 (11)また、本発明の無線送信装置は、送信先となる受信装置から通知された情報に基づいて、伝送に用いる周波数の割り当てを検出する検出部をさらに備え、前記送信ダイバーシチ法選択部は、前記検出された周波数の割り当てに基づいて、送信ダイバーシチ法を選択することを特徴としている。
 このように、伝送に用いる周波数の割り当てに基づいて、送信ダイバーシチ法を選択するので、送信ダイバーシチを選択するための情報が不要となる。その結果、システムの制御情報に影響を与えることがなく、効率的な送信ダイバーシチを行なうことが可能となる。
 (12)また、本発明の無線送信装置は、送信アンテナを少なくとも2本以上備え、複数種類のプレコーディング法のいずれかを選択してプレコーディングを行なう無線送信装置であって、送信先となる受信装置から通知された情報に基づいて、伝送に用いる周波数の割り当てを検出する検出部と、前記検出された周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択するプレコーディング法選択部と、を備えることを特徴としている。
 このように、伝送に用いる周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択するので、ピーク電力が高いプレコーディング法と、ピーク電力が高くならないプレコーディング法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
 (13)また、本発明の無線送信装置の制御プログラムは、送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう無線送信装置の制御プログラムであって、送信電力決定部において、送信先となる受信装置から通知された情報に基づいて、送信電力を決定する処理と、送信ダイバーシチ法選択部において、前記決定された送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択する処理と、送信部において、前記選択された送信ダイバーシチ法で前記受信装置に対して無線送信を行なう処理と、を含む一連の処理をコンピュータに読み取り可能および実行可能にコマンド化したことを特徴としている。
 このように、送信電力に基づいて、複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択するので、ピーク電力が高い送信ダイバーシチ法と、ピーク電力が高くならない送信ダイバーシチ法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
 本発明によれば、送信電力に基づいて、複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択するので、ピーク電力が高い送信ダイバーシチ法と、ピーク電力が高くならない送信ダイバーシチ法とを切り替えることができるので、システムの伝送効率を高めることが可能となる。
第1の実施形態に係る無線通信システムの概要を示す図である。 SFBCとCDDを切り替える移動局装置の概略構成を示す図である。 基地局装置の概略構成を示す図である。 第2の実施形態に係る移動局装置の概略構成を示す図である。 プレコーディングの概念の一例を示す図である。 第3の実施形態に係る無線送信装置の一例を示す図である。 SFBCの概念を示す図である。 CDDの一例を示す図である。
 以下、本発明の実施形態について図面を参照しながら説明する。以下の実施形態では、SFBCとCDDを切り替えているが、ピーク電力の上がる方式(例えば、波形を分割するFSTDなど)とピーク電力の上がらない送信ダイバーシチ方式(例えば、STBCやTSTD、DFTポイント数を小さくするFSTDなど)を切り替える形態も本発明に含まれる。また、以下の実施形態では、SC-FDMA方式に送信ダイバーシチを適用する場合を示しているが、Clustered DFT-S-OFDM方式のような方式を用いても良い。
 [第1の実施形態]
 図1は、第1の実施形態に係る無線通信システムの概要を示す図である。図1では、システムとして基地局装置A、第1の移動局装置B、第2の移動局装置Cが存在する上り回線の無線通信システムを表している。ここで、第1の移動局装置Bは、基地局装置Aからの距離が遠いため、ピーク電力の高い送信方式を用いると、所望の受信品質を満たせない場合がある。また、第2の移動局装置Cは、基地局装置Aからの距離が比較的近いため、ピーク電力の高い送信方式を用いたとしても、送信増幅器には影響がなく、所望の品質で通信を行なうことができる。
 このような場合、伝送特性とピーク電力を考慮すれば、第1の移動局装置Bには、ピーク電力の上がらない送信ダイバーシチ法が適しており、第2の移動局装置Cには、最大比合成利得が得られる送信ダイバーシチ法が適している。このように、本実施形態では、基地局装置から近い移動局装置はSFBCなどのようなピーク電力が高くなる送信ダイバーシチを適用し、基地局装置から遠い移動局装置は、CDDなどのようなピーク電力が高くならない送信ダイバーシチ法を適用する。
 このように、基地局装置からの距離、即ち必要な送信電力に応じて移動局装置の適用する送信ダイバーシチ法を適用することで、電力利用効率と伝送特性を考慮した効率的な無線通信システムを提供することができる。
 図2は、SFBCとCDDを切り替える移動局装置の概略構成を示す図である。図2において、移動局装置は、符号化部10、インターリーブ部11、変調部12、DFT部13、送信電力決定部14、送信ダイバーシチ法選択部15、切替部16、SFBC符号化部17、CDD部18、IFFT部19-1、19-2、CP挿入部20-1、20-2、および送信アンテナ21-1、21-2から構成される。
 送信する情報ビット列は、符号化部10により誤り訂正符号化され、インターリーブ部11によりビットの系列順が並び替えられる。インターリーブ部11より出力されたビット列は変調部12により変調され、QPSK(Quaternary Phase Shift Keying)や16QAM(Qaudrature Amplitude Modulation)などの変調信号が出力される。出力された変調信号はDFT部13により、周波数信号に変換される。
 一方、後述する基地局装置より通知された送信電力に関する情報から、送信電力決定部14により、通信するために必要な送信電力が算出され、送信電力に応じて送信ダイバーシチ法選択部15により送信ダイバーシチ法が選択される。ここで、送信ダイバーシチ法選択部15では、ピーク電力の大きさを表す指標であるCM(Cubic Metric)やPAPR(Peak-to-Average Power Ratio)などのピーク電力から選択される。選択された送信ダイバーシチ法を示す情報は、切替部16に入力される。DFT部13から切替部16に入力された周波数信号は、SFBC符号化部17またはCDD部18のいずれか一方に、選択された送信ダイバーシチ法に応じて入力される。
 図8では、時間軸のサイクリックシフトで説明したが、ここでは、CDDの処理を時間軸のサイクリックシフトと等価な各サブキャリアの位相を回転させることで実現している。なお、サイクリックシフトでもサブキャリアの位相回転も物理的に等価である。SFBC符号化部17またはCDD部18から出力された信号は、IFFT部19-1、19-2により時間信号に変換され、CP挿入部20-1、20-2によりCP(Cyclic Prefix)が挿入され、送信アンテナ21-1、21-2から送信される。
 図3は、基地局装置の概略構成を示す図である。基地局装置は、受信アンテナ90、CP除去部100、受信電力測定部101、送信電力情報生成部102、FFT部103、送信ダイバーシチ法検出部104、SFBC復号部105、等化部106、IDFT部107、復調部108、デインターリーブ部109、復号部110より構成される。
 受信信号は、受信アンテナ90で受信され、CP除去部100によりCPを除去される。同時に、受信電力測定部101により受信電力が測定され、送信電力情報生成部102に入力される。送信電力情報生成部102では、移動局装置が送信すべき送信電力に関する情報が生成され、移動局装置へ通知される。また、それと同時に、信号検出のため送信ダイバーシチ法検出部104に出力される。
 一方、CPを除去された受信信号は、FFT部103により周波数信号に変換され、送信ダイバーシチ法検出部104に入力される。送信ダイバーシチ法検出部104では、送信電力情報生成部102により生成された必要な送信電力の値を用いて、移動局装置がどの送信ダイバーシチ法を用いたかを検出し、送信ダイバーシチ法がSFBCである場合は、SFBC復号部105に出力し、CDDである場合は等化部106に出力する。移動局装置がSFBCで送信していた場合は、SFBC復号部105により各送信アンテナからの信号を検出し、送信信号の歪みを除去する等化部106に入力される。CDDの場合は、受信処理での合成処理は必要ないため、そのまま等化部106に入力され、伝搬路による歪みを補償する。
 等化部106により等化された信号は、IDFT部107により時間信号に変換され、復調部108に入力され、変調シンボルから受信符号ビットを検出する。復調された符号ビットは、デインターリーブ部109において符号ビットの系列順を元に戻し、復号部110において誤り訂正復号が行われ、復号データを得る。
 ここで、送信電力情報生成部102は、送信電力情報に関する情報を生成すると前述したが、これは、基地局装置が送信電力を決定するという構成を採るためである。一方、LTEでは、Power Headroomと呼ばれる移動局装置の送信電力にどれほど余裕があるかを示す情報を、移動局装置が基地局装置に通知するため、その値を見て移動局装置が送信ダイバーシチを設定しても良い。この場合、図2の送信電力決定部14がPower Headroomを算出し、移動局装置が基地局装置に通知し、基地局装置は、Power Headroomを検出し、送信ダイバーシチ法を送信ダイバーシチ法検出部104で検出する構成になる。
 これは、Power Headroomが、移動局装置が基地局装置にあとどの程度送信電力を高くできるかを示す相対値であり、この値を用いることでCMやPAPRからSFBCを適用した際に送信電力を下げることなく送信できるかを判断できるということである。本発明は、この概念も含んでいる。
 さらに、本発明では送信アンテナを2本のシングルキャリアの構成例を示したが、Clustered DFT-S-OFDMなどの方式や、送信アンテナが3本以上の場合も本発明に含まれる。
 このように、本発明は、SFBCのように伝送特性はよいがピーク電力があがる送信ダイバーシチ法と、ピーク電力があがらないCDD法とを送信電力に応じて切り替えるので、システムの伝送効率を高めることができる。
 [第2の実施形態]
 次に、第2の実施形態について説明する。LTE-Aの上り回線では、SC-FDMAとClustered DFT-S-OFDMが適用されることが決まっている。一般に、セル端に位置する移動局装置のように、ピーク電力を極力低くする必要がある場合は、SC-FDMAを適用する。また、基地局装置の近くに位置する移動局装置のように、送信電力に余裕がある場合は、Clustered DFT-S-OFDMを適用する。Clustered DFT-S-OFDMは、SC-FDMAのスペクトル(周波数信号)を分割し、周波数特性や他の移動局装置の割当状況に応じて分散配置するため、SC-FDMAよりもピーク電力が大きくなる。つまり、Clustered DFT-S-OFDMは、既に送信電力に余裕のある移動局装置に適用されており、この場合には送信電力に制限がないと考えてよいため、SFBCのような送信ダイバーシチを適用できるという形態である。
 図4は、第2の実施形態に係る移動局装置の概略構成を示す図である。この移動局装置は、符号化部201、インターリーブ部202、変調部203、DFT部204、スペクトル割当部205、スペクトル割当情報検出部206、送信ダイバーシチ法選択部207、切替部208、SFBC符号化部209、CDD部210、IFFT部211-1、211-2、CP挿入部212-1、212-2、送信アンテナ213-1、213-2から構成される。なお、符号化部201、インターリーブ部202、変調部203、DFT部204、切替部208、SFBC符号化部209、CDD部210、IFFT部211-1、211-2、CP挿入部212-1、212-2、送信アンテナ213-1、213-2は、第1の実施形態と同一であるため、説明を省略する。
 スペクトル割当部205は、周波数の割当情報に基づいて信号を配置する。スペクトル割当情報検出部206は、基地局装置から通知されるどの周波数に信号を配置するかを示す情報を検出するものであり、例えば、LTEやLTE-AではPDCCH(Physical Downlink Control CHannel)から検出される。このとき、連続的に配置されるものであれば、SC-FDMA方式であり、離散的に配置される情報であれば、Clustered DFT-S-OFDMである。このことを送信ダイバーシチ法選択部207で把握し、Clustered DFT-S-OFDMと判断した場合にはSFBCを選択し、SC-FDMAであった場合にCDDを選択して切替部208に入力する。
 第1の実施形態では図示しなかったが、スペクトル割当に関する情報は、SC-FDMAだけでも、どの周波数帯域に連続で割り当てるべきかを基地局装置が把握する目的でLTEにおいて既に規定されており、PDCCHで通知される。本実施形態では、伝送方式を検出すれば切替に関する情報を必要とすることなく送信ダイバーシチを切り替えることができるため、システムの制御情報に影響を与えることがなくなり、効率的な送信ダイバーシチを適用できる。これは、同様の概念により、振幅に情報をのせることで同様にピーク電力が大きくなる16QAMなどにおいても同じ考え方が可能であり、QPSKであればCDD、16QAM以上であればSFBCといった切替も可能であるため、このような態様も本発明に含まれる。
 [第3の実施形態]
 本実施形態では、プレコーディングを切り替える手法について説明を行う。LTEの下り回線では、送信ダイバーシチとは別にMIMO(Multiple-Input Multiple-Output)が定義されている。一般に、MIMO技術は、複数の送信アンテナを用いて各送信アンテナで異なる信号を送信することで空間的に信号を多重し、受信側で多重された信号数以上の受信アンテナを装備していることを前提に、連立一次方程式を解くことで各ストリームを検出する。
 図5は、プレコーディングの概念の一例を示す図である。プレコーディングは、特に、空間相関がある場合に効果を発揮する。LTEでは、下り回線のOFDMで既に採用されており、送信アンテナ数が2の場合は4種類、送信アンテナ数が4の場合は16種類のプレコーディング行列が定義されている。図5では、送信されるストリーム数(同時に送信される信号、レイヤ数とも称する)を1、送信アンテナを2として説明する。送信される変調シンボルは、レイヤマップ部300において、ストリーム数分の信号が並列化される。ここでは、レイヤ数が1なので、そのまま出力される。出力された各レイヤの信号は、プレコーディング部301により送信アンテナ数分のプレコーディングされた信号が出力される。ここで、プレコーディング行列は、例えば1レイヤの2送信アンテナの場合、以下の4種類のいずれかが選択される。
Figure JPOXMLDOC01-appb-M000009
 これは、レイヤ数が1の場合、第1行が送信アンテナ1の重み、第2行が送信アンテナ2の重みであり、周波数軸で乗積される。特に、下り回線の場合は、サブバンドと呼ばれる複数の周波数ブロックごとにプレコーディングを変更することで、周波数特性に適したプレコーディングが実現可能となる(これは周波数選択プレコーディングなどとも呼ばれる)。その後、サブキャリアマッピング部302-1、302-2により割り当てられた周波数にサブキャリアを配置し、IFFT部303-1、303-2により時間信号に変換され、CP挿入部304-1、304-2によりCPが挿入され、送信アンテナ305-1、305-2から送信される。
 上記の例は、OFDMの場合であったが、上り回線で適用する場合には、送信ダイバーシチと同様にピーク電力を考慮しなければならない。周波数と時間は1対1であり、プレコーディング行列は一般に単位直交ベクトルを並べたユニタリ行列あるいはその一部の行列で構成されるため、波形を歪ませることはない。このことを考慮すると、電力利用効率を考慮する場合には周波数で同一のプレコーディングをかける必要がある。そのため、本発明ではさらに、周波数の割当情報から周波数の割当単位でプレコーディングを変更する周波数選択プレコーディング(Frequency Selective Precoding)と、伝送帯域全体で同一のプレコーディング行列を使う広帯域プレコーディング(Wideband Precoding)を切り替えることを特徴とする。
 図6は、第3の実施形態に係る無線送信装置の一例を示す図である。この無線送信装置は、符号化部401、インターリーブ部402、変調部403、DFT部404、レイヤマップ部405、スペクトル割当情報検出部406、プレコーディング法選択部407、プレコーディング部408、スペクトル割当部409、IFFT部410-1、410-2、CP挿入部411-1、411-2、送信アンテナ412-1、412-2から構成される。符号化部401、インターリーブ部402、変調部403、DFT部404、IFFT部410、CP挿入部411、送信アンテナ412は第1の実施形態と同一であるため、説明を省略する。なお、ここではレイヤ数が1、送信アンテナ数が2の場合で説明しているが、レイヤ数が2以上でも送信アンテナ数が2以上でも同様の処理が可能であり、本質的に同一であるため、本発明に含まれる。
 スペクトル割当情報検出部406は、基地局装置から下り回線で通知された制御情報(例えば、LTEの場合はPDCCH)から送信信号の周波数への割当に関するスペクトル割当情報を検出し、検出した情報をプレコーディング法選択部407とスペクトル割当部409に出力する。プレコーディング法選択部407は、スペクトル割当が不連続(Clustered DFT-S-OFDM)である場合は、周波数選択プレコーディングを選択する一方、スペクトル割当が連続(SC-FDMA)である場合は、広帯域プレコーディングを選択する。そして、プレコーディング部408は、プレコーディング法選択部407が選択したプレコーディングが行なわれる。このとき、どのプレコーディングを選択するかについては、プレコーディング情報を基地局装置がフィードバックしない開ループ(OL:Open Loop)である場合は、任意のプレコーディング行列が選択され、閉ループ(CL:Closed Loop)である場合は、図示していないが、基地局装置から制御情報として通知されたPMI(Precoding Matrix Indicator)を用いてプレコーディングがかけられる。このとき、周波数選択プレコーディングの場合の周波数単位は、LTEと同じサブバンドというサイズでもよいし、1サブキャリアごとでもよい。
 この本質は、スペクトル割当情報が連続配置であるか離散配置であるかによって、周波数で異なるプレコーディング行列を使用するか、周波数で同一のプレコーディング行列を使用するかにあるため、基地局装置でプレコーディング法を選択したとしても本質的には同一である。また、第1の実施形態で述べたような送信電力の余裕を表すPower HeadroomとCM、PAPRなどの情報を用いても可能であるため、本質的に同一であり、本発明に含まれる。
 以上説明したように、本実施形態によれば、送信ダイバーシチ法を送信電力に応じて切り替えることで、無線通信システムの送信電力、消費電力および伝送特性の観点から効率的に送信ダイバーシチを適用することが可能となる。
10 符号化部
11 インターリーブ部
12 変調部
13 DFT部
14 送信電力決定部
15 送信ダイバーシチ法選択部
16 切替部
17 SFBC符号化部
18 CDD部
19-1、19-2 IFFT部
20-1、20-2 CP挿入部
21-1、21-2 送信アンテナ
90 受信アンテナ
100 CP除去部
101 受信電力測定部
102 送信電力情報生成部
103 FFT部
104 送信ダイバーシチ法検出部
105 SFBC復号部
106 等化部
107 IDFT部
108 復調部
109 デインターリーブ部
110 復号部
201 符号化部
202 インターリーブ部
203 変調部
204 DFT部
205 スペクトル割当部
206 スペクトル割当情報検出部
207 送信ダイバーシチ法選択部
208 切替部
209 SFBC符号化部
210 CDD部
211-1、211-2 IFFT部
212-1、212-2 CP挿入部
213-1、213-2 送信アンテナ
300 レイヤマップ部
301 プレコーディング部
302-1、302-2 サブキャリアマッピング部
303-1、303-2 IFFT部
304-1、304-2 CP挿入部
305-1、305-2 送信アンテナ
401 符号化部
402 インターリーブ部
403 変調部
404 DFT部
405 レイヤマップ部
406 スペクトル割当情報検出部
407 プレコーディング法選択部
408 プレコーディング部
409 スペクトル割当部
410-1、410-2 IFFT部
411-1、411-2 CP挿入部
412-1、412-2 送信アンテナ
A 基地局装置
B 第1の移動局装置
C 第2の移動局装置

Claims (13)

  1.  送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう第1の通信装置と、前記第1の通信装置と無線通信を行なう第2の通信装置と、から構成される無線通信システムであって、
     前記第1の通信装置は、送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択することを特徴とする無線通信システム。
  2.  前記第1の通信装置は、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択することを特徴とする請求項1記載の無線通信システム。
  3.  前記ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であることを特徴とする請求項2記載の無線通信システム。
  4.  前記第1の通信装置は、送信電力を決定する際に算出されるPower Headroom、および前記CMまたは前記PAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択することを特徴とする請求項3記載の無線通信システム。
  5.  前記第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、送信ダイバーシチ法を選択することを特徴とする請求項1記載の無線通信システム。
  6.  送信アンテナを少なくとも2本以上備え、複数種類のプレコーディング法のいずれかを選択してプレコーディングを行なう第1の通信装置と、前記第1の通信装置と無線通信を行なう第2の通信装置と、から構成される無線通信システムであって、
     前記第1の通信装置は、伝送に用いる周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択することを特徴とする無線通信システム。
  7.  送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう無線送信装置であって、
     送信先となる受信装置から通知された情報に基づいて、送信電力を決定する送信電力決定部と、
     前記決定された送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択する送信ダイバーシチ法選択部と、
     前記選択した送信ダイバーシチ法で前記受信装置に対して無線送信を行なう送信部と、を備えることを特徴とする無線送信装置。
  8.  前記送信ダイバーシチ法選択部は、ピーク電力の大きさを表す指標に基づいて、送信ダイバーシチ法を選択することを特徴とする請求項7記載の無線送信装置。
  9.  前記ピーク電力の大きさを表す指標が、CM(Cubic Metric)またはPAPR(Peak-to-Average Power Ratio)であることを特徴とする請求項8記載の無線送信装置。
  10.  前記送信電力決定部は、送信電力を決定する際に算出するPower Headroomを前記送信ダイバーシチ法選択部に出力し、
     前記送信ダイバーシチ法選択部は、前記Power Headroom、および前記CMまたは前記PAPRの少なくとも1つに基づいて送信ダイバーシチ法を選択することを特徴とする請求項9記載の無線送信装置。
  11.  送信先となる受信装置から通知された情報に基づいて、伝送に用いる周波数の割り当てを検出する検出部をさらに備え、
     前記送信ダイバーシチ法選択部は、前記検出された周波数の割り当てに基づいて、送信ダイバーシチ法を選択することを特徴とする請求項7記載の無線送信装置。
  12.  送信アンテナを少なくとも2本以上備え、複数種類のプレコーディング法のいずれかを選択してプレコーディングを行なう無線送信装置であって、
     送信先となる受信装置から通知された情報に基づいて、伝送に用いる周波数の割り当てを検出する検出部と、
     前記検出された周波数の割り当てに基づいて、前記複数種類のプレコーディング法のうちいずれか1つのプレコーディング法を選択するプレコーディング法選択部と、を備えることを特徴とする無線送信装置。
  13.  送信アンテナを少なくとも2本以上備え、複数種類の送信ダイバーシチ法のいずれかを選択して送信ダイバーシチを行なう無線送信装置の制御プログラムであって、
     送信電力決定部において、送信先となる受信装置から通知された情報に基づいて、送信電力を決定する処理と、
     送信ダイバーシチ法選択部において、前記決定された送信電力に基づいて、前記複数種類の送信ダイバーシチ法のうちいずれか1つの送信ダイバーシチ法を選択する処理と、
     送信部において、前記選択された送信ダイバーシチ法で前記受信装置に対して無線送信を行なう処理と、を含む一連の処理をコンピュータに読み取り可能および実行可能にコマンド化したことを特徴とする無線送信装置の制御プログラム。
PCT/JP2010/053536 2009-03-10 2010-03-04 無線通信システム、無線送信装置および無線送信装置の制御プログラム WO2010103989A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011503785A JP5583115B2 (ja) 2009-03-10 2010-03-04 無線通信システム、無線送信装置および無線送信装置の制御プログラム
US13/255,519 US8886138B2 (en) 2009-03-10 2010-03-04 Wireless communication system, wireless transmitter, and control program for wireless transmitter
US14/505,033 US9531462B2 (en) 2009-03-10 2014-10-02 Wireless communication system, wireless transmitter, and control program for wireless transmitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056854 2009-03-10
JP2009-056854 2009-03-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/255,519 A-371-Of-International US8886138B2 (en) 2009-03-10 2010-03-04 Wireless communication system, wireless transmitter, and control program for wireless transmitter
US14/505,033 Continuation US9531462B2 (en) 2009-03-10 2014-10-02 Wireless communication system, wireless transmitter, and control program for wireless transmitter

Publications (1)

Publication Number Publication Date
WO2010103989A1 true WO2010103989A1 (ja) 2010-09-16

Family

ID=42728279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053536 WO2010103989A1 (ja) 2009-03-10 2010-03-04 無線通信システム、無線送信装置および無線送信装置の制御プログラム

Country Status (3)

Country Link
US (2) US8886138B2 (ja)
JP (1) JP5583115B2 (ja)
WO (1) WO2010103989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819555B2 (en) 2016-07-19 2020-10-27 Huawei Technologies Co., Ltd. Signal transmission method and apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331757B2 (en) * 2011-04-29 2016-05-03 Interdigital Patent Holdings, Inc. Open loop spatial processing
ES2963616T3 (es) 2012-01-24 2024-04-01 Interdigital Patent Holdings Inc Sistemas y métodos para una mejor cobertura del enlace ascendente
CN104185954B (zh) * 2012-03-28 2016-09-14 华为技术有限公司 使用任意预编码器进行非线性mu-mimo下行信道预编码的系统和方法
US11212141B2 (en) * 2016-01-07 2021-12-28 Qualcomm Incorporated Methods and apparatus for a data transmission scheme for Narrow-Band Internet of Things (NB-IoT)
WO2017152405A1 (zh) * 2016-03-10 2017-09-14 华为技术有限公司 一种传输分集方法、设备及系统
CN107733592B (zh) 2016-08-10 2020-11-27 华为技术有限公司 传输方案指示方法、数据传输方法、装置及系统
CN107733482A (zh) * 2016-08-11 2018-02-23 北京信威通信技术股份有限公司 一种上行多天线开环传输的方法及装置
CN116566455A (zh) * 2017-03-22 2023-08-08 交互数字专利控股公司 使用离散傅里叶变换扩展正交频分复用(dft-s-ofdm)波形的上行链路控制信道的发射分集的方法和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023659A (ja) * 1998-04-17 2003-01-24 Matsushita Electric Ind Co Ltd 基地局通信装置及び伝送レート制御方法
JP2005531219A (ja) * 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Mimoofdm通信システム用のダイバーシティ通信システム
WO2006098008A1 (ja) * 2005-03-15 2006-09-21 Fujitsu Limited 通信装置および通信方法
JP2007158483A (ja) * 2005-12-01 2007-06-21 Kyocera Corp 基地局及び無線通信方法
WO2008032358A1 (fr) * 2006-09-11 2008-03-20 Fujitsu Limited Appareil de communication radio et procédé de communication radio
JP2008236428A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI9906339B1 (pt) 1998-04-17 2016-09-20 Matsushita Electric Ind Co Ltd aparelho de controle de taxa de transmissão, aparelho de estação base e método de controle de taxa de transmissão
JP2003037536A (ja) * 1998-06-05 2003-02-07 Matsushita Electric Ind Co Ltd Cdma無線通信における無線送信方法
KR100899735B1 (ko) * 2002-07-03 2009-05-27 삼성전자주식회사 이동 통신 시스템에서 적응적 전송 안테나 다이버시티장치 및 방법
KR20060048106A (ko) * 2004-05-25 2006-05-18 삼성전자주식회사 이동통신 시스템에서 섹터 다이버시티를 제공하는 직교주파수 분할 다중 심벌 전송 방법 및 장치와 시스템
KR100763529B1 (ko) * 2006-08-30 2007-10-05 한국전자통신연구원 시공간 전송 다이버시티를 적용한 통신 시스템에서전력제어 방법 및 장치
US8515369B2 (en) * 2007-02-05 2013-08-20 Samsung Electronics Co., Ltd. Apparatus and method for selecting transmission mode in multi-antenna system
KR101322835B1 (ko) * 2007-08-03 2013-10-25 포항공과대학교 산학협력단 진폭 제한에 의해 왜곡된 신호를 재구성하는 장치 및 방법
US8811300B2 (en) * 2008-12-31 2014-08-19 Mediatek Inc. Physical structure and sequence design of midamble in OFDMA systems
US20130083681A1 (en) * 2011-09-30 2013-04-04 Research In Motion Limited Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003023659A (ja) * 1998-04-17 2003-01-24 Matsushita Electric Ind Co Ltd 基地局通信装置及び伝送レート制御方法
JP2005531219A (ja) * 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Mimoofdm通信システム用のダイバーシティ通信システム
WO2006098008A1 (ja) * 2005-03-15 2006-09-21 Fujitsu Limited 通信装置および通信方法
JP2007158483A (ja) * 2005-12-01 2007-06-21 Kyocera Corp 基地局及び無線通信方法
WO2008032358A1 (fr) * 2006-09-11 2008-03-20 Fujitsu Limited Appareil de communication radio et procédé de communication radio
JP2008236428A (ja) * 2007-03-20 2008-10-02 Ntt Docomo Inc 移動通信システムにおける基地局装置、ユーザ装置及び方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10819555B2 (en) 2016-07-19 2020-10-27 Huawei Technologies Co., Ltd. Signal transmission method and apparatus
US11444818B2 (en) 2016-07-19 2022-09-13 Huawei Technologies Co., Ltd. Signal transmission method and apparatus

Also Published As

Publication number Publication date
JPWO2010103989A1 (ja) 2012-09-13
US20120064846A1 (en) 2012-03-15
US9531462B2 (en) 2016-12-27
US20150055596A1 (en) 2015-02-26
JP5583115B2 (ja) 2014-09-03
US8886138B2 (en) 2014-11-11

Similar Documents

Publication Publication Date Title
JP5583115B2 (ja) 無線通信システム、無線送信装置および無線送信装置の制御プログラム
US8565211B2 (en) Apparatus and method for data transmission in SC-FDMA system with multiple antennas
KR101497154B1 (ko) Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101569215B1 (ko) 공간 다중화 기법을 이용한 데이터 전송방법
JP5180299B2 (ja) 遅延ダイバーシティと空間−周波数ダイバーシティによる送信方法
US9001802B2 (en) Method and apparatus for transmitting uplink signals using multi-antenna
US8520598B2 (en) Data transmission apparatus using multiple antennas and method thereof
KR101467586B1 (ko) 무선통신 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101507170B1 (ko) Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
US8400958B2 (en) Apparatus and method for data transmission using transmission diversity in SC-FDMA system
US9277556B2 (en) Permitting a plurality of transmit antennas to transmit the same data to improve the reception quality through transmit diversity
WO2008150148A2 (en) Cdd precoding for open loop su mimo
JP2008092374A (ja) 基地局装置
US8699470B2 (en) Apparatus and method for transmitting data in a multi-antenna system
JP2013118567A (ja) 無線基地局装置、無線通信システム及び無線通信方法
US8867332B2 (en) Method for transmitting data in multiple antenna system
Ghaffar et al. Making Multiuser MIMO work for LTE
EP2822191B1 (en) Transmitting apparatus, receiving apparatus, and control methods thereof
US9071307B2 (en) Wireless communication system, wireless communication apparatus, program and transmission method
Vempati et al. Performance evaluation of LTE systems in multi-path channels
KR101599532B1 (ko) Mimo 코드북 생성 방법 및 장치
KR101527015B1 (ko) Sc-fdma 방식을 사용하는 무선이동통신 시스템에서 전송 다이버시티를 구현하는 방법
Jiang et al. Double single-carrier space frequency block coding for SC-FDMA MU-MIMO: Performance evaluation
KR20150005433A (ko) 송신 장치, 수신 장치 및 그 신호 처리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750743

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503785

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13255519

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10750743

Country of ref document: EP

Kind code of ref document: A1