CN117097594A - 使用正交时间频率空间调制的导频信号的信道获取 - Google Patents

使用正交时间频率空间调制的导频信号的信道获取 Download PDF

Info

Publication number
CN117097594A
CN117097594A CN202310810559.XA CN202310810559A CN117097594A CN 117097594 A CN117097594 A CN 117097594A CN 202310810559 A CN202310810559 A CN 202310810559A CN 117097594 A CN117097594 A CN 117097594A
Authority
CN
China
Prior art keywords
delay
domain
pilot signal
communication channel
channel estimate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310810559.XA
Other languages
English (en)
Inventor
约阿夫·希伯伦
什洛莫·塞利姆·拉吉布
龙尼·哈达尼
米哈伊尔·特萨特尼斯
克莱顿·安布罗斯
吉姆·德尔菲尔德
罗伯特·范菲勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cohere Technologies Inc
Original Assignee
Cohere Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cohere Technologies Inc filed Critical Cohere Technologies Inc
Publication of CN117097594A publication Critical patent/CN117097594A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/005Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0228Channel estimation using sounding signals with direct estimation from sounding signals
    • H04L25/023Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols
    • H04L25/0232Channel estimation using sounding signals with direct estimation from sounding signals with extension to other symbols by interpolation between sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0256Channel estimation using minimum mean square error criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0258Channel estimation using zero-forcing criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

用于在正交时间、频率和空间(OTFS)通信系统中执行信道估计的技术包括:接收包括数据信号部分和导频信号部分的无线信号,其中,导频信号部分包括OTFS域中复用在一起的多个导频信号;基于最小均方误差(MMSE)优化标准在时频域中执行二维信道估计;以及使用从二维信道估计获得的信道估计来恢复信息比特。

Description

使用正交时间频率空间调制的导频信号的信道获取
相关申请的交叉引用
本专利文件要求于2016年3月31日提交的发明名称为“CHANNEL ACQUISITIONUSING ORTHOGONAL TIME FREQUENCY SPACE MODULATED PILOT SIGNALS(使用正交时间频率空间调制的导频信号的信道获取)”的第62/316,437号美国临时申请的优先权。上述专利申请的全部内容通过引用并入本文。
技术领域
本专利文件涉及无线通信,更具体地,涉及正交时间频率空间(OTFS)域调制信号的接收器侧处理。
背景技术
由于无线用户设备数量以及这些设备可生成或消耗的无线数据量的爆炸性增长,当前的无线通信网络正在快速耗尽带宽以适应数据流量的这种高增长并且为用户提供高质量的服务。
电信行业正致力于提出能够满足无线设备和网络的性能需求的下一代无线技术。
发明内容
本文件公开了用于从包括OTFS导频信号的接收到的信号执行信道估计或信道获取的接收器侧技术。
在一个示例性方面,公开了用于从接收到的信号恢复信息比特的无线通信方法,该方法是由无线通信接收器实现的。该方法包括:接收包括数据信号部分和导频信号部分的无线信号,其中,导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;基于最小均方误差(MMSE)优化标准在时频域中执行二维信道估计;以及使用从二维信道估计获得的信道估计来恢复信息比特。
在另一示例性方面,公开了用于从接收到的信号中恢复信息比特的技术,该技术是由无线通信接收器实现的。该技术包括:在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中,导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;将接收的无线信号变换为延迟时域信号;应用延迟时域掩码以将对于延迟时域信号的多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献;使用单独接收导频信号贡献来估计多个导频信号的延迟时域位置处的通信信道估计;以及内插通信信道估计以获得整个通信信道估计。
在又一示例性方面,公开了用于从接收到的信号中恢复信息比特的无线通信方法,该方法是由无线通信接收器实现的。该方法包括:在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中,导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;通过应用二维辛傅里叶变换将接收到的无线信号变换为延迟多普勒域信号;应用延迟多普勒域掩码以将对于时频域信号的多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献;使用单独接收导频信号贡献来估计多个导频信号的延迟多普勒域位置处的通信信道估计;以及内插通信信道估计以获得整个通信信道估计。
本专利文献中描述了这些和其他特征。
附图说明
本文中所描述的附图用于提供对本申请的进一步的理解并构成本申请的一部分。示例实施例及其图示用于解释技术,而不是限制其范围。
图1示出示例性通信网络。
图2是示出时频网格分解为三个部分的示例性分解的图。
图3是示出内插问题的示例的图。在下行链路信道子网格上接收失真的导频之后,远程装置估计数据网格的过去部分上的信道。
图4是示出预测问题的示例的图。远程装置估计数据网格的未来部分上的信道。
图5是示出时频域中的信道的示例的图。
图6是示出延迟多普勒域中的信道的示例的图。
图7是示出延迟时域中的信道的示例的图。
图8示出延迟多普勒平面上的线性调频序列的示例。平面的跨度在延迟维度中是1/df并且在多普勒维度中是1/(Ndt)。
图9是示出在延迟时域中由单个远程装置的天线接收到的信号的示例的图。
图10是示出示例性内插问题的图。左图:在导频子网格上测量到的信道响应。右图:期望的信道响应。
图11是示出一维内插问题的示例的图。对于每个延迟值τ,使用导频子网格上的信道值来估计数据网格上的信道。
图12是示出三次样条内插的结果的示例的图。上图:示出完整样条。下图:放大到期望进行信道估计的区域。样条提供出色的信道估计器。
图13示出了具有比多普勒周长大的延迟周长的环的示例。
图14示出当k=N-1且M=1时的导频(红色)和数据(绿色)的t-f平面的示例。
图15是示出在延迟多普勒平面中的8个导频(4×2)的封包的示例的图。
图16示出在延迟多普勒平面中在网格点(5+i50,9+j18)中具有20个导频的示例性实施例,其中,i=0至49,j=0,1。
图17是图16中的示例性导频的放大图。
图18是示出在通过具有两个延迟多普勒路径(示出4个导频)的信道之后的接收导频的示例的图。
图19示出了高于-40dB的接收导频峰值的接收信号水平的标记的示例。
图20示出t-f网格的示例,其示出与数据(绿色)复用的两个时频封包的基准信号(红色、紫色)的位置。
图21示出在通过具有两个延迟多普勒路径(示出2个导频)的信道之后的接收导频的示例。
图22示出了接收到的导频峰值高于-40dB的接收到的信号水平的标记的示例。
图23示出在t-f平面中所示的图14的导频P1和P2的实部的示例。
图24示出示例性无线通信接收方法的流程图。
图25示出另一示例性无线通信接收方法的流程图。
图26示出另一示例性无线通信接收方法的流程图。
图27示出无线收发器设备的示例。
最佳实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对各种实施例进行详细说明。除非另有说明,否则本文件的实施例和实施例中的特征可彼此组合。
目前的无线技术预期无法满足无线通信中不断增长的需求。许多行业组织已开始致力于对下一代无线信号互操作性标准进行标准化。由第三代合作伙伴计划(3GPP)致力的第五代(5G)是一个这样的示例,并且其在整个文件中使用以用于解释的目的。然而,所公开的技术可在其他无线网络和系统中使用。
本文件中使用章节标题以提高描述的可读性,并且不以任何方式将讨论仅限于各个章节。
图1示出可实现所公开的技术的示例性通信网络100。网络100可包括基站发送器,基站发送器向一个或多个接收器102发送无线信号s(t)(下行链路信号),接收到的信号被表示为r(t),其可位于各种位置中,包括建筑物内部或外部以及移动车辆中。接收器可向通常位于无线发送器附近的基站发送上行链路传输。本文中描述的技术可在接收器102处实施。
如本文中所解释的,可以不同方式执行包括OTFS导频和数据的无线信号的信道获取或信道估计。在一些实施例中,OTFS导频信号可为例如OTFS域脉冲的形式。
1.引言
本文公开了使用基于OTFS的导频的不同信道获取机制。基于OTFS的导频的理论和实现方案在[1]中描述。本文重点介绍使用这些导频来估计信道的多种不同方式。
2.信道获取
在OTFS的范例中,信道被理解为两个域:
时频域。在该域中,信道通过乘法起作用,并且看似二维波的线性组合。
延迟多普勒域。在该域中,信道通过卷积起作用,并且看似二维正弦的线性组合。
两个信道域通过辛傅里叶变换相关联。
信道获取过程包括导频分离、信道内插和/或信道预测。下面的章节将示出可在包括混合域的不同域中执行信道获取的不同方式。
出于本文件的目的,我们假设时频网格被划分为两个或更多个部分。精细网格用于数据传输,一个或多个粗子网格用于信道获取(导频传输)。图2示出具有两个信道获取子网格的数据网格的示例,其中,一个用于下行链路,而一个用于上行链路信道获取。
在下行链路子网格上,由远程装置的天线接收到的信号是由信道失真的集线器天线发送的导频的线性组合。目标是远程装置使用该接收到的信号来估计数据网格的一些部分上的信道(对于本文的其余部分,我们着重于下行链路,因为问题对于上行链路是对称的)。信道获取可分为两个问题:在图3和图4中总结的内插和预测。
信道内插是更容易解决的问题,并且足以用于接收均衡器。然而,对于发射均衡器,需要信道预测。
3.时频域信道获取
本章节中所描述的信道获取方法利用时频域,并且其可应用于导频分离和信道内插和/或预测两者。
一种方法是2D MMSE信道获取。本文中描述了用于实现2DMMSE信道获取的理论和数学公式。一种方法是执行以下操作:
(1)生成正获取信道的导频的平方自相关矩阵Rx。该矩阵的大小是N·MxN·M,其中,NΔtxNΔf是观察域的大小。
(2)通过将Rx限制为如下Rxy=Rx·RESH来计算互相关矩阵Rxy。该矩阵的大小是N·M x P,其中,P是观察窗中导频样本的数量。
(3)计算Ry=RES·Rx·RESH+RW=RES·Rxy+RW。该矩阵的大小是P x P。
(4)计算这个矩阵的大小是N·M x P
(5)将估计出的导频信号矢量计算为C·Y,并将矢量重新成形为N.M大小的矩阵,以在时频网格Λ上形成N x M大小的估计出的导频样本矩阵
(6)计算信道估计值其中,/>表示取X的每个元素的共轭,并且.·表示元素乘元素的乘法。这个矩阵的大小是N x M。
(7)选择表示需要进行信道获取的时频部分的Ch的部分。
获得相同结果的更优方法是计算到达Ch的所需部分所需的每个步骤中的最小尺寸矩阵。以下是这种简化的示例:
(1)仅对于需要获取的信道的部分,仅直接计算受限的Rx的元素来计算Rxy。例如,如果(对于超出最后一个导频样本的内插或预测)仅需要L<N个时间样本,则该矩阵的大小将是L·M x P。
(2)仅直接计算双重受限的Rx的元素来计算Ry
(3)计算这个矩阵的大小现在将是L·M x P。
(4)将估计出的导频信号矢量计算为C·Y,并将矢量重新成形为L·M大小的矩阵,以在时频网格Λ上形成L x M大小的估计出的导频样本矩阵
(5)计算信道估计值其中,/>表示取X的每个元素的共轭,并且..表示元素乘元素的乘法。该矩阵的大小是L x M,并且其表示执行信道获取的时频部分。
4.混合延迟时域获取
本章节中描述的信道获取方法利用混合延迟时域。在该域中,信道是随着延迟的局部卷积(这使得导频分离变得容易)和随着时间的非局部乘法(这使得内插和预测变得容易)。图5、图6和图7示出该过程的示例。
4.1延迟时域中的导频分离
假设由4个集线器天线端口发送4个导频,并且假设导频是位于延迟多普勒平面上的狄拉克(Dirac),如图8所示,
在时频导频子网格上,每个接收天线可接收由其自身信道失真的每个导频的线性组合。为了分离导频,接收到的信号可从时频域变换到延迟时域。这可通过频率维度上的一维傅里叶变换来完成。在知道信道在延迟域中通过卷积起作用的情况下,实施方式可计算远程装置天线将观察到的内容。令映射si表示由第i′th远程装置天线在下行链路子网格上接收到的信号。然后在延迟时域中,可写入以下等式:
其中,hij表示在延迟时域中的第j′th集线器天线和第i′th远程装置天线之间的信道。
图9示出在经过延迟时域中由接收器观察到的它们各自的信道之后的图8的4个导频。
使用上面的等式,可通过窗口化来隔离不同的导频(即,信道)响应。即,为了隔离hij,一些实施方式可在延迟时域中对si应用以下方形掩码:
其中,Δτ表示信道的延迟扩展。
4.2窗口化
在时频域中对测量到的信道进行窗口化(例如,使用平方余弦窗)使得信道响应通常在延迟域中更好地隔离,从而使得导频分离更有效。
此外,Mij(τ,kNdt)可得到其他值。当频率维度中的观察窗是非常大时,Mij(τ,kNdt)可减小到接近于延迟扩展的1/2。在其他情况下,例如,当在时频域中使用方形窗时,对于Mij(τ,kNdt)的较大值可产生更好的性能。
4.3延迟时域中的信道内插和预测
在前一章节中,描述了由接收天线接收到的信号如何用于提取受限于导频子网格的发送和接收天线的每个配对之间的信道。
图10是示出示例性内插问题的图。左边的图示出了在导频子网格上测量到的信道响应。右边的图示出了所期望的信道响应,其中,必须在接收器处生成从导频信号测量到的值中缺失的信道响应的中间值。
图11是示出一维内插问题的示例的图。对于每个延迟值τ,一些实施方式可使用导频子网格上的信道的值(包括两个或更多个导频子网格点)来估计数据网格上的信道。
实现方案还应解决内插和预测的问题。也就是说,如何为数据网格的过去或未来部分估计信道?
一些实施方式可使用的解决方案是将问题变成一维问题的集合。即,对于每个延迟值,可跨时间内插或外推信道。
信道相对于时间的频带限制这一事实意味着该问题易于处理。可用于执行一维内插或预测的方法有很多种,例如:
样条:找到分段多项式,其取下行链路子网格上测量到的信道的值。数据网格上的结果函数的值用作信道的估计。
MMSE:假设信道是随机频带受限函数。基于该假设和下行链路子网格上的信道的测量,计算数据网格上的信道的最可能值。
傅里叶变换:对在下行链路子网格上测量到的信道进行离散傅里叶变换(DFT)。与大于信道带宽的频率对应的所有傅里叶系数被设置为零。然后对傅里叶系数进行零填充,并采用逆DFT。数据网格上的结果函数的值用作信道的估计。
使用线性代数可有效地实现所有这三种方法。图12示出了将三次样条内插器应用于图11中所示的信道的结果。
一旦在延迟时域中对信道进行了内插/外插,则跨延迟采用逆傅里叶变换来将信道变换为时频域。在一些实施方式中,接收设备可执行以下四个步骤以进行信道估计:
[1]通过对在下行链路子网格上测量到的信号进行傅里叶变换,变换到延迟时域。
[2]通过应用方形掩码,分离不同集线器与远程装置天线配对之间的信道响应。
[3]通过跨时间内插或外推信道响应,估计数据网格的一部分上的信道。
[4]通过跨延迟进行逆傅里叶变换,将信道变换到时频域。
代替在延迟多普勒平面的全延迟跨度上应用步骤4中所描述的逆傅里叶变换,一些实施方式可仅对在掩码部分上、或者仅在作为与导频网格相关联的导频周围的延迟跨度的部分上应用逆傅里叶变换,然后,在时频域中,再次应用上述的样条或MMSE方法。
5.延迟多普勒域信道获取
本章节中所描述的信道获取方法利用延迟多普勒域。在该域中,信道是沿着延迟和多普勒的局部卷积。在这种情况下,接收到的信号从时频域变换到延迟多普勒域。这通过二维辛傅里叶变换来完成。
与章节4.1中所描述的类似,不同的导频(即,信道)响应可通过窗口化来隔离。在这种情况下,二维延迟多普勒窗被应用,以隔离与章节4.1中的4个导频对应的hij,在延迟多普勒域中对si应用以下方形掩码:
其中,Δτ和Δv表示信道的延迟和多普勒扩展。
在一些实施方式中,测量到的信道可在t-f域中被窗口化。在时频域中对测量到的信道进行窗口化(例如,使用平方余弦窗),使得信道响应在延迟多普勒域中更好地隔离,从而使得导频分离更有效。
Mij(τ,v)可得到其他值。当频率维度中的观察窗非常大时,Mij(τ,v)的大小可减小到接近于延迟扩展的1/2。在其他情况下,例如,当在时频域中使用方形窗时,较大的大小Mij(τ,v)可产生更好的性能。
在各种实施方式中,导频可放置在两个维度上,例如,8个导频可为位于延迟多普勒平面上的狄拉克δ函数:在这种情况下,还需要在多普勒维度中分离导频,其中出于导频分离,这种窗口化可被应用。
在应用了窗之后,可通过应用掩码的延迟多普勒平面的2D辛DFT,或者可选地,在平面的一部分上应用2D辛DFT,然后在时频平面中应用2维样条或MMSE以估计时频平面的期望部分上的信道。
6.基于OTFS的基准信号介绍
下面的章节7-9提供了用于无线网络中的导频信号生成、发送和接收的实施方式的描述。
7.基于OTFS的基准信号
7.1简要总结
通常,基于OTFS的基准信号可与数据分开发送。该想法在于可在比数据网格更粗糙的时频网格上发送基准信号。
假设数据的时频(t-f)网格由以下离散点定义:
基准信号(导频)的t-f网格将是数据网格的子集:
与两个网格相关联的延迟多普勒(τ,v)环是:
具有如下周长的数据环
ο
ο
具有如下周长的导频环
ο
ο
图13示出环的示例。
可知,可使用定义为如下的离散傅里叶变换将定义在(1)中的t-f网格上的函数X[K,L]变换为相关环上的2D(连续周期性)函数:
从x(τ,ν)至X[K,L]的逆变换是定义为如下逆辛傅里叶变换:
将数据和导频网格分别限制成2D离散间隔kxl和nxm:
转移为将相应的环均匀地采样成kxl和nxm。这些采样的环在t-f平面中创建与其相关联的网格相互作用的网格,并且定义为如下:
当选择k=N-1,M=1,并且l=m时,t-f平面将看似如图14中所示,其中,横轴对应于时间,而纵轴对应于频率。填入点对应于导频,而空心圆对应于数据。
基准信号可被视为受限于数据网格中的点的子集的辛指数。如果该子集是规则的(即形成子网格),则认为基准信号是结构化的,否则其被认为是非结构化的。
7.2.2D结构化基准信号
2D结构化基准信号是在延迟多普勒平面上生成的导频,其与数据网格的子网格(N>1lM≥1)相关联。这些导频在t-f域中与数据复用。
多种方案可基于为给定的延迟多普勒扩展和允许的信道消耗的基准信号有效地生成基于2D结构化OTFS。以下子章节描述了三种方案。
一些实施方式可根据使用场景和/或限制(诸如向后兼容性、实现的简单性等)来选择实现这些方案中的任何一种的宽松版本和/或方案的组合。
7.2.1延迟多普勒包基准信号
延迟多普勒包基准信号可生成为如下:
(1)选择满足所允许的消耗的最精细的t-f导频网格(最小的N和M)。
(2)在与所选导频网格相关联的连续延迟多普勒环中,在考虑接收器实现足够好的导频分离和预期延迟的信道估计以及信道的多普勒传播的能力的同时,包括尽可能多的导频(尽可能稀疏地间隔开)。
(3)将延迟多普勒平面变换为t-f平面(例如,辛傅里叶变换)。
(4)应用n x m窗以创建n x m离散间隔。
可能影响可由给定导频环支持多少导频的一些参数是:导频观察窗的大小(n和m的选择),信道的延迟和多普勒扩展以及接收器实现方式(例如,窗大小和形状、内插和导频分离算法)。足够大的t-f窗(大n和m)将允许多达个导频的最佳包:
其中,是小于x的最大整数,Δτ是信道的延迟扩展,并且Δv是信道的多普勒扩展。
图15示出在延迟多普勒平面中的8个基准信号的包的示例(τ轴表示时间,而v轴表示多普勒)。
7.2.1.1示例
以下示例示出实现方案可如何使用延迟多普勒包在与LTE枚举类似的枚举中生成具有低消耗的大量基准信号。
假设如下:
信道:
·带宽:10 Mhz
·延迟传播:Δτ=5us
·多普勒传播:Δν=300Hz ptp(150Hz峰值)
数据网格(见等式(1)):
·dt=66.67us
·df=15Khz
所允许消耗:<7%
延迟多普勒包解决方案:
为了满足所允许的消耗要求,一种解决方案可为将时域中的每第15个网格点和频域中的所有网格点分配给基准信号,从而产生以下延迟多普勒包:
导频网格(见等式(2)):
·N=15
·M=1
相关联的导频环:
·延迟周长:
·多普勒周长:
具有大t-f窗的最佳包将支持以下数量的导频:
出于这种示例的目的,假设实现方式在发送器和接收器中使用升余弦(RC)滤波器,并具有以下Tx/Rx窗:
·时间样本数量:50个(n=36,对于RC滤波器额外增加14个)
·频率样本数量:626个(m=500,对于RC滤波器额外126个)
导频包:对于本示例,我们将导频数量限制到20个并按如下方式堆叠:
·延迟域中的导频数量:10个
·多普勒域中的导频数量:2个
导频也将在延迟维度和其分配的多普勒间隔的中间中以4个网格点的偏移定位。对于第一导频,这转移到网格点(5,9)。
图16示出延迟多普勒平面中的20个导频。
图17放大示出延迟维度中前100个网格点的导频。
为了示出窗影响信道时间延迟扩展的最坏情况,图18中的图示出了当信道由以下两条路径表示时的接收到的导频(无直接路径):
路径1:延迟=5us,多普勒偏移=152.8Hz
路径2:延迟=0.067us,多普勒偏移=-152.8Hz
这两条路径导致接收到的导频精确地定位在网格点之间的中间,导致接收窗到相邻网格点的最严重的泄漏,这代表了导频分离的最坏情况。
在图18中示出了延迟多普勒平面中的接收到的导频(放大以仅示出延迟维度中前100个网格点中的导频)。
图19示出延迟多普勒平面中的网格点,其中,接收到的信号比接收到的导频的最高电平高出-40dB。从图19中可看出,接收到的导频对周围导频的泄漏在导频本身下方低出40dB。其他接收器实现方案可导致甚至更低的泄漏,这将允许封包更多的导频。
7.2.2时频包基准信号
时频包基准信号生成为如下:
选择可支持单信道估计(一个导频)的最粗糙的t-f导频网格(最大N和M),
尽可能多(个)地使用这些导频网格在网格点之间的相等距离处,而不违反所允许的消耗,
将单个导频放入与所选的t-f导频网格相关联的延迟多普勒环中。
将延迟多普勒平面变换为t-f平面(辛傅里叶变换)。
如步骤2中所说明的,创建t-f平面的个副本并错开它们。
将nxm窗应用于t-f平面中的每个(可为每个平面应用不同窗)。
导频窗的大小将对信道估计的质量产生影响(更大的网格将改善信道估计的质量)
图20示出两个基准信号的时频包的示例,其分别由网格点2002和2004的填充行表示。
7.2.3潜在敏感包基准信号
潜在敏感包基准信号可生成为如下:
(1)选择满足所允许的消耗的最精细的t-f导频网格(最小的N和M)
(2)在多普勒环(延迟多普勒平面)中选择支持一个导频的时域(最小n)中的最小尺寸导频观察窗。
(3)在延迟多普勒环中,在考虑接收器实现足够好的导频分离和预期延迟的信道估计以及信道的多普勒传播的能力的同时,包括尽可能多的导频(尽可能稀疏地间隔开)。
(4)将延迟多普勒平面变换为t-f平面(辛傅里叶变换)。
(5)将nxm窗应用于t-f平面。
7.2.3.1示例
采用与前一示例中相同的假设,实施方式可缩短窗的时间间隔以在多普勒维度中仅封包一个导频。再次假设RC滤波器,解决方案可如下:
时间样本数量:15个(n=9,对于RC滤波器额外增加6个)
频率样本数量:626个(m=500,对于RC滤波器额外126个)
导频包:对于本示例,我们将导频数量限制到10个并在仅延迟域中堆叠。
导频将在延迟维度中和在多普勒间隔的中间中以4个网格点的偏移定位。对于第一导频,这转移到网格点(5,5)。
为了示出窗影响信道时间延迟扩展的最坏情况,示出了当信道由以下两条路径表示时的接收到的导频(无直接路径):
路径1:延迟=5us,多普勒偏移=166.7Hz
路径2:延迟=0.067us,多普勒偏移=-166.7Hz
这两条路径导致接收到的导频精确地定位在网格点之间的中间,导致接收窗到相邻网格点的最严重泄漏,这代表了导频分离的最坏情况。
在图21中示出了延迟多普勒平面中的接收到的导频(放大以仅示出延迟维度中前100个网格点中的导频)。
图22示出延迟多普勒平面中的格点,其中,接收到的信号比接收到的导频的最高电平高出-40dB。
7.3.非结构化基准信号
非结构化基准信号RE导频在具有与数据环相同的周长的延迟多普勒环上生成,变换到t-f平面,然后受限于t-f网格上的有限数量的网格点。分配给基准信号的网格点数量及它们的位置将决定该分配可支持多少个导频。
8.基于OTFS的下行链路基准信号的示例
8.1小区特定的基准信号
小区特定的基准信号在所有下行链路(DL)子帧中发送,并且可用于小区中的所有UE。
8.1.1FDD
在FDD中,由于DL传输是有规律的,因此一些实施方式可使用具有最小消耗的延迟多普勒包,其允许封包数量与如eNodeB的发送设备所使用的天线端口的数量相等的导频。一些实施方式可连续地发送导频(时域中的无限网格)。每个导频将分离地从延迟多普勒平面变换到t-f平面并发送到其天线端口(见图23)。接收器可应用适当的窗以获得不同的导频之间的分离以及从导频网格到t-f平面中的数据网格的足够好的内插。连续发送导频不应影响数据延迟,因为接收器可从其通电时开始实现滑动的t-f窗,连续收集导频信息,并准备在需要接收控制信息或数据时估计信道。发送的导频的数量及它们在延迟多普勒平面中的位置需要告知给UE。接收器处的t-f窗的大小和形状是实现方式特定的,并且不需要被指定。
8.1.2TDD
在TDD中,DL传输的规律性取决于帧大小。在LTE中,DL传输的最短周期是5ms(帧大小的一半),如果用作t-f平面中的时域的网格点,则其使得导频环的多普勒周长为200Hz(1/5ms)。这转移为估计多普勒扩展不超过200Hz的信道的能力。如果支持更短的DL周期性,则可使用2D结构化基准信号来支持更大的多普勒扩展(或更多导频)。
如果DL传输的规律性不足以支持信道的延迟扩展,则可使用以下其他选项中的一个(或两个):
(1)如果基准信号的网格点的分配支持高于2D的维度的结构,则使用基准信号。
(2)使用2D非结构化基准信号,并将它们限制到可用于基准信号的所有t-f网格点。
8.2.UE特定基准信号
当eNodeB向UE发送数据时,UE特定基准信号可仅发送到特定UE。当eNodeB使用不同于小区特定天线端口的天线端口时(例如,当eNodeB在向UE发送数据时使用UE特定波束形成时),可发送这些基准信号。在这种情况下,基准信号仅可在分配给UE特定传输的频带和时间内发送。
章节7中所描述的任何基准信号可用于UE特定基准信号。所选择的类型将取决于哪些t-f网格点可用于基准信号、以及传输的频率宽度和长度。作为示例,更宽的带宽传输将能够发送多个导频,其可用于支持对于相同UE的多个波束。
2D非结构化基准信号可用于对于任何数量的天线端口在当前定义的LTE UE特定RS布置上发送一个或多个导频。
9.基于OTFS的上行链路基准信号的示例
9.1解调基准信号
章节7中所描述的任何基准信号可用于解调基准信号。所选择的类型将取决于哪些t-f网格点可用于基准信号、以及传输的频率宽度和长度。作为示例,更宽的带宽传输将能够发送多个导频,其可用于支持多个波束。
2D非结构化基准信号可用于在当前定义的LTE解调RS布置上发送一个或多个导频。
9.2探测基准信号
探测基准信号可为有规律的,并因此建议使用延迟多普勒包方案来最大化同时针对给定延迟扩展发送导频的UE的数量。为了最小化用于估计信道的时间长度,可在频率维度中使用最大尺寸网格间隔来选择潜在敏感包。
图24是无线通信的示例性方法200的流程图。方法200可由无线接收器(例如,图1中所描绘的接收器102)实现。
方法200包括在202处接收包括数据信号部分和导频信号部分的无线信号,其中导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号。数据部分可包括信息比特,例如,用户数据和/或控制数据。
方法200包括在204处基于最小均方误差(MMSE)优化标准在时频域中执行二维信道估计。在一些实施方式中,例如,如章节3中所述,二维信道估计可以是通过识别导频信号部分的、从其获得时频域中的初步信道估计的子集、使用在二维观察窗内接收到的无线信号的样本来估计初步信道估计、并且通过内插和/或预测初步信道估计获得信道估计来执行。
如在章节3至6中进一步解释的,信道估计可使用所有时域信号样本来执行,或者可选地,可仅在例如接收导频信号的子集处执行,以获得初步信道估计,并且可随后通过信道内插和/或信道预测,使用来自初步信道估计的估计来获取整个信道。
在一些实施方式中,FIR维纳滤波器可用于基于接收到的导频信号的信道估计。
方法200包括在206处使用从二维信道估计获得的信道估计来恢复信息比特。
图25是无线通信的示例性方法300的流程图。方法300可由无线接收器(例如,图1中所描绘的接收器102)实现。
方法300包括在302处在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号。
方法300包括在304处将接收的无线信号变换成延迟时域信号。在一些实施例中,使用傅里叶变换来执行变换。
方法300包括在306处应用延迟时域掩码以将对于延迟时域信号的多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献。在一些实施例中,可使用方形掩码和零,其中,方形掩码包括用于延迟的值“1”和小于其相应阈值的时间值。可选地,对于掩码,可使用更平滑的窗函数。
方法300包括在308处使用单独接收导频信号贡献来估计多个导频信号的延迟时域位置处的通信信道估计。可使用诸如分段多项式近似、MMSE或频率限制匹配近似的多种不同技术中的一种来执行估计。
方法300包括在310处内插通信信道估计以获得整个通信信道估计。对于多个延迟值,内插可通过使用本文中所描述的技术获得的初步信道估计来跨时域执行。
图26是无线通信的示例性方法400的流程图。方法300可由无线接收器(例如,图1中所描绘的接收器102)实现。
方法400包括在402处在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号。
方法400包括在404处通过应用二维辛傅里叶变换将接收到的无线信号变换成延迟多普勒域信号。
方法400包括在406处应用延迟多普勒域掩码以将对于时频域信号的多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献。
方法400包括在408处使用单独接收导频信号贡献来估计多个导频信号的延迟多普勒域位置处的通信信道估计。
方法400包括在410处内插通信信道估计以获得整个通信信道估计。
在一些实施例中,无线通信设备可包括存储器和处理器,其中,存储器存储指令,当该指令被实现时使处理器实现方法200、300或400。
方法200、300和400的附加细节也分别在章节3、4和5中进行描述(例如,时频域信道获取、或混合延迟时域信道获取、或延迟多普勒域信道获取)。
图27示出无线收发器设备500的示例。设备500可用于实现方法200、300或400。设备500包括处理器502、存储器504,其中,存储器504存储在由处理器执行计算期间处理器可执行的指令和数据。设备500包括接收和/或发送电路506,例如,包括用于接收或发送信号的射频操作。
应理解,公开了用于通过基于OTFS导频信号执行信道获取的无线数据接收的技术。
本文中公开的和描述的实施方案、模块和其他实施方案以及功能操作可以以数字电子电路或计算机软件、固件或硬件(包括本文中公开的结构及其结构等效物),或者以它们中的一个或多个的组合来实现。所公开的实施方案和其他实施方案可以实现为一个或多个计算机程序产品,即,编码在计算机可读介质上的用于由数据处理设备执行或者用于控制数据处理设备的操作的计算机程序指令的一个或多个模块。计算机可读介质可以是机器可读存储装置、机器可读存储基板、存储器装置、影响机器可读传播信号的物质的组合,或者它们中的一个或多个的组合。术语“数据处理设备”涵盖用于处理数据的所有设备、装置和机器,举例来说包括可编程处理器、计算机或多个处理器或计算机。除了硬件之外,所述设备可以包括为所讨论的计算机程序创建执行环境的代码,例如构成处理器固件、协议栈、数据库管理系统、操作系统或者它们中的一个或多个的组合的代码。传播信号是人为生成的信号,例如机器生成的电信号、光信号或电磁信号,生成所述信号以便对信息进行编码以供传输至合适的接收器设备。
计算机程序(也称为程序、软件、软件应用程序、脚本或代码)可以用包括编译或解释语言的任何形式的编程语言写入,并且可以以任何形式进行部署,包括作为单独的程序或作为模块、部件、子例程或适于在计算环境中使用的其他单元。计算机程序不一定对应于文档系统中的文档。程序可以存储在保存其他程序或数据(例如,存储在标记语言文档中的一个或多个脚本)的文档的一部分中,存储在专用于所讨论的程序的单个文档中,或者存储在多个协调文档(例如,存储一个或多个模块、子程序或部分代码的文档)中。可以将计算机程序部署成在一台计算机上或位于一个站点或跨多个站点分布并且通过通信网络互连的多台计算机上执行。
本文中描述的过程和逻辑流程可以由一个或多个可编程处理器来执行,所述一个或多个可编程处理器执行一个或多个计算机程序,以便通过对输入数据进行操作并生成输出来执行功能。该过程和逻辑流程也可以由专用逻辑电路,例如FPGA(现场可编程门阵列)或ASIC(专用集成电路))执行,并且设备也可以实现为所述专用逻辑电路。
举例来说,适于执行计算机程序的处理器包括通用和专用微处理器以及任何类型的数字计算机的任何一个或多个处理器。一般来说,处理器将从只读存储器或随机存取存储器或两者接收指令和数据。计算机的基本要素是用于执行指令的处理器以及用于存储指令和数据的一个或多个存储器装置。一般来说,计算机还将包括用于存储数据的一个或多个大容量存储装置(例如磁盘、磁光盘或光盘),或者可操作地连接以便从所述一个或多个大容量存储装置接收数据或向其传递数据或两者。然而,计算机不需要具有此类装置。适用于存储计算机程序指令和数据的计算机可读介质包括所有形式的非易失性存储器、介质和存储器装置,举例来说包括:半导体存储器装置,例如EPROM、EEPROM和闪存存储器装置;磁盘,例如内部硬盘或可移动盘;磁光盘;以及CD ROM和DVD-ROM盘。处理器和存储器可以由专用逻辑电路补充或并入其中。
虽然本专利文件包含许多细节,但这些不应当被解释为对所要求保护的发明的范围或可能要求保护的内容进行限制,而是作为特定于具体实施方案的特征的描述。在本文中在单独实施方案的上下文中描述的某些特征也可以在单个实施方案中组合实现。相反地,在单个实施方案的上下文中描述的各种特征也可以在多个实施方案中单独地或以任何合适的子组合来实现。此外,尽管上文可以将特征描述为以某些组合起作用并且甚至最初要求如此,但是来自所要求保护的组合的一个或多个特征在一些情况下可以从所述组合中删除,并且所要求保护的组合可以针对子组合或子组合的变体。类似地,虽然在附图中操作是以特定顺序描绘的,但这不应当被理解为要求必须以所示的特定顺序或按连续顺序执行此类操作,或者必须执行所有示出的操作以实现期望的结果。
只公开了几个示例和实现方式。可以基于所公开的内容对所描述的示例和实现方式以及其他实现方式做出变化、修改和增强。

Claims (35)

1.用于从接收到的信号恢复信息比特的无线通信方法,所述方法由无线通信接收器实施,所述方法包括以下步骤:
在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中,所述导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;
将接收到的无线信号变换成延迟时域信号;
应用延迟时域掩码以将对于所述延迟时域信号的所述多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献;
使用所述单独接收所述导频信号贡献来估计所述多个导频信号的延迟时域位置处的所述通信信道估计;以及
内插所述通信信道估计以获得整个通信信道估计。
2.如权利要求1所述的方法,其中,所述变换是使用傅里叶变换执行的。
3.如权利要求1所述的方法,其中,所述延迟时域掩码包括方形掩码。
4.如权利要求1所述的方法,其中,所述内插是对于所述延迟时域中的多个延迟值跨时间执行的。
5.如权利要求1所述的方法,其中,所述估计包括:
基于所述单独接收导频信号贡献使用样条近似技术来估计所述通信信道估计,其中在所述样条近似技术中,计算分段连续多项式。
6.如权利要求1所述的方法,其中,所述估计包括:
基于所述接收导频信号贡献使用最小均方误差标准来估计所述通信信道估计。
7.如权利要求1所述的方法,其中,所述估计包括:
通过将对所述单独接收导频信号贡献应用频率变换而得到的高频系数归零来应用带宽约束,估计所述通信信道估计。
8.如权利要求1所述的方法,其中,所述内插包括:
使用多项式近似进行内插。
9.如权利要求1所述的方法,还包括:
使用从所述二维信道估计获得的信道估计来恢复信息比特。
10.如权利要求9所述的方法,其中,恢复所述信息比特包括:
执行符号解调以恢复信息比特。
11.如权利要求1所述的方法,还包括:在时频域中对所述通信信道估计进行窗口化。
12.如权利要求11所述的方法,其中,所述窗口化包括使用平方余弦窗进行窗口化。
13.如权利要求1所述的方法,还包括:
在时频域中对信道估计横跨所述延迟维度进行逆傅里叶变换。
14.如权利要求13所述的方法,其中,应用所述逆傅里叶变换包括:
仅在掩码部分上或仅在与接收到的导频信号周围的延迟跨度对应的部分上应用所述逆傅里叶变换。
15.无线通信设备,包括:
存储器,用于存储数据和指令;
处理器,用于执行所述指令并且实施数据接收方法,所述数据接收方法包括:
在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中,所述导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;
将接收的所述无线信号变换成延迟时域信号;
应用延迟时域掩码以将对于所述延迟时域信号的所述多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献;
使用所述单独接收导频信号贡献来估计所述多个导频信号的延迟时域位置处的所述通信信道估计;以及
内插所述通信信道估计以获得整个通信信道估计。
16.如权利要求15所述的设备,其中,所述变换是使用傅里叶变换执行的。
17.如权利要求15所述的设备,其中,所述延迟时域掩码包括方形掩码。
18.如权利要求15所述的设备,其中,所述内插是对于所述延迟时域中的多个延迟值跨时间执行的。
19.如权利要求15所述的设备,其中,所述估计包括:
基于所述单独接收导频信号贡献使用样条近似技术来估计所述通信信道估计,其中在所述样条近似技术中,计算分段连续多项式。
20.如权利要求15所述的设备,其中,所述估计包括:
基于所述接收导频信号贡献使用最小均方误差标准来估计所述通信信道估计。
21.如权利要求15所述的设备,其中,所述估计包括:
通过将对所述单独接收导频信号贡献应用频率变换而得到的高频系数归零来应用带宽约束,估计所述通信信道估计。
22.如权利要求15所述的设备,其中,所述内插包括:
使用多项式近似进行内插。
23.如权利要求15所述的设备,还包括:
使用从所述二维信道估计获得的信道估计来恢复信息比特。
24.如权利要求23所述的设备,其中,恢复所述信息比特包括:
执行符号解调以恢复信息比特。
25.用于从接收到的信号恢复信息比特的无线通信方法,所述方法由无线通信接收器实施,所述方法包括以下步骤:
在通信信道上接收包括数据信号部分和导频信号部分的无线信号,其中,所述导频信号部分包括在正交时间频率空间(OTFS)域中复用在一起的多个导频信号;
通过应用二维辛傅里叶变换将接收到的所述无线信号变换成延迟多普勒域信号;
应用延迟多普勒域掩码以将对于所述时频域信号的所述多个导频信号的贡献中的每个分离成对应的单独接收导频信号贡献;
使用所述单独接收导频信号贡献来估计所述多个导频信号的延迟多普勒域位置处的所述通信信道估计;以及
内插所述通信信道估计以获得整个通信信道估计。
26.如权利要求25所述的方法,其中,所述延迟多普勒域掩码包括方形掩码。
27.如权利要求26所述的方法,其中,所述内插是对于所述延迟多普勒域中的多个延迟值跨时间执行的。
28.如权利要求25所述的方法,其中,所述估计包括:
基于所述接收导频信号贡献使用最小均方误差标准来估计所述通信信道估计。
29.如权利要求25所述的方法,还包括:
使用从所述二维信道估计获得的信道估计来恢复信息比特。
30.如权利要求25所述的方法,还包括:
通过将整个信道估计之外的延迟值和多普勒值归零,使用二维辛傅里叶变换将所述多个导频信号隔离回时频域。
31.如权利要求25所述的方法,还包括:
通过使用二维辛傅里叶变换将所述多个导频信号变换回时频域,并且其中估计所述通信信道估计包括:使用优化算法来估计时频域中的所述通信信道估计。
32.如权利要求31所述的方法,其中,所述优化算法包括最小均方误差算法或样条优化算法中的一种。
33.如权利要求31所述的方法,还包括:在时频域中对所述通信信道估计进行窗口化。
34.如权利要求33所述的方法,其中,所述窗口化包括使用平方余弦窗进行窗口化。
35.计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,其中,当所述计算机程序被处理器执行时,实施如权利要求1至14或权利要求25至34中的任一项所述的方法。
CN202310810559.XA 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取 Pending CN117097594A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662316437P 2016-03-31 2016-03-31
US62/316,437 2016-03-31
CN201780020955.5A CN109845102B (zh) 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取
PCT/US2017/025166 WO2017173160A1 (en) 2016-03-31 2017-03-30 Channel acquisition using orthogonal time frequency space modulated pilot signal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201780020955.5A Division CN109845102B (zh) 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取

Publications (1)

Publication Number Publication Date
CN117097594A true CN117097594A (zh) 2023-11-21

Family

ID=59966493

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202310810559.XA Pending CN117097594A (zh) 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取
CN201780020955.5A Active CN109845102B (zh) 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780020955.5A Active CN109845102B (zh) 2016-03-31 2017-03-30 使用正交时间频率空间调制的导频信号的信道获取

Country Status (4)

Country Link
US (3) US10749651B2 (zh)
EP (2) EP4262162A3 (zh)
CN (2) CN117097594A (zh)
WO (1) WO2017173160A1 (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11943089B2 (en) 2010-05-28 2024-03-26 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US10667148B1 (en) 2010-05-28 2020-05-26 Cohere Technologies, Inc. Methods of operating and implementing wireless communications systems
WO2017087706A1 (en) 2015-11-18 2017-05-26 Cohere Technologies Orthogonal time frequency space modulation techniques
CN117097594A (zh) 2016-03-31 2023-11-21 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
KR102250054B1 (ko) 2016-04-01 2021-05-07 코히어 테크널러지스, 아이엔씨. Otfs 통신 시스템에서의 tomlinson-harashima 프리코딩
EP3549200B1 (en) 2016-12-05 2022-06-29 Cohere Technologies, Inc. Fixed wireless access using orthogonal time frequency space modulation
EP4109983A1 (en) 2017-04-21 2022-12-28 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
EP3616265A4 (en) 2017-04-24 2021-01-13 Cohere Technologies, Inc. MULTI-HARNESS ANTENNA DESIGNS AND OPERATION
WO2019036492A1 (en) 2017-08-14 2019-02-21 Cohere Technologies ASSIGNMENT OF TRANSMISSION RESOURCES BY DIVISION OF BLOCKS OF PHYSICAL RESOURCES
CN111279337B (zh) 2017-09-06 2023-09-26 凝聚技术公司 一种由无线通信接收器装置实现的无线通信方法
WO2019055861A1 (en) 2017-09-15 2019-03-21 Cohere Technologies, Inc. REALIZING SYNCHRONIZATION IN AN ORTHOGONAL SPACE-FREQUENCY SPACE SIGNAL RECEIVER
US11152957B2 (en) 2017-09-29 2021-10-19 Cohere Technologies, Inc. Forward error correction using non-binary low density parity check codes
CN107819709B (zh) * 2017-10-26 2020-07-21 成都信息工程大学 一种移动目标检测的方法及装置
WO2019113046A1 (en) * 2017-12-04 2019-06-13 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
US10651912B2 (en) 2018-02-07 2020-05-12 At&T Intellectual Property I, L.P. Reciprocity based channel state information acquisition for frequency division duplex system
US11632270B2 (en) * 2018-02-08 2023-04-18 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
US11489559B2 (en) 2018-03-08 2022-11-01 Cohere Technologies, Inc. Scheduling multi-user MIMO transmissions in fixed wireless access systems
WO2019241589A1 (en) 2018-06-13 2019-12-19 Cohere Technologies, Inc. Reciprocal calibration for channel estimation based on second-order statistics
US10979151B2 (en) * 2019-05-22 2021-04-13 At&T Intellectual Property I, L.P. Multidimensional grid sampling for radio frequency power feedback
US11824637B2 (en) 2019-05-22 2023-11-21 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission
US10886991B2 (en) * 2019-05-22 2021-01-05 At&T Intellectual Property I, L.P. Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks
US11050530B2 (en) 2019-06-27 2021-06-29 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid
TWI812874B (zh) 2019-10-01 2023-08-21 美商杜拜研究特許公司 張量乘積之b平滑曲線預測子
EP3826254B1 (en) * 2019-11-19 2022-06-15 Volkswagen AG Differential power analysis for otfs pilot interference detection
KR102669138B1 (ko) * 2020-01-29 2024-05-27 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
CN112291168B (zh) * 2020-11-04 2022-08-16 东南大学 大规模mimo正交时频空间调制下行链路导频设计和信道信息获取方法
CN113395221B (zh) * 2021-04-25 2022-07-08 北京邮电大学 一种基于正交时频空联合信道估计与符号检测方法
CN115378767B (zh) * 2021-05-21 2024-01-09 维沃移动通信有限公司 延迟多普勒域信道信息反馈方法、装置及电子设备
CN113507426B (zh) * 2021-06-16 2022-12-06 北京邮电大学 基于otfs调制的联合信道估计与信号检测方法及装置
CN115811386A (zh) * 2021-09-13 2023-03-17 维沃移动通信有限公司 信号传输方法、装置、设备及存储介质
CN115086114B (zh) * 2022-06-10 2023-08-15 西安电子科技大学 基于分散式放置正交时频空otfs导频的信道估计方法
CN115442189B (zh) * 2022-08-23 2024-05-14 成都中科微信息技术研究院有限公司 一种适用于时频空间域的多天线信道估计方法、介质及装置

Family Cites Families (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1605262A (en) 1977-05-25 1986-12-17 Emi Ltd Representing the position of a reference pattern in a pattern field
US5083135A (en) 1990-11-13 1992-01-21 General Motors Corporation Transparent film antenna for a vehicle window
US5182642A (en) 1991-04-19 1993-01-26 General Dynamics Lands Systems Inc. Apparatus and method for the compression and transmission of multiformat data
US5956624A (en) 1994-07-12 1999-09-21 Usa Digital Radio Partners Lp Method and system for simultaneously broadcasting and receiving digital and analog signals
US5623511A (en) 1994-08-30 1997-04-22 Lucent Technologies Inc. Spread spectrum code pulse position modulated receiver having delay spread compensation
ZA957858B (en) 1994-09-30 1996-04-22 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US6356555B1 (en) 1995-08-25 2002-03-12 Terayon Communications Systems, Inc. Apparatus and method for digital data transmission using orthogonal codes
US5831977A (en) 1996-09-04 1998-11-03 Ericsson Inc. Subtractive CDMA system with simultaneous subtraction in code space and direction-of-arrival space
US6275543B1 (en) 1996-10-11 2001-08-14 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
US6212246B1 (en) 1996-11-21 2001-04-03 Dsp Group, Inc. Symbol-quality evaluation in a digital communications receiver
US5955992A (en) 1998-02-12 1999-09-21 Shattil; Steve J. Frequency-shifted feedback cavity used as a phased array antenna controller and carrier interference multiple access spread-spectrum transmitter
US6686879B2 (en) 1998-02-12 2004-02-03 Genghiscomm, Llc Method and apparatus for transmitting and receiving signals having a carrier interferometry architecture
US5872542A (en) 1998-02-13 1999-02-16 Federal Data Corporation Optically transparent microstrip patch and slot antennas
EP0966133B1 (en) 1998-06-15 2005-03-02 Sony International (Europe) GmbH Orthogonal transformations for interference reduction in multicarrier systems
US6289063B1 (en) 1998-09-02 2001-09-11 Nortel Networks Limited QAM receiver with improved immunity to crosstalk noise
US6426983B1 (en) 1998-09-14 2002-07-30 Terayon Communication Systems, Inc. Method and apparatus of using a bank of filters for excision of narrow band interference signal from CDMA signal
US6654429B1 (en) * 1998-12-31 2003-11-25 At&T Corp. Pilot-aided channel estimation for OFDM in wireless systems
FI112831B (fi) * 1999-04-28 2004-01-15 Nokia Corp Menetelmä kanavaestimaatin muodostamiseksi ja vastaanotin
US6608864B1 (en) 1999-05-26 2003-08-19 3Com Corporation Method and apparatus for fault recovery in a decision feedback equalizer
FR2794914B1 (fr) 1999-06-08 2002-03-01 Sagem Systeme parametrable a entrelacement temporel et frequentiel pour la transmission de donnees numeriques entre stations fixes ou mobiles
US6985432B1 (en) 2000-01-28 2006-01-10 Zion Hadad OFDM communication channel
US7254171B2 (en) 2000-01-20 2007-08-07 Nortel Networks Limited Equaliser for digital communications systems and method of equalisation
US6956814B1 (en) 2000-02-29 2005-10-18 Worldspace Corporation Method and apparatus for mobile platform reception and synchronization in direct digital satellite broadcast system
ATE253791T1 (de) 2000-05-26 2003-11-15 Cit Alcatel Verfahren zum übertragen von synchronen transportmodulen über ein synchrones transportnetz
US6388621B1 (en) 2000-06-20 2002-05-14 Harris Corporation Optically transparent phase array antenna
US6952455B1 (en) * 2000-08-02 2005-10-04 Via Telecom, Co., Ltd. Adaptive antenna method and apparatus
US7218789B2 (en) 2000-12-01 2007-05-15 Lizardtech, Inc. Method for lossless encoding of image data by approximating linear transforms and preserving selected properties for image processing
US20050251844A1 (en) 2001-02-02 2005-11-10 Massimiliano Martone Blind correlation for high precision ranging of coded OFDM signals
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US7058004B2 (en) 2001-05-07 2006-06-06 University Of South Florida Communication system using orthogonal wavelet division multiplexing (OWDM) and OWDM-spread spectrum (OWSS) signaling
US7190734B2 (en) 2001-05-25 2007-03-13 Regents Of The University Of Minnesota Space-time coded transmissions within a wireless communication network
JP4119696B2 (ja) 2001-08-10 2008-07-16 松下電器産業株式会社 送信装置、受信装置及び無線通信方法
US7263123B2 (en) 2001-09-18 2007-08-28 Broadcom Corporation Fast computation of coefficients for a variable delay decision feedback equalizer
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US9628231B2 (en) 2002-05-14 2017-04-18 Genghiscomm Holdings, LLC Spreading and precoding in OFDM
GB0212165D0 (en) 2002-05-27 2002-07-03 Nokia Corp A wireless system
US7496619B2 (en) 2002-06-18 2009-02-24 Vanderbilt University System and methods of nonuniform data sampling and data reconstruction in shift invariant and wavelet spaces
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US8451933B2 (en) 2002-07-18 2013-05-28 Coherent Logix, Incorporated Detection of low-amplitude echoes in a received communication signal
EP1432168A1 (en) 2002-12-16 2004-06-23 Urmet Sistemi S.p.a. Multicarrier CDMA transmission method using Hadamard time-frequency spreading codes, and a transmitter and a receiver for said method
AU2003212381A1 (en) 2003-03-27 2004-10-18 Docomo Communications Laboratories Europe Gmbh Apparatus and method for estimating a plurality of channels
US20040254468A1 (en) * 2003-03-27 2004-12-16 Vuesonix Sensors, Inc. Mapping and tracking blood flow using reduced-element probe
JP2004294968A (ja) 2003-03-28 2004-10-21 Kawasaki Microelectronics Kk 単純マトリクス液晶のマルチラインアドレッシング駆動方法及び装置
US7286603B2 (en) 2003-05-01 2007-10-23 Nokia Corporation Method and apparatus for increasing data rates in a wideband MC-CDMA telecommunication system
FR2858061B1 (fr) * 2003-07-25 2005-10-07 Thales Sa Procede de detection et localisation multi statique d'engin mobile par l'utilisation d'emetteurs de diffusion numeriques
US9553984B2 (en) 2003-08-01 2017-01-24 University Of Florida Research Foundation, Inc. Systems and methods for remotely tuning hearing devices
EP1511210B1 (en) 2003-08-28 2011-11-09 Motorola Solutions, Inc. OFDM channel estimation and tracking for multiple transmit antennas
KR100564601B1 (ko) * 2003-12-29 2006-03-28 삼성전자주식회사 주파수 도메인 에코 검출방법 및 이를 사용하는 이퀄라이저
US7342981B2 (en) 2004-01-15 2008-03-11 Ati Technologies Inc. Digital receiver having adaptive carrier recovery circuit
US7330501B2 (en) 2004-01-15 2008-02-12 Broadcom Corporation Orthogonal normalization for a radio frequency integrated circuit
JP3802031B2 (ja) 2004-02-16 2006-07-26 パイオニア株式会社 受信装置及び受信方法
US7668075B2 (en) 2004-04-06 2010-02-23 Texas Instruments Incorporated Versatile system for dual carrier transformation in orthogonal frequency division multiplexing
US7656786B2 (en) 2004-06-28 2010-02-02 The Board Of Trustees Of The Leland Stanford Junior University Method for pulse shape design for OFDM
US20060008021A1 (en) 2004-06-30 2006-01-12 Nokia Corporation Reduction of self-interference for a high symbol rate non-orthogonal matrix modulation
KR100590486B1 (ko) 2004-07-29 2006-06-19 에스케이 텔레콤주식회사 Tdd 방식과 ofdm 변조 방식을 이용하는 이동통신망의 광중계기에서 전송 신호를 분리하는 스위칭타이밍 신호 생성 방법 및 시스템
US7463583B2 (en) 2005-03-03 2008-12-09 Stmicroelectronics Ltd. Wireless LAN data rate adaptation
US7929407B2 (en) 2005-03-30 2011-04-19 Nortel Networks Limited Method and system for combining OFDM and transformed OFDM
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
US7991088B2 (en) 2005-11-15 2011-08-02 Tommy Guess Iterative interference cancellation using mixed feedback weights and stabilizing step sizes
US8730877B2 (en) 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
JPWO2007004297A1 (ja) 2005-07-06 2009-01-22 パナソニック株式会社 送信機及び送信方法
WO2007022630A1 (en) 2005-08-23 2007-03-01 Nortel Networks Limited Methods and systems for ofdm multiple zone partitioning
FI20055516A0 (fi) 2005-09-28 2005-09-28 Nokia Corp Tiedonsiirto viestintäjärjestelmässä
US8990280B2 (en) 2005-09-30 2015-03-24 Nvidia Corporation Configurable system for performing repetitive actions
US8687689B2 (en) 2005-10-25 2014-04-01 William Marsh Rice University Method and apparatus for on-line compressed sensing
KR100996023B1 (ko) 2005-10-31 2010-11-22 삼성전자주식회사 다중 안테나 통신 시스템에서 데이터 송수신 장치 및 방법
CN101421948B (zh) * 2006-02-14 2013-08-07 三星电子株式会社 在正交频分复用系统中使用线性内插方案的信道估计方法和装置
US7928893B2 (en) 2006-04-12 2011-04-19 William Marsh Rice University Apparatus and method for compressive sensing radar imaging
EP2568651A3 (en) * 2006-04-24 2014-02-26 Electronics and Telecommunications Research Institute Method of transmitting/receiving an OFDM signal using a pilot with a repeated pattern
WO2007124761A1 (en) * 2006-04-27 2007-11-08 Telecom Italia S.P.A. Frequency domain channel estimation in a single carrier frequency division multiple access system
CN101479951B (zh) 2006-04-27 2013-10-30 德克萨斯仪器股份有限公司 在无线通信系统中分配参考信号的方法和装置
JP2007300383A (ja) 2006-04-28 2007-11-15 Fujitsu Ltd Mimo−ofdm送信機
US7970081B2 (en) * 2006-05-11 2011-06-28 Telefonaktiebolaget Lm Ericsson (Publ) Delay-doppler channel response demodulation method and apparatus
US8712061B2 (en) 2006-05-17 2014-04-29 Creative Technology Ltd Phase-amplitude 3-D stereo encoder and decoder
US7392018B1 (en) 2006-06-13 2008-06-24 Saraband Wireless, Inc. Channel estimation applique for wireless communications
US8363536B2 (en) * 2006-08-28 2013-01-29 Qualcomm Incorporated OFDM channel estimation
US8111782B2 (en) * 2006-08-31 2012-02-07 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same
US7689049B2 (en) 2006-08-31 2010-03-30 Donald Martin Monro Matching pursuits coding of data
WO2008033117A1 (en) 2006-09-11 2008-03-20 Telefonaktiebolaget Lm Ericsson (Publ) Detection of time-frequency hopping patterns
US20100027608A1 (en) 2006-09-29 2010-02-04 Paolo Priotti Scrambled multicarrier transmission
US20100322349A1 (en) 2006-10-23 2010-12-23 Moon Il Lee Method for transmitting data using cyclic delay diversity
US8885744B2 (en) 2006-11-10 2014-11-11 Qualcomm Incorporated Providing antenna diversity in a wireless communication system
WO2008086642A1 (en) 2007-01-05 2008-07-24 Huawei Technologies Co., Ltd. Two-dimensional reference signal sequences
US8130867B2 (en) * 2007-01-05 2012-03-06 Qualcomm Incorporated Pilot design for improved channel and interference estimation
US8295325B2 (en) * 2007-01-12 2012-10-23 Telefonaktiebolaget L M Ericsson (Publ) Signature sequences and methods for time-frequency selective channel
US8300674B2 (en) * 2007-01-12 2012-10-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for complexity reduction in detection of delay and Doppler shifted signature sequences
WO2008097629A2 (en) 2007-02-06 2008-08-14 Interdigital Technology Corporation Method and apparatus for multiple-input multiple-output feedback generation
US7940848B2 (en) * 2007-04-02 2011-05-10 Infineon Technologies Ag System having an OFDM channel estimator
US8259845B2 (en) 2007-05-25 2012-09-04 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for communicating with root-nyquist, self-transform pulse shapes
US20080310383A1 (en) 2007-06-15 2008-12-18 Sharp Laboratories Of America, Inc. Systems and methods for designing a sequence for code modulation of data and channel estimation
US9966989B2 (en) 2007-10-17 2018-05-08 Applied Radar, Inc. Array antenna system and spread spectrum beamformer method
US20090122854A1 (en) 2007-11-14 2009-05-14 The Hong Kong University Of Science And Technology Frequency domain equalization with transmit precoding for high speed data transmission
FR2924884B1 (fr) 2007-12-11 2009-12-04 Eads Secure Networks Reduction d'interferences dans un signal a repartition de frequences orthogonales
US8229017B1 (en) 2007-12-13 2012-07-24 Marvell International Ltd. Transmit beamforming utilizing channel estimation matrix decomposition feedback in a wireless MIMO communication system
US8009750B2 (en) 2007-12-21 2011-08-30 Qualcomm, Incorporated Receiver window shaping in OFDM to mitigate narrowband interference
US8108438B2 (en) 2008-02-11 2012-01-31 Nir Asher Sochen Finite harmonic oscillator
CN101350801B (zh) 2008-03-20 2012-10-10 中兴通讯股份有限公司 长循环前缀帧结构下行专用导频与物理资源块的映射方法
US7907683B2 (en) * 2008-04-28 2011-03-15 Newport Media, Inc. Application of superfast algorithms to a pilot-based channel estimation process
US8488694B2 (en) 2008-05-06 2013-07-16 Industrial Technology Research Institute System and method for pilot design
US8509324B2 (en) 2008-07-08 2013-08-13 Qualcomm Incorporated Methods and systems for reducing PAPR of an OFDM signal
KR101646249B1 (ko) 2008-08-11 2016-08-16 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
BRPI0823039A2 (pt) 2008-08-20 2015-07-28 Ericsson Telefon Ab L M Pré-codificador, parte do transmissor para um sistema de comunicação, sistema de comunicação, e, método para fornecer blocos de transmissões.
JPWO2010029765A1 (ja) 2008-09-12 2012-02-02 パナソニック株式会社 無線送信装置およびプレコーディング方法
US8203929B2 (en) 2008-10-09 2012-06-19 Sony Corporation Frame and data pattern structure for multi-carrier systems
EP2209220A1 (en) 2009-01-19 2010-07-21 ST-Ericsson (France) SAS Process for beamforming data to be transmitted by a base station in a MU-MIMO system and apparatus for performing the same
GB2467143B (en) 2009-01-22 2011-04-06 Toshiba Res Europ Ltd Wireless commication method and apparatus
WO2010085817A1 (en) 2009-01-26 2010-07-29 Geneva Cleantech Inc. Methods and apparatus for power factor correction and reduction of distortion in and noise in a power supply delivery network
JP2012522418A (ja) 2009-03-27 2012-09-20 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 移動体端末の位置の推定を可能にする方法及び装置
US8111149B2 (en) 2009-04-30 2012-02-07 Empire Technology Development Llc Measurement-based wireless device system level management
US8422541B2 (en) 2009-05-29 2013-04-16 Alcatel Lucent Channel estimation in a multi-channel communication system using pilot signals having quasi-orthogonal subpilots
US8630426B2 (en) 2009-11-06 2014-01-14 Motorola Solutions, Inc. Howling suppression using echo cancellation
KR20120101069A (ko) 2009-11-13 2012-09-12 인터디지탈 패튼 홀딩스, 인크 Wlan에 대한 vht 주파수 재사용을 제공하는 방법 및 장치
RU2012120334A (ru) 2009-11-17 2013-11-27 Сони Корпорейшн Передатчик и приемник для широковещательной передачи данных в системе вещания с нарастающей избыточностью
US8724798B2 (en) 2009-11-20 2014-05-13 Adobe Systems Incorporated System and method for acoustic echo cancellation using spectral decomposition
WO2011063572A1 (zh) 2009-11-30 2011-06-03 西安西谷微功率数据技术有限责任公司 有源电子标签及其应用系统和方法
US8359515B2 (en) 2009-12-02 2013-01-22 Lsi Corporation Forward substitution for error-correction encoding and the like
JP2011127910A (ja) 2009-12-15 2011-06-30 Hitachi Automotive Systems Ltd レーダ装置及びレーダシステム
GB2478005B (en) 2010-02-23 2017-06-14 Univ Court Univ Of Edinburgh Enhanced spatial modulation
TWI581578B (zh) 2010-02-26 2017-05-01 新力股份有限公司 編碼器及提供遞增冗餘之編碼方法
WO2011120213A1 (en) 2010-03-29 2011-10-06 Murata Manufacturing Co., Ltd Method and apparatus for integer frequency offset estimation in wireless communication system
WO2011135472A2 (en) 2010-04-27 2011-11-03 Technion Research & Development Foundation Ltd. Multi-channel sampling of pulse streams at the rate of innovation
CN102237945A (zh) 2010-05-06 2011-11-09 松下电器产业株式会社 基于正交编码的码分复用方法、码分复用设备和解复用设备
US8588808B2 (en) 2010-05-24 2013-11-19 Nice-Systems Ltd. Method and system for estimation of mobile station velocity in a cellular system based on geographical data
US8976851B2 (en) 2011-05-26 2015-03-10 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US8547988B2 (en) 2010-05-28 2013-10-01 Ronny Hadani Communications method employing orthonormal time-frequency shifting and spectral shaping
US9071285B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9071286B2 (en) 2011-05-26 2015-06-30 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9083595B2 (en) 2010-05-28 2015-07-14 Cohere Technologies, Inc. Signal modulation method resistant to echo reflections and frequency offsets
US10681568B1 (en) 2010-05-28 2020-06-09 Cohere Technologies, Inc. Methods of data channel characterization and uses thereof
US10667148B1 (en) 2010-05-28 2020-05-26 Cohere Technologies, Inc. Methods of operating and implementing wireless communications systems
US9668148B2 (en) 2010-05-28 2017-05-30 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
US9130638B2 (en) 2011-05-26 2015-09-08 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9444514B2 (en) 2010-05-28 2016-09-13 Cohere Technologies, Inc. OTFS methods of data channel characterization and uses thereof
WO2012064100A2 (ko) 2010-11-09 2012-05-18 엘지전자 주식회사 무선통신 시스템에서 전력상태보고를 전송하기 위한 방법 및 이를 위한 단말 장치
US8892048B1 (en) 2010-12-01 2014-11-18 Netblazr Inc. Transparent multi-element antenna
WO2012074449A1 (en) 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for mitigating inter -cell interference on transmission of uplink control information
US8462613B2 (en) * 2010-12-09 2013-06-11 Hong Kong Applied Science and Technology Research Institute Company Limited Channel estimation for long term evolution (LTE) terminals
US8428165B2 (en) 2010-12-30 2013-04-23 Mitsubishi Electric Research Laboratories, Inc. Method and system for decoding OFDM signals subject to narrowband interference
KR101585447B1 (ko) * 2011-02-15 2016-01-18 삼성전자주식회사 무선통신 시스템에서 옵셋 보상을 고려한 엠엠에스이 채널추정 장치 및 방법
US20120213098A1 (en) 2011-02-21 2012-08-23 Future Wireless Tech LLC Real-time and synchronization Internet of things analyzer System Architecture
TWI562560B (en) 2011-05-09 2016-12-11 Sony Corp Encoder and encoding method providing incremental redundancy
US9590779B2 (en) 2011-05-26 2017-03-07 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9294315B2 (en) 2011-05-26 2016-03-22 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US9031141B2 (en) 2011-05-26 2015-05-12 Cohere Technologies, Inc. Modulation and equalization in an orthonormal time-frequency shifting communications system
US8737305B2 (en) 2011-09-25 2014-05-27 Lg Electronics Inc. Method for allocating resources in broadband wireless access system
EP2764641B1 (en) 2011-10-03 2019-12-18 Intel Corporation Device to device (d2d) communication mechanisms
FR2985134A1 (fr) 2011-12-23 2013-06-28 France Telecom Procede d'emission d'au moins un signal multi-porteuse forme de symboles ofdm-oqam
CN104285379B (zh) 2012-03-26 2016-06-29 科源技术有限公司 抗回波反射和频偏的信号调制方法
JP5851914B2 (ja) 2012-03-30 2016-02-03 富士通株式会社 移動局位置検出方法、移動通信システム、および移動局位置情報管理装置
GB2501932B (en) 2012-05-11 2014-09-17 Toshiba Res Europ Ltd A wireless communications apparatus, a method and a communication system for performing relay selection
US10090972B2 (en) 2012-06-25 2018-10-02 Cohere Technologies, Inc. System and method for two-dimensional equalization in an orthogonal time frequency space communication system
US10003487B2 (en) 2013-03-15 2018-06-19 Cohere Technologies, Inc. Symplectic orthogonal time frequency space modulation system
US10411843B2 (en) 2012-06-25 2019-09-10 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US9912507B2 (en) 2012-06-25 2018-03-06 Cohere Technologies, Inc. Orthogonal time frequency space communication system compatible with OFDM
US10469215B2 (en) 2012-06-25 2019-11-05 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the Internet of Things
CN104662855B (zh) 2012-06-25 2018-10-23 科希尔技术股份有限公司 正交时频移动通信系统中的调制和均衡
US9967758B2 (en) 2012-06-25 2018-05-08 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
US9929783B2 (en) 2012-06-25 2018-03-27 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
US9385905B2 (en) 2013-03-04 2016-07-05 Intel Corporation Block-based time-frequency interleaving and de-interleaving
KR20140142915A (ko) 2013-06-05 2014-12-15 삼성전자주식회사 통신 시스템에서 핸드오버 시점을 결정하는 방법 및 장치
CN103414666B (zh) * 2013-08-26 2016-06-08 电子科技大学 一种基于均匀分布导频的二维自适应ofdm信道估计方法
US10348541B2 (en) 2013-11-27 2019-07-09 Telefonaktiebolaget Lm Ericsson (Publ) Sending and detecting synchronization signals and an associated information message
ES2721919T3 (es) 2013-12-17 2019-08-06 Assia Spe Llc Sistemas, métodos y aparatos para implementar compartición de datos inalámbricos distribuidos y sistemas de control
US9560548B2 (en) 2014-06-25 2017-01-31 General Electric Company Dynamic adjustment of a wireless network media access control parameter
KR102596363B1 (ko) * 2014-07-21 2023-10-30 코히어 테크널러지스, 아이엔씨. 무선 otfs 통신 시스템들을 동작시키고 구현하는 방법들
US10757660B2 (en) 2014-11-07 2020-08-25 Parallel Wireless, Inc. Self-calibrating and self-adjusting network
US20180013592A1 (en) * 2015-01-20 2018-01-11 ZTE Canada Inc. Channel estimation using composite subcarriers and combined pilots
EP3289421B1 (en) 2015-04-30 2021-06-09 Cohere Technologies, Inc. Orthogonal time frequency space modulation system for the internet of things
US10090973B2 (en) 2015-05-11 2018-10-02 Cohere Technologies, Inc. Multiple access in an orthogonal time frequency space communication system
EP3295578B1 (en) 2015-05-11 2020-04-15 Cohere Technologies, Inc. Orthogonal time frequency space modulation system
US10158394B2 (en) 2015-05-11 2018-12-18 Cohere Technologies, Inc. Systems and methods for symplectic orthogonal time frequency shifting modulation and transmission of data
US9866363B2 (en) 2015-06-18 2018-01-09 Cohere Technologies, Inc. System and method for coordinated management of network access points
US10574317B2 (en) 2015-06-18 2020-02-25 Cohere Technologies, Inc. System and method for providing wireless communication services using configurable broadband infrastructure shared among multiple network operators
CN108028823B (zh) 2015-06-22 2021-02-05 凝聚技术股份有限公司 辛正交时频空间调制系统
CN114070701B (zh) 2015-06-27 2024-05-14 凝聚技术股份有限公司 与ofdm兼容的正交时频空间通信系统
US10892547B2 (en) 2015-07-07 2021-01-12 Cohere Technologies, Inc. Inconspicuous multi-directional antenna system configured for multiple polarization modes
US10693581B2 (en) * 2015-07-12 2020-06-23 Cohere Technologies, Inc. Orthogonal time frequency space modulation over a plurality of narrow band subcarriers
CN108141294B (zh) 2015-07-12 2020-03-03 凝聚技术股份有限公司 与ofdm兼容的正交时间频率空间通信系统
CN108770382B (zh) 2015-09-07 2022-01-14 凝聚技术公司 使用正交时间频率空间调制的多路存取的方法
WO2017087706A1 (en) 2015-11-18 2017-05-26 Cohere Technologies Orthogonal time frequency space modulation techniques
KR102655272B1 (ko) 2015-12-09 2024-04-08 코히어 테크놀로지스, 아이엔씨. 복소 직교 함수를 이용하는 파일럿 패킹
CN115694764A (zh) 2016-02-25 2023-02-03 凝聚技术公司 用于无线通信的参考信号封装
EP3433969B1 (en) 2016-03-23 2021-11-03 Cohere Technologies, Inc. Receiver-side processing of orthogonal time frequency space modulated signals
US9667307B1 (en) 2016-03-31 2017-05-30 Cohere Technologies Wireless telecommunications system for high-mobility applications
CN117097594A (zh) 2016-03-31 2023-11-21 凝聚技术公司 使用正交时间频率空间调制的导频信号的信道获取
KR102250054B1 (ko) 2016-04-01 2021-05-07 코히어 테크널러지스, 아이엔씨. Otfs 통신 시스템에서의 tomlinson-harashima 프리코딩
EP3437279B1 (en) 2016-04-01 2021-03-03 Cohere Technologies, Inc. Iterative two dimensional equalization of orthogonal time frequency space modulated signals
WO2017201467A1 (en) 2016-05-20 2017-11-23 Cohere Technologies Iterative channel estimation and equalization with superimposed reference signals
EP4362590A3 (en) 2016-08-12 2024-06-26 Cohere Technologies, Inc. Method for multi-user multiplexing of orthogonal time frequency space signals
WO2018032016A1 (en) 2016-08-12 2018-02-15 Cohere Technologies Localized equalization for channels with intercarrier interference
EP3497799A4 (en) 2016-08-12 2020-04-15 Cohere Technologies, Inc. MULTILEVEL ITERATIVE EQUALIZATION AND DECODING
US11310000B2 (en) 2016-09-29 2022-04-19 Cohere Technologies, Inc. Transport block segmentation for multi-level codes
WO2018064605A1 (en) 2016-09-30 2018-04-05 Cohere Technologies Uplink user resource allocation for orthogonal time frequency space modulation
EP3549200B1 (en) 2016-12-05 2022-06-29 Cohere Technologies, Inc. Fixed wireless access using orthogonal time frequency space modulation
WO2018129554A1 (en) 2017-01-09 2018-07-12 Cohere Technologies Pilot scrambling for channel estimation
WO2018140837A1 (en) 2017-01-27 2018-08-02 Cohere Technologies Variable beamwidth multiband antenna
US10568143B2 (en) 2017-03-28 2020-02-18 Cohere Technologies, Inc. Windowed sequence for random access method and apparatus
EP3610582A4 (en) 2017-04-11 2021-01-06 Cohere Technologies, Inc. DIGITAL COMMUNICATION USING ORTHOGONALLY MODULATED SIGNALS IN DISPERSED TIME, FREQUENCY AND SPACE
EP4109983A1 (en) 2017-04-21 2022-12-28 Cohere Technologies, Inc. Communication techniques using quasi-static properties of wireless channels
EP3616341A4 (en) 2017-04-24 2020-12-30 Cohere Technologies, Inc. DIGITAL COMMUNICATION USING LATTICE DISTRIBUTION MULTIPLEXING
EP3616265A4 (en) 2017-04-24 2021-01-13 Cohere Technologies, Inc. MULTI-HARNESS ANTENNA DESIGNS AND OPERATION
KR102612426B1 (ko) 2017-07-12 2023-12-12 코히어 테크놀로지스, 아이엔씨. Zak 변환에 기초한 데이터 변조 기법
US11546068B2 (en) 2017-08-11 2023-01-03 Cohere Technologies, Inc. Ray tracing technique for wireless channel measurements
WO2019036492A1 (en) 2017-08-14 2019-02-21 Cohere Technologies ASSIGNMENT OF TRANSMISSION RESOURCES BY DIVISION OF BLOCKS OF PHYSICAL RESOURCES
CN111279337B (zh) 2017-09-06 2023-09-26 凝聚技术公司 一种由无线通信接收器装置实现的无线通信方法
US11283561B2 (en) 2017-09-11 2022-03-22 Cohere Technologies, Inc. Wireless local area networks using orthogonal time frequency space modulation
WO2019055861A1 (en) 2017-09-15 2019-03-21 Cohere Technologies, Inc. REALIZING SYNCHRONIZATION IN AN ORTHOGONAL SPACE-FREQUENCY SPACE SIGNAL RECEIVER
EP3685470A4 (en) 2017-09-20 2021-06-23 Cohere Technologies, Inc. LOW COST ELECTROMAGNETIC POWER SUPPLY
US11152957B2 (en) 2017-09-29 2021-10-19 Cohere Technologies, Inc. Forward error correction using non-binary low density parity check codes
EP4362344A2 (en) 2017-11-01 2024-05-01 Cohere Technologies, Inc. Precoding in wireless systems using orthogonal time frequency space multiplexing
WO2019113046A1 (en) 2017-12-04 2019-06-13 Cohere Technologies, Inc. Implementation of orthogonal time frequency space modulation for wireless communications
US10651912B2 (en) 2018-02-07 2020-05-12 At&T Intellectual Property I, L.P. Reciprocity based channel state information acquisition for frequency division duplex system
US11632270B2 (en) 2018-02-08 2023-04-18 Cohere Technologies, Inc. Aspects of channel estimation for orthogonal time frequency space modulation for wireless communications
US11489559B2 (en) 2018-03-08 2022-11-01 Cohere Technologies, Inc. Scheduling multi-user MIMO transmissions in fixed wireless access systems
WO2019241589A1 (en) 2018-06-13 2019-12-19 Cohere Technologies, Inc. Reciprocal calibration for channel estimation based on second-order statistics
WO2019241436A1 (en) 2018-06-14 2019-12-19 Cohere Technologies, Inc. Co-existence of orthogonal time frequency space and long term evolution systems
US11974167B2 (en) 2019-01-02 2024-04-30 Cohere Technologies, Inc. Distributed cooperative operation of wireless cells based on sparse channel representations
AU2020253611A1 (en) 2019-04-04 2021-04-08 Cohere Technologies, Inc. Massive cooperative multipoint network operation
WO2020227619A1 (en) 2019-05-08 2020-11-12 Cohere Technologies, Inc. Fractional cooperative multipoint network operation
US10886991B2 (en) 2019-05-22 2021-01-05 At&T Intellectual Property I, L.P. Facilitating sparsity adaptive feedback in the delay doppler domain in advanced networks
WO2020247768A1 (en) 2019-06-05 2020-12-10 Cohere Technologies, Inc. Reciprocal geometric precoding
US11050530B2 (en) 2019-06-27 2021-06-29 At&T Intellectual Property I, L.P. Generating wireless reference signals in a different domain for transmission with a collapsed time-frequency grid
US20220311489A1 (en) 2019-08-05 2022-09-29 Cohere Technologies, Inc. Spectral sharing wireless systems
EP4035277A4 (en) 2019-09-26 2022-11-09 Cohere Technologies, Inc. MULTI-LAYER MULTI-BEAM COMMUNICATION SYSTEMS

Also Published As

Publication number Publication date
US11968144B2 (en) 2024-04-23
EP3437190A4 (en) 2019-11-13
US10749651B2 (en) 2020-08-18
CN109845102A (zh) 2019-06-04
US20230045595A1 (en) 2023-02-09
WO2017173160A1 (en) 2017-10-05
US20190044682A1 (en) 2019-02-07
EP3437190B1 (en) 2023-09-06
EP4262162A3 (en) 2024-01-10
EP4262162A2 (en) 2023-10-18
CN109845102B (zh) 2023-07-28
EP3437190A1 (en) 2019-02-06
US11362786B2 (en) 2022-06-14
US20210036823A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
CN109845102B (zh) 使用正交时间频率空间调制的导频信号的信道获取
EP3387748B1 (en) Pilot packing using complex orthogonal functions
US8260208B2 (en) Radio channel estimator
US10484207B2 (en) Method and apparatus for channel estimation in wireless communication system
EP3391601B1 (en) Communication terminal and method for channel estimation
EP3809654B1 (en) Wireless communication device and corresponding apparatus, method and computer program
US20210111786A1 (en) Wireless Communication Device and Corresponding Apparatus, Method and Computer Program
US20210111784A1 (en) Wireless Communication Device and Corresponding Apparatus, Method and Computer Program
JP5579626B2 (ja) マルチアンテナOFDMシステムにおいて巡回遅延(cyclicdelays)を選択するための方法およびシステム
US11336405B2 (en) Wireless communication device and corresponding apparatus, method and computer program
EP3809651B1 (en) Wireless communication device and corresponding apparatus, method and computer program
US20220345336A1 (en) Reference signal channel estimation
KR102358381B1 (ko) 무선 통신 시스템에서 채널 추정을 위한 방법 및 장치
EP3809653B1 (en) Wireless communication device and corresponding apparatus, method and computer program
EP4199645A1 (en) Method for a transmitter to increase a transmission capacity, method for a receiver, apparatus, vehicle and computer program
Dunuka et al. Beamforming router as relay to increase 5G cell coverage
EP3145139B1 (en) Method for transmitting channel feedback
CN104160646A (zh) 移动站设备、无线通信系统、信道估计方法及其控制程序

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination