RU2316783C2 - Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы - Google Patents

Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы Download PDF

Info

Publication number
RU2316783C2
RU2316783C2 RU2004115753/28A RU2004115753A RU2316783C2 RU 2316783 C2 RU2316783 C2 RU 2316783C2 RU 2004115753/28 A RU2004115753/28 A RU 2004115753/28A RU 2004115753 A RU2004115753 A RU 2004115753A RU 2316783 C2 RU2316783 C2 RU 2316783C2
Authority
RU
Russia
Prior art keywords
layer
magnetoresistive
magnetic material
magneto
resistive
Prior art date
Application number
RU2004115753/28A
Other languages
English (en)
Other versions
RU2004115753A (ru
Inventor
ЗИГЛЕ Хенрик (DE)
ЗИГЛЕ Хенрик
РАБЕ Майк (DE)
РАБЕ Майк
МАЙ Ульрих (DE)
МАЙ Ульрих
Original Assignee
Роберт Бош Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10256246A external-priority patent/DE10256246A1/de
Application filed by Роберт Бош Гмбх filed Critical Роберт Бош Гмбх
Publication of RU2004115753A publication Critical patent/RU2004115753A/ru
Application granted granted Critical
Publication of RU2316783C2 publication Critical patent/RU2316783C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors

Abstract

Изобретение относится к области магнитных измерений. Сущность: магниторезистивная слоистая система содержит магниторезистивную многослойную структуру, работа которой основана на гигантском магниторезистивном (ГМР) эффекте или на анизотропном магниторезистивном (АМР) эффекте. Рядом с магниторезистивной многослойной структурой предусмотрена слоистая структура, которая создает магнитное поле, действующее на магниторезистивную многослойную структуру. Слоистая структура имеет по меньшей мере один слой из магнитотвердого материала и один слой из магнитомягкого материала. Магниторезистивная слоистая система используется в слоистом чувствительном элементе, прежде всего для определения напряженности и/или направления магнитных полей. Технический результат: повышение напряженности магнитного поля рассеяния с одновременным увеличением коэрцитивной силы, возможность простого и экономичного получения, малая толщина, усиление ГМР- или АМР-эффекта, повышение чувствительности. 2 н. и 7 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к магниторезистивной слоистой системе, а также к чувствительному элементу на основе такой слоистой системы согласно соответствующим независимым пунктам формулы изобретения.
Уровень техники
Из уровня техники известны магниторезистивные слоистые системы или чувствительные элементы, рабочую точку которых для их применения, например, в автомобилях смещают с помощью создаваемых различными путями вспомогательных магнитных полей. Для создания подобного вспомогательного магнитного поля известно применение прежде всего неподвижно смонтированных макроскопических постоянных магнитов либо намагничивающих катушек при пропускании через них электрического тока. Наряду с этим в DE 10128135.8 рассмотрена концепция, согласно которой вблизи магниторезистивной многослойной структуры, прежде всего на ней или под ней, предлагается осаждать слой из магнитотвердого материала, между которым главным образом за счет его магнитного поля рассеяния и собственно чувствительными слоями возникает связь. При этом в первую очередь стремятся получить максимально высокую коэрцитивную силу в качестве целевого параметра, а также уменьшить напряженность остаточного магнитного поля как ограничивающего параметра. Помимо этого, такой слой из магнитотвердого материала при его вертикальном объединении с магниторезистивной многослойной структурой накоротко замыкает между собой соседние чувствительные слои магниторезистивной слоистой системы, что снижает степень проявления целевого гигантского магниторезистивного эффекта (ГМР-эффекта), соответственно анизотропного магниторезистивного эффекта (АМР-эффекта), а также чувствительность слоистой системы к внешним магнитным полям.
В основу настоящего изобретения была положена задача предложить возможность экономичного и простого создания поля смещения или вспомогательного магнитного поля для воздействия им на магниторезистивную многослойную структуру с целью обеспечить тем самым возможность рентабельного, но вместе с тем надежного изготовления магниторезистивных чувствительных элементов, прежде всего для их применения в автомобилях.
Преимущества изобретения
Преимущество предлагаемой в изобретении магниторезистивной слоистой системы по сравнению с известной из уровня техники состоит в том, что благодаря наличию у нее слоистой структуры, предусмотренной рядом с магниторезистивной многослойной структурой, работа которой основана прежде всего на ГМР-эффекте или АМР-эффекте, повышается напряженность магнитного поля рассеяния с одновременным увеличением коэрцитивной силы или напряженности коэрцитивного поля, и одновременно с этим обеспечивается возможность простого и экономичного получения образованной слоями из магнитомягкого и магнитотвердого материалов слоистой структуры, соответственно ее интеграции в слоистую систему в целом. Указанная слоистая структура имеет прежде всего исключительно тонкое исполнение, главным образом благодаря малой толщине входящего в ее состав слоя из магнитотвердого материала.
Наряду с этим предпочтительно, чтобы указанная слоистая структура обеспечивала в определенных пределах возможность варьировать напряженность создаваемого слоями из магнитотвердого и магнитомягкого материалов поля рассеяния и чтобы особо тонкий слой из магнитомягкого материала, который связан со слоем из магнитотвердого материала, соответственно расположен рядом с ним, предотвращал его размагничивание при приложении внешнего магнитного переменного поля из-за наличия полей рассеяния доменов (так называемое "магнитное последействие"), как это описано в Phys. Rev. Lett., 84, 2000, с.1816 и с.3462.
В остальном же слоистая структура, образованная слоем из магнитотвердого и слоем из магнитомягкого материалов, обладает более высокой по сравнению только со слоем из магнитотвердого материала намагниченностью, т.е. имеет более высокий момент на единицу объема. Благодаря этому при одинаковой общей толщине слоев напряженность магнитного поля рассеяния слоистой структуры, образованной слоем из магнитотвердого и слоем из магнитомягкого материалов, между которыми имеется прежде всего ферромагнитная обменная связь, повышается по сравнению с напряженностью только слоя из магнитотвердого материала.
Другие предпочтительные варианты осуществления изобретения представлены в зависимых пунктах формулы изобретения.
Так, в частности, в слоистой структуре с ферромагнитной обменной связью между образующими ее по меньшей мере одним слоем из магнитомягкого материала и по меньшей мере одним слоем из магнитотвердого материала слой из магнитомягкого материала при приложении внешнего магнитного поля с отличной от направления намагничивания ориентацией предпочтительно имеет хиральную намагниченность, направление которой при прекращении приложения внешнего поля скачкообразно изменяется и вновь становится параллельным вектору намагниченности слоя из магнитотвердого материала, как это описано в IEEE Trans, Magn., 27, 1991, с.3588. Вектор намагниченности слоя из магнитомягкого материала совершает прежде всего когерентное вращение, и в результате не происходит его перемагничивания вследствие образования доменов. Тем самым поля рассеяния других или дополнительных слоев из магнитомягких материалов (поля рассеяния доменов), расположенных на малом удалении от слоя из магнитотвердого материала, не могут размагнитить его.
Помимо этого, магниторезистивную слоистую систему предлагаемого в изобретении строения можно без каких-либо проблем использовать в уже существующих типах магниторезистивных чувствительных элементов или слоистых систем с многослойными структурами, проявляющими ГМР-эффект, в магниторезистивных чувствительных элементах или слоистых системах, работа которых основана на принципе спинового вентиля, в чувствительных элементах с АМР-эффектом, а также в чувствительных элементах, магниторезистивные эффекты в которых обусловлены наличием зернистых магнитных частиц или возникают вследствие структурных изменений материала, приводящих к изменению его свойств, соответственно процесс получения такой магниторезистивной слоистой системы можно интегрировать в существующие технологические процессы. При этом на выбор метода осаждения отдельного слоя предлагаемой в изобретении слоистой системы не влияют известные внешние факторы.
Чертежи
Ниже изобретение более подробно рассмотрено со ссылкой на прилагаемые чертежи, на которых показано:
на фиг.1 - сопоставленные между собой кривые намагничивания слоистых структур различного строения и
на фиг.2 - изображенная в разрезе магниторезистивная слоистая система на подложке.
Примеры
На фиг.2 показана подложка 10, например из кремния или диоксида кремния, на которой последовательно (снизу вверх в плоскости чертежа) расположены буферный слой 11, например из Cr, W или Мо, наличие которого является необязательным, слой 12 из магнитотвердого материала и слой 13 из магнитомягкого материала. Оба эти слоя 12, 13 образуют слоистую структуру 15.
На слое 13 из магнитомягкого материала предусмотрена известная как таковая магниторезистивная многослойная структура 14, работа которой основана предпочтительно на ГМР-эффекте (гигантском магниторезистивном эффекте) или АМР-эффекте (анизотропном магниторезистивном эффекте). Эта многослойная структура 14 в предпочтительном варианте состоит из множества отдельных слоев, работа которых основана на принципе связанных многослойных структур или на принципе спинового вентиля. Тем самым многослойная структура 14 и слоистая структура 15 объединены в вертикальном направлении и совместно образуют магниторезистивную слоистую систему 5.
Помимо этого, магниторезистивную многослойную структуру 14 можно также выполнять из материала с колоссальным магниторезистивным эффектом (КМР-эффектом), такого как La0,67Са0,33MnO3. В этом случае магниторезистивная многослойная структура 14 содержит материал, в котором под действием магнитного поля или же в результате изменения температуры можно вызвать структурные изменения (эффект Яна-Теллера), приводящие к изменению электрических свойств материала и его превращению из электрического проводника, соответственно металла в диэлектрик. При этом электрическое сопротивление материала может изменяться более чем на 100%. Помимо этого, под подобным материалом с КМР-эффектом подразумеваются также "порошковые магниторезисторы" (ПМР), в которых магнетосопротивление возникает между отдельными зернистыми магнитными частицами с различными величинами намагниченности.
На слой 12 из магнитотвердого материала предпочтительно осаждать тонкий слой 13 из магнитомягкого материала с ферромагнитной обменной связью. При этом используется тот факт, что слой 13 из магнитомягкого материала в определенном интервале значений его толщины обеспечивает повышение коэрцитивной силы слоистой структуры 15 и повышение напряженности ее магнитного поля рассеяния. Так, в частности, слой 13 из магнитомягкого материала в соответствии с его высокой намагниченностью насыщения сверхпропорционально повышает напряженность магнитного поля рассеяния по сравнению только со слоем из магнитотвердого материала сопоставимой с этим слоем 13 из магнитомягкого материала толщины.
Благодаря этому слоистую структуру 15, образующие которую слои хотя и выполнены из ферромагнетиков, однако один из них - слой 13 - выполнен из магнитомягкого ферромагнетика, а другой - слой 12 - выполнен из магнитотвердого материала, можно при той же величине генерируемого ею поля рассеяния и той же или большей ее коэрцитивной силе выполнять меньшей толщины по сравнению с толщиной, с которой потребовалось бы выполнять только один единственный слой из магнитотвердого материала с соответствующими параметрами. За счет подобного уменьшения толщины слоистой структуры 15 повышается ее электрическое сопротивление, а тем самым и усиливается ГМР- или АМР-эффект в магниторезистивной многослойной структуре 14, что в свою очередь приводит к повышению чувствительности слоистой системы 5 при измерении воздействующих на нее извне магнитных полей.
В остальном же сравнительно дорогие магнитотвердые материалы, из которых выполняется слой 12, в сопоставлении со сравнительно недорогими магнитомягкими материалами, из которых выполняется слой 13, существенно удорожают магниторезистивные слоистые системы, т.е. использование в них слоя 13 из магнитомягкого материала позволяет снизить стоимость изготовления слоистой структуры 15. Помимо этого слой 13 из магнитомягкого материала предотвращает размагничивание слоя 12 из магнитотвердого материала при приложенном к нему внешнем магнитном переменном поле.
Согласно фиг.2 слой 13 из магнитомягкого материала, в качестве которого может использоваться сплав Co-Fe, например Co90Fe10, Co, Fe, Ni, сплав Fe-Ni, например Fe19Ni81, а также содержащие эти материалы магнитные сплавы, предпочтительно располагать поверх слоя 12 из магнитотвердого материала либо под ним и осаждать на него в виде слоя толщиной от 1 до 50 нм, варьирование которой позволяет, о чем говорилось выше, изменять или регулировать свойства слоистой структуры 15. В предпочтительном варианте толщина слоя 13 из магнитомягкого материала должна составлять от 1 до 10 нм. Для получения слоя 12 предпочтительно использовать такие магнитотвердые материалы, как сплав Co-Cr-Pt, например Co75Cr13Pt12, сплав Co-Sm, например Co80Sm20, сплав Со-Cr, например Co80Cr20, сплав Со-Cr-Та, например Со84Cr13Та3, сплав Co-Pt, например CO50Pt50, или сплав Fe-Pt, например Fe50Pt50. В предпочтительном варианте толщина слоя 12 из магнитотвердого материала должна составлять от 20 до 100 нм.
Слой 13 из магнитомягкого материала предпочтительно располагать между магниторезистивной многослойной структурой 14 и слоем 12 из магнитотвердого материала.
Альтернативно рассмотренному со ссылкой на фиг.2 примеру можно также предусмотреть несколько различающихся прежде всего по своему составу и/или по своей толщине слоев 13, которые выполняют из указанных выше магнитомягких материалов и располагают под слоем 12 из магнитотвердого материала или же согласно показанному на фиг.2 варианту предпочтительно поверх этого слоя из магнитотвердого материала и толщина каждого из которых предпочтительно составляет от 1 до 50 нм, прежде всего от 1 до 10 нм. Помимо этого, слоистая структура 15 может иметь и более сложное многослойное строение и состоять из нескольких образующих пары слоев в соответствии с показанным на фиг.2 вариантом слоев 13 из магнитомягких материалов и слоев 12 из магнитотвердых материалов.
Общим для всех этих вариантов является то, что выполненные из магнитомягкого и магнитотвердого материалов слои 12, 13 с ферромагнитной связью между ними всегда располагаются в виде двух- или многослойной структуры вблизи магниторезистивной многослойной структуры 14.
Описанное выше расположение получаемой осаждением слоистой структуры 15 под многослойной структурой 14 или поверх нее является предпочтительным с технологической точки зрения благодаря особой простоте реализации подобного процесса осаждения этой слоистой структуры. Однако в другом варианте слоистую структуру 15 можно также располагать рядом с многослойной структурой 14 с одной стороны или с двух сторон от нее или же ее можно также интегрировать в эту многослойную структуру 14.
На фиг.1 показаны обозначенная позицией 1 первая кривая намагничивания только слоя из магнитотвердого материала, т.е. зависимость изменения интенсивности его намагниченности от напряженности магнитного поля, обозначенная позицией 2 вторая кривая намагничивания этого же слоя из магнитотвердого материала, но с нанесенным на него тонким слоем из магнитомягкого материала и обозначенная позицией 3 третья кривая намагничивания того же слоя из магнитотвердого материала, на который нанесен слой из магнитомягкого материала, но большей толщины по сравнению с толщиной аналогичного слоя из магнитомягкого материала, нанесенного на слой из магнитотвердого материала, намагничивание которого отображает кривая 2. Намагниченность при этом представляет собой сумму магнитных моментов, т.е. с повышением намагниченности возрастает также напряженность поля рассеяния.
Из приведенных на фиг.1 графиков следует, что слоистая структура 15 в зависимости от выбранной толщины входящего в ее состав слоя из магнитомягкого материала характеризуется более высокой коэрцитивной силой и более высокой остаточной намагниченностью по сравнению только со слоем 12 из магнитотвердого материала. Обусловлено это тем, что слой 13 из магнитомягкого материала вследствие его высокого магнитного момента создает поле рассеяния сравнительно высокой напряженности, а за счет связи слоя 13 из магнитомягкого материала со слоем 12 из магнитотвердого материала этот высокий магнитный момент ориентируется в направлении намагничивания слоя 12 из магнитотвердого материала. По этой причине создаваемое в результате поле рассеяния имеет в целом высокую напряженность.

Claims (11)

1. Магниторезистивная слоистая система, у которой рядом с магниторезистивной многослойной структурой (14), работа которой основана прежде всего на гигантском магниторезистивном эффекте или на анизотропном магниторезистивном эффекте, предусмотрена слоистая структура (15), которая создает магнитное поле, действующее на магниторезистивную многослойную структуру (14), и которая имеет по меньшей мере один слой (12) из магнитотвердого материала и один слой (13) из магнитомягкого материала.
2. Магниторезистивная слоистая система по п.1, отличающаяся тем, что между слоем (12) из магнитотвердого материала и слоем (13) из магнитомягкого материала имеется ферромагнитная обменная связь.
3. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что слоистая структура (15) расположена на многослойной структуре (14), и/или под ней, и/или рядом с ней.
4. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что слоистая структура (15) имеет несколько слоев (13) из магнитомягкого материала и слоев (12) из магнитотвердого материала, которые компонуются прежде всего парами, каждую из которых составляют слой (12) из магнитотвердого материала и соседний с ним слой (13) из магнитомягкого материала.
5. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что слой (13) из магнитомягкого материала выполнен из сплава Co-Fe, из Со, из Fe, из Ni, из сплава Fe-Ni или из содержащих эти материалы магнитных сплавов.
6. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что толщина слоя (13) из магнитомягкого материала составляет от 1 до 50 нм, прежде всего от 1 до 10 нм.
7. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что слой (12) из магнитотвердого материала выполнен из сплава Co-Cr-Pt, из сплава Co-Sm, из сплава Со-Cr, из сплава Со-Cr-Та, из сплава Co-Pt или из сплава Fe-Pt.
8. Магниторезистивная слоистая система по п.1 или 2, отличающаяся тем, что толщина слоя (13) магнитотвердого материала составляет от 20 до 100 нм.
9. Чувствительный элемент, прежде всего для определения напряженности и/или направления магнитных полей, имеющий магниторезистивную слоистую систему (5) по одному из предыдущих пунктов.
Приоритет по пунктам:
26.07.2002 - пп.1, 2, 5, 6, 7, 9;
02.12. 2002 - пп.4, 3, 8, 9.
RU2004115753/28A 2002-07-26 2003-06-26 Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы RU2316783C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10234349 2002-07-26
DE10234349.7 2002-07-26
DE10256246A DE10256246A1 (de) 2002-07-26 2002-12-02 Magnetoresistives Schichtsystem und Sensorelement mit diesem Schichtsystem
DE10256246.6 2002-12-02

Publications (2)

Publication Number Publication Date
RU2004115753A RU2004115753A (ru) 2006-01-10
RU2316783C2 true RU2316783C2 (ru) 2008-02-10

Family

ID=31889085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004115753/28A RU2316783C2 (ru) 2002-07-26 2003-06-26 Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы

Country Status (7)

Country Link
US (1) US7498805B2 (ru)
EP (1) EP1527351A1 (ru)
JP (1) JP2005534198A (ru)
CN (1) CN100504425C (ru)
AU (1) AU2003250761B2 (ru)
RU (1) RU2316783C2 (ru)
WO (1) WO2004017085A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483393C1 (ru) * 2011-10-27 2013-05-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Магниторезистивный преобразователь

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452471C (zh) * 2005-09-27 2009-01-14 中国科学院物理研究所 一种基于硬磁材料的自旋阀磁电阻器件及其制备方法
US8486545B2 (en) * 2005-09-28 2013-07-16 Southwest Research Institute Systems and methods for flaw detection and monitoring at elevated temperatures with wireless communication using surface embedded, monolithically integrated, thin-film, magnetically actuated sensors, and methods for fabricating the sensors
CN101775644B (zh) * 2010-02-10 2012-10-03 中国科学技术大学 具有各向异性磁阻效应的锰氧化物外延薄膜及其制备方法与应用
US8761987B2 (en) * 2010-10-05 2014-06-24 Checkpoint Llc Automatic guided vehicle sensor system and method of using same
RU2607672C1 (ru) * 2015-08-14 2017-01-10 Общество с ограниченной ответственностью "ЭНЕРГОКОМСЕРВИС" (ООО "ЭКС") Индикатор воздействия магнитным полем
KR102451098B1 (ko) 2015-09-23 2022-10-05 삼성전자주식회사 자기 메모리 장치 및 이의 제조 방법
CN113884956B (zh) * 2020-07-02 2024-01-19 华润微电子控股有限公司 锑-铟系化合物半导体磁阻连续电流传感器及其制造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648942B1 (fr) 1989-06-27 1995-08-11 Thomson Csf Capteur a effet magnetoresistif
JP2856856B2 (ja) * 1990-07-25 1999-02-10 東芝タンガロイ株式会社 仕上げ用のエンドミル
US5206590A (en) 1990-12-11 1993-04-27 International Business Machines Corporation Magnetoresistive sensor based on the spin valve effect
DE4243358A1 (de) 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
TW265440B (ru) * 1993-04-30 1995-12-11 Ibm
JPH06318515A (ja) * 1993-05-07 1994-11-15 Hitachi Ltd 磁気抵抗素子およびその製造方法並びに磁気ヘッドおよび磁気記録装置
JPH0766033A (ja) * 1993-08-30 1995-03-10 Mitsubishi Electric Corp 磁気抵抗素子ならびにその磁気抵抗素子を用いた磁性薄膜メモリおよび磁気抵抗センサ
US5841611A (en) * 1994-05-02 1998-11-24 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device and magnetoresistance effect type head, memory device, and amplifying device using the same
JP3990751B2 (ja) * 1995-07-25 2007-10-17 株式会社日立グローバルストレージテクノロジーズ 磁気抵抗効果型磁気ヘッド及び磁気記録再生装置
JPH09282612A (ja) * 1996-04-09 1997-10-31 Hitachi Metals Ltd 磁気抵抗効果型ヘッド
US6690553B2 (en) * 1996-08-26 2004-02-10 Kabushiki Kaisha Toshiba Magnetoresistance effect device, magnetic head therewith, magnetic recording/reproducing head, and magnetic storing apparatus
US6144534A (en) * 1997-03-18 2000-11-07 Seagate Technology Llc Laminated hard magnet in MR sensor
JP3253556B2 (ja) 1997-05-07 2002-02-04 株式会社東芝 磁気抵抗効果素子とそれを用いた磁気ヘッドおよび磁気記憶装置
JP3234814B2 (ja) * 1998-06-30 2001-12-04 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US6452204B1 (en) * 1998-12-08 2002-09-17 Nec Corporation Tunneling magnetoresistance transducer and method for manufacturing the same
DE19949713C2 (de) 1999-10-15 2001-08-16 Bosch Gmbh Robert Magnetoresistives Schichtsystem
JP2001176028A (ja) * 1999-12-14 2001-06-29 Matsushita Electric Ind Co Ltd 薄膜磁気ヘッド及びその製造方法
JP2001312803A (ja) * 2000-04-28 2001-11-09 Fujitsu Ltd 磁気ヘッド及び磁気ヘッドの製造方法
US20020076579A1 (en) 2000-10-27 2002-06-20 Showa Denko Kabushiki Kaisha Magnetic recording medium, production process thereof, magnetic recording and reproducing apparatus, and medium substrate
DE10128135A1 (de) 2001-06-09 2002-12-19 Bosch Gmbh Robert Magnetoresistive Schichtanordnung und Gradiometer mit einer derartigen Schichtanordnung
US7248446B2 (en) * 2001-11-27 2007-07-24 Seagate Technology Llc Magnetoresistive element using an organic nonmagnetic layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2483393C1 (ru) * 2011-10-27 2013-05-27 Учреждение Российской академии наук Институт проблем управления им. В.А. Трапезникова РАН Магниторезистивный преобразователь

Also Published As

Publication number Publication date
WO2004017085A1 (de) 2004-02-26
US20050270022A1 (en) 2005-12-08
US7498805B2 (en) 2009-03-03
CN100504425C (zh) 2009-06-24
RU2004115753A (ru) 2006-01-10
JP2005534198A (ja) 2005-11-10
EP1527351A1 (de) 2005-05-04
CN1623100A (zh) 2005-06-01
AU2003250761B2 (en) 2008-07-24
AU2003250761A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
US6577124B2 (en) Magnetic field sensor with perpendicular axis sensitivity, comprising a giant magnetoresistance material or a spin tunnel junction
EP3092505B1 (en) Magnetoresistance element with an improved seed layer to promote an improved response to magnetic fields
JP2846472B2 (ja) 合成反強磁性磁石を備えた磁気抵抗センサ及びその製造方法
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
JP4658659B2 (ja) Cpp構造の磁気抵抗効果素子およびその形成方法
US6462641B1 (en) Magnetoresistor with tunnel effect and magnetic sensor using same
JP5389005B2 (ja) 磁気抵抗型積層構造体ならびに該構造体を備えたグラジオメータ
US8624590B2 (en) Low noise magnetic field sensor using a lateral spin transfer
US8068316B2 (en) Low noise magnetic field sensor
JP5124606B2 (ja) 磁気抵抗性の多層デバイスおよびセンサエレメント
JPH11510911A (ja) 磁気抵抗式磁界センサ
JP2000340858A (ja) 磁気抵抗効果膜および磁気抵抗効果型ヘッド
JP2000251223A (ja) スピンバルブ磁気抵抗センサ及び薄膜磁気ヘッド
JPH0936456A (ja) 巨大磁気抵抗、製造工程および磁気センサへの適用
JPH0856025A (ja) 自己バイアス多層磁気抵抗センサ
KR100304770B1 (ko) 자기저항효과박막과그제조방법
US5738938A (en) Magnetoelectric transducer
JP3558951B2 (ja) 磁気メモリ素子及びそれを用いた磁気メモリ
RU2316783C2 (ru) Магниторезистивная слоистая система и чувствительный элемент на основе такой слоистой системы
KR100363462B1 (ko) 스핀밸브형 자기저항 효과소자와 그 제조방법
JPH07297465A (ja) 絶縁ピン留め層を備えた巨大磁気抵抗センサ
JPH11195824A (ja) 磁気抵抗効果素子及び磁気抵抗効果型ヘッド
JP2000150235A (ja) スピンバルブ磁気抵抗センサ及び薄膜磁気ヘッド
JPH10270775A (ja) 磁気抵抗効果素子及びそれを用いた回転センサ
JPH08264858A (ja) 磁気抵抗効果素子

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140627