RU2288073C2 - Способ и установка для изготовления объемных металлических изделий - Google Patents

Способ и установка для изготовления объемных металлических изделий Download PDF

Info

Publication number
RU2288073C2
RU2288073C2 RU2005104942/02A RU2005104942A RU2288073C2 RU 2288073 C2 RU2288073 C2 RU 2288073C2 RU 2005104942/02 A RU2005104942/02 A RU 2005104942/02A RU 2005104942 A RU2005104942 A RU 2005104942A RU 2288073 C2 RU2288073 C2 RU 2288073C2
Authority
RU
Russia
Prior art keywords
sintering
layer
powder
inhibitor
metal
Prior art date
Application number
RU2005104942/02A
Other languages
English (en)
Other versions
RU2005104942A (ru
Inventor
Бехрок ХОШНЕВИС (US)
Бехрок ХОШНЕВИС
Original Assignee
Юниверсити Оф Саутерн Калифорния
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Юниверсити Оф Саутерн Калифорния filed Critical Юниверсити Оф Саутерн Калифорния
Publication of RU2005104942A publication Critical patent/RU2005104942A/ru
Application granted granted Critical
Publication of RU2288073C2 publication Critical patent/RU2288073C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/03Press-moulding apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/30Feeding material to presses
    • B30B15/302Feeding material in particulate or plastic state to moulding presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C47/00Making alloys containing metallic or non-metallic fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к изготовлению объемных металлических изделий сложной конфигурации с помощью избирательного ингибирования спекания. Способ изготовления объемных металлических изделий включает послойное нанесение металлического порошка. Перед нанесением следующего слоя осуществляют ингибирование спекания одного или нескольких участков в нанесенном слое. Затем проводят прессование с получением порошковой заготовки, которую спекают. Из полученной заготовки удаляют одну или несколько спеченных секций на границе ингибирования. Кроме того, операции прессования и спекания можно проводить после нанесения каждого слоя. Установка для реализации способа состоит из средств нанесения слоев, средства ингибирования спекания, пресса и печи. Техническим результатом является получение плотных металлических деталей с высокой точностью изготовления. 3 н. и 37 з.п. ф-лы, 3 ил.

Description

Описание
Данная заявка притязает на приоритет по предварительной патентной заявке США №60/398,160, поданной 23 июля 2002 г., на "Metallic Parts Fabrication Using Selective Inhibition of Sintering (SIS)", и по патентной заявке США №09/698,541, поданной 26 октября 2000 г., на "Selective Inhibition of Bonding of Powder Particles for Layered Fabrication of 3-D Objects".
Объемные (3-D) объекты, такие как опытные образцы деталей, можно изготавливать, пользуясь непосредственно базами данных систем автоматизированного конструирования (CAD). Для изготовления этих объектов могут использоваться разные технологии, в том числе и способы послойного наращивания. В способах послойного изготовления металлических деталей согласно известному уровню техники обычно используют полимерные связующие в смеси с металлическим порошком. Например, при изготовлении способом FDM (Fused Reposition Method) смесь полимерного связующего и металлического порошка выполняют в виде нити, которую подают в нагретую экструзионную насадку. Затем неспеченную деталь формируют посредством послойной экструзии материала. Согласно способу лазерного спекания (Selective Laser Sintering, SLS) смесь сыпучего порошка (полимера и металла или покрытого полимером металла) наносят в виде тонкого слоя и подвергают воздействию лазера, который обеспечивает плавление полимерных частиц и связывание металлического порошка на выбранных участках каждого слоя, с образованием неспеченной детали. Прочие методы применяют аналогичные технические решения с некоторыми изменениями. Затем неспеченную деталь подвергают спеканию в обычной печи для спекания, в которой летучий полимер удаляется.
Упоминаемые выше технические решения имеют ряд проблем. Применение полимерных связующих существенно повышает коэффициент усадки при спекании. Помимо этого, затруднено изготовление плотных металлических деталей - из-за присутствия связующего в структуре неспеченной детали. Помимо этого, при сжигании полимерных связующих во время спекания могут оставаться трудноудаляемые остатки в печах для спекания и могут выделяться экологически вредные продукты.
Существуют промышленные способы послойного изготовления, использующие металлический порошок без связующего. Но для этих способов требуются очень дорогостоящие лазеры высокой мощности. Причем при применении этих способов создание деталей с выступающими элементами их конструкции может быть затруднено.
Известен способ изготовления объемных металлических изделий, включающий послойное нанесение металлического порошка и спекание, раскрытый в документе RU 2086356 С1, 10.08.1997, В 22 F 3/105. Кроме того, известна установка для изготовления объемных металлических изделий, содержащая средство нанесения слоев металлического порошка, раскрытая в документе RU 2025218 С1, 10.08.1997, В 22 F 5/00, В 22 F 7/00. Названные решения являются ближайшими аналогами заявленного изобретения.
Методику избирательного спекания (SIS, от Selective Inhibition of Sintering) можно использовать для изготовления объемного (3-D) металлического объекта из металлического порошка, не содержащего связующего. Несколько слоев металлического порошка размещают в формовочной емкости. В каждом слое ингибируют спекание на некоторых участках слоя. Это можно выполнить, например, посредством внесения ингибирующего спекание материала, такого как соль металла (например, фосфат калия) или керамического шликера, или путем окисления частиц металла в порошке с помощью такого источника сосредоточенного тепла, как лазер или микрогорелка. Перед укладкой следующего слоя каждый слой можно спрессовать. После заключительного прессования заготовку подвергают спеканию. Ненужные спеченные секции при необходимости удаляют из прессованной заготовки на границах, сформированных участками ингибированного спекания (неспеченными), и объект извлекают.
Изобретение поясняется далее при помощи чертежей, на которых:
Фиг.1А и 1 В показывают на схеме последовательность операций, описывающую способ избирательного ингибирования спекания (SIS) металла.
Фиг.2 - показывает в перспективе приводимой в качестве примера системы для осуществления способа SIS для металла.
Фиг.3А-3D показывают пример способа макроскопического механического ингибирования.
На Фиг.1А и 1В показана на схеме последовательность операций, способа 100 избирательного ингибирования спекания (SIS) для металла, который обеспечивает возможность создания плотных металлических деталей нужной конфигурации из металлического порошка без использования пресс-форм или полимерных связующих. Нужную конфигурацию можно представить при помощи модели, созданной в системе автоматизированного конструирования (CAD). Этот способ можно использовать для быстрого изготовления точно сформированных функциональных металлических деталей. Фиг.2 показывает приводимые в качестве примера станции, которые можно использовать для способа 100.
Металлический порошок наносят тонким слоем 205 сверху формовочной емкости 210 с помощью валика 215 или разравнивающей пластины (блок 105). Пресс 220 с электроприводом, имеющий датчик давления, прессует слой нанесенного металлического порошка и создает основу из порошка с заданной плотностью (блок 110).
Важным обстоятельством для использования прессования под низким давлением является эффект, возникающий в результате множественных циклов прессования в отношении плотности в прессованной порошковой заготовке. При создании прессованной порошковой заготовки в формовочной емкости нижние слои прессованной порошковой заготовки будут подвергаться повторяющимся сжимающим усилиям во время укладки и прессования последующих слоев, и при этом верхние слои прессованной порошковой заготовки будут подвергаться меньшему числу циклов сжатия. Разница совокупного сжимающего усилия, испытываемого каждым слоем, может привести к тому, что прессованная порошковая заготовка будет иметь некоторый градиент плотности. Эту возможную проблему можно в некоторой степени решить путем разработки программы давлений прессования, согласно которой давление, прилагаемое для прессования каждого слоя, будет регулироваться в заданном порядке. Эту программу можно составить таким образом, чтобы каждый слой подвергался воздействию приблизительно одного и того же совокупного сжимающего усилия в течение всего времени создания прессованной порошковой заготовки.
С другой стороны, применение прессования под высоким давлением может увеличить деформацию имеющих неправильную форму частиц на верхней поверхности слоя. В результате этого может снизиться межслойная связь с последующим слоем. Поэтому может возникнуть необходимость применения сетчатого гравирования или создания шероховатости на поверхности штампа для содействия межслойной связи и для исключения наличия слабых межслойных связей.
Поскольку при способе (SIS) для металла не требуется полимерное связующее, заранее смешиваемое с металлическим порошком, степень прессования, создаваемая валиком, при нанесении тонкого слоя порошка может быть достаточной для получения неспеченной прессованной порошковой заготовки приемлемой плотности для некоторых порошков и изделий. В некоторых изделиях конечная деталь должна быть, например, пористой. В этом случае отдельный этап способа, предусматривающий прессование порошкового слоя прессом с электроприводом, может оказаться ненужным. Сжимаемость порошка и плотность прессованной порошковой заготовки могут также зависеть от выбранного материала, размера и формы частиц, толщины слоя и от давления прессования.
Чтобы исключить спекание (то есть для «ингибирования спекания» на конкретном участке) некоторых зон (т.е. профиль слоя, сетчатая структура, определенные поверхностные участки слоя) в толще порошка, используют определенный способ (блок 115). Могут использоваться разные химические и/или механические способы ингибирования.
Согласно одному из вариантов осуществления: для введения химического вещества, изменяющего характеристику металлического порошка, можно использовать струйную печатающую головку или экструзионную насадку 225 с узким соплом. Например, кислоту или другие активные химикаты можно использовать для формирования соли металла, которая разлагается при нагревании с образованием оксида металла. Температура спекания оксидов металла обычно выше, чем у самого металла. Оксид металла можно сформировать на поверхности обрабатываемых частиц или в самой толще обрабатываемых частиц. Либо применяемые порошки металла можно окислить в присутствии кислорода с помощью сканирующего лазерного луча средней мощности или с помощью микрогорелки, перемещаемой поверх слоя порошка робототехническими средствами.
Прессование можно выполнить до или после химического ингибирования - в зависимости от выбранного металла и ингибитора и от таких факторов, как возможность химического проникновения в рыхлый и прессованный порошок. Обратную последовательность можно выполнить при помощи простой модификации программных средств устройства. В обоих случаях можно использовать нагреватель для ускорения химической реакции и для высушивания ингибирующего химиката для каждого слоя.
Химические вещества, остающиеся после ингибирования и спекания, должны быть либо хрупкими, либо растворимыми в обычных растворах, чтобы облегчить отделение спеченных материалов от готовой детали. Необходимо отметить, что можно использовать автоматическую очистку для вытирания и очистки прессующей поверхности от материала химического ингибитора в целях предотвращения засорения поверхности следующего слоя.
Многие металлы и сплавы являются стойкими к химическим реакциям. Их примерами являются порошки суперсплавов. В этих случаях для предотвращения спекания порошка можно использовать механическое ингибирование. Механическое ингибирование может также быть предпочтительным по сравнению с химическим ингибированием обычных металлов. Многие химикаты, используемые для травления или окисления металлов, вызывают раздражения и/или являются вредными для живых организмов, и поэтому в определенных ситуациях обусловливают проблемы техники безопасности и защиты окружающей среды.
Согласно одному из осуществлений настоящего изобретения можно использовать способ макроскопического механического ингибирования. Фиг.3А-3D показывают пример осуществления способа макроскопического механического ингибирования. Керамический шликер 305 (или любой другой экструдируемый или наносимый посредством печати материал с очень высокой температурой спекания) можно нанести на предварительно прессованный слой 310 порошка (Фиг.3А), и после его высыхания на него можно поместить новый слой 315 порошка (Фиг.3 В). При этом керамический материал действует в качестве перегородки, которая отделяет друг от друга области металлического порошка на границе ингибирования. Высота слоя шликера должна быть близка к толщине слоя рыхлого порошка. Для удаления свободного металлического порошка, который может остаться сверху керамического материала после наносящего порошок валика (Фиг.3С), можно использовать разравнивающую пластину 320. Затем прессование слоя можно выполнить с помощью, например, пресса 325 (Фиг.3D). Для предотвращения засорения поверхности последующего слоя можно использовать автоматическую очистку в целях вытирания и очистки прессующей поверхности от материала ингибитора.
Для регулирования размеров в течение этапа прессования необходимо, чтобы сжимаемость выбранного керамического материала была близкой к сжимаемости металлического порошка. Кроме того, при регулировании размеров также должна учитываться разная степень сжатия керамического материала и металлического материала.
Согласно еще одному осуществлению настоящего изобретения: можно использовать микроскопическое механическое ингибирование. Раствор, например - раствор соли металла, можно нанести до прессования на выбранные участки рыхлого слоя порошка с помощью струйной печати. Вода из раствора испаряется, и образующиеся при этом кристаллы соли отделяют друг от друга частицы металлического порошка на границах ингибирования. Для многих металлов в качестве такого материала подходящим кандидатом является фосфат калия (К3PO4), который растворим в воде и температура плавления которого около 1300°С.
Хотя указана соль металла, но материалом для ингибирования спекания может также быть и любой другой раствор, который при высыхании образует кристаллы или другие твердые формы, имеющие высокую температуру спекания.
Может быть создана граница 230, которая будет окружать прессованный порошок (блок 120). Этот этап способа можно использовать для облегчения переноса неспеченного блока в печь для спекания. Для некоторых металлов, например - для меди, этот этап может быть необязательным, так как прессованные частицы порошка в этих случаях сцепляются друг с другом за счет эффекта «холодной сварки». Холодная сварка может обеспечивать достаточную прочность в неспеченном уплотненном материале с приданием прессованной порошковой заготовке возможности ее извлечения из формовочной емкости в виде когерентной массы, имеющей ту же форму, что и внутреннее пространство формовочной емкости.
При отсутствии холодной сварки внутри- и межслойная связь может быть слабой. Это обстоятельство является существенным для некоторых металлов и суперсплавов. В этом случае может возникнуть необходимость нанесения клеящего материала по периметру каждого слоя, чтобы создать достаточное сцепление для извлечения когерентной массы из формовочной емкости для ее переноса в печь для спекания. Для каждого слоя на уложенном порошке по периметру профиля детали можно нанести клеящую жидкость. Указанный профиль может иметь такую простую форму, как квадрат или круг. После завершения формирования всех слоев это клеящее вещество создает сплошной контейнер вокруг определенного участка порошка, содержащего объемную (3-D) деталь. В альтернативном исполнении формовочная емкость и ее поршень можно выполнить из керамического материала или из такого жаропрочного металла, как вольфрам. Узел формовочной емкости можно выполнить с возможностью его снятия и переноса в печь для спекания.
После завершения формирования всех слоев согласно упоминаемым выше этапам прессованный блок 235 из металлического порошка можно извлечь из формовочной емкости и поместить в обычную печь для спекания (блок 125). Керамическую пластину-основание, первоначально помещенную на поршень формовочной емкости и на которую нанесен первый слой порошка, можно использовать для надежного снятия неспеченного порошкового блока и переноса его в печь для спекания вместе с керамической пластиной. После спекания и охлаждения (блок 130) спеченный блок удаляют из печи, и, как показано на Фиг.2, деталь 245 извлекают из ненужных спеченных секций 250 за счет ее отделения по поверхностям, ингибированным в отношении спекания (блок 135).
Для некоторых типов металлов можно выполнить послойное спекание (вместо объемного спекания). Этот способ во многом будет похож на способ SIS с использованием полимера, но устройство должно иметь нагреватель для спекания или плавления частиц металлического порошка каждого слоя. Можно использовать группу газовых горелок, высокотемпературную электрическую нить накала или другие средства. Для создания некоторого бескислородного объема в целях исключения окисления металлического порошка может возникнуть необходимость в изолировании рабочей области устройства. Рабочая область устройства поэтому будет аналогична обычным печам для спекания, в которых осуществляют спекание в вакууме или в атмосфере соответствующих газов (таких как инертные газы или азот). Для некоторых металлических порошков, которые не окисляются (например, нержавеющая сталь), это изолирование может быть необязательным.
Нагревательное устройство обеспечивает возможность спекания выбранных участков на каждом слое, чтобы снизить потери порошка. В случае применения группы горелок, например, это достигается путем избирательного включения и выключения определенных горелок. Альтернативно для спекания выбранных участков можно использовать группы высокотемпературных электрических нитей накала, и электрические нити накала можно избирательно включать или выключать подключением или отключением электрического тока или посредством их закрывания заслонкой.
Способ SIS для металла позволяет создавать плотные металлические детали без использования полимерных связующих, которые значительно увеличивают коэффициент усадки при спекании и оставляют ненужные остатки в печи для спекания. Помимо этого, отсутствие полимерных связующих в порошке положительно влияет на точность изготовления. Прочими преимуществами являются: устранение нежелательного воздействия на окружающую среду при сгорании полимерных связующих и устранение загрязнения печи для спекания остатками сгоревшего связующего. Способ SIS для металла обеспечивает возможность приготовления деталей сложной конфигурации с выступающими компонентами. Этот способ также имеет относительно низкую стоимость с точки зрения используемого устройства, поскольку в нем не используются такие дорогостоящие средства, как лазерные генераторы.
Выше приведено описание некоторых осуществлений. Но предполагается, что в рамках идеи и объема настоящего изобретения в нем могут быть выполнены различные модификации. Например, некоторые блоки в схемах последовательности технологических операций можно пропустить или выполнить вне очереди и при этом получить нужные результаты. Соответственно в рамках объема приводимой ниже формулы изобретения возможны и другие осуществления изобретения.

Claims (40)

1. Способ изготовления объемных металлических изделий, включающий послойное нанесение металлического порошка и спекание, отличающийся тем, что перед нанесением следующего слоя осуществляют ингибирование спекания одного или нескольких участков в нанесенном слое, затем проводят прессование с получением порошковой заготовки, которую спекают, после чего удаляют одну или несколько спеченных секций на границе ингибирования.
2. Способ по п.1, отличающийся тем, что после удаления спеченных секций из порошковой заготовки извлекают объемное металлическое изделие.
3. Способ по п.1, отличающийся тем, что проводят дополнительное прессование каждого слоя перед нанесением следующего.
4. Способ по п.3, отличающийся тем, что дополнительное прессование проводят после ингибирования спекания.
5. Способ по п.3, отличающийся тем, что дополнительное прессование проводят перед ингибированием спекания.
6. Способ по п.3, отличающийся тем, что дополнительное прессование проводят при помощи прессующей поверхности, при этом перед прессованием каждого слоя осуществляют ее очистку.
7. Способ по п.1, отличающийся тем, что ингибирование спекания осуществляют путем нанесения ингибитора.
8. Способ по п.7, отличающийся тем, что ингибитор наносят путем экструдирования через насадку.
9. Способ по п.7, отличающийся тем, что ингибитор наносят с помощью печатающей головки.
10. Способ по п.7, отличающийся тем, что в качестве ингибитора используют раствор, образующий при высыхании кристаллы или другие твердые формы с высокой температурой спекания.
11. Способ по п.7, отличающийся тем, что в качестве ингибитора используют соль металла.
12. Способ по п.11, отличающийся тем, что в качестве соли металла используют фосфат калия (К3PO4).
13. Способ по п.7, отличающийся тем, что в качестве ингибитора используют керамический шликер.
14. Способ по п.1, отличающийся тем, что ингибирование спекания осуществляют путем окисления частиц металлического порошка на одном или нескольких участках.
15. Способ по п.14, отличающийся тем, что окисление частиц металлического порошка проводят путем нагрева в присутствии кислорода.
16. Способ по п.15, отличающийся тем, что нагрев частиц металлического порошка осуществляют путем сканирования лазером одного или нескольких участков слоя.
17. Способ по п.15, отличающийся тем, что нагрев частиц металлического порошка осуществляют путем перемещения микрогорелки по одному или нескольким участкам.
18. Способ по п.1, отличающийся тем, что используют металлический порошок, не содержащий связующего.
19. Способ по п.1, отличающийся тем, что при прессовании осуществляют холодную сварку частиц порошка в нескольких слоях.
20. Способ по п.1, отличающийся тем, что в нанесенных слоях формируют границу вокруг участка порошка, содержащего объемное металлическое изделие.
21. Способ по п.20, отличающийся тем, что границу формируют путем нанесения клеящего вещества по периметру каждого слоя.
22. Установка для изготовления объемных металлических изделий, содержащая средство нанесения слоев металлического порошка, отличающаяся тем, что она содержит средство ингибирования спекания, пресс и печь.
23. Установка по п.22, отличающаяся тем, что средство нанесения слоев содержит валик.
24. Установка по п.22, отличающаяся тем, что средство нанесения слоев содержит пластину.
25. Установка по п.22, отличающаяся тем, что средство ингибирования спекания содержит средство нанесения ингибитора.
26. Установка по п.25, отличающаяся тем, что средство нанесения ингибитора содержит насадку для экструдирования.
27. Установка по п.25, отличающаяся тем, что средство нанесения ингибитора содержит печатающую головку.
28. Установка по п.25, отличающаяся тем, что средство нанесения ингибитора предназначено для нанесения в качестве ингибитора соли металла.
29. Установка по п.28, отличающаяся тем, что средство нанесения ингибитора предназначено для нанесения в качестве соли металла фосфата калия К3PO4.
30. Установка по п.25, отличающаяся тем, средство нанесения ингибитора предназначено для нанесения в качестве ингибитора керамического шликера.
31. Установка по п.22, отличающаяся тем, что средство ингибирования спекания содержит лазер, обеспечивающий окисление частиц металлического порошка на одном или нескольких участках.
32. Установка по п.22, отличающаяся тем, что средство ингибирования спекания содержит регулируемую микрогорелку, обеспечивающую окисление частиц металлического порошка на одном или нескольких участках.
33. Установка по п.22, отличающаяся тем, что средство нанесения слоев предназначено для нанесения металлического порошка, не содержащего связующего.
34. Установка по п.22, отличающаяся тем, что она содержит средство очистки поверхности пресса перед прессованием каждого слоя.
35. Установка по п.22, отличающаяся тем, что она содержит нагреватель для нагрева каждого слоя.
36. Установка по п.35, отличающаяся тем, что нагреватель представляет собой группу газовых горелок, выполненных с возможностью избирательного включения/выключения.
37. Установка по п.35, отличающаяся тем, что нагреватель представляет собой группу высокотемпературных электрических нитей накала, выполненных с возможностью их избирательного включения/выключения, или посредством отключения/подключения электрического тока, или посредством закрывания заслонкой.
38. Способ изготовления объемных металлических изделий, включающий нанесение слоя металлического порошка и спекание, отличающийся тем, что наносят несколько слоев порошка, осуществляют ингибирование спекания одного или нескольких участков в каждом слое, проводят прессование и спекание каждого слоя с получением заготовки, после чего удаляют одну или несколько спеченных секций на границе ингибирования.
39. Способ по п.38, отличающийся тем, что после удаления спеченных секций из порошковой заготовки удаляют объемное металлическое изделие.
40. Способ по п.38, отличающийся тем, что перед ингибированием спекания осуществляют дополнительное прессование слоя.
RU2005104942/02A 2002-07-23 2003-06-30 Способ и установка для изготовления объемных металлических изделий RU2288073C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US39816002P 2002-07-23 2002-07-23
US60/398,160 2002-07-23
US60/398160 2002-07-23

Publications (2)

Publication Number Publication Date
RU2005104942A RU2005104942A (ru) 2005-07-20
RU2288073C2 true RU2288073C2 (ru) 2006-11-27

Family

ID=30771193

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005104942/02A RU2288073C2 (ru) 2002-07-23 2003-06-30 Способ и установка для изготовления объемных металлических изделий

Country Status (11)

Country Link
US (1) US7241415B2 (ru)
EP (1) EP1534461B1 (ru)
JP (1) JP4351998B2 (ru)
KR (1) KR100659008B1 (ru)
CN (1) CN100406169C (ru)
AT (1) ATE471222T1 (ru)
AU (1) AU2003256355A1 (ru)
CA (1) CA2492605C (ru)
DE (1) DE60333019D1 (ru)
RU (1) RU2288073C2 (ru)
WO (1) WO2004009281A1 (ru)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2457923C2 (ru) * 2007-12-06 2012-08-10 Аркам Аб Устройство и способ для формирования трехмерного объекта
RU2496606C2 (ru) * 2007-05-15 2013-10-27 Аркам Аб Способ и устройство для изготовления трехмерных объектов
RU2550669C1 (ru) * 2013-12-13 2015-05-10 Рустем Халимович Ганцев Способ изготовления металлического изделия послойным лазерным нанесением порошкового материала
RU2562494C2 (ru) * 2011-04-20 2015-09-10 Двс С.Р.Л. Стереолитографическая машина для изготовления трехмерного объекта и способ стереолитографии, выполняемый посредством такой машины
RU2593312C2 (ru) * 2010-07-01 2016-08-10 Снекма Способ изготовления металлической детали селективным плавлением порошка
RU2657971C1 (ru) * 2017-06-05 2018-06-18 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ изготовления металлического изделия из порошкового материала методом послойного лазерного синтеза с применением деформационной обработки
RU2666439C1 (ru) * 2014-12-23 2018-09-07 Двс С.Р.Л. Стереолитографическая машина с упрощенной процедурой инициализации
RU2717768C1 (ru) * 2019-10-15 2020-03-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) Способ аддитивного формования изделий из порошковых материалов
RU2719960C2 (ru) * 2015-11-17 2020-04-23 Сафран Эркрафт Энджинз Способ изготовления преформы для аэродинамического профиля, аэродинамического профиля и сектора сопла путем селективного плавления на порошковой постели
RU2732252C1 (ru) * 2019-07-30 2020-09-14 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Способ послойного изготовления объемных изделий
RU2734650C1 (ru) * 2019-07-30 2020-10-21 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для послойного изготовления объемных изделий и способ их изготовления
RU2777118C2 (ru) * 2017-06-13 2022-08-01 Аионис Д.О.О. Устройство и метод аддитивного производства трехмерных объектов

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7418993B2 (en) * 1998-11-20 2008-09-02 Rolls-Royce Corporation Method and apparatus for production of a cast component
US6932145B2 (en) * 1998-11-20 2005-08-23 Rolls-Royce Corporation Method and apparatus for production of a cast component
DE102004002919B4 (de) * 2004-01-20 2006-01-12 Siemens Ag Gradientenspulensystem und Verfahren zum Herstellen des Gradientenspulensystems
JP2008516820A (ja) * 2004-10-19 2008-05-22 ロールス−ロイス・コーポレーション 焼結セラミック物品の異方性収縮と関連づけられた方法及び装置
US7722735B2 (en) * 2006-04-06 2010-05-25 C3 Materials Corp. Microstructure applique and method for making same
EP1980380A1 (de) * 2007-04-13 2008-10-15 LBC Laser Bearbeitungs Center GmbH Vorrichtung zum Erwärmen oder Kühlen, insbesondere als Teil einer Werkzeugform zur Verarbeitung plastischer Massen, wie Kunststoffspritzgießform
GB2453774B (en) * 2007-10-19 2013-02-20 Materials Solutions A method of making an article
US7854885B2 (en) * 2007-10-19 2010-12-21 Materials Solutions Method of making an article
CN102248164A (zh) * 2011-05-23 2011-11-23 丹阳惠达模具材料科技有限公司 一种激光微区再制造梯度功能模具的方法
US20130101746A1 (en) * 2011-10-21 2013-04-25 John J. Keremes Additive manufacturing management of large part build mass
US8888480B2 (en) 2012-09-05 2014-11-18 Aprecia Pharmaceuticals Company Three-dimensional printing system and equipment assembly
US9403725B2 (en) 2013-03-12 2016-08-02 University Of Southern California Inserting inhibitor to create part boundary isolation during 3D printing
FR3010334B1 (fr) * 2013-09-09 2015-09-25 Michelin & Cie Dispositif de depot de lit de poudre sur une surface muni d'une sonde a reponse electromagnetique, et procede correspondant
CA3114978A1 (en) 2013-09-30 2015-04-02 Saint-Gobain Ceramics & Plastics, Inc. Shaped abrasive particles and methods of forming same
JP5911905B2 (ja) * 2014-03-31 2016-04-27 株式会社東芝 積層造形物の製造方法
US10471698B2 (en) 2014-04-30 2019-11-12 Hewlett-Packard Development Company, L.P. Computational model and three-dimensional (3D) printing methods
WO2015167530A2 (en) * 2014-04-30 2015-11-05 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing method
US10994333B2 (en) 2014-05-08 2021-05-04 Stratasys Ltd. Method and apparatus for 3D printing by selective sintering
KR101795994B1 (ko) 2014-06-20 2017-12-01 벨로3디, 인크. 3차원 프린팅 장치, 시스템 및 방법
DE102014212176A1 (de) * 2014-06-25 2015-12-31 Siemens Aktiengesellschaft Pulverbettbasiertes additives Fertigungsverfahren und Anlage zur Durchführung dieses Verfahrens
FR3024059A1 (fr) * 2014-07-28 2016-01-29 Michelin & Cie Procede de fabrication additive a base de poudre d'une piece, notamment d'une lamelle de garniture pour moule de pneumatiques
US10543672B2 (en) 2014-09-02 2020-01-28 Hewlett-Packard Development Company, L.P. Additive manufacturing for an overhang
CN104226997A (zh) * 2014-09-12 2014-12-24 徐海锋 一种3d金属打印方法
CN105522147A (zh) * 2014-09-30 2016-04-27 陈莉雅 三维物体的制造方法及其装置
CN104708702B (zh) * 2015-01-23 2017-05-10 福建海源自动化机械股份有限公司 一种3d打印设备
RU2017135217A (ru) * 2015-03-12 2019-04-05 Арконик Инк. Продукты из алюминиевых сплавов и способы их получения
EP3271153A4 (en) * 2015-07-31 2018-12-05 Hewlett-Packard Development Company, L.P. Photonic fusing
KR102570502B1 (ko) * 2015-08-21 2023-08-25 아프레시아 파마슈티칼즈 엘엘씨 3차원 인쇄 시스템 및 장비 어셈블리
US10150184B2 (en) 2015-10-21 2018-12-11 Siemens Energy, Inc. Method of forming a cladding layer having an integral channel
US9676145B2 (en) 2015-11-06 2017-06-13 Velo3D, Inc. Adept three-dimensional printing
US10071422B2 (en) 2015-12-10 2018-09-11 Velo3D, Inc. Skillful three-dimensional printing
JP6836101B2 (ja) * 2016-01-22 2021-02-24 セイコーエプソン株式会社 三次元造形物の製造方法
JP6979963B2 (ja) 2016-02-18 2021-12-15 ヴェロ・スリー・ディー・インコーポレイテッド 正確な3次元印刷
EP3542926B1 (en) 2016-04-11 2021-04-07 Stratasys Ltd. Method and apparatus for additive manufacturing with powder material
US20170297102A1 (en) 2016-04-14 2017-10-19 Desktop Metal, Inc. Removable sinter supports
CN105921744B (zh) * 2016-05-03 2018-05-11 广东智维立体成型科技有限公司 一种金属打印抑制剂
EP3458250B1 (en) 2016-05-17 2021-07-28 Hewlett-Packard Development Company, L.P. 3d printer with tuned coolant droplets
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
WO2018005439A1 (en) 2016-06-29 2018-01-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US9987682B2 (en) 2016-08-03 2018-06-05 3Deo, Inc. Devices and methods for three-dimensional printing
US10661341B2 (en) 2016-11-07 2020-05-26 Velo3D, Inc. Gas flow in three-dimensional printing
US20180186080A1 (en) 2017-01-05 2018-07-05 Velo3D, Inc. Optics in three-dimensional printing
US10442003B2 (en) 2017-03-02 2019-10-15 Velo3D, Inc. Three-dimensional printing of three-dimensional objects
US10338742B2 (en) 2017-03-02 2019-07-02 Microsoft Technology Licensing, Llc Detection method for a digitizer
US20200070246A1 (en) * 2017-03-20 2020-03-05 Stratasys Ltd. Method and system for additive manufacturing with powder material
IL269485B2 (en) * 2017-03-20 2024-03-01 Stratasys Ltd System and method for producing supplements with powdered material
US20180281237A1 (en) 2017-03-28 2018-10-04 Velo3D, Inc. Material manipulation in three-dimensional printing
WO2018195191A1 (en) 2017-04-21 2018-10-25 Desktop Metal, Inc. Metering build material in three-dimensional (3d) printing using a tool
US10232437B1 (en) * 2017-05-09 2019-03-19 Northrop Grumman Systems Corporation Method and system of metallic part fabrication
CN111032315B (zh) 2017-07-19 2021-10-29 惠普发展公司,有限责任合伙企业 三维(3d)打印
JP2020536768A (ja) * 2017-10-10 2020-12-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 付加製造のための選択的な粉末供給
US10940533B2 (en) 2017-12-26 2021-03-09 Desktop Metal, Inc. System and method for controlling powder bed density for 3D printing
US10272525B1 (en) 2017-12-27 2019-04-30 Velo3D, Inc. Three-dimensional printing systems and methods of their use
US10906249B2 (en) 2018-01-05 2021-02-02 Desktop Metal, Inc. Method for reducing layer shifting and smearing during 3D printing
US10144176B1 (en) 2018-01-15 2018-12-04 Velo3D, Inc. Three-dimensional printing systems and methods of their use
EP3520928A1 (en) * 2018-01-31 2019-08-07 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Method and apparatus for creating and sintering fine lines and patterns
KR101891227B1 (ko) * 2018-04-09 2018-08-27 한국생산기술연구원 3차원 레이저 프린터용 평탄화장치 및 이를 이용한 3차원 물체의 제조방법
WO2019212493A1 (en) * 2018-04-30 2019-11-07 Hewlett-Packard Development Company, L.P. Three-dimensional printing
SI25656A (sl) 2018-06-01 2019-12-31 Jože Abram Mešalno brizgalna glava za tridimenzionalni tiskalnik za tiskanje sten zgradb in metoda tiskanja
US11878442B2 (en) * 2018-06-08 2024-01-23 Lockheed Martin Corporation Additive manufacture of complex intermetallic and ceramic structures
DE102018129162A1 (de) 2018-11-20 2020-05-20 Samson Aktiengesellschaft Verfahren zum Herstellen eines Bauteils aus Metall oder Werkstoffen der technischen Keramik
WO2020129054A1 (en) * 2018-12-16 2020-06-25 Stratasys Ltd. Method of building objects within a green compact of powder material by additive manufacturing
CN114340876A (zh) 2019-07-26 2022-04-12 维勒3D股份有限公司 三维物体形成的质量保证
US11407529B1 (en) 2019-10-22 2022-08-09 Northrop Grumman Systems Corporation Aircraft retrofit system
US11697243B2 (en) * 2019-11-14 2023-07-11 Rolls-Royce Corporation Fused filament fabrication method using filaments that include a binder configured to release a secondary material
IT202000005653A1 (it) * 2020-03-17 2021-09-17 Omnicos Group S R L Metodo per la produzione di un prodotto cosmetico costituito da strati di materiale in polvere compatta
JP2021161492A (ja) 2020-03-31 2021-10-11 株式会社リコー 造形テーブル及び造形装置
US20220127200A1 (en) 2020-10-22 2022-04-28 Palo Alto Research Center Incorporated Materials for selective sintering of cohesive feedstocks
US11745893B2 (en) 2021-04-29 2023-09-05 Northrop Grumman Systems Corporation Magnetic refueling assembly

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160267B1 (en) * 1984-04-24 1991-02-27 Kanto Kagaku Kabushiki Kaisha Porous cordierite ceramics, a process for producing same and use of the porous cordierite ceramics
US4798694A (en) * 1985-08-09 1989-01-17 Canon Kabushiki Kaisha Method for producing composite materials
DE3751819T2 (de) 1986-10-17 1996-09-26 Univ Texas Verfahren und Vorrichtung zur Herstellung von gesinterten Formkörpern durch Teilsinterung
US5076869A (en) * 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
WO1990003893A1 (en) * 1988-10-05 1990-04-19 Michael Feygin An improved apparatus and method for forming an integral object from laminations
US5182170A (en) * 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5387380A (en) * 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5204055A (en) * 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
ATE131111T1 (de) * 1991-01-31 1995-12-15 Texas Instruments Inc Verfahren und vorrichtung zur rechnergesteuerten herstellung von dreidimensionalen gegenständen aus rechnerdaten.
RU2048272C1 (ru) 1992-09-28 1995-11-20 Николай Константинович Толочко Устройство для изготовления трехмерных изделий из порошковых материалов
RU2025218C1 (ru) 1992-09-28 1994-12-30 Николай Константинович Толочко Устройство для изготовления трехмерных изделий из порошковых материалов
RU2080963C1 (ru) 1992-12-14 1997-06-10 Николай Константинович Толочко Способ изготовления трехмерных изделий из порошковых материалов
RU2086356C1 (ru) 1992-12-14 1997-08-10 Николай Константинович Толочко Способ изготовления трехмерных изделий из порошковых материалов
US5518680A (en) * 1993-10-18 1996-05-21 Massachusetts Institute Of Technology Tissue regeneration matrices by solid free form fabrication techniques
US5555481A (en) * 1993-11-15 1996-09-10 Rensselaer Polytechnic Institute Method of producing solid parts using two distinct classes of materials
CN1034854C (zh) * 1994-08-31 1997-05-14 段俊荣 粉末冶金制造复合制品的方法
JP2615429B2 (ja) * 1994-09-13 1997-05-28 工業技術院長 3次元立体形状の創成法
US5697043A (en) * 1996-05-23 1997-12-09 Battelle Memorial Institute Method of freeform fabrication by selective gelation of powder suspensions
US6087024A (en) * 1996-12-17 2000-07-11 Whinnery; Leroy Louis Method for forming porous sintered bodies with controlled pore structure
US5940674A (en) * 1997-04-09 1999-08-17 Massachusetts Institute Of Technology Three-dimensional product manufacture using masks
DE19723892C1 (de) * 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
EP1039980B1 (en) * 1997-09-26 2004-11-24 Massachusetts Institute Of Technology Method for producing parts from powders using binders derived from metal salt
US6066285A (en) * 1997-12-12 2000-05-23 University Of Florida Solid freeform fabrication using power deposition
US6007764A (en) * 1998-03-27 1999-12-28 United Technologies Corporation Absorption tailored laser sintering
US5989476A (en) * 1998-06-12 1999-11-23 3D Systems, Inc. Process of making a molded refractory article
US20030114936A1 (en) * 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
US6363606B1 (en) * 1998-10-16 2002-04-02 Agere Systems Guardian Corp. Process for forming integrated structures using three dimensional printing techniques
US6241934B1 (en) * 1999-02-08 2001-06-05 3D Systems, Inc. Stereolithographic method and apparatus with enhanced control of prescribed stimulation production and application
WO2001038061A1 (en) * 1999-10-26 2001-05-31 University Of Southern California Process of making a three-dimensional object
US6508979B1 (en) * 2000-02-08 2003-01-21 University Of Southern California Layered nanofabrication
SE520565C2 (sv) * 2000-06-16 2003-07-29 Ivf Industriforskning Och Utve Sätt och apparat vid framställning av föremål genom FFF
US6780368B2 (en) * 2001-04-10 2004-08-24 Nanotek Instruments, Inc. Layer manufacturing of a multi-material or multi-color 3-D object using electrostatic imaging and lamination

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2496606C2 (ru) * 2007-05-15 2013-10-27 Аркам Аб Способ и устройство для изготовления трехмерных объектов
RU2457923C2 (ru) * 2007-12-06 2012-08-10 Аркам Аб Устройство и способ для формирования трехмерного объекта
RU2593312C2 (ru) * 2010-07-01 2016-08-10 Снекма Способ изготовления металлической детали селективным плавлением порошка
RU2562494C2 (ru) * 2011-04-20 2015-09-10 Двс С.Р.Л. Стереолитографическая машина для изготовления трехмерного объекта и способ стереолитографии, выполняемый посредством такой машины
RU2569516C2 (ru) * 2011-04-20 2015-11-27 Двс С.Р.Л. Способ получения трехмерного объекта и стереолитографическая машина, реализующая такой способ
RU2550669C1 (ru) * 2013-12-13 2015-05-10 Рустем Халимович Ганцев Способ изготовления металлического изделия послойным лазерным нанесением порошкового материала
RU2666439C1 (ru) * 2014-12-23 2018-09-07 Двс С.Р.Л. Стереолитографическая машина с упрощенной процедурой инициализации
RU2719960C2 (ru) * 2015-11-17 2020-04-23 Сафран Эркрафт Энджинз Способ изготовления преформы для аэродинамического профиля, аэродинамического профиля и сектора сопла путем селективного плавления на порошковой постели
RU2657971C1 (ru) * 2017-06-05 2018-06-18 Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" Способ изготовления металлического изделия из порошкового материала методом послойного лазерного синтеза с применением деформационной обработки
RU2777118C2 (ru) * 2017-06-13 2022-08-01 Аионис Д.О.О. Устройство и метод аддитивного производства трехмерных объектов
RU2732252C1 (ru) * 2019-07-30 2020-09-14 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Способ послойного изготовления объемных изделий
RU2734650C1 (ru) * 2019-07-30 2020-10-21 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для послойного изготовления объемных изделий и способ их изготовления
RU2717768C1 (ru) * 2019-10-15 2020-03-25 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) Способ аддитивного формования изделий из порошковых материалов

Also Published As

Publication number Publication date
CA2492605C (en) 2009-03-24
EP1534461A4 (en) 2006-12-27
WO2004009281A1 (en) 2004-01-29
US20040018107A1 (en) 2004-01-29
EP1534461A1 (en) 2005-06-01
JP2005533927A (ja) 2005-11-10
JP4351998B2 (ja) 2009-10-28
AU2003256355A1 (en) 2004-02-09
CA2492605A1 (en) 2004-01-29
DE60333019D1 (de) 2010-07-29
KR20050025651A (ko) 2005-03-14
RU2005104942A (ru) 2005-07-20
EP1534461B1 (en) 2010-06-16
US7241415B2 (en) 2007-07-10
ATE471222T1 (de) 2010-07-15
CN1671503A (zh) 2005-09-21
CN100406169C (zh) 2008-07-30
KR100659008B1 (ko) 2006-12-21

Similar Documents

Publication Publication Date Title
RU2288073C2 (ru) Способ и установка для изготовления объемных металлических изделий
EP2666614B1 (en) Method for producing a three dimensional green article
EP3600724B1 (en) Method for additive manufacturing with powder material
JP3660069B2 (ja) 金属コンポーネントを自由造形製作する方法
EP2319641B1 (en) Method to apply multiple materials with selective laser melting on a 3D article
US7540996B2 (en) Laser sintered titanium alloy and direct metal fabrication method of making the same
US11554418B2 (en) Base plate in additive manufacturing
EP3600723B1 (en) Method for additive manufacturing with powder material
WO1997006006A1 (en) Method and apparatus for constructing three-dimensional bodies from laminations
RU2550670C2 (ru) Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления
CN112789130B (zh) 生产反模板的方法以及使用此类的反模板制造具有复杂形状部件的方法
IL281757B1 (en) A method for producing a part with a complex shape using pressure sintering starting from a pre-pattern
US8871355B1 (en) Microstructure enhanced sinter bonding of metal injection molded part to a support substrate
CN113500205B (zh) 一种双金属材料的3d打印方法
CN113020619B (zh) 一种减少间接3d打印金属零件缺陷的方法
KR101917839B1 (ko) 3차원 프린터 및 이를 이용한 제조방법
JP3001450B2 (ja) セラミック焼結体の製造方法
JP4677551B2 (ja) 焼結方法及び装置
RU2055697C1 (ru) Способ изготовления изделий из порошка со сквозными каналами

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090701