RU2717768C1 - Способ аддитивного формования изделий из порошковых материалов - Google Patents

Способ аддитивного формования изделий из порошковых материалов Download PDF

Info

Publication number
RU2717768C1
RU2717768C1 RU2019132515A RU2019132515A RU2717768C1 RU 2717768 C1 RU2717768 C1 RU 2717768C1 RU 2019132515 A RU2019132515 A RU 2019132515A RU 2019132515 A RU2019132515 A RU 2019132515A RU 2717768 C1 RU2717768 C1 RU 2717768C1
Authority
RU
Russia
Prior art keywords
powder
mixture
binder
product
articles
Prior art date
Application number
RU2019132515A
Other languages
English (en)
Inventor
Сергей Николаевич Кульков
Алесь Сергеевич Буяков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ)
Priority to RU2019132515A priority Critical patent/RU2717768C1/ru
Application granted granted Critical
Publication of RU2717768C1 publication Critical patent/RU2717768C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/18Formation of a green body by mixing binder with metal in filament form, e.g. fused filament fabrication [FFF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение относится к аддитивному формованию изделий из порошковых материалов. Способ включает экструзионную подачу смеси, содержащей порошок металлов или керамики и полимерное связующее, в зону построения изделия с одновременным локальным тепловым разогревом смеси и последующую термообработку сформированного изделия для удаления связующего. В качестве порошка металлов или керамики используют порошок, имеющий полидисперсный гетерофазный состав с дисперсностью 0,1-20 мкм. В качестве полимерного связующего используют связующее, имеющее проводимость, равную 0,01-0,03 Ом−1·м−1. Локальный тепловой разогрев смеси осуществляют посредством пропускания через нее импульсов электрического тока с амплитудой 100-1000 В и длительностью 0,005-0,01 сек. Обеспечивается аддитивное формование изделий из порошковых материалов без явно выраженных анизотропных свойств. 3 пр.

Description

Изобретение относится к технологии аддитивного получения изделий, обладающих сложной объемной формой, и может быть использовано в медицине, в нефтегазовом комплексе и машиностроении для изготовления изделий, работающих при повышенных температурах, под нагрузкой или в агрессивных средах.
Известны способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле из RU 2627527, опубл. 08.08.2017 [1].
Способ включает прямое осаждение потока гранул порошка металла или неметалла из накопительной емкости в ванну расплава на опорном столе для формирования детали, наплавляемой посредством тепловой энергии лазерного или электронного источника нагрева, и кристаллизацию расплава с обеспечением формирования детали. Осаждение гранул порошка ведут под действием сил тяжести и электромагнитных сил с обеспечением приобретения ими положительного или отрицательного заряда в полете, при этом управляют траекторией и скоростью движения гранул порошка в полете посредством электромагнитного поля в соответствии с заданной программой. Предложено также устройство для аддитивного изготовления деталей. Устройство для аддитивного изготовления деталей содержит лазерный или электронно-лучевой источник нагрева. Обеспечивается повышение эффективности аддитивного изготовления деталей.
Недостатком изобретения является невозможность применения в качестве материала для аддитивного изготовления деталей полидисперсных материалов.
Известны способ и система для аддитивного производства с использованием светового луча из RU2697470, опубл. 14.08.2019 [2].
Изобретение относится к получению трехмерных объектов способом аддитивного производства. Способ включает этапы: а) подачи строительного материала и b) расплавления строительного материала световым лучом. При этом этапы а) и b) выполняют так, чтобы поступательно изготавливать объект из расплавленного строительного материала. На этапе b) луч проецируют на строительный материал, чтобы создать на строительном материале первичное пятно, и луч неоднократно сканируют в двух измерениях в соответствии с первой моделью сканирования, чтобы создать эффективное пятно на строительном материале. Причем это эффективное пятно имеет двухмерное распределение энергии. Эффективное пятно смещается по отношению к изготавливаемому объекту, чтобы поступательно изготавливать объект путем расплавления строительного материала. Техническим результатом изобретения является повышение скорости и качества сплавления строительного материала.
Недостатком способа является то, что при изготовлении изделий из строительного материала происходит одновременное локальное сплавление материала, в отличие от предложенного способа аддитивного формования изделий из порошковых материалов с последующей термообработкой изделий в равновесных условиях, обеспечивающим равномерную усадку и предотвращающим возможное накопление внутренних напряжений, способных привести к снижению прочности изделия.
Известен способ изготовления детали и устройство для его осуществления из RU2021881, опубл. 30.10.1994 [3].
Сущность: компьютер либо вычисляет или заранее получает границы требуемых поперечных сечений детали. Для каждого поперечного сечения цель лазерного луча сканирует по слою порошка, и луч включается лишь для спекания порошка внутри границ поперечного сечения. Порошок наносится и последовательными слоями спекается до образования законченной детали. Порошок может быть из пластмассового, металлического керамического или полимерного вещества. В предпочтительном варианте цель лазера перемещается непрерывным растровым сканированием и лазер включается, когда луч нацелен внутрь границ конкретного поперечного сечения, формируемого в текущий момент. Предпочтительно, чтобы распределяющий порошок механизм имел барабан, который перемещается горизонтально над мишеневой областью и противоходово вращается, выравнивая и распределяя порошок в равномерный слой на мишеневой площадке. Нижетяговая система создает воздушный поток регулируемой температуры через мишеневую площадку, понижая температуру порошка во время спекания.
Недостатком способа является то, что при изготовлении детали из пластмассового, металлического, керамического или полимерного вещества происходит одновременное локальное спекание вещества, в отличие от предложенного способа аддитивного формования изделий из порошковых материалов с последующей термообработкой изделий в равновесных условиях, обеспечивающим равномерную усадку и предотвращающим возможное накопление внутренних напряжений, способных привести к снижению прочности изделия
Известен способ изготовления трехмерного изделия из RU2566117, опубл. 20.10.2015 [4]
Изобретение относится к области металлургии, в частности к способу изготовления трехмерного изделия. Способ изготовления трехмерного изделия из жаропрочного сплава на основе никеля, кобальта или железа характеризуется тем, что осуществляют последовательное нанесение на пластину - подложку порошка или суспензии порошка сплава на основе никеля, кобальта или железа и наращивание изделия аддитивным процессом с получением изделия с анизотропией свойств. Затем проводят термическую обработку полученного изделия, обеспечивающую перекристаллизацию и/или укрупнение зерен для снижения анизотропии свойств изготавливаемого изделия. Изготавливают трехмерное изделие аддитивным способом без анизотропии свойств.
Технической проблемой изобретения является разработка способа формирования изделий из порошковых материалов методом аддитивного производства без явно выраженных анизотропных свойств.
Также техническим результатом способа является изготовление изделий, требующих минимальных затрат на их дополнительную обработку, возможность безотходного производства тонкостенных изделий сложной формы различного назначения.
Указанный технический результат достигается тем, что способ аддитивного формирования изделий из порошковых материалов включает экструзионную подачу органно-неорганической смеси в зону построения изделия с одновременным ее локальным тепловым разогревом и последующую термообработку сформированного изделия, при этом локальный тепловой разогрев смеси осуществляот пропусканием импульса электрического тока заданной длительности и амплитуды через органно-неорганическую смесь.
При этом в способе используют органическую составляющую смеси имеющую заданную для пропускания импульса тока проводимость, равную 0,01-0,03 Ом−1·м−1, а неорганическая составляющая смеси имеет полидисперсный гетерофазный состав с интервалом дисперсности порошков от 0,1 до 20 мкм.
Импульсы тока подбирают исходя из электропроводности органно-неорганической смеси и имеют амплитуду, равную 100-1000 В и длительность, равную 0,005-0,01 сек.
Сущность предлагаемого изобретения заключается в следующем.
Предложен способ аддитивного формования изделий из порошковых материалов, основанный на экструдировании органно-неорганической смеси.
PIM (CIM) технологии подразумевают формование «зеленого» продукта из смеси порошков (металлов или керамик) и полимерного связующего, требующего последующей отдельной стадии термообработки, что обеспечивает равномерную усадку по всему объему изделий и, соответственно, более совершенную структуру, без явно выраженных анизотропных свойств. В настоящее время PIM (CIM) технологии практически не имеют ограничений по составу компонентов порошковых систем.
Предложенный способ аддитивного формирования изделий из порошковых материалов включает экструзионную подачу органно-неорганической смеси в зону построения изделия с одновременным ее локальным тепловым разогревом и последующую термообработку сформированного изделия, при этом локальный тепловой разогрев смеси осуществляот пропусканием импульса электрического тока заданной длительности и амплитуды через органно-неорганическую смесь.
Ток проходит сквозь полимерно-неорганическую смесь от электрода-анода, расположенного на конце сопла экструдера, послойно наносящего полимерно- неорганическую смесь, к металлической поверхности, на которой происходит аддитивное формование изделия - катоду. Протекание тока вызывает локальный нагрев и сплавление органического компонента состава в монолит, наполненный порошковым материалом.
Органическая составляющая смеси имеет заданную для пропускания импульса тока проводимость. Неорганическая составляющая смеси имеет полидисперсный гетерофазный состав. Это является отличием от традиционных PIM (CIM) аддитивных методов производства изделий из металлических и керамических порошков, в которых применяются гомогенные порошковые составы, представленные частицами, имеющими одинаковый размер, форму и состав.
Импульсы тока подбирают путем теоретического расчёта исходя из электропроводности органно-неорганической смеси. После формования изделие подвергают отжигу для удаления связующего и обеспечения припекания неорганических частиц и спеканию для снижения анизотропии свойств изготавливаемого изделия.
Изобретение осуществляется следующим образом.
Разработка предлагаемого способа проводилась на примере полидисперсных гетерофазноых порошковых материалов
Приготовление порошковых смесей осуществлялось в высокоэнергетическом смесителе марки МА-2Д. Длительность обработки в мельнице составляла 3 минуты при центробежном ускорении 1000 м/с2 в атмосфере аргона. В качестве смесителей использовались сферические мелющие тела ZrO2.
Введение в порошковую смесь связующего осуществлялось в барабанном смесителе в среде этанола в течение 10 минут. Соотношение объемных долей исходной порошковой смеси и связующего составляет от 10:1 до 5:1. Связующее представляло собой высоковязкую составляющую - полиацетилен и/или полипиррол и парафин, взятых в соотношении объемных долей 1:1. После смешивания порошкового и пластичных компонентов происходило высушивание смеси до влажности не более 25 %.
Оптимальный количественный состав связующего из парафинового воска и полиацетилена и/или полипиррола 1:1 обеспечивает достаточную жесткость изделия после удаления связующего и хорошую газопроницаемость для последующего удаления высокомолекулярного компонента. Органическая составляющая смеси имеет заданную для пропускания импульса тока проводимость, равную 0,01-0,03 Ом−1·м−1.
Формование изделия проводилось на экспериментальной установке аддитивного формования изделий путем экструзионной шнековой подачи органно-неорганической смеси в зону формирования изделия и последующего локального теплового нагрева смеси. Локальный разогрев органно-неорганической смеси в зоне построения изделия осуществляли пропусканием импульса электрического тока с длительностью, равной 0,005-0,01 сек и амплитудой, равной 100-1000 В. При этом происходило сплавление частиц органической составляющей смеси, что приводило к формированию монолита из органического полимера, наполненного порошковым материалом.
После формования изделие подвергалось отжигу в вакуумной печи при температуре 1200-1300°С, скорости нагрева 50°С в час и выдержке 1 час для удаления связующего и обеспечения начального припекания неорганических частиц.
В случаях с керамическими порошками, производилось последующее спекание в вакуумной печи при 1800±10°С, скорость нагрева 300°С в час и выдержке 1 час, что обеспечивает равномерную усадку по всему объему изделий и, соответственно, более совершенную структуру, без явно выраженных анизотропных свойств.
Пример 1.
Формуют образец в форме диска диаметром 20 мм и высотой 4 мм из полидисперсного гетерофазного керамического порошкового материала состава: ZrC-BN-ZrB2-SiC со средним размером частиц: ZrC 1,4 мкм, BN 5 мкм, ZrB2 0,5 мкм, SiC 1 мкм, CNT 0,1 мкм.
Исходная порошковая смесь содержала 40 объемных % ZrC, 5 объемных % BN, 40 объемных % ZrB2, 10 объемных % SiC и 5 объемных % CNT и была получена путем высокоэнергетическоой обработки в смесителе марки МА-2Д в течении 3 минут при центробежном ускорении 1000 м/с2 в атмосфере аргона. В качестве смесителей использовались сферические мелющие тела ZrO2 при отношении массы мелющих тел к массе порошка 5:1.
Приготовление порошковой смеси для аддитивного производства образца из порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей – полиацетилен и парафинового воска, взятых в соотношении объемных долей 1:1, осуществляли в барабанном смесителе в среде этанола в течение 10 минут. Соотношение объемных долей порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей 17:3.
Формование образца проводилось путем экструзионной шнековой подачи органно-неорганической смеси в зону формирования изделия и последующего локального теплового нагрева смеси. Органическая составляющая смеси имеет для пропускания импульса тока проводимость, равную 0,01-0,03 Ом−1·м−1. Локальный разогрев органно-неорганической смеси в зоне построения изделия осуществляли пропусканием импульса электрического тока с длительностью 0,01 сек и амплитудой 900 В. При этом происходило сплавление частиц органической составляющей смеси, что приводило к формированию монолита из органического полимера, наполненного керамическим порошком.
После формования образец подвергался отжигу в вакуумной печи при температуре 1200°С, скорости нагрева 50°С в час и выдержке 1 час для удаления связующего и обеспечения начального припекания неорганических частиц. Последующее спекание производилось в вакуумной печи при 1800°С, скорость нагрева 300°С в час и выдержке 1 час для обеспечения консолидации и спекания образца с целью снижения анизотропии свойств материала образца.
Пример 2.
Формуют образец в форме диска диаметром 20 мм и высотой 4 мм из полидисперсного гетерофазного керамического порошкового материала состава TiC-BN-ZrB2-SiC-CNT со средним размером частиц: TiC 1 мкм, BN 5 мкм, ZrB2 0,5 мкм, SiC 1 мкм, CNT 0,1 мкм.
Исходная порошковая смесь содержала 40 объемных % TiC, 5 объемных % BN, 40 объемных % ZrB2, 10 объемных % SiC и 5 объемных % CNT и была получена путем высокоэнергетическоой обработки в смесителе марки МА-2Д в течении 3 минут при центробежном ускорении 1000 м/с2 в атмосфере аргона. В качестве смесителей использовались сферические мелющие тела ZrO2 при отношении массы мелющих тел к массе порошка 5:1.
Приготовление порошковой смеси для аддитивного производства образца из порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей – полипиррол и парафинового воска, взятых в соотношении объемных долей 1:1, осуществляли в барабанном смесителе в среде этанола в течение 10 минут. Соотношение объемных долей порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей 10:1.
Формование образца проводилось путем экструзионной шнековой подачи органно-неорганической смеси в зону формирования образца и последующего локального теплового нагрева смеси. Органическая составляющая смеси имеет заданную для пропускания импульса тока проводимость, равную 0,01-0,03 Ом−1·м−1. Локальный разогрев органно-неорганической смеси в зоне построения образца осуществляли пропусканием импульса электрического тока с длительностью 0,01 сек и амплитудой 950 В. При этом происходило сплавление частиц органической составляющей смеси, что приводило к формированию монолита из органического полимера, наполненного керамическим порошком.
После формования образец подвергался отжигу в вакуумной печи при температуре 1200°С, скорости нагрева 50°С в час и выдержке 1 час для удаления связующего и обеспечения начального припекания неорганических частиц. Последующее спекание производилось в вакуумной печи при 1800°С, скорость нагрева 300°С в час и выдержке 1 час для обеспечения консолидации и спекания образца с целью снижения анизотропии свойств изготавливаемого материала образца.
Пример 3.
Формуют образец в форме диска диаметром 20 мм и высотой 3 мм из металлического порошкового материала состава Fe-Ni.
Исходная порошковая смесь содержала 65 весовых % Fe со средним размером частиц 20 мкм, 35 весовых % Ni со средним размером частиц 10 мкм и была получена путем высокоэнергетическоой обработки в смесителе марки МА-2Д в течении 3 минут при центробежном ускорении 1000 м/с2 в атмосфере аргона. В качестве смесителей использовались сферические мелющие тела из стали марки ВК8 при отношении массы мелющих тел к массе порошка 5:1.
Приготовление порошковой смеси для аддитивного производства образца из порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей – полиацетилена и парафинового воска, взятых в соотношении объемных долей 1:1 осуществляли в барабанном смесителе в среде этанола в течение 10 минут. Соотношение объемных долей порошковой смеси компонентов вышеуказанного состава и высоковязкой составляющей 10:1.
Формование образца проводилось путем экструзионной шнековой подачи органно-неорганической смеси в зону формирования образца и последующего локального теплового нагрева смеси. Органическая составляющая смеси имеет заданную для пропускания импульса тока проводимость, равную 0,01-0,03 Ом−1·м−1. Локальный разогрев органно-неорганической смеси в зоне построения образца осуществляли пропусканием импульса электрического тока с длительностью 0,005 сек и амплитудой 870 В. При этом происходило сплавление частиц органической составляющей смеси, что приводило к формированию монолита из органического полимера, наполненного металлическим порошком.
После формования образец подвергался отжигу в вакуумной печи при температуре 1300 оС, скорости нагрева 50 оС в час и выдержке 1 час для удаления связующего и обеспечения спекания неорганических частиц. Полученный материал образца обладает коэффициентом теплопроводности, равным 1,5*10-6 K−1, однородным по указанному свойству по всему объему образца.
Предлагаемый способ позволяет изготавливать изделия, требующие минимальных затрат на их дополнительную обработку, а также осуществлять безотходное производство тонкостенных изделий сложной формы различного назначения.

Claims (1)

  1. Способ аддитивного формования изделий из порошковых материалов, включающий экструзионную подачу смеси, содержащей порошок металлов или керамики и полимерное связующее, в зону построения изделия с одновременным локальным тепловым разогревом смеси и последующую термообработку сформированного изделия для удаления связующего, отличающийся тем, что в качестве порошка металлов или керамики используют порошок, имеющий полидисперсный гетерофазный состав с дисперсностью 0,1-20 мкм, а в качестве полимерного связующего используют связующее, имеющее проводимость, равную 0,01-0,03 Ом−1·м−1, при этом локальный тепловой разогрев смеси осуществляют посредством пропускания через нее импульсов электрического тока с амплитудой 100-1000 В и длительностью 0,005-0,01 сек.
RU2019132515A 2019-10-15 2019-10-15 Способ аддитивного формования изделий из порошковых материалов RU2717768C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019132515A RU2717768C1 (ru) 2019-10-15 2019-10-15 Способ аддитивного формования изделий из порошковых материалов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019132515A RU2717768C1 (ru) 2019-10-15 2019-10-15 Способ аддитивного формования изделий из порошковых материалов

Publications (1)

Publication Number Publication Date
RU2717768C1 true RU2717768C1 (ru) 2020-03-25

Family

ID=69943264

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019132515A RU2717768C1 (ru) 2019-10-15 2019-10-15 Способ аддитивного формования изделий из порошковых материалов

Country Status (1)

Country Link
RU (1) RU2717768C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777114C1 (ru) * 2021-09-10 2022-08-01 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» Способ 3d-печати изделий активированной ультразвуком струей порошкового материала, пластифицированного термопластичной связкой

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2288073C2 (ru) * 2002-07-23 2006-11-27 Юниверсити Оф Саутерн Калифорния Способ и установка для изготовления объемных металлических изделий
WO2009108913A2 (en) * 2008-02-28 2009-09-03 San Diego State University Current activated tip-based sintering (cats)
RU2566117C2 (ru) * 2012-08-21 2015-10-20 Альстом Текнолоджи Лтд Способ изготовления трехмерного изделия
RU2668107C1 (ru) * 2017-11-14 2018-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ изготовления изделий из порошковых керамических материалов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2288073C2 (ru) * 2002-07-23 2006-11-27 Юниверсити Оф Саутерн Калифорния Способ и установка для изготовления объемных металлических изделий
WO2009108913A2 (en) * 2008-02-28 2009-09-03 San Diego State University Current activated tip-based sintering (cats)
RU2566117C2 (ru) * 2012-08-21 2015-10-20 Альстом Текнолоджи Лтд Способ изготовления трехмерного изделия
RU2668107C1 (ru) * 2017-11-14 2018-09-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ изготовления изделий из порошковых керамических материалов

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2777114C1 (ru) * 2021-09-10 2022-08-01 Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» Способ 3d-печати изделий активированной ультразвуком струей порошкового материала, пластифицированного термопластичной связкой
RU223293U1 (ru) * 2023-09-29 2024-02-12 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Аддитивная установка для формирования изделий из металл-полимерного композита

Similar Documents

Publication Publication Date Title
US11858038B2 (en) Method for additively manufacturing a component, and an additively manufactured component
US20220024068A1 (en) 3d printing method using slip
EP3187285B1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
Guo et al. Effects of scanning parameters on material deposition during Electron Beam Selective Melting of Ti-6Al-4V powder
Nouri et al. Powder morphology in thermal spraying
WO2014188778A1 (ja) 3次元造形物の製造方法
JP6162311B1 (ja) 積層造形法による粉末冶金焼結体の製造方法
US20180147627A1 (en) Powder for energy beam sintering, method for producing powder for energy beam sintering, and method for producing sintered body
US20060159896A1 (en) Laser sintering method with increased process precision, and particles used for the same
CA2976065A1 (en) Titanium powder, and ingot and sintered article of titanium powder
EP3046701A2 (en) Additive manufacturing
Liu et al. Selective laser gelation of ceramic–matrix composites
CN109760173B (zh) 壁状Al2O3-GdAlO3-ZrO2三元共晶陶瓷的激光熔化成形方法
CN106536095A (zh) 用于制造组件的方法
CN105102157A (zh) 铜合金粉末、铜合金烧结体和高速铁道用制动衬片
CN113118455B (zh) 一种基于浆料直写的制备金属人工骨3d打印方法
RU2717768C1 (ru) Способ аддитивного формования изделий из порошковых материалов
RU139624U1 (ru) Установка изготовления изделия путем лазерного спекания
CN109071357B (zh) 将基于石墨烯的添加剂添加至应用激光烧蚀的涂层中使用的靶材的方法
Roshchupkin et al. Extruder for the production of metal-polymer filament for additive technologies
Ghosh et al. Selective laser sintering: a case study of tungsten carbide and cobalt powder sintering by pulsed Nd: YAG laser
CN113264767A (zh) 一种氧化铝/gap共晶陶瓷及其制备方法
CN103781934B (zh) 喷涂用Mo粉末及采用它的Mo喷涂膜以及Mo喷涂膜部件
US20190091768A1 (en) Rapid additive sintering of materials using electric fields
RU2707307C1 (ru) Способ формования заготовок изделий сложной формы из порошка кремния