CN106536095A - 用于制造组件的方法 - Google Patents

用于制造组件的方法 Download PDF

Info

Publication number
CN106536095A
CN106536095A CN201580037038.9A CN201580037038A CN106536095A CN 106536095 A CN106536095 A CN 106536095A CN 201580037038 A CN201580037038 A CN 201580037038A CN 106536095 A CN106536095 A CN 106536095A
Authority
CN
China
Prior art keywords
powder
particle
partly
refractory metal
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580037038.9A
Other languages
English (en)
Other versions
CN106536095B (zh
Inventor
海因里希·凯斯特勒
格哈德·莱希特弗雷德
迈克尔·奥沙利文
伯恩哈德·塔贝尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of CN106536095A publication Critical patent/CN106536095A/zh
Application granted granted Critical
Publication of CN106536095B publication Critical patent/CN106536095B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1035Liquid phase sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/362Process control of energy beam parameters for preheating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种由耐火金属或耐火金属含量>50at%的耐火金属合金制造组件的方法,该方法包含提供由粒子形成的粉末及在激光束或电子束作用下固化该粉末的步骤,该粉末的粒度d50如激光光学测量>10μm且平均表面积如通过BET方法测量>0.08m2/g。

Description

用于制造组件的方法
技术领域
本发明涉及一种由耐火金属或耐火金属含量>50at%的耐火金属合金制造组件的方法,该方法包含提供由粒子形成的粉末及在激光束或电子束作用下固化该粉末的步骤。
背景技术
基于数字3D构造数据,通过分层施用粉末及固化粉末来构建组件的方法称为添加制造法。同义使用的术语的实例为生产制造、3D印刷或数字光子制造。添加制造法具有以下优势:
˙对于组件设计的高度自由度;
˙无需工具;及
˙高资源效率。
除实现具有功能性设计的组件之外,也存在开发新颖材料的极大潜能,诸如具有功能上分级式构造的材料、混合复合材料、具有优化微观结构的材料或仿生学材料。
出于此目的,例如通过选择性激光烧结(SLS)、选择性激光熔融(SLM)、激光金属沉积(LMD)、电子束熔融(EBM)或粉末床以及喷墨头3D印刷,以金属粉末为起始物质具有适合性。在选择性激光烧结/熔融的情况下,施用厚度典型地在20μm至100μm范围内的粉末层。如今,激光功率典型地为200W至1000W;未来也将可获得具有更高功率的激光。随后,激光束以高达7m/s的速率,例如在惰性气体例如氩气或氮气的氛围下扫描粉末层。在能量作用下,粉末层经固化。典型地,此也伴随有压实。激光束的焦点直径典型地在20μm至200μm范围内,在某些情况下高达1000μm。构建速率典型地在5cm3/h至15cm3/h范围内。该方法使得组件能够具有典型地在20μm至100μm范围内的表面质量Rz及典型地在50μm至100μm范围内的精确度。为了增加构建速率,有可能构建具有小焦点直径(例如约200μm)的边缘区域以达成良好表面质量及精确度。在核心区域中,粉末层经固化/压实具有例如1000μm的较大焦点直径,以获得高构建速率。
在LMD的情况下,不与SLS/SLM一样分层施用粉末,而实际上将粉末直接引入激光束区域中。此制造的融合珠粒典型地具有0.3mm至3mm的宽度。
在电子束熔融的情况下,施用厚度典型地在约50μm至100μm范围内的粉末层。当前可获得的电子束熔融单元的典型功率为3kW至4kW。由于粉末层曝露至电子束时出现的带电现象,通过电子束熔融,必需在粉末粒子自身之间和/或粉末粒子与预先施用且已经固化的粉末层之间的第一通道中制造导电连接件,否则,在第一粉末层的情况下,制造粉末粒子与底板之间的导电连接件。此可例如借助于散焦电子束来进行,该散焦电子束借助于固相烧结操作而使粉末粒子彼此连接。由于电子束熔融的高达8000m/s的极高扫描速率以及相对厚粉末层的可能性,构建速率也比选择性激光烧结或熔融的情况下的构建速率高得多。在Ti6Al4V的情况下,举例而言,构建速率为55cm3/h至80cm3/h。电子束的焦点直径可典型在0.1mm至1mm范围内变化,且又具有小焦点直径,有可能改良精确度及粗糙度,其分别典型地为130μm至200μm且Rz>100μm。
为了实现基于粉末的添加制造法的广泛应用,除改良表面粗糙度及精确度之外,仍必须解决以下技术挑战:
进一步增加构建速率
减小可行的壁厚度(当前限于约100μm)
增加操作恒定性
拓宽材料的托盘(palette)
增加组件尺寸(目前限值630×500×400mm3)
减少内部应力/变形。
该挑战/特性受固化/压实方法高度影响。该方法又将物理粉末特性校准至较高程度。
固化/压实工序可通过固相烧结、液相烧结或熔融/固化进行。在固相烧结的情况下,固化/压实典型地在0.7×至仅低于固相线温度范围内的温度下进行。在此,驱动力为表面能中的减小,同时最重要的运输机制为扩散。扩散又可通过表面(表面扩散)、经由晶界(晶界扩散)或经由粒子体积(体积或晶格扩散)进行。在两个粒子之间的接触点区域中,内切半径较小,而在粒子表面区域中,半径相对较大。倘若空位密度视半径而定且随半径减小而增加,则存在自两个粒子之间的接触面积的区域至具有较大半径的区域的空位扩散,否则同义地,存在自具有较大半径的区域至粒子之间的接触面积的原子扩散。在接触面积区域中,所谓的烧结颈形成于粒子之间。在液相烧结的情况下,也出现(至少暂时)液相以及固相。
在借助于熔融法固化/压实的情况下,伴随固化的收缩为均匀为必需的。另外,若粉末床经均匀加热,则其为有利的,这又需要粉末层中充分高的热导性。此外,对于压实,有效形成的液相润湿仍存在的固体粒子为必需的。这一方面受毛细管力(其又视粉末床的密度而定)影响,并且另一方面受表面化学作用影响。待避免的其他现象为马兰哥尼对流(Marangoni convection)及球状化或蒸发情况。
目前,耐火金属尚未以工业规模经由添加制造法固化/压实。在本发明的情形中,耐火金属涵盖金属铌、钽、铬、钼、钨及铼。添加制造法尚未针对该材料广泛建立的原因之一为适用于该制造法的粉末的有限可用性。通过目前使用的粉末,所得材料特性及操作特性对于该制造方法的广泛应用具有不充分质量。
尤其需要粉末具有极佳填充特性,因此确保每一粉末层中均匀且充分高的密度。粉末层的低密度或不均匀密度导致不均匀收缩和/或形成相对较大孔或孔群。若粒子之间的距离较小且若烧结活性较高,则固化/压实仅可经由固相烧结过程在给定较短能量曝露时间下达成。举例而言,当粉末经由电子束熔融操作经压实时,经由固相烧结的充分固化/压实为必需的,因为在如已提及的这种情况下,在第一通道(预加热)中,粉末层中的粒子必须在一定程度上彼此接合,以便使借助于电子束引入的电荷载流子在第二通道(熔融操作)中借助于预先构建的层和/或借助于底板转向。若粒子在第一通道中未彼此接合至充分高程度,则结果为带电影响,及随后粉末粒子的排斥及所施用粉末层的毁坏。
所施用粉末层的均匀及高密度在选择性激光烧结及熔融的情形下也是有利的。特定言之,在激光烧结的情况下,固相中的高烧结活性具有有益结果。在激光熔融及通过液相的激光烧结的情况下,若所得熔融物具有较低表面张力,则其为有利的。若可在固相中达成充分高固化/压实或若关于待达成的密度的要求较低,则SLS优选历经SLM,因为其允许在组件中达成更好表面质量和/或较高精确度。因此,例如有可能减少或完全消除下游加工操作。
发明内容
因此,本发明的目标为提供一种允许由耐火金属制造具有以下特性中的至少一个的组件的方法:
高表面质量
高精确度
低壁厚度
高密度,或低误差密度,例如孔/孔群
高静态及动态强度
高延展性
细粒结构
低固有应力。
此外,该方法还准许高构建速率。
此目标通过独立权利要求达成。特定具体实例展示于从属权利要求中。
本发明方法允许由耐火金属或耐火金属含量>50at%的耐火金属合金制造组件。如已提及,术语耐火金属涵盖基于铌、钽、铬、钼、钨及铼的金属。本发明的耐火金属合金的耐火金属含量>50at%,优选>70at%或>80at%。特别优选地,耐火金属含量>90at%、>95at%或99at%。
根据本发明,随后使用由粒子形成且粒度d50如激光光学测量>10μm的粉末。此d50数字借助于激光绕射测定法测量。测量结果报导为分布曲线。d50表示平均粒度。d50意谓50vol%粒子小于所报导的数字。
此外,粉末的平均表面积如通过BET方法测量>0.08m2/g。BET测量根据标准(ISO9277:1995,测量范围:0.01-300m2/g;仪器:Gemini II 2370;加热温度:130℃;加热时间:2小时;吸附物:氮气;经由五点测定的体积评估)进行。BET表面积优选>0.1m2/g或>0.13m2/g。特别优选地,BET表面积>0.15m2/g、>0.2m2/g或>0.25m2/g。
粉末在激光束或电子束作用下经固化和/或压实。出于此目的,粉末优选经分层施用。
该方法的突出点为以下优势:
电子束熔融中改良的操作特性:
在电子束熔融中,在第一通道(预加热操作)中例如通过散焦电子束,经由固相烧结充分形成烧结颈。此阻止高能量密度(第二信道/熔融操作)的情况下的不期望的带电影响。
由此制造的组件的高表面质量:
本发明的粉末产生高填充密度(低粒子间距离)。另外,其具有极高烧结活性。此产生极均匀的压实/固化方法。若关于组件密度的要求不过高,则可省略完全熔融。
高精确度:
由于固化/压实操作可借助于固相或液相烧结(在固相及液相区域中烧结)进行,因此与通过熔融/固化的固化/压实比较,可观察到较窄公差。
低壁厚度:
由于固化/压实操作可通过固相或液相烧结进行,因此有可能达成与通过熔融/固化的固化/压实相比较低壁厚度,因为防止或减少熔融物穿透入粉末层的相邻区域中,其不为固化所预期的。
高密度及低误差密度,诸如孔/孔群:
均匀填充特征及高烧结活性减少大孔及孔群的数目。
低固有应力:
由于固有应力由固化/冷却方法诱发,因此液相部分减少具有有益结果。
细粒结构:
由于在相对较低能量输入下可达成相同密度,因此有可能确立更细粒结构。
高静态及动态强度:
前述特性,诸如高密度、细粒结构及低误差密度例如对于静态与动态强度具有有益结果。
高延展性:
前述特性也对于延展性具有有益结果。
此外,本发明方法也增加构建速率。这特别是在高程度上加快电子束熔融,因为在这种情况下完全避免不期望的带电现象。
粒子宜具有至少部分朝向表面敞开的孔。此经由表面扩散改良相邻粒子之间的烧结颈的形成。另外,若粒子至少部分具有球形形状,则其为有利的。与多孔表面组合,这也确保达成粉末层的均匀且高填充密度。
此外,若涂层材料具有双峰或多峰粒子分布,则其为有利的。双峰分布为具有两个最大值的频率分布。多峰分布具有至少三个最大值。双峰或多峰分布不仅增加粉末层的填充程度并且也促进经由固相烧结现象的固化/压实。已证明双峰或多峰粒度分布在电子束熔融的情况下极有利。
此外,若粉末包含呈由初级粒子形成的聚结物和/或聚集物形式的粒子,则其为有利的。在此情况下,粒子可至少部分呈聚集物形式、至少部分呈聚结物形式或至少部分呈聚集物与聚结物的混合物形式存在。粉末冶金中的聚集物理解为经由较强黏结彼此接合的初级粒子团,而聚结物为经由较弱黏结彼此接合的初级粒子团(参见例如German,R.:「Introduction to powder metallurgy science」,MPIF,Princeton(1984),32)。在本发明的情形中,聚集物指无法由习用超音波解聚集破坏的团簇,而聚结物可至少部分分解成初级粒子。此处,超音波解聚集在20kHz及600W下进行。粉末宜呈聚集物形式。形成聚集物的初级粒子之间的黏结为熔合的(冶金黏结),优选不具有来自其他元素的辅助。特别有利地>50%,特别是>70%且极有利地>90%的所有粒子呈聚集物或聚结物形式。在此情况下,评估进行如下:获取5个样本且使用扫描电子显微镜研究。在截面影像中涵盖20至50个粒子的放大率下,容易确定呈聚集物或聚结物形式存在的粒子的总和。此后,呈聚集物或聚结物形式存在的粒子的数目指经评估粒子的总数,且自5个样本测定平均值。聚结物或聚集物形式允许具有极高表面积的球形形状的组合,又促进填充密度及固相烧结操作。
此外,已证明若粉末包含0.005at%至5at%的至少一种来自由Ni、Co、Fe及Pd组成的群的元素,则其为有利的。由于该合金化元素,甚至在极短能量曝露时间的情况下触发晶界扩散现象以及表面扩散,且已证明此对于在电子束熔融的情况下接触的粒子与在选择性激光烧结的情况下的压实方法均有益。由于该元素减小液体熔融相的表面张力,因此通过SLM与EBM可获得极光滑表面。
在另一优选具体实例中,粉末至少部分呈复合粉末形式存在。特定言之,复合粉末理解为由两种或两种以上相的成分组成的粉末,其中该相的成分优选极小且均质分布。在此,复合粉末的一种优选可能性为至少部分呈涂层形式存在的粉末。在此,可形成极薄(例如50nm至5μm)层。已证明层包含具有熔点比近核心区域中的粒子的熔点低的金属、合金或化合物为尤其有利的。熔点差(以K为单位)优选为0.04至0.7×靠近中心区域的熔点(以K为单位)。优选范围为0.04至0.5及0.04至0.3×熔点(以K为单位)。通过此手段,不仅固相烧结现象有可能促进固化/压实方法,并且也压实经由液相烧结进行。此处,液相优选由粒子涂层形成。液相又可有利地初步溶解一些区域中粒子的剩余部分。另外,有利地,涂层材料具有足够低的蒸汽压。特定有利地,使涂层为多孔的。通过该手段,固相烧结现象有可能经由固相线温度降低与经由表面积增加而加速。另外,若由涂层形成的相比在使用未经涂布的粒子的情况下具有较低表面张力,则其为有利的。
多孔表层可通过流体化床方法以简单方式沉积。在流体化床(也称作流体床)中,通过载体介质(优选气体)搅拌尚未经涂布的粉末。在特定流速下,粉末床变为流体化床。在流体化床涂层的情况下,随后,例如可经由喷嘴将包含优选呈极细形式的涂层材料以及包含液体及黏合剂的浆液喷射入反应腔室中且该浆液可沉积于粒子上。随后,液体及黏合剂可通过习用方法移除,诸如热处理。
然而,在简单方式中,对于本发明必需的粉末也可通过粒化金属粉末的前驱物(例如氧化物)后续还原制造。尤其适合的粒化方法的实例包括喷雾粒化。粒化之后的还原步骤优选在温度>500℃,特别优选>800℃下进行。
如已提及,对于本发明必需的粉末优选用于通过电子束的反应来压实/固化。出于此目的,粉末经分层施用,并且在第一步骤(预加热操作)中经由通过例如散焦电子束的固相烧结现象来固化/压实到一定程度,使得至少部分形成烧结颈且可防止下游熔融操作中的不期望的带电现象。然而,特别当固化/压实通过固相烧结或液相烧结进行时,对于本发明必需的粉末也显著地适用于在激光束作用下压实。
具体实施方式
借助于以下实施例描述本发明。
实施例1
将细粒MoO3粉末引入搅拌贮槽中且与一些水组合以便形成浆液。在喷雾粒化单元中将此浆液处理成颗粒。在两阶段方法中将该颗粒还原成Mo金属粉末(还原温度分别为600℃及1050℃)。在90μm下筛选以此方式制造Mo金属粉末。粉末粒子形式为球状且具有朝向表面敞开的孔。根据说明书中提供的定义,粒子呈聚结物/聚集物形式。如根据说明书测定的d50为21μm,BET表面积为0.15m2/g。以此方式制造的粉末用于选择性电子束熔融。操作提供于说明书中。在不导致熔融的条件下,通过散焦电子束进行预加热。在通过聚焦电子束之后续扫描步骤而导致粒子的完全熔融的过程中,不存在不期望的带电过程。
实施例2
混合在25μm及5μm下筛选的具有球形形状的钨粉末与0.1质量%细粒Ni粉末。混合物的d50及BET分别为>10μm及>0.08m2/g。通过由此制造的粉末混合物,以极短操作时间进行烧结实验(在3分钟中加热至1200℃)以便在低D×t值(D为扩散系数,t为时间)下评定固相烧结性,且因此使得评估在通过散焦电子束预加热期间和/或借助于激光束固化/压实(激光烧结)期间是否存在粒子的间的充分接触成为可能。相比而言,在3分钟中将具有球形形状且筛网级分为5μm至25μm(BET表面积<0.08m2/g)的纯W粉末加热至1200℃。尽管在纯钨的情况下仍不可观察到烧结颈形成,但本发明的W-Ni混合物已经展示粒子之间的烧结颈。
实施例3
将WO3粉末引入搅拌贮槽中且与一定量水组合以便形成浆液。在喷雾粒化单元中将此浆液处理成颗粒。在一段操作中将该颗粒还原成W金属粉末(还原温度1000℃)。在90μm下筛选由此制造的W金属粉末。粉末形式为球状且具有朝向表面敞开的孔。根据说明书中所提供的定义,粒子呈聚结物/聚集物形式。如根据说明书测定的d50为17μm,BET表面积为0.18m2/g。将大致1μm厚的Ni层施用于粉末粒子。在基于实施例2的工序中,借助于快速加热测定在较低的D×t值的条件下的固相烧结性。由于涂层,有可能甚至在1000℃下形成烧结颈。

Claims (19)

1.一种由耐火金属或耐火金属含量>50at%的耐火金属合金制造组件的方法,所述方法包含提供由粒子形成的粉末以及在激光束或电子束作用下固化所述粉末的步骤,其特征在于,
所述粉末的激光光学测量的粒度d50>10μm并且通过BET方法测量的平均表面积>0.08m2/g。
2.根据权利要求1所述的方法,其特征在于,所述粒子的表面至少部分具有孔。
3.根据前述权利要求中任一项所述的方法,其特征在于,所述粒子至少部分具有球形形状。
4.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末具有双峰或多峰粒度分布。
5.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末包含呈由初级粒子形成的聚结物形式和/或聚集物形式的粉末粒子。
6.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末包含0.005at%至5at%的至少一种来自由Ni、Co、Fe及Pd组成的组的元素。
7.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末至少部分地以复合粉末的形式存在。
8.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末至少部分以涂布粉末的形式存在。
9.根据前述权利要求中任一项所述的方法,其特征在于,所述粒子在靠近表面区域中至少部分具有比在靠近中心区域中低的熔点。
10.根据权利要求9所述的方法,其特征在于,熔点差(以K为单位)为0.04至0.7×该靠近中心区域的熔点(以K为单位)。
11.根据前述权利要求中任一项所述的方法,其特征在于,粉末制造包含粒化步骤。
12.根据权利要求11所述的方法,其特征在于,所述粒化步骤之后为在温度>500℃下的还原步骤。
13.根据前述权利要求中任一项所述的方法,其特征在于,粉末制造包含涂布步骤。
14.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末包含>80at%的至少一种选自由Mo和W组成的组的元素。
15.根据前述权利要求中任一项所述的方法,其特征在于,BET表面积>0.1m2/g,优选>0.13m2/g。
16.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末经分层施用。
17.根据前述权利要求中任一项所述的方法,其特征在于,所述粉末的固化在电子束的作用下进行,其中经分层施用的粉末的所述粒子在第一步骤中经由固相烧结至少部分形成烧结颈并且在后续步骤中至少部分熔融。
18.根据权利要求17所述的方法,其特征在于,所述第一步骤通过散焦电子束进行。
19.根据权利要求1至16中任一项所述的方法,其特征在于,所述粉末的固化至少部分通过固相烧结或液相烧结在激光束的作用下进行。
CN201580037038.9A 2014-07-09 2015-06-30 用于制造组件的方法 Active CN106536095B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATGM277/2014U AT14301U1 (de) 2014-07-09 2014-07-09 Verfahren zur Herstellung eines Bauteils
ATGM277/2014 2014-07-09
PCT/AT2015/000093 WO2016004448A1 (de) 2014-07-09 2015-06-30 Verfahren zur herstellung eines bauteils

Publications (2)

Publication Number Publication Date
CN106536095A true CN106536095A (zh) 2017-03-22
CN106536095B CN106536095B (zh) 2019-02-22

Family

ID=53547675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580037038.9A Active CN106536095B (zh) 2014-07-09 2015-06-30 用于制造组件的方法

Country Status (8)

Country Link
US (1) US20170189962A1 (zh)
EP (1) EP3166741B9 (zh)
JP (1) JP6706608B2 (zh)
KR (1) KR102359523B1 (zh)
CN (1) CN106536095B (zh)
AT (1) AT14301U1 (zh)
TW (1) TWI647031B (zh)
WO (1) WO2016004448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039028A (zh) * 2018-11-19 2021-06-25 普兰西股份有限公司 经添加物方式制造的难熔金属构件,添加物方式制造方法及粉末

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000102A1 (de) * 2015-01-14 2016-07-14 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zur generativen Herstellung dreidimensionaler Bauteile
GB201509284D0 (en) * 2015-05-29 2015-07-15 M & I Materials Ltd Selective laser melting
JPWO2017115648A1 (ja) * 2015-12-28 2017-12-28 Jx金属株式会社 スパッタリングターゲットの製造方法
DE102016216859A1 (de) 2016-09-06 2018-03-08 Siemens Aktiengesellschaft Verfahren zum Erzeugen eines Bauteils mit einem pulverbettbasierten additiven Fertigungsverfahren und Pulver zur Verwendung in einem solchen Verfahren
JP2018197372A (ja) * 2017-05-24 2018-12-13 株式会社エイチ・ティー・エル Sus316lの電子ビーム積層造形方法
WO2019231467A1 (en) 2018-06-01 2019-12-05 Hewlett-Packard Development Company, L.P. Material sets
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
JP7222257B2 (ja) * 2019-02-04 2023-02-15 株式会社Ihi 三次元造形装置
EP3736135B1 (de) 2019-05-06 2023-08-09 Heraeus Deutschland GmbH & Co. KG Additive fertigung eines formkörpers aus einem refraktärmetallpulver
US20220032585A1 (en) * 2020-07-28 2022-02-03 Ge Aviation Systems Llc Insulated ferromagnetic laminates and method of manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491294A (zh) * 2001-02-14 2004-04-21 Hc 高熔点金属制品的再生
EP2055412A2 (en) * 1998-05-06 2009-05-06 H.C. Starck GmbH Metal powders produced by the reduction of the oxides with gaseous magnesium
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
EP2278045A1 (en) * 2002-01-24 2011-01-26 H.C. Starck Inc. methods for rejuvenating tantalum sputtering targets and rejuvenated tantalum sputtering targets
CN102773479A (zh) * 2012-07-05 2012-11-14 黑龙江科技学院 一种难熔金属零部件的近净成形方法
CN103624257A (zh) * 2012-08-21 2014-03-12 阿尔斯通技术有限公司 制造三维制品的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1353822A (en) * 1971-05-06 1974-05-22 Tsnii Chernoimetall Urgii Im I Sintering of workpieces formed of pressed powdered refractory metal or alloy
JPH08165528A (ja) * 1994-12-09 1996-06-25 Japan Energy Corp 高純度高融点金属または合金の製造方法
US6103392A (en) * 1994-12-22 2000-08-15 Osram Sylvania Inc. Tungsten-copper composite powder
US6554882B1 (en) * 1998-05-26 2003-04-29 Drexel University Rapid tooling sintering method and compositions therefor
JP3721014B2 (ja) * 1999-09-28 2005-11-30 株式会社日鉱マテリアルズ スッパタリング用タングステンターゲットの製造方法
EP1594679B1 (de) * 2003-02-18 2010-04-14 Daimler AG Beschichtete pulverpartikel für die herstellung von dreidimensionalen körpern mittels schichtaufbauender verfahren
DE102004049040B4 (de) * 2004-10-08 2008-11-27 H.C. Starck Gmbh Verfahren zur Herstellung von Festelektrolytkondensatoren
US7276102B2 (en) * 2004-10-21 2007-10-02 Climax Engineered Materials, Llc Molybdenum metal powder and production thereof
JP5472688B2 (ja) * 2008-06-12 2014-04-16 日立金属株式会社 Fe−Co系合金スパッタリングターゲット材およびその製造方法
GB0821302D0 (en) * 2008-11-21 2008-12-31 Johnson Matthey Plc Method for making an alloy
JP6257896B2 (ja) * 2009-08-04 2018-01-10 アロメット コーポレイション 高靭性マトリックス材料中の固結された高靭性被覆硬質粒子
JP5585237B2 (ja) * 2010-06-24 2014-09-10 セイコーエプソン株式会社 粉末冶金用金属粉末および焼結体
EP2551040A1 (en) * 2011-07-25 2013-01-30 EADS Deutschland GmbH Method of manufacturing a component by hot isostatic pressing
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
CN103060586B (zh) * 2013-01-15 2014-09-17 北京科技大学 一种复杂形状铌基ods合金的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055412A2 (en) * 1998-05-06 2009-05-06 H.C. Starck GmbH Metal powders produced by the reduction of the oxides with gaseous magnesium
CN1491294A (zh) * 2001-02-14 2004-04-21 Hc 高熔点金属制品的再生
EP2278045A1 (en) * 2002-01-24 2011-01-26 H.C. Starck Inc. methods for rejuvenating tantalum sputtering targets and rejuvenated tantalum sputtering targets
CN101780544A (zh) * 2010-01-15 2010-07-21 黑龙江科技学院 一种采用激光成形难熔金属零件的方法
CN102773479A (zh) * 2012-07-05 2012-11-14 黑龙江科技学院 一种难熔金属零部件的近净成形方法
CN103624257A (zh) * 2012-08-21 2014-03-12 阿尔斯通技术有限公司 制造三维制品的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039028A (zh) * 2018-11-19 2021-06-25 普兰西股份有限公司 经添加物方式制造的难熔金属构件,添加物方式制造方法及粉末
CN113039028B (zh) * 2018-11-19 2024-01-30 普兰西股份有限公司 经增材制造的难熔金属构件,增材制造方法及粉末

Also Published As

Publication number Publication date
EP3166741B1 (de) 2019-03-06
CN106536095B (zh) 2019-02-22
KR102359523B1 (ko) 2022-02-07
AT14301U1 (de) 2015-07-15
EP3166741B9 (de) 2019-08-14
TW201611922A (en) 2016-04-01
KR20170031688A (ko) 2017-03-21
JP6706608B2 (ja) 2020-06-10
EP3166741A1 (de) 2017-05-17
US20170189962A1 (en) 2017-07-06
JP2017528591A (ja) 2017-09-28
WO2016004448A1 (de) 2016-01-14
TWI647031B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN106536095A (zh) 用于制造组件的方法
TWI775955B (zh) 經加成製造之組件、積層製造方法及粉末用於積層製造方法之用途
US11148204B2 (en) Method for the additive manufacturing of a part by selective melting or selective sintering of optimized-compactness powder beds using a high energy beam
JP6463746B2 (ja) 高エネルギービームと共に目標方法/材料の組合せに適した粉体を用いる、粉体粒子の融解又は焼結による部品の付加的な製造方法
Nouri et al. Powder morphology in thermal spraying
US20210260652A1 (en) Methods and compositions for the preparation of powders for binder-based three-dimensional additive metal manufacturing
CN109954874B (zh) 金属粉末材料
EP3187285A1 (en) Powder for layer-by-layer additive manufacturing, and process for producing object by layer-by-layer additive manufacturing
US10343217B2 (en) Nanoparticle enhancement for additive manufacturing
US20190060993A1 (en) Agglomerated particle powder for additive manufacturing
JP2017528604A (ja) 非晶質相を有する金属合金からなる部品の製造方法
WO2017006610A1 (ja) 粉体材料、積層造形体及び積層造形体の製造方法
US11739396B2 (en) Powder material and method for manufacturing molded article
US20190185972A1 (en) Sintered cemented carbide granulate and its use
JP2019112700A (ja) 金属粉末材料の製造方法
Song et al. Sintering behavior of bimodal iron nanopowder agglomerates
US20190016641A1 (en) Composite particles, composite powder, method for manufacturing composite particles, and method for manufacturing composite member
AU2008315429A1 (en) Metal powder mixture and the use thereof
US20190061235A1 (en) Particle agglomeration for additive metal manufacturing
Sinha et al. Fabricating efficient and biocompatible filament for material extrusion-based low-cost additive manufacturing: a case study with steel
US20190060994A1 (en) Three-dimensional metallic objects having microstructures
US20210331237A1 (en) Particle agglomeration for additive metal manufacturing
KR101612340B1 (ko) 전기선 폭발법을 이용한 나노-마이크로 혼합분말의 제조방법과 이 방법에 의해 제조된 혼합분말
WO2022210134A1 (ja) 積層造形用粉末材料および該粉末材料を用いた造形物の製造方法
Zhou et al. Microstructure evolution of FD-POEM powders during high-temperature plasma spheroidization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant