RU139624U1 - Установка изготовления изделия путем лазерного спекания - Google Patents

Установка изготовления изделия путем лазерного спекания Download PDF

Info

Publication number
RU139624U1
RU139624U1 RU2013103674/02U RU2013103674U RU139624U1 RU 139624 U1 RU139624 U1 RU 139624U1 RU 2013103674/02 U RU2013103674/02 U RU 2013103674/02U RU 2013103674 U RU2013103674 U RU 2013103674U RU 139624 U1 RU139624 U1 RU 139624U1
Authority
RU
Russia
Prior art keywords
working chamber
powder
working
layer
additional
Prior art date
Application number
RU2013103674/02U
Other languages
English (en)
Inventor
Рустем Халимович Ганцев
Владимир Энгелевич Галиев
Аскар Джамилевич Мингажев
Original Assignee
Общество с ограниченной ответственностью "Нанотехнологии проводников"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Нанотехнологии проводников" filed Critical Общество с ограниченной ответственностью "Нанотехнологии проводников"
Priority to RU2013103674/02U priority Critical patent/RU139624U1/ru
Application granted granted Critical
Publication of RU139624U1 publication Critical patent/RU139624U1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

1. Установка для изготовления изделия с использованием процесса лазерного послойного спекания металлического порошка, содержащая рабочую камеру с входным окном, лазер, оптически связанный с системой сканирования и фокусировки луча, рабочий бункер с поршнем, выполненный с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питатель, каретку засыпки и укладки порошка роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка, отличающаяся тем, что она содержит дополнительную рабочую камеру, также оснащенную входным окном, лазером, оптически связанным с системой сканирования и фокусировки луча, рабочим бункером с поршнем, выполненным с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питателем, кареткой засыпки и укладки порошка, роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка, причем рабочая камера и дополнительная рабочая камера снабжены общим рабочим столом, в котором установлены упомянутые рабочие бункеры с поршнями, при этом общий рабочий стол выполнен с возможностью перемещения рабочих бункеров с поршнями в процессе формирования детали из рабочей камеры в дополнительную рабочую камеру и обратно.2. Установка по п.1, отличающаяся тем, что рабочая камера и дополнительная рабочая камера расположены внутри общей камеры, обеспечивающей их герметизацию от внешней среды и снабженную системой вакуумирования и системой напуска защ�

Description

Полезная модель относится к области установок для изготовления изделий из порошковых материалов и может быть использована для изготовления металлических изделий лазерным послойным синтезом.
Известно изделие получаемое методом лазерного спекания и установка для его изготовления [патент РФ №2132761, МПК B22F 3/105, В23К 26/00. УСТРОЙСТВО И СПОСОБ ЛАЗЕРНОГО СПЕКАНИЯ. 1999.]. При изготовлении изделия на поверхность порошка в зону спекания направляют спекающий лазерный луч. Кроме того, в область зоны спекания дополнительно направляют подогревающий лазерный луч, который фокусируют на более широкой, по сравнению со спекающим лучом, площади, обеспечивая, тем самым уменьшение температурного градиента между зоной спекания и окружающим порошком для предотвращения коробления спеченной детали.
Известно также изделие получаемое методом спекания, включающим нанесение порошкового слоя на мишеневую поверхность, сканирование цели направленным лазерным пучком и спекание слоя оплавлением лазерным пучком в границах поперечного сечения слоя [патент РФ №2021881, МПК B22F 3/12, СПОСОБ ИЗГОТОВЛЕНИЯ ДЕТАЛИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ. 1994] После оплавления слоя на него последовательно наносят последующие порошковые слои, сканируют цель направленным лазерным пучком для каждого последующего слоя соответственно поперечному сечению детали и каждый последующий слой оплавляют лазерным пучком для образования из слоев поперечного сечения детали. При спекании оплавлением каждого последующего слоя его соединяют с предыдущим слоем для образования детали.
К недостатку указанных технических решений [патенты РФ №2132761 и №2021881] можно отнести низкую прочность формируемого изделия в связи с невозможностью полного проплавления материала, из-за вероятности его растекания. Другими недостатками указанных технических решений являются: возможность возникновения брака при перегреве детали из-за потери формы, неоднородность свойств наплавленного материала и низкая точность формирования детали из-за нечетких границ «наплавленный слой-порошок».
Наиболее близким по технической сущности к предлагаемому техническому решению является изделие и установка для изготовления изделия из порошкового материала путем лазерного послойного синтеза [Патент РФ №2401180. МПК B22F 3/105. СПОСОБ ПОЛУЧЕНИЯ ГРАДИЕНТНЫХ МАТЕРИАЛОВ ИЗ ПОРОШКОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ. 2010]. Техническое решение включает следующую последовательность формирования слоев: нанесение слоя первого порошкового материала и его селективное спекание на заданных участках слоя, удаление первого порошкового материала из неспеченных участков, нанесение в пространство между спеченными участками слоя первого порошкового материала слоя второго порошкового материала той же толщины и его селективное спекание на этих участках. Установка для изготовления металлической детали из порошкового материала, содержит рабочую камеру с входным окном, лазер, оптически связанный с системой сканирования и фокусировки луча, рабочий бункер с поршнем, выполненный с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питатель, каретку засыпки и укладки порошка, роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка. Однако известные способ и установка не позволяют получать металлические детали, обладающие высокой механической прочностью материалов.
В этой связи, задачей настоящей полезной модели является разработка металлического изделия с высокой механической прочностью, выполненного методом лазерного послойного селективного спекания металлического порошка и установки для его изготовления.
Техническим результатом заявляемой полезной модели является обеспечение высокой механической прочности изделий, изготавливаемых методом лазерною послойного селективного спекания металлического порошка.
Технический результат достигается тем, что установка для изготовления изделия с использованием процесса лазерного послойного спекания металлического порошка, может быть выполнена по следующим вариантам: рабочая камера и дополнительная рабочая камера расположены внутри общей камеры, обеспечивающей их герметизацию от внешней среды и снабженную системой вакуумирования и системой напуска защитных газов рабочие бункеры с поршнями выполнены из диэлектрических теплостойких материалов и снабжены индукторами для нагрева изготавливаемых изделий; рабочие бункеры с поршнями снабжены индукторами, а рабочая камера и/или дополнительная рабочая камера дополнительно снабжены электроннолучевыми пушками и дополнительными лазерами; рабочая камера и/или дополнительная рабочая камера дополнительно снабжены роллером прикатки и дополнительным роллером очистки, выполненным с возможностью вертикального перемещения, а по периметру входного окна рабочей камеры установлены газоразрядные лампы с отражателями для нагрева поверхности порошка.
Сущность полезной модели поясняется схемами. На фигуре 1 представлена установка для изготовления металлического изделия методом лазерного послойного селективного спекания (синтеза) с последующим расплавлением металла изделия. На фиг 2 изображена схема формирования изделия, выполненного из металлическою порошкового материала лазерным послойным синтезом, согласно предлагаемого технического решения.
Фигуры 1 и 2 содержат: 1 - общая камера; 2 - рабочая камера; 3 - лазер с системой сканирования и фокусировки луча; 4 - роллер очистки и каретка засыпки и укладки порошка; 5 - перегородка между рабочей камерой и дополнительной рабочей камерой; 6 - дополнительная рабочая камера; 7 - луч лазера; 8 - бункер-питатель; 9 - слои порошка спекаемого материала; 10 - рабочий бункер с поршнем; 11 - шток; 12 - индуктор; 13 - общий рабочий стол с рабочими бункерами; 14 - механизм поворота стола; 15 - слой первого порошкового материала (керамический порошок); 16 - слой первого порошкового материала, спеченный на заданных участках слоя; 17 - неспеченные участки первого порошкового материала; 18 - пространство между спеченными участками слоя первого порошкового материала; 19 - слой второго порошкового материала; 20 - готовое изделие после кристаллизации расплавленного металла или сплава и удаления керамики (А, В, С, D, E, F, G, Н - стадии формирования изделия).
Устройство работает следующим образом (фиг.1). На поршень рабочего бункера 10, находящегося в исходном положении, при помощи 4 - роллера очистки и каретки засыпки и укладки порошка, наносится слой керамического материала I (слой первого порошкового материала, образующий, при спекании, оболочку формируемого изделия) и производится его спекание лучом лазера 7 на всей рабочей поверхности для образования основания для формирования изделия 20. Затем производится повторное нанесение керамического материала I и его селективное спекание лучом лазера 7 с последующим удалением с поверхности 9 слоя неспеченной части порошка 17 керамического материала I при помощи роллера очистки 4 с образованием пространства между спеченными участками слоя керамического материала I (фиг.1 и фиг.2А, В, С). Затем, после поворота общего рабочего стола 13 и перемещением формируемого изделия из рабочей камеры 2 в дополнительную рабочую камеру 6, с помощью каретки засыпки и укладки порошка 4, в пространство между спеченными участками слоя керамического материала I производят нанесение, слоя второго порошкового материала (металла или сплава II) той же толщины и его селективное спекание па этих участках (фиг.2D). (При этом, одновременно, другое формируемое изделие перемещается из дополнительной рабочей камеры 6 в рабочую камеру 2, где на него наносится и селективно спекается керамический материал I). Циклы поочередного нанесения и спекания керамики 15 и металла 19 повторяют до осуществления полного формирования изделия (фиг.2E, F, G). При этом, перед нанесением слоя порошка II (металла) поршень рабочего бункера 10 поднимается на высоту спекаемого слоя и с помощью роллера очистки 4, движущегося перпендикулярно движению каретки укладки порошка и производится удаление предыдущего слоя материала I (неспеченных участков керамики 17). Каретка засыпки порошка 4 периодически пополняется порошком из бункеров питателей 8. В дополнительной рабочей камере 6 поршень рабочего бункера 10 опускают на высоту спекаемого слоя и наносят с помощью каретки 4 слой порошка II. Укладка порошка производится двумя ножами каретки 4. На обратном ходу каретки 4 слой уплотняется роллером прикатки 4. Затем проводится селективное спекание слоя из порошка II. После окончания формирования изделия 20 производят полное расплавление металла (материала II) и его кристаллизацию по одному из следующих вариантов: поликристаллизации, направленной (моно)кристаллизации. При необходимости придания более высокой механической прочности проводят термообработку и/или упрочняющую обработку изделия. После окончания формирования изделия одним из известных способов, например травлением в кислотах. Производят удаление керамического материала и получают готовое изделие (фиг.2Н).
Для оценки механической прочности изделий, изготавливаемых из металлического порошкового материала лазерным послойным синтезом, были проведены следующие исследования изделий, полученных по прототипу и по предложенному техническому решению. Указанными методами были получены образцы из порошков высоколегированных сталей и сплавов на никелевой основе и проведены сравнения их механической прочности.
Режимы обработки образцов по предлагаемому техническому решению.
Методом цикличного лазерного послойного синтеза, были получены образцы из порошковых материалов на основе высоколегированных сталей и сплавов на никелевой основе. Первый порошковый материал: керамика на основе окиси алюминия и керамика на основе окиси циркония. Второй порошковый материал: первый вариант - сплав состава, в вес.%: Сr - от 10,0 до 18,0%, Мо - от 0,8 до 3,7%, Fe - остальное; второй вариант - сплав состава, в вес.%: Сr - от 18% до 34%; Аl - от 3% до 16%; Y - от 0, 2% до 0,7%; Ni - остальное третий вариант сплав состава, в вес.%: Сr - от 18% до 34%; Аl - от 3% до 16%; Y - от 0, 2% до 0,7%; Со - от 16% до 30%; Ni - остальное; четвертый вариант - никелевый порошок. Использовали порошок с размерами частиц порошка от 25 мкм до 100 мкм. Производилось нанесение слоя первою порошкового материала толщиной 300 мкм и его селективное спекание на заданных участках слоя, обеспечивающих формирование заданных образцов. Подача порошка на рабочую плоскость бункеров с поршнями с последующим выглаживанием слоя порошка и удалением его избытка производилась вращающимся роликом. После нанесения первого слоя, лишний, неспеченный порошок удаляли. Далее в пространство между спеченными участками слоя первого порошкового материала, наносили слой второго порошкового материала той же толщины и проводили его селективное спекание на этих участках. Количество указанных циклов повторяли до осуществления полного формирования образца. Расплавление спеченного сплава проводили по следующим вариантам: после каждого спекания слоя металла или сплава; расплавление всего его объема металла или сплава; после полного формирования изделия и кристаллизации расплавленного металла или сплава удаляли керамику.
Послойное спекание (использовался лазер модели ЛС-03 мощностью до 300 Вт, скорость перемещения лазерного луча - до 150 мм/с) осуществляли по следующим вариантам: в вакууме (до Р=3×10-2 Па); в защитной среде (аргоне Р=1,0×105 Па); в магнитном поле; в электрическом поле; в ультразвуковом поле; в магнитном и электрическом поле; в магнитном и ультразвуковом поле; в электрическом и ультразвуковом поле; в магнитном электрическом и ультразвуковом поле. При этом использовались поля со следующими параметрами: магнитное поле с индукцией до 0,2 Тл, электрическое поле напряженностью до 300 кВ/м, и ультразвуковое поле с частотой 15-25 кГц. Выход за пределы указанных параметров приводил к снижению эффекта воздействия указанных полей на формируемый материал образцов.
При переплаве, расплавление металла или сплава проводили следующими способами: лучом лазера; электронно-лучевым методом; индукционным методом; совместно лучом лазера и электронно-лучевым методом; совместно лучом лазера и индукционным методом; совместно электронно-лучевым и индукционным методом; совместно лучом лазера, электронно-лучевым и индукционным методом.
Был проведен также индукционный переплав (до удаления керамики) с последующей повторной кристаллизацией, который осуществлялся после первой кристаллизации расплавленного металла или сплава.
Кристаллизацию расплавленного металла или сплава проводили методами направленной кристаллизации и направленной монокристаллизации.
После всех видов кристаллизации расплавленного металла или сплава проводили термообработку изделия, обеспечивающую повышение механических свойств металлов или сплавов (например, режимы термической обработки сплавов на никелевой основе: гомогенизация структуры и растворение включений при 770-780°С с ускоренным охлаждением; двухступенчатое старение: 8 часов при температуре 720°С, медленное охлаждение в течение 2 часов до 620-650°С и выдержка в течение 8 часов; ускоренное охлаждение.
Для дополнительного упрочнения материала образцов после кристаллизации расплавленного металла или сплава проводилась его упрочняющая электроимпульсную обработка, причем электроимпульсную обработка при плотности электрического тока от 10 МА/m2 до 200 MA/m2.
Плотность электрического тока процесса электроимпульсной обработки 8 МА/m2 - Н.Р. (Неудовлетворительный Результат.); 10 MA/m2 - У.Р. (Удовлетворительный Результат.); 30 МА/m2 (У.Р.); 60 МА/m2 (У.Р.); 100 МА/m2 (У.Р.); 140 МА/m2 (У.Р.): 200 МА/m2 (У.Р.); 210 МА/m2 (Н.Р.).
Применение упрочняющей электроимпульсной обработки позволяет значительно повысить эксплуатационные свойства изготавливаемых изделий. Воздействие мощных импульсов электрического поля на дефектную структуру металла или сплава приводит к дополнительному локальному тепловому воздействию, особенно интенсивно проявляющемуся в области его структурных дефектов. Это приводит к значительной интенсификации процессов восстановления структуры материала в областях с повышенной плотностью дефектов, которые протекают без перегрева основной массы металла обрабатываемой детали. Кроме того, дополнительным преимуществом от использования импульсов электрического поля является эффект упрочнения [Зуев Л.Б., Соснин О.В., Подборонников С.Ф. и др. // ЖТФ. 2000. Т.70. Вып.3. С.24-26.]. Наличие же значительных структурных дефектов материала, позволяет указанному эффекту наиболее сильно проявиться именно в дефектной зоне обрабатываемого материала.
Для осуществления послойного лазерного синтеза материалов использовали поршень рабочего бункера со спекаемыми слоями, который, после спекания слоя первого порошкового материала перемещали вверх на толщину этого слоя, удаляли порошковый материал из неспеченных участков, а нанесение слоя второго порошкового материала производили после возвращения поршня в прежнее положение.
Проведенные исследования показали на повышение прочности образцов из никеля и сплавов на основе никеля, полученных по предлагаемому техническому решению на 30-50% от прочности образцов, полученных по известному техническому решению, а образцов, изготовленных из легированной стали - на 25-40%. Точность изготовления изделия по заявляемому техническому решению в 2…4 раза выше точности изделия, изготовленного по прототипу, что объясняется, в частности, наличием формы высокой точности, в которой происходит плавление и кристаллизация металла изготавливаемого изделия. Снижение трудоемкости изготовления по предлагаемому техническому решению значительно снижается из-за отсутствия стадии изготовления модели изделия, затем формы для литья, изготовленной по полученной модели (например, по методу литья по выплавляемым или выжигаемым моделям), а включает лишь две стадии: спекание материала изделия и его отливку.
Таким образом, использование в предлагаемой установке следующих признаков: установка, содержащая рабочую камеру с входным окном; лазер, оптически связанный с системой сканирования и фокусировки луча; рабочий бункер с поршнем, выполненный с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении; бункер-питатель; каретку засыпки и укладки порошка с роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка; дополнительную рабочую камеру, также оснащенную входным окном, лазером, оптически связанным с системой сканирования и фокусировки луча, рабочим бункером с поршнем, выполненный с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питателем, кареткой засыпки и укладки порошка, роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка; рабочая камера и дополнительная рабочая камера снабжены общим рабочим столом в котором установлены упомянутые рабочие бункеры с поршнями, при этом общий рабочий стол выполнен с возможностью перемещения рабочих бункеров с поршнями в процессе формирования детали из рабочей камеры в дополнительную рабочую камеру и обратно; рабочая камера и дополнительная рабочая камера расположены внутри общей камеры, обеспечивающей их герметизацию от внешней среды и снабженную системой вакуумирования и системой напуска защитных газов; рабочие бункеры с поршнями выполнены из диэлектрических теплостойких материалов и снабжены индукторами для нагрева изготавливаемых изделий; рабочие бункеры с поршнями снабжены индукторами; рабочая камера и/или дополнительная рабочая камера дополнительно снабжены электронно-лучевыми пушками и дополнительными лазерами; рабочая камера и/или дополнительная рабочая камера дополнительно снабжены роллером прикатки и дополнительным роллером очистки, выполненным с возможностью вертикального перемещения; по периметру входного окна рабочей камеры установлены газоразрядные лампы с отражателями для нагрева поверхности порошка, позволяют достичь технического результата заявляемой полезной модели, которым является обеспечение высокой механической прочности изделий, изготавливаемых методом послойного лазерного синтеза из порошковых материалов.

Claims (6)

1. Установка для изготовления изделия с использованием процесса лазерного послойного спекания металлического порошка, содержащая рабочую камеру с входным окном, лазер, оптически связанный с системой сканирования и фокусировки луча, рабочий бункер с поршнем, выполненный с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питатель, каретку засыпки и укладки порошка роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка, отличающаяся тем, что она содержит дополнительную рабочую камеру, также оснащенную входным окном, лазером, оптически связанным с системой сканирования и фокусировки луча, рабочим бункером с поршнем, выполненным с возможностью перемещения слоя порошка и спекаемого материала в вертикальном направлении, бункер-питателем, кареткой засыпки и укладки порошка, роллером очистки, выполненным с возможностью перемещения в направлении, перпендикулярном направлению движения каретки засыпки и укладки порошка, причем рабочая камера и дополнительная рабочая камера снабжены общим рабочим столом, в котором установлены упомянутые рабочие бункеры с поршнями, при этом общий рабочий стол выполнен с возможностью перемещения рабочих бункеров с поршнями в процессе формирования детали из рабочей камеры в дополнительную рабочую камеру и обратно.
2. Установка по п.1, отличающаяся тем, что рабочая камера и дополнительная рабочая камера расположены внутри общей камеры, обеспечивающей их герметизацию от внешней среды и снабженную системой вакуумирования и системой напуска защитных газов.
3. Установка по п.1, отличающаяся тем, что рабочие бункеры с поршнями выполнены из диэлектрических теплостойких материалов и снабжены индукторами для нагрева изготавливаемых изделий.
4. Установка по п.1, отличающаяся тем, что рабочие бункеры с поршнями снабжены индукторами, а рабочая камера и/или дополнительная рабочая камера дополнительно снабжены электроннолучевыми пушками и дополнительными лазерами.
5. Установка по п.1, отличающаяся тем, что рабочие бункеры с поршнями снабжены индукторами, а рабочая камера и/или дополнительная рабочая камера дополнительно снабжены электроннолучевыми пушками и дополнительными лазерами.
6. Установка по любому из пп.1-5, отличающаяся тем, что рабочая камера и/или дополнительная рабочая камера дополнительно снабжены роллером прикатки и дополнительным роллером очистки, выполненным с возможностью вертикального перемещения, а по периметру входного окна рабочей камеры установлены газоразрядные лампы с отражателями для нагрева поверхности порошка.
Figure 00000001
RU2013103674/02U 2013-01-29 2013-01-29 Установка изготовления изделия путем лазерного спекания RU139624U1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013103674/02U RU139624U1 (ru) 2013-01-29 2013-01-29 Установка изготовления изделия путем лазерного спекания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013103674/02U RU139624U1 (ru) 2013-01-29 2013-01-29 Установка изготовления изделия путем лазерного спекания

Publications (1)

Publication Number Publication Date
RU139624U1 true RU139624U1 (ru) 2014-04-20

Family

ID=50481463

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013103674/02U RU139624U1 (ru) 2013-01-29 2013-01-29 Установка изготовления изделия путем лазерного спекания

Country Status (1)

Country Link
RU (1) RU139624U1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052417A1 (ru) * 2015-09-25 2017-03-30 Общество С Ограниченной Ответственностью "Адирут" Способ и устройство аддитивного изготовления деталей
RU173526U1 (ru) * 2016-12-12 2017-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для изготовления деталей послойным лазерным синтезом
RU2670500C2 (ru) * 2016-10-21 2018-10-23 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для изготовления объемных изделий
RU2750307C1 (ru) * 2017-11-20 2021-06-25 СЛМ Солюшенз Груп АГ Устройство и способ изготовления трехмерного изделия
RU2752402C1 (ru) * 2017-10-09 2021-07-27 СЛМ Солюшенз Груп АГ Устройство и способ изготовления трехмерных изделий

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052417A1 (ru) * 2015-09-25 2017-03-30 Общество С Ограниченной Ответственностью "Адирут" Способ и устройство аддитивного изготовления деталей
RU2627527C2 (ru) * 2015-09-25 2017-08-08 Анатолий Евгеньевич Волков Способ и устройство аддитивного изготовления деталей методом прямого осаждения материала, управляемого в электромагнитном поле
CN108136500A (zh) * 2015-09-25 2018-06-08 阿迪鲁特有限责任公司 用于部件的增材制造的方法和装置
US11358329B2 (en) 2015-09-25 2022-06-14 Obschestvo S Ogranichennoy Otvetstvennostyu “Adirut” Method and device for the additive manufacturing of components
RU2670500C2 (ru) * 2016-10-21 2018-10-23 Общество с ограниченной ответственностью Научно-производственный центр "Лазеры и аппаратура ТМ" Устройство для изготовления объемных изделий
RU173526U1 (ru) * 2016-12-12 2017-08-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") Устройство для изготовления деталей послойным лазерным синтезом
RU2752402C1 (ru) * 2017-10-09 2021-07-27 СЛМ Солюшенз Груп АГ Устройство и способ изготовления трехмерных изделий
RU2750307C1 (ru) * 2017-11-20 2021-06-25 СЛМ Солюшенз Груп АГ Устройство и способ изготовления трехмерного изделия

Similar Documents

Publication Publication Date Title
RU2526909C1 (ru) Способ изготовления металлического изделия из порошкового материала цикличным послойным лазерным синтезом
RU2550670C2 (ru) Способ изготовления металлического изделия лазерным цикличным нанесением порошкового материала и установка для его осуществления
RU139624U1 (ru) Установка изготовления изделия путем лазерного спекания
US20230121858A1 (en) Fabrication of metallic parts by additive manufacturing
CN104010749B (zh) 用于制备三维物体的方法和装置
EP3064295B1 (en) Process for producing a compressor blade
RU2333086C2 (ru) Очищенный лазерной обработкой и плавлением тугоплавкий металл и его сплав
EP2987877B1 (en) Methods for producing alloy forms from alloys containing one or more extremely reactive elements and for fabricating a component therefrom
CN109396434B (zh) 一种基于选区激光熔化技术制备钛合金零件的方法
JP6188678B2 (ja) フラッシュ焼結によって複雑な形状を有する部品を製造するための方法、およびそのような方法を実施するための装置
JP2014513207A (ja) 損傷した熱機械的部品の局部補修のプロセスおよび該プロセスに従って補修された部品、特に、タービン部品
JP2014513207A5 (ru)
WO2013013814A2 (en) Method of manufacturing a component by hot isostatic pressing
CN109202081B (zh) 基于电子束铺粉成形的铜合金增材的制备方法
RU2564604C1 (ru) Способ трехмерной печати изделий
JP2010261072A (ja) 電子ビーム造形方法
CN105441881B (zh) 铬靶材及其组合的制造方法
US11253916B2 (en) Method of production using melting and hot isostatic pressing
US20170087669A1 (en) Apparatus and method for producing and/or repairing in particular rotationally symmetrical components
WO2020126086A1 (en) Method and system for generating a three-dimensional workpiece
JP2020525650A (ja) 析出硬化超合金粉末材料のための付加製造技術
EP3223286B1 (en) Production method of a magnetic inductor
RU2550669C1 (ru) Способ изготовления металлического изделия послойным лазерным нанесением порошкового материала
JP2019196523A (ja) 積層造形装置および積層造形方法
CN114083085A (zh) 一种电脉冲同步处理电弧增材制造镁合金构件的方法

Legal Events

Date Code Title Description
MM1K Utility model has become invalid (non-payment of fees)

Effective date: 20150130